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Séries Formelles et Combinatoire Algébrique
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Abstract. In this paper we consider a model of particles jumping on a row of cells, called in physics the
one dimensional totally asymmetric exclusion process (TASEP). More precisely we deal with the TASEP
with two or three types of particles, with or without boundaries, in the maximal flow regime. From the
point of view of combinatorics a remarkable feature of these Markov chains is that they involve Catalan

numbers in several entries of their stationary distribution.
We give a combinatorial interpretation and a simple proof of these observations. In doing this we reveal

a second row of cells, which is used by particles to travel backward. As a byproduct we also obtain an
interpretation of the occurrence of the Brownian excursion in the description of the density of particles on
a long row of cells.

Résumé. Dans cet article nous étudions un modèle de particules qui sautent le long d’une ligne, appelé
en physique le processus d’exclusion totalement asymétrique unidimensionnel (TASEP). Plus précisément
nous traitons le TASEP avec deux ou trois types de particules, avec ou sans bords, dans le regime de flux
maximal. D’un point de vue combinatoire une propriété remarquable de ces châınes de Markov est qu’elles
font intervenir des nombres de Catalan dans plusieurs entrées de leur distribution stationaire.

Nous donnons une interprétation combinatoire et une preuve simple de ces observations. Ce faisant,
nous révélons une deuxième rangée de cases, utilisées par les particules pour retourner en arrière. Nous en
déduisons enfin une interprétation de l’apparition d’excursion Brownienne dans la description de la densité
des particules le long d’une longue rangée de cases

1. Jumping particles

1.1. The basic model. We shall consider a model of jumping particles on a row of n cells that was
studied since the early 90’s in physics under the name one dimensional totally asymmetric exclusion process

with boundaries, or TASEP for short. Although the model is usually presented as a continuous time evolution,
it is equivalent, and it is more convenient for us, to define it in discrete time as a Markov chain S0 on a set
of basic configurations:

• A basic configuration is a row of n cells, separated by n+ 1 walls (the leftmost and rightmost ones
are borders). Each cell is occupied by one particle, and each particle has a type, black or white
(see Figure 1).

Figure 1. A basic configuration with n = 10 cells.
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2 E. DUCHI AND G. SCHAEFFER

Figure 2. An exemple of evolution, with n = 4. The active wall triggering each transition is indicated.

• At time t = 0, the system is in a basic configuration S0(0) (possibly chosen at random).
• From time t to t+1, the system evolves from the basic configuration S0(t) to the basic configuration
S0(t+ 1) as follows: an active wall is chosen uniformly at random among the n+ 1 walls and four
cases arise. The complete model for n = 3 is presented in Appendix B (see Figure 19).
a. If the active wall separates a black particle (on its left) and a white particle (on its right),

then the two particles swap.
b. If the active wall is the left border and the leftmost cell contains a white particle, then the

white particle leaves the system and it is replaced by a black particle.
c. If the active wall is the right border and the rightmost cell contains a black particle, then the

black particle leaves the system and it is replaced by a white particle.
d. Otherwise nothing happens: S0(t+ 1) = S0(t).

As illustrated by Fig. 2, black particles travel from left to right, while white particles do the opposite.
Equivalently one can view white particles as empty cells. Derrida et al. [DDM92, DEHP93] proved the
following nice results about the evolution of the system S0 after a long time. First,

(1.1) Prob(S0(t) contains 0 black particles) −→
t→∞

1

Cn+1
,

where Cn+1 = 1
n+2

(
2n+2
n+1

)
is the (n+ 1)th Catalan number. More generally, for all 0 ≤ k ≤ n,

(1.2) Prob(S0(t) contains k black particles) −→
t→∞

1
n+1

(
n+1

k

)(
n+1
n−k

)

Cn+1
,

where the numerators are called Narayana numbers.
The model is a finite state Markov chain which is clearly ergodic so that the previous limits are in fact

the probabilities of the same events in the unique stationary distribution of the chain [H0̈2]. More generally,
Derrida et al. provided expressions for the stationary probabilities. Since their original work a number of
papers have appeared providing alternative proofs and further results on correlations, time evolutions, etc. It
should be moreover stressed that the model we presented is a special case among the many existing variants
of asymmetric exclusion processes. In particular we have restricted our attention here to the maximal flow
regime, where particles enter, travel and exit at the same rate (see however [DS04] for an extension of
the present work to general rates). Recent advances and a biblography can be found for instance in the
article [DLS03]. Books about particle processes are [Spo91, Lig85]. However, the remarkable apparition
of Catalan numbers is not easily understood from the proofs in the physics literature. As far as we know,
these proofs rely either on a matrix ansatz, or on a Bethe ansatz, both being then proved by a recursion on
n.

We propose here a combinatorial derivation of these stationary probabilities. In fact we deal with with a
slightly more general model, the three particle TASEP [And88, DEHP93]. This model is a Markov chain
S that extends S0 to three kinds of particles:

• A basic configuration is a row of n cells, separated by n+ 1 walls (the leftmost and rightmost ones
are borders). Each cell is occupied by one particle. Each particle has a type, • (black), ×, or ◦
(white), and these three types are ordered: • >×> ◦.
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Figure 3. A basic configuration with n = 14 cells.
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Figure 4. An example of evolution with n = 4 for the three particle model.

• At each step, together with the selection of the active wall, a choice is made between two transition
rules θ and θ′, with equal probability. Then four cases arise:
a. The active wall separates two particles such that the type of the left one is larger than the type

of the right one. Then the two particles swap. In other terms, the possible local transitions
around the active wall are (•|◦ → ◦|•), (•|×→×|•), and (×|◦ → ◦|×).

b. The active wall is the left border. If the leftmost particle is white then it exits, and it is
replaced by a black or an× particle when the rule is respectively θ or θ′. If instead it is an×
particle and the rule is θ′, then it exits and is replaced by a black particle.

c. The active wall is the right border. If the rightmost particle is black then it exits, and gets
replaced by a white or an× particle when the rule is respectively θ or θ′. If instead it is an×
particle and the rule is θ′, then it exits and is replaced by a white particle.

d. Otherwise nothing happens.

