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Abstract

We say that a word w on a totally ordered alphabet avoids the word v if there are no subsequences
in w order-equivalent to v. In this paper we suggest a new approach to the enumeration of words on
at most k letters avoiding a given pattern. By studying an automaton which for fixed k generates
the words avoiding a given pattern we derive several previously known results for problems of this
kind, as well as many new. In particular, we give a simple proof of the formula [21] for the exact
asymptotics for the number of words on k letters of length n that avoids the pattern 12 · · · (` + 1).
Moreover, we give the first combinatorial proof of the exact formula [9] for the number of words on
k letters of length n avoiding a three letter permutation pattern.

Résumé

Soient v et w, deux mots sur un alphabet totalement ordonné. Le mot w évite le motif v si aucun
sous-mot de w n’est équivalent (au sens de l’ordre) v. Dans ce papier, nous suggérons une nouvelle
approche pour énumérer les mots sur un alphabet d’au plus k lettres qui évitent un motif donné.
En étudiant un automate qui engendre, pour un k fixé, tous les mots évitant un motif donné, nous
obtenons des résultats nouveaux dans ce domaine, ainsi que d’autres déjà connus. En particulier,
nous donnons une preuve simple de la formule de Regev pour une estimation asymptotique précise
du nombre de mots de longueur n sur k lettres qui évitent le motif 12 · · · (` + 1). De plus, nous
donnons pour la première fois une preuve combinatoire de la formule close de Burstein pour le calcul
du nombre de mots de longueur n sur un alphabet à k lettres qui évitent un motif de permutation
de 3 lettres.

2000 Mathematics Subject Classification: 05A05, 05A15, 68Q45.

1. Introduction

In this paper we study pattern avoidance in words. The subject of pattern avoidance in permutations
has thrived in the last decades, see [31] and the references there. Only very recently Alon and Friedgut [3]
studied pattern avoidance in words to achieve an upper bound on the number of permutations in Sn avoiding
a given pattern. We study pattern avoidance in words by defining a finite automaton that generates the
words avoiding a given pattern and use the transfer matrix method to count them. By this approach we
are able to find the asymptotics, as n → ∞, for the number of words on k letters of length n avoiding a
pattern p, as well as exact enumeration results. In particular we re-derive Regev’s [21] result on the exact
asymptotics for the number of words on k letters of length n avoiding a pattern 12 · · · (` + 1), and give the
first combinatorial proof of a formula for the number of words on k letters of length n avoiding the pattern
123.
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2 PETTER BRÄNDÉN AND TOUFIK MANSOUR

Let Sn denote the set of permutations of the set [n] := {1, 2, . . . , n}. If σ ∈ Sk and τ ∈ Sn, we say that
τ contains σ if there is a sequence 1 ≤ t1 < t2 < · · · < tk ≤ n of integers such that for all 1 ≤ i, j ≤ k we
have τ(ti) ≤ τ(tj) if and only if σ(i) ≤ σ(j). Here σ is called a pattern. If τ does not contain σ we say
that τ avoids σ. In the study of pattern avoidance the focus has been on enumerating and giving estimates
to the number of elements in the set Sn(σ), the set of permutations in Sn that avoids σ. Maybe the most
interesting open problem in the field is: Does there exists a constant c such that |Sn(τ)| < cn for all n ≥ 0?
This problem is equivalent to the seemingly stronger statement, see [4]:

Conjecture 1.1. (Stanley, Wilf) For any pattern τ ∈ S`, the limit lim
n→∞

|Sn(τ)|
1

n , exists and is finite.

The conjecture has been verified for layered patterns [8], for all patterns which can be written as an
increasing subsequence followed by a decreasing [3]. Very recently Marcus and Tardos [19] announced that
they have a proof of Conjecture 1.1. In [3] Alon and Friedgut proved a weaker version of Conjecture 1.1,
namely: For any permutation σ there exists a constant c = c(σ) such that |Sn(σ)| ≤ cnγ?(n), where γ? is an
extremely slowly growing function, related to the Ackermann hierarchy. The method of proof in [3] was by
considering pattern avoidance in words. This is also the theme of this paper.

Denote by [k]∗ the set of all finite words with letters in [k]. If w = w1w2 · · ·ws ∈ [k]∗ and v = v1v2 · · · vr ∈
[m]∗ where r ≤ s, we say that w contains the pattern v if there is a sequence 1 ≤ t1 < t2 < · · · < tr ≤ s such
that for all 1 ≤ i, j ≤ s we have

wti
≤ wtj

if and only if vi ≤ vj .

If w does not contain v we say that w avoids v. For example, the word w = 323122411 ∈ [4]9 avoids the
pattern 132 and contains the patterns 123, 212, 213, 231, 312, and 321. If S is any set of finite words we
denote the set of words in S that avoids v by S(v).

