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Séries Formelles et Combinatoire Algébrique
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Brian Drake, Sean Gerrish, and Mark Skandera

Abstract. We give two new criteria by which pairs of permutations may be compared in defining the
Bruhat order (of type A). One criterion utilizes totally nonnegative polynomials and the other utilizes
Schur functions.
Résumé. Nous donons deux critères nouveaux avec lesquels on peut comparer couples de permutations en

definant l’order de Bruhat (de type A). Un critère utilise les polynômes totallement nonnegatifs et l’autre
utilise les fonctions symétriques de Schur.

1. Main

The Bruhat order on Sn is often defined by comparing permutations π = π(1) · · ·π(n) and σ =
σ(1) · · ·σ(n) according to the following criterion: π ≤ σ if σ is obtainable from π by a sequence of trans-
positions (i, j) where i < j and i appears to the left of j in π. (See e.g. [7, p. 119].) A second well-known
criterion compares permutations in terms of their defining matrices. Let M(π) be the matrix whose (i, j)
entry is 1 if j = π(i) and zero otherwise. Defining [i] = {1, . . . , i}, and denoting the submatrix of M(π)
corresponding to rows I and columns J by M(π)I,J , we have the following.

Theorem 1.1. Let π and σ be permutations in Sn. Then π is less than or equal to σ in the Bruhat

order if and only if for all 1 ≤ i, j ≤ n− 1, the number of ones in M(π)[i],[j] is greater than or equal to the

number of ones in M(σ)[i],[j].

(See [1], [2], [3], [6, pp. 173-177], [8] for more criteria.) Using Theorem 1.1 and our defining criterion we
will state and prove the validity of two more criteria.

Our first new criterion defines the Bruhat order in terms of totally nonnegative polynomials. A matrix
A is called totally nonnegative (TNN) if the determinant of each square submatrix of A is nonnegative.
(See e.g. [5].) A polynomial in n2 variables f(x1,1, . . . , xn,n) is called totally nonnegative (TNN) if for each
n × n TNN matrix A = (ai,j) the number f(a1,1, . . . , an,n) is nonnegative. Some recent interest in TNN
polynomials is motivated by problems in the study of canonical bases. (See [10].)

Theorem 1.2. Let π and σ be two permutations in Sn. Then π is less than or equal to σ in the Bruhat

order if and only if the polynomial

(1.1) x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n)

is totally nonnegative.
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Proof. (⇒) If π = σ then (1.1) is obviously TNN. Suppose that π is less than σ in the Bruhat order.
If π differs from σ by a single transposition (i, j) with i < j, then we have π(i) = σ(j) < π(j) = σ(i), and
the polynomial (1.1) is equal to

(1.2)
x1,π(1) · · ·xn,π(n)

xi,π(i)xj,π(j)
(xi,π(i)xj,π(j) − xi,π(j)xj,π(i))

which is clearly TNN. If π differs from σ by a sequence of transpositions, then the polynomial (1.1) is equal
to a sum of polynomials of the form (1.2) and again is TNN.

(⇐) Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1.1 we may choose
indices 1 ≤ k, ` ≤ n− 1 such that M(σ)[k],[`] contains q + 1 ones and M(π)[k],[`] contains q ones. Now define
the matrix A = (ai,j) by

ai,j =

{

2 if i ≤ k and j ≤ `,

1 otherwise.

It is easy to see that A is TNN, since all square submatrices of A have determinant equal to 0, 1, or 2.
Applying the polynomial (1.1) to A we have

a1,π(1) · · · an,π(n) − a1,σ(1) · · · an,σ(n) = −2q,

and the polynomial (1.1) is not TNN. �

Our second new criterion defines the Bruhat order in terms of Schur functions. (See [9, Ch. 7] for
definitions.) Any finite submatrix of the infinite matrix H = (hj−i)i,j≥0, where hk is the kth complete
homogeneous symmetric function and hk = 0 for k < 0, is called a Jacobi-Trudi matrix. Let us define a
polynomial in n2 variables f(x1,1, . . . , xn,n) to be Schur nonnegative (SNN) if for each n × n Jacobi-Trudi
matrix A = (ai,j) the symmetric function f(a1,1, . . . , an,n) is equal to a nonnegative linear combination of
Schur functions. Some recent interest in SNN polynomials is motivated by problems in algebraic geometry [4,
Conj. 2.8, Conj. 5.1].

Theorem 1.3. Let π and σ be permutations in Sn. Then π is less than or equal to σ in the Bruhat

order if and only if the polynomial

(1.3) x1,π(1) · · ·xn,π(n) − x1,σ(1) · · ·xn,σ(n)

is Schur nonnegative.

Proof. (⇒) If π = σ then (1.3) is obviously SNN. Let A be an n×n Jacobi-Trudi matrix and suppose
that π is less than σ in the Bruhat order. If π differs from σ by a single transposition (i, j), then for some
partition ν and some k, `, m (`, m > 0), the evaluation of the polynomial (1.3) at A is equal to

(1.4) hν(hk+`hk+m − hk+`+mhk),

and (1.3) is clearly SNN. If π differs from σ by a sequence of transpositions, then the evaluation of (1.3) at
A is equal to a sum of polynomials of the form (1.4) and again (1.3) is SNN.

(⇐) Suppose that π is not less than or equal to σ in the Bruhat order. By Theorem 1.1 we may choose
indices 1 ≤ k, ` ≤ n− 1 such that M(σ)[k],[`] contains q + 1 ones and M(π)[k],[`] contains q ones. Now define
the nonnegative number r = (k − q)(n + k − `− 2) and consider the Jacobi-Trudi matrix B defined by the
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skew shape (n− 1 + 2r)k(n− 1 + r)n−k/r`,

B =





















hn−1+r · · · hn+`−2+r hn+`−1+2r · · · h2n−2+2r

...
...

...
...

hn−k+r · · · hn−k+`−1+r hn−k+`+2r · · · h2n−k−1+2r

hn−k−1 · · · hn−k+`−2 hn−k+`−1+r · · · h2n−k−2+r

...
...

...
...

h0 · · · h`−1 h`+r · · · hn−1+r





















.

The polynomial (1.3) applied to B may be expressed as hλ − hµ for some appropriate partitions λ, µ
depending on π, σ, respectively. We claim that λ is incomparable to or greater than µ in the dominance
order. Since M(π)[k],[`+1,n] contains k − q ones we have that

(1.5) λ1 + · · ·+ λk−q ≥ (k − q)(n− k + ` + 2r).

Similarly, we have

(1.6) µ1 + · · ·+ µk−q ≤ (k − q − 1)(2n− 2 + 2r) + max{n + `− 2 + r, 2n− k − 2 + r}.

Subtracting (1.6) from (1.5), we obtain

(λ1 + · · ·+ λk−q)− (µ1 + · · ·+ µk−q) ≥ n−max{`, n− k} > 0,

as desired.
Recall that the Schur expansion of hµ is

hµ = sµ +
∑

ν>µ

Kν,µsν ,

where the comparison of partitions ν > µ is in the dominance order and the nonnegative Kostka numbers

Kν,µ count semistandard Young tableaux of shape ν and content µ. (See e.g. [9, Prop. 7.10.5, Cor. 7.12.4].)
It follows that the coefficient of sµ in the Schur expansion of hλ − hµ is −1 and the polynomial (1.3) is not
SNN. �

The authors are grateful to Sergey Fomin, Zachary Pavlov, Alex Postnikov, Christophe Reutenauer,
Brendon Rhoades, Richard Stanley, John Stembridge, and referees for helpful conversations.
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