An example of evolution is given in Figure 4. One possible interpretation of this model is that black
and white particles still travel respectively to the right and to the left, while× particles act as empty cells.
Another interpretation is with white particles standing for vacancies and black particles overtaking slower×
particles.

1.2. The complete model. Our main ingredient to study the three particle TASEP consists in the
construction of a new Markov chain X on a set Ωn of complete configurations that satisfies two main
requirements: on the one hand the stationary distribution of the basic chain S can be simply expressed in
terms of that of the chain X ; on the other hand the stationary behavior of the chain X is easy to understand.
The complete configurations that we introduce for this purpose are made of two rows of n cells containing
black, ×, and white particles. The first requirement is met by imposing that disregarding what happens
in the second row, the chain X simulates the chain S in the first row. The second requirement is met by
adequately choosing the complete configurations and the transition rules so that X clearly has a uniform
stationary distribution.

More precisely a pair of rows of particles belongs to Ωn if: (i) the× particles appear in pairs to form
|×
×
|-columns, thus delimiting blocks of contiguous black and white particles; (ii) each of these blocks contains

an equal number of black and white particles; (iii) inside each block, to the left of any vertical wall there
are no more white particles than black ones (the positivity condition).

An example of a complete configuration is given in Figure 5: from left to right the blocks have successively
length 3, 0, 1, and 7. In Section 2 we prove that the cardinality of Ωn is 1

2

(
2n+2
n+1

)
, and that, for any

k + ` + m = n, the cardinality of the set Ω`
k,m of complete configurations with ` |×

×
|-columns, and k black

and m white particles on the top row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.
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Figure 5. A complete configuration with n = 14.

1i 2i 2i1i

Figure 6. A white sweep and a black sweep.

The Markov chain X on Ωn is defined in terms of two transition rules, T and T ′, from the set
Ωn×{0, . . . , n} to the set Ωn, that respectively extend the transition rules θ and θ′. These transition rules
are derived in Section 3 from two fundamental bijections T̄ and T̄ ′ but can be conveniently described as
follows. Given a complete configuration ω and an active wall i, the actions of T and T ′ on the top row of ω
do not depend on the second row, and mimic the actions of θ and θ′ as defined by cases a, b, c and d of the
description of the three particle TASEP. In particular in the top row, black particles travel from left to right
and white particles from right to left. As opposed to that, in the bottom row, T and T ′ move black and
white particles backward. In order to describe this, we first introduce the concept of sweep (see Figure 6):

• A white sweep between walls i1 and i2 consists in all white particles of the bottom row and between
walls i1 and i2 simultaneously hopping to the right (some black particles thus being displaced to
the left in order to fill the gaps). For well definiteness a white sweep between i1 and i2 can occur
only if the particle on the right hand side of i2 is black.

• A black sweep between walls i1 and i2 consists in all black particles of the bottom row and between
walls i1 and i2 simultaneously hopping to the left (some white particles thus being displaced to the
right in order to fill the gaps). For well definiteness a white sweep between i1 and i2 can occur only
if the particle on the left hand side of i1 is white.

Next, around the active wall i, we distinguish the following walls: if i 6= 0, let j1 < i be the leftmost wall
such that there are only white particles in the top row between walls j1 and i− 1; if i 6= n, let j2 > i be the
rightmost wall such that there are only black particles in the top row between walls i+1 and j2. With these
definitions, we are in the position to describe the actions of T and T ′ on the bottom row of a configuration.
First whenever an× particle jumps in the top row, the× particle below must follow it (so that they remain
in the same column). Then the cases a, b and c of the transition rules θ and θ′ are complemented in the
bottom row as follows:

a. The moves in the bottom row depend on the transition at the active wall i in the top row (these
moves are illustrated by Figures 7–8, and more precisely described in Figures 11–16):

– (×|◦ → ◦|×): the |×
×
|- and |•

◦
|-columns get exchanged and then a white sweep occurs between

walls j1 and i− 1.
– (•|×→×|•): the | •

◦
|- and |×

×
|-columns get exchanged and then a black sweep occurs between

walls i+ 1 and j2 + 1 (or between i+ 1 and j2 if j2 = n or the particle on the right hand side
of j2 is a×).

– (•|◦ → ◦|•): depending whether the particle on the bottom right of the ith wall in ω is white
or black, a white sweep occurs between j1 and i− 1, or a black one between i+ 1 and j2 + 1
(or between i+ 1 and j2 if j2 = n or the particle on the right hand side of j2 is a×).

b. If the entering particle is black, a black sweep occurs between the left border and wall j2 + 1.
c. If the entering particle is white, a white sweep occurs between wall j1 and the right border.
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Figure 7. Sweeps occurring below transitions (×|◦ → ◦|×) and (•|×→×|•).
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Figure 8. Sweeps occurring below the transition (•|◦ → ◦|•).

Otherwise nothing else happens in the bottom row. Based on T and T ′, the Markov chain X is defined in a
similar way as the three particle TASEP:

• The set of configurations is the set Ωn of complete configurations of length n.
• From time t to t + 1, the system evolves from the complete configuration X(t) to the next one
X(t+ 1) as follows: an active wall i is chosen uniformly at random among the n+ 1 walls, and one
of the two rules T and T ′ is selected at random with probability 1/2. The configuration X(t+ 1)
is obtained by applying the selected rule to X(t) at the active wall.

In Section 4, we shall prove that there exists an evolution between any two configurations, i.e., that the
Markov chain X is irreducible. There is also a positive probability to stay in any configuration, so that it is
aperiodic. Our main result is then the following theorem.

Theorem 1.1. The Markov chain X has a uniform stationary distribution.