The history of pattern avoidance in words is not as rich as the one in permutations. We mention the
references [2, 3, 9, 10, 14, 21]. In [21] Regev gave a complete answer for the asymptotics for |[k]n(p`)|
when n →∞, where p` = 12 · · · (` + 1) (see Theorem 4.3).

Theorem 1.2 (Regev). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn`(k−`)`n (n →∞),

where

C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i + j − 1).

1.1. Organization of the paper. The paper is organized as follows. In Section 2 we present the
relevant definitions and attain some preliminary results, and in Section 3 we use the transfer matrix method
to determine the asymptotic growth for the sequence n 7→ |[k]n(p)|. In Section 4.1 we study the special
features of the automaton, A(p`, k), which generates the words with letters in [k] that avoids the increasing
pattern 12 · · · (` + 1). Here we will give a simple proof of Theorem 4.3 using the transfer matrix method
and give a combinatorial proof for the formula [9] for |[k]n(p)|, where p is any permutation pattern of length
three. We also consider the diagonal sequence |[n]n(123)| and determine its asymptotic growth and we also
show that its generating function is transcendental. We conclude the paper by indicating further problems
connected to the work in this paper.

2. Definitions and preliminary results

Given a word-pattern p and an integer k > 0 we define an equivalence relation ∼p on [k]∗ as follows:
v ∼p w if for every r ∈ [k]∗ the word vr avoids p if and only if wr avoids p. For example, if p = 132, k ≥ 4,
v = 13 and w = 14, then v �p w, since 133 avoids p but 143 contains p. At first sight it may seem difficult
to determine if v ∼p w, since a priori there is an infinite number of right factors r to check. By the following
lemma we have to check only a finite number words r.
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Lemma 2.1. Let p be a pattern of length ` and let v, w ∈ [k]∗ be any two words. Then v ∼p w if and
only if for all words r ∈ [k]s, 0 ≤ s ≤ `− 1, we have

vr avoids p if and only if wr avoids p.

Proof. Define an equivalence relation ∼′p on [k]∗ by: v ∼′p w if for all words r ∈ [k]s, 0 ≤ s ≤ `, we
have vr avoids p if and only if wr avoids p. Clearly, v ∼p w implies v ∼′p w. On the other hand if v �p w
we may assume that there is an r ∈ [k]∗ such that vr contains p and wr avoids p. There is at least one
occurrence of p in vr that uses at most ` − 1 letters of r. Thus there is a subsequence r′ of r of length at
most `− 1 such that vr′ contains p and wr′ avoids p, i.e., v �

′
p w. �

Let E(p, k) be the set of equivalence classes of ∼p. By Lemma 2.1 the number e of equivalence classes is
finite. We denote the equivalence class of a word w by 〈w〉.

Definition 2.2. Given an positive integer k and a pattern p we define a finite automaton (For a
definition of a finite automaton, see [1] and references therein),

A(p, k) = (E(p, k), [k], δ, 〈ε〉, E(p, k) \ {〈p〉}),

by

(1) the states are, E(p, k), the equivalence-classes of ∼p,
(2) [k] is the input alphabet,
(3) δ : E(p, k) × [k] → E(p, k) is the transition function defined by δ(〈w〉, i) = 〈wi〉, where wi is w

concatenated with the letter i ∈ [k],
(4) 〈ε〉 is the initial state, where ε is the empty word,
(5) all states but 〈p〉 are final states.

We will identify A(p, k) with the (labelled) directed graph with vertices E(p, k) and with a (labelled)
edge −→i between 〈v〉 and 〈w〉 if vi ∼p w. Clearly, we may order the states as x1, x2, . . . , xe so that if i < j
there is no path from xj to xi. The transition matrix, T (p, k), of A(p, k) is the matrix of size e × e with
non-negative integer coefficients defined by:

[T (p, k)]ij = |{s ∈ [k] : δ(xi, s) = xj}|.

Thus [T (p, k)]ij counts the number of edges between xi and xj , and T (p, k) is triangular.

Example 2.3. If p = 2314 and k = 5, then it is easy to check (see [18]) that the states are 〈ε〉, 〈2〉, 〈3〉,
〈32〉, 〈34〉, 〈24〉, 〈23〉, 〈324〉, 〈341〉, 〈241〉, 〈234〉, 〈2342〉, 〈231〉, and 〈2314〉. Note that there are two edges
between the states 〈324〉 and 〈241〉, namely 〈324〉−→1〈241〉 and 〈324〉−→2〈241〉. Moreover, all final states
in A(2314, 5) have 3 loops, except 〈324〉 which has 2 loops.

