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Vancouver 2004

A Generalization of su(2)

Brian Curtin

Abstract. We consider the following generalization of su(2). Let P (q, x, y, z) denote the associative al-
gebra over any field K generated by A1, A2, A3 with relations [A1, A2]q = xA3 + yI + z(A1 + A2,
[A2, A3]q = xA1 + yI + z(A2 + A3), [A3, A1]q = xA2 + yI + z(A3 + A1) for some q, x, y, z ∈ K. As-
sume that q 6= 0 is either 1 or not a root of unity and that x 6= 0. We describe the multiplicity-free
finite-dimensional representations of this generalized algebra, and we describe an action of the modular
group on this algebra.

Résumé. Nous considérons la généralisation suivante de su(2). Soit P (q, x, y, z) l’algbre associative avec
des générateurs A1, A2, A3 et rélations [A1, A2]q = xA3+yI+z(A1+A2, [A2, A3]q = xA1+yI+z(A2+A3),
[A3, A1]q = xA2 + yI + z(A3 + A1) pour q, x, y, z ∈ K. Supposez que q 6= 0 est 1 ou pas une racine de
l’unité, et supposez que Nous décrivons l x 6= 0.es représentations fini-dimensionnelles sans multiplicité de
cette algèbre généralisé, et Nous décrivons une action du groupe modulaire sur cette algèbre.

1. Introduction

Recall that the special unitary Lie algebra su(2) is the Lie algebra with basis S1, S2, S3 and relations

(1.1) [S1, S2] = iS3, [S2, S3] = iS1, [S3, S1] = iS2.

We generalize su(2) (or rather its enveloping algebra) as follows.

Definition 1.1. Let K denote any field. Pick q, x, y, z ∈ K. Let P = P(q, x, y, z) be the associative
algebra over K generated by three symbols S1, S2, S3 subject to the relations

[S1, S2]q = xS3 + yI + z(S1 + S2),(1.2)

[S2, S3]q = xS1 + yI + z(S2 + S3),(1.3)

[S3, S1]q = xS2 + yI + z(S3 + S1),(1.4)

where [x, y]q = xy − qyx.

Like the relations of (1.1), the relations (1.2) – (1.4) express (q-)commutators as linear expressions in
the three generators (the two in the commutator having the same coefficient) and have a cyclic symmetry.

We describe the multiplicity-free irreducible finite-dimensional representations of P(q, x, y, z) when x 6= 0
and q is some nonzero element of K which is not a root of unity, other than perhaps 1 itself. We need some
notation. Fix a field K and a vector space V over K of finite nonnegative dimension. Let End(V ) denote the
vector space of all K-linear transformations from V to V . A square matrix over K is said to be tridiagonal
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whenever every nonzero entry appears on the diagonal, the superdiagonal, or the subdiagonal. A tridiagonal
matrix is irreducible whenever the entries on the sub- and superdiagonals are all nonzero.

Definition 1.2. Let A1, A2, A3 denote an ordered triple of elements taken from End(V ). We call this
triple a Leonard triple on V whenever for each A ∈ {A1, A2, A3} there exists a basis of V with respect to
which the matrix representing A is diagonal and the matrices representing the other two operators in the
triple are irreducible tridiagonal.

By an antiautomorphism of End(V ), we mean a K-linear bijection τ : End(V ) → End(V ) such that
τ(XY ) = τ(Y )τ(X) for all X , Y ∈ End(V ).

Definition 1.3. Let A1, A2, A3 denote a Leonard triple on V . Then this Leonard triple is said to be
modular whenever for each A ∈ {A1, A2, A3} there exists an antiautomorphism of End(V ) which fixes A
and swaps the other two operators in the triple.

Our main result on the representations of P(q, x, y, z) is the following.

Theorem 1.4. With reference to Definition 1.1, assume x 6= 0. Also assume that q 6= 0 is either 1 or
not a root of unity. Let V denote an irreducible finite-dimensional module for P(q, x, y, z). Let a1 = S1|V ,
a2 = S2|V , a3 = S3|V . Assume that a1, a2, a3 are multiplicity-free. Then a1, a2, a3 is a modular Leonard
triple on V .

The modular Leonard triples are completely characterized–we recall this characterization in Section 3.
We conclude by showing that the modular group PSL2(Z) acts on P(q, x, y, z) when x 6= 0.

2. Multiplicity-free representations of P

We show that the representations of P(q, x, y, z) of interest are closely related to Leonard pairs. We
begin by recalling the notion of a Leonard pair.

Definition 2.1. Let A1, A2 denote an ordered pair of elements taken from End(V ). We call this pair
a Leonard pair on V whenever for each A ∈ {A1, A2} there exists an ordered basis of V with respect to
which the matrix representing A is diagonal and the matrix representing the other member of the pair is
irreducible tridiagonal.

We need the following criterion.