The uniformity of the stationary distribution is obtained “by construction”: indeed, in Section 3 we
show T (and similarly T ′) can be described more explicitly as the first component Ωn×{0, . . . , n} → Ωn of a
bijection T̄ : Ωn×{0, . . . , n} → Ωn×{0, . . . , n}; then assuming that at some time t the system is in the uniform
distribution on Ωn, i.e.,

Prob(X(t) = ω) =
1

|Ωn|
,

it always remains in the uniform distribution:

Prob(X(t+ 1) = ω) =

=
1

2

∑

(ω′,i)∈T−1(ω)

Prob(X(t) = ω′) · 1
n+1 +

1

2

∑

(ω′′ ,i)∈T ′−1(ω)

Prob(X(t) = ω′′) · 1
n+1

=
1

2
·
∣∣T−1(ω)

∣∣ · 1

|Ωn|
·

1

n+ 1
+

1

2
·
∣∣T ′−1(ω)

∣∣ · 1

|Ωn|
·

1

n+ 1
=

1

|Ωn|
,
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Figure 9. An example of evolution with n = 4 for the complete three particle model.

where T−1(ω) and T ′−1(ω) denote the sets of preimages of ω respectively by T and T ′; the last equality
follows from the facts that T−1(ω) = {T̄−1(ω, j) | j = 0, . . . , n} and T ′−1(ω) = {T̄ ′−1(ω, j) | j = 0, . . . , n},
and that T̄ and T̄ ′ are bijections.

1.3. From the complete to the basic model. According to the theory of finite state Markov chains
[H0̈2], Theorem 1.1 ensures that for any choice of initial condition X(0),

Prob(X(t) = ω) −→
t→∞

1

|Ωn|
=

1
1
2

(
2n+2
n+1

) .

This result is sufficient to recover the stationary distribution of the basic model. Indeed observe that by
construction hiding the bottom row in the complete model exactly yields the basic model. Hence we obtain
the following combinatorial interpretation for the stationary distribution of the three particle TASEP:

Theorem 1.2. Let top(ω) denote the top row of a complete configuration ω. Then for any initial

configurations S(0) and X(0) with top(X(0)) = S(0), and any basic configuration r,

Prob(S(t) = r) = Prob(top(X(t)) = r) −→
t→∞

∣∣{ω ∈ Ωn | top(ω) = r}|

|Ωn|
.

In particular, for any k + `+m = n, we obtain combinatorially the formula:

Prob(S(t) contains k black and m white particles) −→
t→∞

|Ω`
k,m|

|Ωn|
=

`+1
n+1

(
n+1

k

)(
n+1
m

)

1
2

(
2n+2
n+1

) .

As discussed in Section 5 this interpretation sheds a new light on some recent results of Derrida et al.

connecting the TASEP to Brownian excursions [DEL].

1.4. Two variations. Let us denote by Ω0
n the subset of configurations of Ωn without×particles, and

recall that Ω0
k,m is the subset of configurations of Ω0

n with k black and m white particles in the first row. In

Section 2 we show that |Ω0
n| = 1

n+1

(
2n+2

n

)
and that |Ω0

k,m| = 1
n+1

(
n+1

k

)(
n+1
m

)
. As we did for Ωn, we define

a Markov chain on the set Ω0
n whose evolution is determined just by the application of T 0, which is the

restriction of T to the subset Ω0
n. The behavior of the first row in this Markov chain then exactly mimics the

basic TASEP with two particles. Moreover, the associated application T̄ 0 is a bijection from Ω0
n×{0, . . . , n}

into itself, so that that the uniform distribution is again stationary for this Markov chain. Finally it is also
an ergodic Markov chain. Therefore

Prob(X0(t) = ω) −→
t→∞

1

|Ω0
n|
,
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(a) (b)

Figure 10. A basic (a) and a complete (b) configuration for the three particle TASEP on a circle

and the stationary distribution of the two particles TASEP is combinatorially expressed as

Prob(S0(t) = r) −→
t→∞

|{ω ∈ Ω0
n | top(ω) = r}|

|Ω0
n|

.

The results (1.1)-(1.2) are then immediate consequences. The basic and complete system with two particles
for n = 3 are represented in Figures 19–20 in Appendix B.

Another variant of TASEP found in the literature is the TASEP with periodic boundary conditions,
in which the particles travel around a circle (see Figure 10, the circle is rigid, not subject to rotation).
Since there are no border walls in these configurations, the Markov chain Ŝ is defined using only Case a of
the transition rule θ of the TASEP with boundaries. In the periodic TASEP the numbers of black,× and
white particles do not change, and the case without × particle immediately leads to a uniform stationary
distribution. Our approach is easily adapted to deal with the more interesting case where there are×particles.

Indeed one can associate to this model a new set Ω̂n of complete configurations, made of two rows of cells

arranged on a circle. As for Ωn, configurations of Ω̂n are subject to the condition that the blocks between
two |×

×
|-columns, when read in clockwise direction, satisfy the positivity constraints. Since the number of

black, white and×particles never change in this system, we concentrate on the set Ω̂`
k,m of configurations of

Ω̂n with ` |×
×
|-columns, k black and m white particles in the top row. In Section 2 we prove that cardinality

of Ω̂`
k,m is

(
n
k

)(
n
m

)
. Again Case a of the evolution rule T is sufficient to define an evolution rule T̂ on Ω̂`

k,m

and an associated bijection from Ω̂`
k,m×{0, . . . , n− 1} to itself. The same arguments as for the chain X show

that the resulting Markov chain X̂ has uniform stationary distribution, and this yields:

Prob(X̂(t) = ω) −→
t→∞

1

|Ω̂`
k,m|

=
1(

n
k

)(
n
m

) .

The stationary distribution of the TASEP Ŝ is then combinatorially expressed in terms of complete config-
urations:

Prob(Ŝ(t) = r) −→
t→∞

|{ω ∈ Ω̂`
k,m | top(ω) = r}|

|Ω`
k,m|

.

1.5. Outline of the rest of the paper. In Section 2 the different classes of complete configurations
are enumerated. The main bijections are studied in Section 3, and in Section 4 the chains are proven to be
irreducible. Finally some concluding remarks are gathered in Section 5.