The following simple lemma will be helpful in finding the asymptotic growth of the sequence |[n]k(p)|,
for fixed k.

Lemma 2.4. Let the automaton A(p, k) be given, let d be the number of distinct letters in p and suppose
that k ≥ d− 1. If 〈v〉 is any state different from 〈p〉, then the number of loops at 〈v〉 does not exceed d− 1.
Moreover, there are exactly d− 1 loops at 〈ε〉.

Proof. Suppose that there are more than d − 1 loops at 〈v〉. Then the loops use at least d different
labels. From these labels we can form a word w order-isomorphic to p. But then vw ∼p v which is a
contradiction.

We may assume that the letters of p are {1, 2, . . . , d}. Let p1 be the first letter of p. Then, if i < p1 or
i > k − d + p1 we have i ∼p ε. But there are d− 1 such i’s, which proves the lemma. �

Although pattern avoidance in words and pattern avoidance in permutations share many common fea-
tures, there are some important aspects in which they differ. For permutations there are three simple
operations, f , that respect pattern-avoidance in the sense that f(τ) avoids f(σ) if and only if τ avoids σ,
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namely the reversal, the complement and the inverse of a permutation. The first two operations have obvious
generalizations to words, while the inverse does not. It has in fact been an open question to construct an
inverse for words possessing “the right” properties. Such an inverse was recently constructed by Hohlweg
and Reutenauer [13]. Unfortunately it is not possible to construct an inverse that respects pattern avoidance
in words, which would imply the identity |[k]n(p)| = |[k]n(p−1)|, for all k, n ≥ 0 and permutation patterns
p. The first counter example to this is |[5]7(1342)| = 67854 > 67853 = |[5]7(1423)|. If w ∈ [k]n let the
complement of w in [k]n be wc = (k +1−w1)(k +1−w2) · · · (k +1−wn). Then we have in fact that A(p, k)
and A(pc, k) are isomorphic as automata for any p ∈ [k]∗, since v ∼p w if and only if vc ∼pc wc.

Certainly w avoids p if and only if wr avoids pr, where r is the reversal operator and w and p are any
words. However A(p, k) and A(pr, k) are not in general isomorphic. Indeed, for p = 2314 and k = 5 we have
that |E(2314, 5)| = 13 and |E(4132, 5)| = 14.

3. Transfer matrix method

In this section we use the transfer matrix method (see [27, Theorem 4.7.2]) to obtain information about
the sequences |[k]n(p)|. Given a matrix A let (A; i, j) be the matrix with row i and column j deleted.

Theorem 3.1. Let k be a positive integer, p be a pattern and ek be the number of states in A(p, k). Let
T ′(p, k) = (T (p, k); ek − 1, ek − 1). Then the generating function for |[k]n(p)| is

∑

n≥0

|[k]n(p)|xn =

∑ek−1
j=1 (−1)j+1 det(I − xT ′, j, 1)

∏ek−1
i=1 (1− λix)

=
det B(x)

∏ek−1
i=1 (1− λix)

,

where λi is the number of loops at state xi, and B(x) is the matrix obtained by replacing the first column in
I − xT ′ with a column of all ones.

Proof. The theorem follows from the transfer matrix method, see [27, Theorem 4.7.2], since we want
to count the number of paths of length n in A(p, k) from 〈ε〉 to any state other than 〈p〉 of length n in
A(p, k). �

Regev [21] computed the exact asymptotics for |[k]n(p`)|, where p` = 12 · · · (` + 1) and n →∞. We will
next find the exact asymptotics (up to a constant) for |[k]n(p)| for all patterns p. Given two sequences {an}
and {bn} of real numbers, we denote an ' bn if limn→∞

an

bn
= 1. A path in A(p, k) is called simple if it starts

at 〈ε〉, does not use any loops, and does not end in 〈p〉.

Theorem 3.2. Let p be any pattern with d distinct letters and let k ≥ d − 1 be given. Then there is a
constant C > 0 such that

|[k]n(p)| ' CnM (d− 1)n (n →∞),

where M + 1 is the maximum number of states with d− 1 loops, in a simple path.

Proof. Let P := x1, x2, . . . , xj be a simple path in A(p, k). Moreover, let `j be the number of loops at
state xj . Then |[k]n(p)| =

∑
P N(P, n) where

N(P, n) =
∑

α1+···+αj=n−j+1

`α1

1 `α2

2 · · · `
αj

j ,

and the sum is over all weak compositions of n − j + 1 into at most j parts. Now, N(P, n) is equal to the
coefficient to tn−j+1 in (1 − `1t)

−1 · · · (1 − `jt)
−1. Let r be the number of i such that `i = d − 1. Note

that by Lemma 2.4 r is at least one. The dominant term of (1− `1t)
−1 · · · (1− `jt)

−1 is (by partial fraction

decomposition) equal to f(t)
(1−(d−1)t)r , where f(t) is a polynomial of degree less than r and f((d− 1)−1) 6= 0.