Theorem 2.2 (Vidunas and Terwilliger [VT]). Let V denote a vector space over K of finite positive
dimension. Let A, A2 denote an ordered pair of elements of End(V ) linear operators in End(V ). Assume
that

(1) A1 and A2 are multiplicity-free;
(2) V is irreducible as an (A1, A2)-module;
(3) there exist β, γ, γ∗, ρ, ρ∗, ω, η, η∗ ∈ K such that

A2
1A2 − βA1A2A1 + A2A

2
1 − γ(A1A2 + A2A1) − ρA2 = γ∗A2

1 + ωA1 + ηI,(2.1)

A2
2A1 − βA2A1A2 + A1A2

2 − γ∗(A2A1 + A1A2)− ρ∗A1 = γA2
2 + ωA2 + η∗I ;(2.2)

(4) no q satisfying q + q−1 = β is a root of unity.

Then A1, A2 is a Leonard pair on V .
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Theorem 2.3. With reference to Definition 1.1, assume x 6= 0. Then any two of S1, S2, S3 satisfy (2.1)
and (2.2) with

β = q + 1/q,

γ = γ∗ = z(q − 1)/q,

ρ = ρ∗ = (z2 − x2)/q,

ω = ω∗ = (y(q − 1) + z(z − x))/q,

η = η∗ = y(z − x)/q.

Proof. Each of S1, S2, S3 appears linearly with coefficient x in one of equations one of (1.2)–(1.4).
Solve for, say, S3 in (1.2), and eliminate it in (1.3) and (1.4). �

Lemma 2.4. With the notation and assumptions of Theorem 1.4, any two of a1, a2, and a3 form a
Leonard pair.

Proof. Observe that V is irreducible as, say, an (a1, a2)-module since V is irreducible as a P(q, x, y, z)
and a3 is expressed using a1 and a2. The result follows from Theorems 2.2 and 2.3. �

It turns out that the representations of P(q, x, y, z) of interest correspond to a special extension of a
Leonard pair.

Proof of Theorem 1.4. (sketch) By Lemma 2.4, any two of a1, a2, a3 form a Leonard pair. Thus
by Definition 2.1 there is a basis of V with respect to which the matrix representing, say, a1 is irreducible
tridiagonal and the matrix representing a2 is diagonal. Substituting these forms into (1.2) gives that the
matrix representing a3 is also irreducible tridiagonal. Thus a1, a2, a3 is a Leonard triple. It turns out
that all Leonard pairs in Lemma 2.4 are isomorphic. (This follows from the fact that they all satisfy the
same Askey-Wilson relations and some facts about canonical forms of a Leonard pair [T4]). Composing the
antiautomorphism of End(V ) which fixes a1 and a2 and the automorphism which swaps a1 and a2 gives an
antiautomorphism which swaps a1 and a2. Applying this map to (1.2) gives that it fixes a3. �

We conclude this section with some comments on Leonard pairs. Leonard pairs were introduced by
P. Terwilliger [T1, T3] as an algebraic abstraction of work of D. Leonard concerning the sequences of
orthogonal polynomials with discrete support for which there is a dual sequence of orthogonal polynomials.
[Len1, Len2] (cf. [BI]). Leonard characterized these orthogonal polynomials in terms of hypergeometric
series. This result is analogous to Askey and Wilson’s characterization of similar orthogonal polynomials
with continuous support [AW1, AW2] (cf. [KS]). The reference [T5] describes a bijective correspondence
between the isomorphism classes of Leonard pairs and the appropriate orthogonal polynomials. In particular,
results concerning Leonard pairs can be viewed as results concerning such orthogonal polynomials. This
connection is further developed in [T6]. Relations (2.1) and (2.2) are called the Askey-Wilson relations.
They were introduced by Zhedanov et. al. [GLZ, Z] in connection with the quadratic Askey-Wilson algebra.

3. The modular Leonard triples

We now recall a characterization of the modular Leonard triples [C]. We do so by first describing
three examples of modular Leonard triples in Lemmas 3.1, 3.2, and 3.3, and then describing how, up to
isomorphism, they are the only examples. We use the following conventions throughout. Given any square
matrix X of order n with entries in K, we view X as a linear operator on K

n, acting by v 7→ Xv. Let d
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denote a nonnegative integer. Write

A1 = tridiag





b0 b1 · · · bd−1 ∗
a0 a1 · · · ad−1 ad

∗ c1 · · · cd−1 cd



 ,

A2 = diag(θ0, θ1, . . . , θd),

A3 = tridiag





b0ν1 b1ν2 · · · bd−1νd ∗
a0 a1 · · · ad−1 ad

∗ c1/ν1 · · · cd−1/νd−1 cd/νd



 .

Lemma 3.1. ([C]) Set

νi = νqi−1 (1 ≤ i ≤ d),

θi = θ0 + h(1− qi)(1 − ν2qi−1)q−i (0 ≤ i ≤ d),

b0 = −
h(1− qd)(1 + ν3qd−1)

qd(1− ν)
,

bi = −
h(1− qd−i)(1 − ν2qi−1)(1 + ν3qd+i−1)

qd−i(1 − νqi)(1− ν2q2i−1)
(1 ≤ i ≤ d − 1),

ci =
hν(1− qi)(1 + νqd−i)(1− ν2qd+i−1)

qd−i+1(1 − νqi−1)(1− ν2q2i−1)
(1 ≤ i ≤ d− 1),

cd =
hν(1− qd)(1 + ν)

q(1− νqd−1)
,

ai = θ0 − bi − ci (0 ≤ i ≤ d) (c0 = 0, bd = 0)

for some scalars θ0, h, ν, q in K such that hνq 6= 0, qi 6= 1 (1 ≤ i ≤ d), ν3q2d−1−i 6= −1 (1 ≤ i ≤ d), and
ν2qi 6= 1 (0 ≤ i ≤ 2d− 2). Then A1, A2, A3 is a modular Leonard triple on K

d+1.