2. Complete configurations and the cycle lemma

In this section we state the enumerative lemmas (see proofs in Appendix A). Given a complete config-
uration of length n, and an integer j, 0 ≤ j ≤ n, let B(j) and W (j) be respectively the numbers of black
and white particles lying in the first j-th columns (from left to right), and set E(j) = B(j) −W (j). In
other terms, the quantities B(j), W (j) and E(j) represent the number of black particles, the number of
white particles, and their difference on the left-hand side of the jth wall. In particular, E(0) = E(n) = 0,
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and Condition (iii) of the definition of complete configurations reads E(j) ≥ 0 for j = 0, . . . , n (this is why
we call it a positivity condition). Readers with a background in enumerative combinatorics may recognize
bicolored Motzkin paths in disguise [Sta99, Ch. 6].

Lemma 2.1. The number |Ωn| of complete configurations of Ωn is 1
2

(
2n+2
n+1

)
.

Lemma 2.2. Let k, `,m, n be non negative integers with k + `+m = n. The number |Ω`
k,m| of complete

configurations of Ωn with ` |×
×
|-columns, k black and m white particles on the top row, and m black and k

white particles on the bottom row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.

Lemma 2.3. The number |Ω`
p| of complete configurations of Ωn, for p+ ` = n, with ` |×

×
|-columns, and

p black and p white particles distributed between the two rows is `+1
n+1

(
2n+2

p

)
.

Remark. As already said, when ` = 0 we have configurations with just two kinds of particles. In this case,
from Lemma 2.2 and Lemma 2.3, we have |Ω0

k,m| =
1

n+1

(
n+1

k

)(
n+1
m

)
and |Ω0

n| =
1

n+1

(
2n+2

n

)
.

Lemma 2.4. The number |Ω̂k,m| of configurations of |Ω̂n| having ` |×
×
|-columns, k black particles at the

top, and m at the bottom is
(
n
k

)(
n
m

)
.

3. The bijections T̄ and T̄ ′

In this section we describe the mappings T̄ and T̄ ′ case by case and check that they are bijections from
Ωn×{0, . . . , n} to itself.

We shall partition the set Ωn×{0, . . . , n} into classes Aa′
1
, Aa′′

1
, Aa2

, Aa3
, Ab1 , Ab2 , Ac1

, Ac2
, Ad, and

describe, for each class Aα, its images Bα = T̄ (Aα) and B′α = T̄ ′(Aα) under the action of T̄ and T̄ ′. From
now on, (ω, i) denotes an element of the current class, and (ω′, j) its image, either by T̄ or by T̄ ′ depending
on the context. In the pairs (ω, i) and (ω′, j), i and j refer to walls of the configurations ω and ω′, and i
is called the active wall of ω. Following the notations of Section 1, when i 6= 0, we also consider j1 < i the
smallest integer such that in the top row of ω all cells between walls j1 and i − 1 contain white particles.
Symmetrically, when i 6= n, we consider j2 > i the largest integer such that in the top row of ω all cells
between walls i + 1 and j2 contain black particles. In the first few cases the applications T̄ and T̄ ′ do not
differ, so a common description is given. Later on, they are distinguished.

Aa1
The active wall of ω separates in the top row a black particle P and a white particle Q. Then in the
top row the particles P and Q swap. In the bottom row, the sweep that occurs depends on the
type of the particle R that is below Q in ω (see Figure 11):
Aa′

1
The particle R is black. Then j = j1 and, in the bottom row, a white sweep occurs between
walls j and i. Observe that ω′ belongs to Ωn. Indeed ω′ can also be described as obtained
from ω by moving a | ◦

•
|-column from the right of the ith wall to the right of the jth. But

moving a | ◦
•
|-column has no effect on the positivity constraints.

The image Ba′
1

= B′a′
1

of the class Aa′
1

consists of pairs (ω′, j) such that: there is not a white

particle on the left-hand side of the jth wall in the top row of ω′, there is a | ◦
•
|-column on its

right-hand side, and the sequence of white particles on the right-hand side of the jth wall in
the top row is followed by a black particle.

Aa′′
1

The particle R is white. Then j = j2 and, in the bottom row, a black sweep occurs between
walls i+ 1 and j + 1 (resp. i+ 1 and j) if on the right of j there is a white particle (resp. an
|×
×
|-column or the border). The new configuration ω′ satisfies clearly the positivity condition

at all walls but i. But there is a | ◦
◦
|-column on the right of i in ω, so that in this configuration

B(i)−W (i) ≥ 2, and this quantity remains non negative in ω′.
The image Ba′′

1
= B′a′′

1

of the class Aa′′
1

consists of pairs (ω′, j) with a | ◦
◦
|-column, an |×

×
|-

column, or the border on the right-hand side of the jth wall of ω′ and such that there is a
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non-empty sequence of black particles on the left-hand side of the jth wall in the top row,
followed by a white particle.

T’T =

B’a’1B  =a’1

j1

R

P Qi
white

white

Aa’1

black

B  =a"1 B’a"1

1
Aa’’

T = T’

j2

black

iP Q

R

Figure 11. Jump moves in the (•|◦ → ◦|•) case.

a2

T = T’

B  =a2
B’a2

j1

R

P Qi
white

white

A

black

a3

T = T’

B  =a3
B’a3

j2

black

iP Q

A R

Figure 12. Jump moves in the (×|◦ → ◦|×) and (•|×→×|•) cases.

Aa2
The active wall of ω separates in the top row an×particle P and a white particle Q. We remark that,
in order to satisfy the positivity constraint, the cell under Q must contain a black particle R (see
Figure 12, left-hand side). Then in the top row the particles P and Q swap. In the bottom row, the
× particle under P and the particle R swap, and then a white sweep occurs between walls j = j1
and i− 1. Observe that ω′ belongs to Ωn. Indeed ω′ can also be described as obtained from ω by
moving a | ◦

•
|-column from the right of the ith wall to the right of the jth.