By well known results it follows that N(P, n) ' C(P )(d− 1)nnr−1, where C(P ) > 0 is a constant depending
on P and k. Taking the greatest possible r yields the desired results. �
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When there are exactly d−1 loops at every state except 〈p〉 in A(p, k), it follows from Theorem 3.1 that
|[k]n(p)| = (d− 1)nQ(n), where Q is a polynomial in n. We have in fact:

Corollary 3.3. Let A(p, k) be such that all states but 〈p〉 have exactly d− 1 loops. Then

|[k]n(p)| =
M∑

j=0

aj(d− 1)n−j

(
n

j

)
,

where aj counts the number of simple paths of length j in A(p, k). Moreover, if p is a pattern of length ` +1
then aj = (k − d + 1)j for all j = 0, 1, . . . , `.

Proof. The corollary follows from the proof of Theorem 3.2 since N(P, n) = (d − 1)n−j
(
n
j

)
. If p is a

pattern of length `+1 then we have that aj = (k−d+1)j where j = 0, 1, . . . , `, since kj =
∑j

i=0 ai(d−1)j−i
(
j
i

)

for all j = 0, 1, . . . , `. �

As an example of Corollary 3.3 we note that if p is any pattern of length ` + 1 with exactly d different

letters then |[d]n(p)| =
∑`

j=0(d− 1)n−j
(
n
j

)
.

4. The increasing patterns

We will in this section investigate the properties of A(p`, k), where p` = 12 · · · (` + 1). The following
lemma describes the structure of A(p`, k):

Lemma 4.1. Let k ≥ ` be given. For any subset S of [k] of size ` let wS be the word consisting of the
elements of S listed in increasing order. Then the words wS together with p` constitute a complete set of
representatives for the equivalence-classes E(p`, k). In particular we have:

|E(p`, k)| =

(
k

`

)
+ 1.

If S = {s1 < · · · < s`} ⊆ [k] and j ∈ [k] let Sj = {s1 < · · · < si−1 < j < si+1 < · · · < s`}, where i is the
integer such that si−1 < j ≤ si (s0 := 0, s`+1 := k + 1). Then

δ(〈wS〉, j) =

{
〈wSj 〉 if j ≤ s`,

〈p`〉 otherwise .

In particular, the loops of wS are the elements of S.

Proof. It is clear that the words wS are representatives for different classes. Let v ∈ [k]∗(p`). We say
that an increasing subword x1x2 · · ·xj of v is extendible if xj ≤ k+j−`−1, i.e., if we may extend x1x2 · · ·xj

to an occurrence of p` using letters from [k]. Suppose that the maximum length of an extendible increasing
subsequence in v is equal to s, s ≤ `. For 1 ≤ j ≤ s let

rj(v) := min{xj : x1x2 · · ·xj is an extendible subword of v}.

Clearly r1(v) < r2(v) < · · · < rs(v). Let

S = {r1(v), r2(v), . . . , rs(v), k + s + 1− `, k + s + 2− `, . . . , k}.

Then we see that wS ∼ v. The statement about the transition function follows from the construction. �

In the sequel we will use some standard notation from the theory of partitions and symmetric functions.
For undefined terminology we refer the reader to Chapter 7 of [28].

Theorem 4.2. Define a partial order on the final states in A(p`, k) as follows: x ≤ y if there exists a
path from x to y in A(p`, k). Then this partial order is isomorphic to J([`] × [k − `]), the lattice of order
ideals of the poset [`]× [k − `].
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Proof. Let S = {s1 < s2 < · · · < s`} and T = {t1 < t2 < · · · < t`} be subsets of [k]. We claim
that there exists a path from 〈wS〉 to 〈wT 〉 if and only if si ≥ ti for all 1 ≤ i ≤ `. From this the theorem
follows since the latter poset is isomorphic to the interval [∅, λ`,k−`], in the Young’s lattice, where λ`,k−` :=
(k − `, k − `, . . . , k − `) is of length `. Indeed, consider the bijection defined by:

(s1, s2, . . . , s`) 7→ (s` − `, s`−1 − ` + 1, . . . , s1 − 1) ∈ [∅, λ`,k−`].

Then si ≥ ti for all 1 ≤ i ≤ j if and only if the image of S is greater than the image of T in [∅, λ`,k−`].
But [∅, λ`,k−`] is its own dual, so the statement follows from the simple fact that [∅, λ`,k−`] is isomorphic to
J([`]× [k − `]).

If there is an edge between 〈wS〉 and 〈wT 〉, we are done by Lemma 4.1. The “only if” direction thus
follows by induction on the length of the path.