Lemma 3.2. ([C]) Assume charK is 0 or an odd prime greater than d. Set

νi = −1 (1 ≤ i ≤ d),

θi = θ0 + hi(i + 1 + s) (0 ≤ i ≤ d),

b0 =
−hd(3s + 2d + 4)

4
,

bi =
h(i + 1 + s)(d − i)(2i + 3s + 2d + 4)

4(2i + 1 + s)
(1 ≤ i ≤ d− 1),

ci =
hi(i + s + d + 1)(2i− s− 2d− 2)

4(2i + 1 + s)
(1 ≤ i ≤ d− 1),

cd =
−hd(s + 2)

4
,

ai = θ0 − bi − ci (0 ≤ i ≤ d) (c0 = 0, bd = 0)

for some scalars θ0, h, s in K such that h 6= 0, s 6= −i (2 ≤ i ≤ 2d), and 3s 6= −2i (d + 2 ≤ i ≤ 2d + 1).
Then A1, A2, A3 is a modular Leonard triple on K

d+1.
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Lemma 3.3. ([C]) Assume charK = 0 or charK > d. Set

νi = ν (1 ≤ i ≤ d),

θi = θ0 + hi (0 ≤ i ≤ d),

bi = −
h(d− i)(1 − ν + ν2)

(1 − ν)2
(0 ≤ i ≤ d− 1),

ci =
hiν

(1− ν)2
(1 ≤ i ≤ d),

ai = θ0 − bi − ci (0 ≤ i ≤ d) (c0 = 0, bd = 0)

for some scalars θ0, h, ν in K such that hν 6= 0, ν 6= 1, and 1− ν + ν2 6= 0. Then A1, A2, A3 is a modular
Leonard triple on K

d+1.

Definition 3.4. Let V denote a vector space over K of finite positive dimension. Let A1, A2, A3

denote a modular Leonard triple on V . We say that the triple A1, A2, A3 is of type I, type II, or type III,
respectively, whenever there exists a basis of V with respect to which the matrices representing A1, A2, A3

are as in Lemma 3.1, Lemma 3.2, or Lemma 3.3, respectively.

Theorem 3.5 ([C]). Let V denote a vector space over K of finite positive dimension. Let A1, A2, A3

denote a modular Leonard triple on V . Then A1, A2, A3 is of type I, type II, or type III.

Theorem 3.6. Let A1, A2, A3 denote a modular Leonard triple on V . Then there are scalars q, x, y,
z in K with x 6= 0 such that (1.2)–(1.4) hold.

Proof. Direct verification using the above classification of modular Leonard triples. �

4. A modular group action

We describe an action of the modular group PSL2(Z) on P(q, x, y, z). This modular group action
was first observed for the modular Leonard triples, hence their name. We begin with describing some
antiautomorphisms for P(q, x, y, z).

Lemma 4.1. With reference to Definition 1.1, assume x 6= 0. Then for any T ∈ {S1, S2, S3}, there exists
an antiautmorphism of P(q, x, y, z) which fixes T and swaps the other two generators.

Proof. Let µ : P → P denote a linear map which reverses the order of multiplication and swaps S1

and S2. Then µ fixes the q-commutator in (1.2). On the right-hand side of (1.2) the linear terms involving I
and S1 +S2 are fixed, so S3 is fixed by such a map. Observe that µ is indeed an antiautomorphism of P . �

Lemma 4.2. With reference to Definition 1.1, assume x 6= 0. Then for any T ∈ {S1, S2, S3}, there exists
an antiautmorphism of P(q, x, y, z) which fixes the elements of {S1, S2, S3}\T .

Proof. Let α : P → P denote a linear map which reverses the order of multiplication and swaps S1 and
S2. Applying α to (1.2) gives an expression for α(S3). Essentially the same computation as was performed
in Theorem 2.3 shows that α is indeed an antiautomorphism of P . �

Recall that PSL2(Z) has presentation 〈s, t | s2 = 1, t3 = 1〉.

Lemma 4.3. With reference to Definition 1.1, assume x 6= 0.

(1) Let σ denote the composition of the antiautomorphisms of P which respectively fix and swap S1 and
S2. Then σ2 = I.

(2) Let τ denote the composition of the antiautomorphisms of P which respectively swap S1 and S2 and
swap S2 and S3. Then τ3 = I.

In particular, PSL2(Z) acts on P as a group of automorphisms.
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Proof. It is easy to verify from their constructions that τ sends S1 to S3, S2 to S1, and S3 to S2, and
that σ swaps S1 and S2. The result follows. �
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