The image Ba2
= B′a2

of the class Aa2
consists of pairs (ω′, j) such that: there is not a white

particle on the left-hand side of the jth wall in the top row of ω′, there is a | ◦
•
|-column on its

right-hand side and the sequence of white particles on the right-hand side of the jth wall in the
top row is followed by an× particle.

Aa3
The active wall of ω separates in the top row an black particle P and an× particle Q. This time the
cell under P must contain a white particle R (see Figure 12, right-hand side). Then the particles P
and Q swap. In the bottom row, the particle R and the×particle under Q swap, and then a black
sweep occurs between walls i+1 and j+1 with j = j2 (or between walls i+1 and j if an |×

×
|-column
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or the border is reached). The configuration ω′ belongs to Ωn since a |×
×
| and a |•

◦
|-column swap

and no other black particle moves to the right.
The image Ba3

= B′a3
of the class Aa3

consists of pairs (ω′, j) with a | ◦
◦
|-column, an |×

×
|-column,

or the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left-hand side of the jth wall in the top row, followed by an× particle.

Ab1 The active wall of ω is the left border with a white particle Q on its right in the top row. Again, the
cell under Q must contain a black particle R (see Figure 13). Then the images by T̄ and T̄ ′ are
different:

– T̄ is applied. First the particles Q and R are replaced by | •
◦
|-column. Then j = j2 and, in the

bottom row, a black sweep occurs between walls 1 and j + 1 (or between walls 1 and j if an
|×
×
|-columns or the border is reached). The configuration ω′ belongs to Ωn. Indeed no black

particle moves to the right.
The image Bb1 of the class Ab1 consists of pairs (ω′, j) with a | ◦

◦
|-column, an |×

×
|-column, or

the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left of the jth wall in the top row, ending at the left border.

– T̄ ′ is applied. Then both Q and R particles are replaced by × particles, and j = 0. The
configuration ω′ belongs to Ωn since a | ◦

•
|-column was replaced by an |×

×
|-column.

The image B′b1 of Ab1 consists of pairs (ω′, 0) with an |×
×
|-column on the left border.

Ab2 The active wall of ω is the left border with an× particle Q on its right in the top row. The particle R
under Q must be an× particle (see Figure 14):

– T̄ is applied. Then ω′ = ω and j = 0. The image Bb2 of the class Ab2 consists of pairs (ω′, 0)
with a |×

×
|-column on the left border.

– T̄ ′ is applied. First, the particles Q and R are replaced by a | •
◦
|-column. Then a black sweep

occurs between walls 1 and j+1 with j = j2 (or between 1 and j if a |×
×
|-columns or the border

is reached). The configuration ω′ belongs to Ωn since no black particle moves to the right.
The image B′b2 of the class Ab2 consists of pairs (ω′, j) with a | ◦

◦
|-column, an |×

×
|-column, or

the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left of the jth wall in the top row, ending at the left border.

Ac1
The active wall of ω is the right border with a black particle Q on its left in the top row. The cell
under Q must contain a white particle R (see Figure 15):

– T̄ is applied. First the particles Q and R are replaced by a | ◦
•
|-column. Then j = j1 and, in

the bottom row, a white sweep occurs between walls j and n−1. The configuration ω′ belongs
to Ωn since the transformation amounts to moving and flipping a | •

◦
|-column.

The image Bc1
of the class Ac1

consists of pairs (ω′, j) such that: there is not a white particle
on the left-hand side of the jth wall of ω′ in the top row, there is a | ◦

•
|-column on its right-hand

side, and such that the sequence of white particles on the right-hand side of the jth wall in
the top row ends at the right border.

– T̄ ′ is applied. Then both Q and R are replaced by× particles, and j = n. The configuration
ω′ belongs to Ωn since a | •

◦
|-column is replaced by a |×

×
|-column.

The image B′c1
of Ac1

consists of pairs (ω′, n) with an |×
×
|-column on the right border.

Ac2
The active wall of ω is the right border with an× particle Q on its left in the top row. The particle R
under Q must be an× particle (see Figure 16). Then the image by T̄ and T̄ ′ are:

– T̄ is applied. Then ω′ = ω and j = n. The image Bc2
of the class Ac2

consists of pairs (ω′, n)
with a |×

×
|-column on the right border.

– T̄ ′ is applied. First, the particles Q and R are replaced by a | ◦
•
|-column. Then a white sweep

occurs between walls j = j1 and n − 1. The configuration ω′ belongs to Ωn. Indeed the
operation amounts to the introduction of a | ◦

•
|-column at the jth wall.
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T T’

R

Q

R

Q

b1B’

j20
blackAb1

blackBb1

0

Ab1

Figure 13. Active left border with a white particle in the top row.

T T’

Ab2

j2

Ab2

2bB

0
blackQ

R

black
2bB’

Q

R

0

Figure 14. Active left border with an x particle in the top row.

T T’

j1
Q

R
Ac 1

white Q

R
Ac 1

c 1
B’whiteBc 1

n n

Figure 15. Active right border with a black particle in the top row.

Ac 2

T T’

B’c 2

Ac 2

2cB

j1

white

white Q

R

Q

R

n n

Figure 16. Active right border with a× particle in the top row.
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The image B′c2
of the class Ac2

consists of pairs (ω′, j) such that: there is not a white particle
on the left-hand side of the jth wall of ω′ in the top row, there is a | ◦

•
|-column on its right-hand

side, and the sequence of white particles on the right-hand side of the jth wall in the top row
ends at the right border.

Ad This class contains all the remaining cases. For these configurations the mappings T̄ and T̄ ′ do not
change anything, that is, for (ω, i) ∈ Ad, T̄ (ω, i) = T̄ ′(ω, i) = (ω, i).

Theorem 3.1. The mappings T̄ , T̄ ′ : Ωn×{0, . . . , n} → Ωn×{0, . . . , n} are bijections.