Now, if si ≥ ti for all 1 ≤ i ≤ ` consider the path

〈wS〉−→
t1〈wSt1〉−→

t2〈wSt1t2〉−→
t3 · · ·−→t`〈wSt1t2 · · · t`〉.

It is not hard to see that 〈wSt1t2 · · · t`〉 = 〈wT 〉, which completes the proof. �

We now have a different proof of the following theorem of Regev [21]:

Theorem 4.3 (Regev). Let C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i + j − 1). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn`(k−`)`n (n →∞).

Proof. By Corollary 3.3 and Theorem 4.2 we have that

|[k]n(p`)| ' aM `−M

(
n

M

)
`n '

aM

M !
`−MnM `n (n →∞),

where M = `(k− `) and aM is equal to the number of maximal chains in J([`]× [k− `]). By [28, Proposition
7.10.3] and the hook-length formula [28, Corollary 7.21.6] we have that

a`(k−`) = fλ`,k−` =
(`(k − `))!

∏`

i=1

∏k−`

j=1
(i + j − 1)

,

from which the theorem follows. �

It should be clear from the correspondence in Theorem 4.2 that the simple paths of length r in A(p`, k+`)
are in a one-to-one correspondence with tableaux T of the following type:

(i) T is weakly increasing in rows and columns,
(ii) no integer appears in more than one row,
(iii) the entries of T are exactly [r],
(iv) the shape of T is contained in λ`,k.

Recall that the tableaux satisfying (i) and (ii) above are the border-strip tableaux (or rim-hook tableaux)
of height zero. We call these tableaux segmented. Let a(`, k, r) denote the number of segmented tableaux
satisfying (iii) and (iv), so that:

|[k + `]n(p`)| =
`k∑

r=0

`n−ra(`, k, r)

(
n

r

)
. (4.1)

The function a(`, k, r) is actually a polynomial in k of degree r. To see this let us call a segmented tableau
inside [`]× [k] primitive if all columns are different, and let the set of such tableaux of length i with r different
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entries be PR`,i,r. If we denote the number of elements in PR`,i,r by pr(`, i, r) we have

a(`, k, r) =
∑r

i=r/`
pr(`, i, r)

(
k

i

)
,

since for any such primitive tableaux of length i we may insert α1 copies of the first column before the first
column, α2 copies of the second column between the first and the second column, and so on. After the last
column we may insert αi+1 columns of all blanks, requiring that α1 + α2 + · · ·+ αi+1 = k − i. Thus there

are
(
k
i

)
segmented tableaux arising from a given primitive one. The numbers pr(`, i, r) are in general hard to

count, but there are two special cases which are nice, namely pr(`, r, r) and pr(2, i, r). We start by counting
pr(`, r, r).

Theorem 4.4. With definitions as above: pr(`, n, n) = |Sn(p`)|.

Proof. We will define a bijection between Sn and ∪`≥0PR`,n,n such that the height of the tableau
corresponds to the greatest increasing subsequence in the permutation. Recall the definition of ri(v) in the
proof of Lemma 4.1, and let r(v) = (r1(v), r2(v), . . . , r`(v)), where ` is the length of the longest increasing
subsequence in v. Let k be large enough so that all increasing subsequences in permutations in Sn are
considered extendible.

Now, if π = π1π2 · · ·πn is any permutation in Sn define T = T (π) as follows. Let the first column of T
be r(π), the second column be r(π1 · · ·πn−1), and so on. The image of the permutation 351462 is:

T (351462) =

1 1 1 1 3 3

2 4 4 5 5

6 6

.

By Lemma 4.1 we have that T (π) ∈ PR`,n,n. Moreover from Lemma 4.1 we also get that a tableau T is the
image of some π ∈ Sn if and only if

(a) T has n columns and entries 1, 2, . . . , n,
(b) Let T i denote the ith column. If i < j then T i is smaller than T j in the product order. (If T i and

T j have different size fill the empty slots of T j with n + 1),
(c) Exactly one new entry appears every time you move from T i+1 to T i.

Now, if T ∈ ∪`≥0PR`,n,n condition (a) and (b) are trivially satisfied. At least one new entry appears every
time we move from T i+1 to T i, since otherwise T i = T i+1 and T fails to be primitive. On the other hand if
there appears more than one new entry in a transition then in a later transition there must appear no new
entry, since T has n columns and n distinct entries. This verifies condition (c) and the theorem follows. �

A special case of Theorem 4.4 is that pr(2, n, n) = Cn, the nth Catalan number. This is also a special case
of the next theorem. Note that Theorem 4.5 is what we need to have combinatorial proof of a closed formula,
see Theorem 4.7, for the numbers |[k]n(123)|. Burstein [9] achieved a different, but of course equivalent,
formula for |[k]n(123)|, but not in a bijective manner.