Proof. In each case the transformations are clearly reversible. We conclude by checking that both
{Ba′

1
, Ba′′

1
, Ba2

, Ba3
, Bb1 , Bb2 , Bc1

, Bc2
, Bd} and {Ba′

1
, Ba′′

1
, Ba2

, Ba3
, B′b1 , B

′

b2
, B′c1

, B′c2
, Bd} are partitions of

Ωn×{0, . . . , n}. �

For the two particle model, it suffices to observe that the restriction of T̄ to Ω0
n×{0, . . . , n} is a bijection

onto Ω0
n×{0, . . . , n}. For the three particle model on the circle, a bijection from Ω̂`

k,m onto itself is readily
obtained using the constructions in cases Aa′

1
, Aa′′

1
, Aa2

and Aa3
.

4. Paths between two configurations

In this section we verify that the Markov chains X0, X̂ and X are irreducible, i.e. that there is a
positive probability to go from any configuration ω to any other one ω′. In other terms we need to prove
that the transition graph defined on Ωn by T and T ′ is connected. The proof is based on an observation
about iterating the bijections T̄ or T̄ ′, and on induction on n.

To every pair (ω, i) of Ωn×{0, . . . , n} we associate a reduced configuration ωi in Ωn−1, obtained from ω
by deleting two particles around the wall i using the following rules:

• if (ω, i) belongs to Aa′
1
, Aa2

or Ab1 then ωi is obtained by removing the | ◦
•
|-column on the right-hand

side of the wall i (particles Q and R on the corresponding figure),
• if (ω, i) belongs to Aa′′

1
then ωi is obtained by removing the two particles forming the configurations

• |
◦

around the wall i (particles P and R on the corresponding figure),

• if (ω, i) belongs to Aa3
or Ac1

then ωi is obtained by removing the | •
◦
|-column on thean left-hand

side of the wall i (particles P and R on the corresponding figure),
• if (ω, i) belongs to Ab2 , then ωi is obtained by removing the |×

×
|-column on the left border,

• if (ω, i) belongs to Ac2
, then ωi is obtained by removing the |×

×
|-column on the right border.

Lemma 4.1. Let ω′ be a configuration of Ωn−1. Let S(ω′) be the set of pairs (ω, i) of Ωn×{0, . . . , n}
having ω′ as reduced configuration, i.e. such that ωi = ω′. Then:

• the set S(ω′) is a cyclic orbit of T̄ ′: given (ω, i) ∈ S all other elements of S can be reached by

successive applications of T̄ ′,
• the set S(ω′) \ {(ω′0, 0), (ω′n, n)} is a cyclic orbit of T̄ , where ω′0 is the configuration |×

×
|ω′ and ω′n

is the configuration ω′|×
×
|.

Proof. As can be checked on the left-hand sides of Figures 11 and 12, iterating T̄ , or T̄ ′ from a pair
(ω, i) of Aa′

1
or Aa2

, the selected wall moves to the left with the pair of particles P and R, and successively
stops on the right hand side of every black or × particle of the top row, until it reaches the left border.
Similarly, as can be checked on the right-hand sides of Figures 11 and 12, iterating T̄ or T̄ ′ from a pair of
Aa′′ or Aa2

, the selected wall moves to the right with the pair of particles P and R, stopping on the left
hand side of every white and×particles of the top row, until it reaches the right border.

As shown by Figures 13–16, the application T̄ and T̄ ′ behave differently when the border is reached: T̄ ′

visits the configurations ω′0 or ω′n while T̄ skips them and restart moving in the opposite direction.
Starting from an element (ω, i) all other elements of S(ω′) (respectively S \ {ω′0, ω

′

n}) are thus visited in
a cycle by successive applications of T̄ ′ (respectively T̄ ). �
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Lemma 4.1 provides us with cycles in the transition graph on Ωn, and each cycle is associated to a
reduced configuration of Ωn−1. The next lemma transports transitions from Ωn−1 to Ωn.

Lemma 4.2. Let (ω′, j) = T̄ ′(ω, i) be a transition between two configurations of Ωn−1. Then there exists

pairs (ω+, i+) ∈ S(ω) and (ω′+, j+) ∈ S(ω′) such that (ω′+, j+) = T̄ ′(ω+, i+).

Proof. In each case of Figures 11–16, an |×
×
|-column can be inserted, either on the left or on the right

border, without interfering with the action of T̄ ′. �

Lemma 4.2 gives a transition between an element of the cycle associated to ω and an element of the
cycle associated to ω′. Taking the connectivity of the transition graph on Ωn−1 as induction hypothesis, we
conclude that all cycles of Lemma 4.1 belong to the same connected component of the transition graph on
Ωn. Since every element of Ωn belong to a cycle, this concludes the proof of the irreducibility of X . The

proofs for X0 and X̂ are similar.

5. Conclusions and relations to Brownian excursions

The starting point of this paper was a “combinatorial Ansatz”: the stationary distribution of the two
and three particle TASEP with or without boundaries can be expressed in terms of Catalan numbers hence
should have a nice combinatorial interpretation. In our interpretation, configurations of the TASEP are
completed by a (usually hidden) second row in which particles go back. The resulting system has a uniform
stationary distribution so that the probability of a given TASEP configuration just reflects the diversity of
possible rows hidden below it.

We do not claim that our combinatorial interpretation is of any physical relevance. However, apart
from explaining the “magical” occurrence of Catalan numbers in the problem, it sheds new light on the
recent results of Derrida et al. [DEL] connecting the TASEP with Brownian excursion. More precisely,
using explicit calculations, Derrida et al. show that the density of black particles in configurations of the two
particle TASEP can be expressed in terms of a pair (et, bt) of independent processes, a Brownian excursion et

and a Brownian motion bt. In our interpretation these two quantities appear at the discrete level, associated
to each complete configuration ω of Ω0

n:

• The role of the Brownian excursion for ω is played by the halved differences e(i) = 1
2 (B(i)−W (i))

between the number of black and white particles sitting on the left of the ith wall, for i = 0, . . . , n.
By definition of complete configurations, (e(i))i=0,...,n is a discrete excursion, that is, e(0) = e(n) =
0, e(i) ≥ 0 and |e(i)− e(i− 1)| ∈ {0, 1}, for i = 0, . . . , n.

• The role of the Brownian motion is played for ω by the differences b(i) = Btop(i)−Bbot(i) between
the number of black particles sitting in the top and in the bottom row, on the left of the ith wall,
for i = 0, . . . , n. This quantity (b(i))i=0,...,n is a discrete walk, with |b(i) − b(i − 1)| ∈ {0, 1} for
i = 0, . . . , n.

Since e(i) + b(i) = 2Btop(i) − i, these quantities allow one to describe the cumulated number of black
particles in the top row of a complete configuration. Accordingly, the density in a given segment (i, j) is

(Btop(j)−Btop(i))/(j− i) = 1
2 + e(j)−e(i)

2(j−i) + b(j)−b(i)
2(j−i) . This is a discrete version of the quantity considered by

Derrida et al. in [DEL].
Now the two walks e(i) and b(i) are correlated since one is stationary when the other is not, and vice-

versa: |e(i) − e(i − 1)| + |b(i) − b(i − 1)| = 1. Given ω, let Ie = {α1 < . . . < αp} be the set of indices of
|•
•
|- and |◦

◦
|-columns, and Ib = {β1 < . . . < βq} the set of indices of | •

◦
|- and |◦

•
|-columns (p+ q = n). Then

the walk e′(i) = e(αi)− e(αi−1) is the excursion obtained from e by ignoring stationary steps, and the walk
b′(i) = b(βi)− b(βi−1) is obtained from b in the same way. Conversely given a simple excursion e′ of length
p, a simple walk b′ of length q and a subset Ie of {1, . . . , p+ q} of cardinality p, two correlated walks e and
b, and thus a complete configuration ω can be uniquely reconstructed. The consequence of this discussion
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is that the uniform distribution on Ω0
n corresponds to the uniform distribution of triples (Ie, e

′, b′) where,
given Ie, the processes e′ and b′ are independent.

A direct computation shows that in the large n limit, with probability exponentially close to 1, a
random configuration ω is described by a pair (e′, b′) of walks of roughly equal lengths n/2 + O(n1/2+ε).

In particular, up to multiplicative constants, the normalized pairs ( e′(tn/2)
n1/2

, b′(tn/2)
n1/2

) and ( e(tn)
n1/2

, b(tn)
n1/2

) both
converge to the same pair (et, bt) of independent processes, with et a standard Brownian excursion and bt a
standard Brownian walk.

We thus obtain a combinatorial interpretation of the appearence of the pair (et, bt) in the two particle
TASEP. The result now extends immediately to the three particle TASEP: it follows from the construction
of Lemma 2.1 that the uniform distribution on Ωn leads to a pair (e′, b′) where the continuum limit of e′ is
now a reflected Brownian bridge, while b′ remains a Brownian bridge. More generally conditioning on the
number of x particles amounts to conditioning on the local time at the origin of the process e.

Another possible outcome of our approach could be an explicit construction of a continuum TASEP by
taking the limit of the Markov chain X0, viewed as a Markov chain on pairs of walks. An appealing way to
give a geometric meaning to the transitions in the continuum limit could be to use a representation in terms
of parallelogram polyominos, using the process e(t) (or et in the continuum limit) to describe the width of
the polymonino and the process b(t) (or bt in the continuum limit) to describe the vertical displacement of
its spine.

Acknowledgments. Referees are warmly thanked for their great help in improving the paper.
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Appendix A. Proofs of the enumerative lemmas of Section 2

Lemma 2.1. The number |Ωn| of complete configurations of Ωn is 1
2

(
2n+2
n+1

)
.

Proof. Let Γn+1 be the set of (unconstrained) configurations of n+ 1 black and n+ 1 white particles
distributed between two rows of n+1 cells, so that |Γn+1| =

(
2n+2
n+1

)
. Among these configurations, we restrict

our attention to those ending with a column with a black particle in the top cell and a white particle in the
bottom cell (called a | •

◦
|-column for simplicity), and those ending with a column with two black particles (a

|•
•
|-column). Let us denote the set of these configurations by Γn+1. Exchanging black and white colors is

obviously a bijection between Γn+1 and its complement in Γn+1 so that |Γn+1| =
1
2

(
2n+2
n+1

)
.

The proof of the lemma now consists in the following bijection φ between Ωn and Γn+1 (see Figure 17).
Given ω ∈ Ωn, its image φ(ω) is obtained as follows: First, if the number of |×

×
|-columns of ω is even,

add a |•
◦
|-column at the end of ω, otherwise add to it an |×

×
|-column. Then replace the first half of the

|×
×
|-columns by | ◦

◦
|-columns, and the remaining half by | •

•
|-columns (from left to right). By construction the

resulting φ(ω) belongs to Γn+1. Consider now γ ∈ Γn+1, and let d = min(E(j)) be the depth of γ. Then set
ji = min{j | E(j) = −2i}, and j ′i = max{j | E(j − 1) = −2i}, for i = 1, . . . , |d|, and define the application
ψ that first changes columns ji and j′i into |×

×
|-columns, and then removes the last column. By construction

the blocks between two of the modified columns of γ satisfy the positivity condition, so that φ(γ) ∈ Ωn+1,
and the applications φ and ψ are clearly inverses of each other. �

Lemma 2.2. Let k, `,m, n be non negative integers with k + `+m = n. The number |Ω`
k,m| of complete

configurations of Ωn with ` |×
×
|-columns, k black and m white particles in the top row, and m black and k

white particles in the bottom row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.