Theorem 4.5. With definitions as above: pr(2, i, r) = 1
i+1

(
2i
i

)(
i

r−i

)
.

Before we give a proof of Theorem 4.5 we will need some definitions and a lemma. Let PR+(2, s, r)
be the tableaux in PR(2, s, r) that fill up the shape [2] × [r], and let pr+(2, s, r) := |PR+(2, s, r)|. Then
pr(2, s, r) = pr+(2, s, r) + pr+(2, s, r + 1) since we get the tableaux that do not fill up the shape by deleting
all entries r+1. To prove the theorem we will show that pr+(2, s, r) =

(
s−1
2s−r

)
Cs, where Cs is the sth Catalan

number.
We first define an operation + that takes tableaux with r different entries to tableaux with r+1 different

entries. Let T ∈ PR+(2, s, r). Suppose that j is an index such that Tij = Ti(j+1) for some i = 1, 2. Write
T as T = LR where L is the j first columns and R is the s − j last columns. Let R′ be the array order
equivalent to R with entries the same as R, add r + 1, take away Ti(j+1) (two arrays A and B are said to be
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order equivalent if Aij ≤ Ai′j′ if and only if Bij ≤ Bi′j′ for all i, j, i′, j′). We define T + j to be the tableaux
T + j := LR′. In T there are exactly t = 2s− r indices j ∈ [s− 1] such that Tij = Ti(j+1) for some i = 1, 2.

Let S = {s1 < s2 < · · · < st} be these indices and define a function Φ : PR+(2, s, r) →
(
[s−1]

t

)
× ST 2,s,

where ST 2,s is the set of standard tableaux of shape [2]× [s], by

Φ(T ) = (S, T + st + st−1 + · · ·+ s1).

The fact that Φ is a bijection will prove the theorem, since by the hook-length formula we have |ST 2,s| = Cs.
To find the inverse of Φ we need a kind of inverse operation to +.

Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s− 1 be such that T1b < T1(b+1) and T2b < T2(b+1). Define two arrays

T |b and T |b as follows. Write T = LR where L are the b first columns and R are the s − b last columns.
Define T |b := L′R′, to be the array where L = L′ and R′ is the unique array order equivalent to R, with
entries the same as R add T1b take away r. Similarly, let T |b := L′R′, be the array with L = L′ and where
R′ is the unique array order equivalent with R, with entries the same as R, add T2b take away r.

1 2 4 4

3 5 6 7

∣∣∣∣
2

=
1 2 2 2

3 5 4 6

1 2 4 4

3 5 6 7

∣∣∣∣
2

=
1 2 4 4

3 5 5 6

Note that exactly one of T |2 and T |2 above is a primitive segmented tableaux. This is no accident.

Lemma 4.6. Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s− 1 be such that T1b < T1(b+1) and T2b < T2(b+1). Then

T |b ∈ PR
+(2, s, r − 1) ⇔ T |b /∈ PR+(2, s, r − 1) ⇔ T2(b+1) = T2b + 1.

Moreover, if B = T |b ∈ PR+(2, s, r − 1) then B1b = B1(b+1) and if A = T |b ∈ PR+(2, s, r − 1) then
A1b = A1(b+1).

Proof. Consider A := T |b. All entries in T that are smaller than T2b will be mapped onto themselves
and Aij = Tij − 1 for Aij > T2b. Therefore A ∈ PR+(2, s, r − 1) if and only if T2(b+1) = T2b + 1 (since
otherwise the entry T2b will appear in both the first and the second row).

Consider B := T |b. Let yi, i = 1, 2, . . . , h be the entries in T satisfying T2b < yi ≤ T2(b+1) ordered by
size. Then the entry y1 will be mapped to an element smaller than T2b and yi will be mapped to yi−1 for
i > 1. Thus B ∈ PR+(2, s, r − 1) if and only if T2(b+1) > T2b + 1 as claimed.

The last statement is a direct consequence of the above proof. �

We are now ready to give a proof of Theorem 4.5.

Proof of Theorem 4.5. If T ∈ PR+(2, s, r) and 1 ≤ b ≤ s − 1 are such that T1b < T1(b+1) and

T2b < T2(b+1) we define T − b to be the one of the arrays T |b and T |b which is in PR+(2, s, r − 1). By
Lemma 4.6 we have that

(T + j)− j =T if Tij = Ti(j+1) for some i = 1, 2,

(T − j) + j =T if Tij < Ti(j+1) for both i = 1, 2.
(4.2)

Now, if S = {x1 < x2 < · · · < xt}, where t = 2s− r and P ∈ ST 2,s we let

Ψ(S, P ) := P − x1 − x2 − · · · − xt.