Proof. The statement is verified using the cycle lemma (see [Lot99, Ch. 11], or [Sta99, Ch. 5]). Let
p = k+m and denote by ∆`+1

p the set of configurations with p black and p+2`+2 white particles distributed

between two rows of n + 1 cells. Then the cardinality of the subset ∆`+1
k,m of elements of ∆`+1

p that have k
black particles in the top row and the other m in the bottom row is

(
n+1

k

)(
n+1
m

)
. In such a configuration the

number of white particles exceeds by 2` + 2 that of black particles, so that E(n + 1) = −2` − 2. Given ω

in ∆`+1
k,m, let d = min(E(j)) be the depth of ω, and set ji = min{j | E(j) = d + 2i}, for i = 0, . . . , `. By

construction, these `+1 columns are | ◦
◦
|-columns. On the one hand, let ∆̄`+1

k,m be the set of pairs (ω, j) where

ω ∈ ∆`+1
k,m and j ∈ {j0, . . . , j`}, so that |∆̄`+1

k,m| =
(
n+1

k

)(
n+1
m

)
· (`+ 1). On the other hand, define the set Ω̄`+1

k,m

of pairs (ω′, i) where ω′ is obtained from an element of Ω`
k,m by adding a final |×

×
|-column, and i ∈ {0, . . . , n}.

By construction, |Ω̄`+1
k,m| = |Ω`

k,m| · (n+ 1).

(i) (ii)

0 2 2 0 0 2 2 2 4 20 0 00 2 −2−4−4−2−2 0 0 0 2 0 −2 002 0

Figure 17. From (i) an element of Γn+1, to (ii) one of Ωn. The (B(j)−W (j))j=0..n+1 are
given under both configurations and graphically represented.
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0 2 2 0 0 2 2 2 4 20 0 0 0

(iii)

0 2 2 0 −2−4−4 −4−4−4 −4−2−6−6 −6−80 0 0 02 −2−4−2−2−4−6 −8−10−10−8−8

(i) (ii)

Figure 18. (i) An element of ∆̄`+1
k,m (with ` = 3 and column j = 6 colored), (ii) its conjugate

(with column n+ 1− j colored), and (iii) the corresponding element of Ω`
k,m. The sequence

(B(j)−W (j))j=0..n+1 is given under each configuration and graphically represented.

The proof of the lemma consists in a bijection φ between ∆̄`+1
k,m and Ω̄`+1

k,m (see Figure 18). Given

(ω, j) ∈ ∆̄`+1
k,m, let ω1 denote the first j columns of ω, and ω2 the n + 1 − j others. Then by construction

of j, the concatenation ω2|ω1 satisfies E(i) > −2` − 2 for i = 1, . . . , n, and E(n + 1) = −2` − 2. This
implies that ω2|ω1 decomposes as a sequence ω′0, ω

′

1, . . . , ω
′

` of `+ 1 (possibly empty) blocks that satisfy the
positivity constraint, each followed by a | ◦

◦
|-column. Let ω′ be obtained by replacing these `+1 | ◦

◦
|-columns

by |×
×
|-columns. Then the map (ω, j) → (ω′, n+1− j) is a bijection of ∆̄`+1

k,m onto Ω̄`+1
k,m: the inverse bijection

is readily obtained by first replacing the |×
×
|-columns into | ◦

◦
|-columns, and then recovering the factorization

ω2|ω1 from the fact that ω2 has n+ 1− j columns. �

Lemma 2.3. The number |Ω`
p| of complete configurations of Ωn, for p+ ` = n, with ` |×

×
|-columns, and

p black and p white particles distributed between the two rows is `+1
n+1

(
2n+2

p

)
.

Proof. The proof uses the same arguments than the proof of Lemma 2.2. The only difference is that,
instead of counting elements of ∆`+1

k,m with k black particles in the top row and m in the bottom row, we

count elements of ∆`+1
p , that have a total of p black particles. Hence the previous factor |∆`+1

k,m| =
(
n+1

k

)(
n+1
m

)

is replaced by |∆`+1
p | =

(
2n+2

p

)
. �

Remark. As already said, when ` = 0 we have configurations with just two kinds of particles. In this case,
from Lemma 2.2 and Lemma 2.3, we have |Ω0

k,m| =
1

n+1

(
n+1

k

)(
n+1
m

)
and |Ω0

n| =
1

n+1

(
2n+2

n

)
.

Lemma 2.4. The number |Ω̂k,m| of configurations of |Ω̂n| having ` |×
×
|-columns, k black particles at the top,

and m at the bottom is
(
n
k

)(
n
m

)
.

Proof. Recall that ∆`
k,m denote configurations of length n with k black and m + ` white particles

in the top row, and m black and k + ` white particles in the bottom row, so that |∆`
k,m| =

(
n
k

)(
n
m

)
. In

order to prove the statement of the lemma we show that ∆`
k,m and Ω̂k,m are in bijection. Let δ ∈ ∆`

k,m,
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and consider its depth d = min(E(i)) and the ` columns ji = min{j | E(j) = d + 2i}, i = 0, . . . , ` − 1,
as in the proof of Lemma 2.3. By definition of these columns, the positivity condition is satisfied by each
block between two of them. Morever, by definition of j0 and j`−1, the positivity condition is also satisfied
by the concatenation ω`|ω0 of the final block ω` and the initial block ω0. Hence transforming the columns
j0, . . . , j` into |×

×
|-columns, and arranging the two rows in a circle by fusing walls 0 and n at the apex yields

a configuration φ(δ) of Ω̂k,m (recall that these configurations are not considered up to rotation). Conversely,

given ω in Ω̂k,m, a unique element δ of ∆`
k,m such that φ(δ) = ω is obtained by opening at the apex and

transforming |×
×
|-columns into | ◦

◦
|-columns. �

Appendix B. A complete example

1/14
3/14

2/14 2/14
3/14

1/14

1/141/14

Figure 19. The basic configurations for n = 3 and transitions between them. The start-
ing point of each arrow indicates the wall triggering the transition. The numbers are the
stationary probabilities.

Figure 20. The 14 complete configurations for n = 3 and transitions between them. The
starting point of each arrow indicates the wall triggering the transition (loop transitions are
not indicated). Stationary probabilities are uniform (equal to 1/14) since each configuration
has equal in and out degrees. Ignoring the bottom rows reduces this Markov chain to the
chain of Figure 19.
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