By 4.2 it follows that Ψ is the inverse to Φ and the theorem follows. �

We now have a combinatorial proof of the following theorem given in a different form in [9]:
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Theorem 4.7. For all n, k ≥ 0 we have

|[k + 2]n(123)| =
∑

r,i

2n−rCi

(
i

r − i

)(
n

r

)(
k

i

)
,

where Ci is the ith Catalan number. The generating function

F (x, y) :=
∑

n,k

|[k + 2]n(123)|xkyn,

is given by

F (x, y) =
1

(1− x)(1− 2y)
C

(
xy(1− y)

(1− x)(1− 2y)2

)
,

where C(z) is the generating function for the Catalan numbers. Equivalently, F (x, y) is algebraic of degree
two and satisfies the equation:

x(1− x)y(1− y)F 2 − (1− x)(1− 2y)F + 1 = 0.

To complete the picture for permutation patterns of length 3 it remains to enumerate |[k]n(132)|. Simion
and Schmidt [25] introduced a simple bijection between Sn(123) and Sn(132) which fixes each element of
Sn(123)∪Sn(132). West [30] generalized this bijection to obtain a bijection between Sn(p) and Sn(q) where
p(`) = q(` − 1) = `, p(` − 1) = q(`) = `− 1, and p, q ∈ S`. This bijection, in turn, generalizes to words as
follows.

Theorem 4.8. Let p = p1p2 · · · p` be a pattern with greatest entry equal to d and p`−1 = d − 1, p` = d.
If d occurs exactly once in p then

|[k]n(p)| = |[k]n(p̃)|,

where p̃ = p1p2 · · · p`p`−1.

Proof. The proof is a straight forward generalization of West’s algorithm presented in [30, Sec. 3.2]. �

For example, if p = 132 then p̃ = 123. Hence, by Theorem 4.8 we get that if p and q are any permutation
patterns of length 3 then |[k]n(p)| = |[k]n(q)| for all n, k ≥ 0 (see [9] for an analytical proof). If p = 1232
then p̃ = 1223. Hence, Theorem 4.8 gives |[k]n(1232)| = |[k]n(1223)| for all n, k ≥ 0.

Since, Sn(p) ⊂ [n]n(p), the numbers |[n]n(p)| are interesting. A sequence f(n) is polynomially recursive

(P-recursive) if there is a finite number of polynomials Pi(n) such that
∑N

i=0 Pi(n)f(n + i) = 0, for all
integers n ≥ 0. For the case when p is permutation pattern of length 3 we have the following:

Theorem 4.9. Let p be a permutation pattern of length 3. Then the sequence f(n) := |[n]n(p)| is
P -recursive and satisfies the three term recurrence:

p(n)f(n− 2) + q(n)f(n− 1) + r(n)f(n) = 0,

where
p(n) = 3(n− 3)(n− 1)(3n− 5)(3n− 4)(5n− 4),

q(n) = 288− 1440n + 2780n2 − 2435n3 + 976n4 − 145n5, and

r(n) = 2(n− 2)2n(n + 1)(5n− 9).

Proof. The fact that f(n) is P -recursive follows easily from the expansion of f(n) as a double sum
using Theorem 4.7 and the theory developed in [17]. The polynomials p, q and r were found using the
package MULTISUM (see [29]) developed by Wegschaider and Riese. �

Corollary 4.10. The asymptotics of f(n) = |[n]n(123)| is given by f(n) ∼ Cn−2
(

27
2

)n
, where C > 0

is a constant.
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Proof. his is a direct consequence of Theorem 4.9 and the theory of asymptotics for P -recursive se-
quences, see [32]. �

A consequence of this is that the generating function of f(n) is transcendent, since the exponent of n in
the asymptotic expansion of a sequence with an algebraic generating function is never a negative integer.

4.1. Generating function approach. In this section we will investigate the generating function that
enumerates the number of segmented tableaux according to size of rows and number of different entries. Let
A`(x1, x2, . . . , x`, t) be the generating function:

A` =
∑

T

x
λ1(T )
1 x

λ1(T )−λ2(T )
2 · · ·x

λ`−1(T )−λ`(T )
` tN(T ),

where λi(T ) denotes the size of row i in T , N(T ) denotes the number of different entries in T and the sum
is over all segmented tableaux with at most ` rows. For i = 1, 2, . . . , ` let Ai

`(x1, . . . , x`, t) be the generating
function for those tableaux which have their maximal entry in row i. If F (x1, x2, . . . , xn) is a formal power-

series in n variables the divided difference of F with respect to the variable xi is ∆iF := F−F (xi=0)
xi

, where

F (xi = 0) is short for F (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 4.11. With definitions as above we have that A` satisfies the following system of equations:

A` = 1 + A1
` + · · ·+ A`

`,

A1
` = x1x2tA` + x1x2A

1
` ,

A2
` = x3t∆2A` + x3∆2A

2
` ,

...

A`−1
` = x`t∆`−1A` + x`∆`−1A

`−1
` ,

A`
` = t∆`A` + ∆`A

`
`.

Proof. The theorem follows by treating two separate cases. Let n be the greatest entry in the tableau
T . The case when there is one n in a row corresponds to the first summand and the case when there are
more than one n in a row corresponds to the second summand. �

When ` = 2, A = A2, the system boils down to:
(

(1− x−1
2 )(1−

x1x2t

1− x1x2
)− x−1

2 t

)
A = 1− x−1

2 (1 + t)A(x2 = 0). (4.3)

This equation can be solved using the so called kernel method as described in [5]. If we let

x2 =
1 + x1(1 + 2t)−

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)
,

then the parenthesis in front of A in 4.3 cancels, and we get:

A(x2 = 0) =
1 + x1(1 + 2t)−

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)2
.

By the interpretation of a(`, k, r), we have that the bi-variate generating function for a(2, k, r) is (1 +
x1)

−1A2(x1, 1, t). From this and 4.1 one may derive an analytic proof of Theorem 4.7.
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5. Further results and open problems

5.1. Further directions. Recall that the Stanley-Wilf Conjecture asserts that for any permutation π
the limit limn→∞ |Sn(π)|1/n exists and is finite. What about the sequence |[n]n(π)|?

Problem 5.1. Let π be a permutation. Is there a constant 0 < C < ∞ such |[n]n(π)| ≤ Cn for all n ≥ 0
?

Note that the answer to Problem 5.1 is no when π is not a permutation, since then Sn = Sn(π) ⊆ [n]n(π).
Again, Problem 5.1 is equivalent to the statement that

lim
n→∞

|[n]n(π)|1/n,

exists and is finite. This is because for all m, n ≥ 0 we have

|[n + m]n+m(π)| ≥ |[n]n(π)| · |[m]m(π)|,

so we may apply Fekete’s Lemma on sub-additive sequences. See [4, Theorem 1] for details (the proof extends
to words word for word). For permutations π ∈ S3 we have by Corollary 4.10 that limn→∞ |[n]n(π)|1/n = 27/2
as opposed to limn→∞ |Sn(π)|1/n = 4.

For which permutations do we know Problem 5.1 holds? It follows from the work in [3] Problem 5.1
holds for all permutations which can be written as an increasing sequence followed by a decreasing. Also,
with no great effort Bóna’s proof [8] of the Stanley-Wilf conjecture for layered patterns may be extended to
this setting. Thus for all classes that the Stanley-Wilf conjecture is known to hold, the seemingly stronger
Problem 5.1 holds. The following conjecture therefore seems plausible:

Conjecture 5.2. For all permutations π we have:

∃C∀n(|[n]n(p)| ≤ Cn) ⇔ ∃D∀n(|Sn(p)| ≤ Dn).

There are several problems concerning the automatons associated to a pattern that has connections to
the above problems. One problem is to give an estimate to the number of simple paths in A(p, k), another
is to estimate the number of equivalence classes in A(p, k). Yet another problem is to give an estimate to
the maximum size of an equivalence class.

5.2. Formula for |[k]n(p)|. Our algorithm (see Theorem 3.1) for finding a formula for |[k]n(p)| is
implemented in C++ and Maple, see [18]. The first with input p and k and output the automaton A(p, k)
and the second with input the automaton A(p, k) and output the exact formula for |[k]n(p)|. This algorithm
allows us to get an explicit formula for |[k]n(p)| where p ∈ Sk and k ≥ 1 are given. For example, an output
for the algorithm for p ∈ S4 and k = 3, 4, 5, 6 is given by [18].

Finally we remark that our method can be generalized as follows. Given a set of patterns T we define
an equivalence relation ∼T on [k]∗ by: v ∼T w if for all words r ∈ [k]∗ we have vr avoids T if and only if
wr avoids T , where a word u avoids T if u avoids all patterns in T . As in Section 2 we define an automaton
A(T, k) with the equivalence classes of ∼T as states. With minor changes in the proof, Theorem 3.1 can be
extended to avoidance of a set of patterns. For example, if T = {1234, 2134} and k = 6, then by [18] we get
that

|[6]n(T )| = 4 · 3n + 12

(
n

2

)
3n−2 + 24

(
n

3

)
3n−3 + 54

(
n

4

)
3n−4 + 60

(
n

5

)
3n−5 + 40

(
n

6

)
3n−6 − 3 · 2n.
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