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Abstract. We present a new partition identity and give a combinatorial proof of our result. This generalizes
a result of Andrews’ in which he considers the generating function for partitions with respect to size, number
of odd parts, and number of parts of the conjugate.
Résumé. Nous présentons une nouvelle identité sur les partitions ainsi qu’une démonstration combinatoire

de notre résultat. Ceci généralise un résultat d’Andrews au sujet de la série génératrice des partitions relative
à trois statistiques: la somme des parts, le nombre de parts impaires et le nombre de parts impaires de la
partition conjuguée.

1. Introduction

In [A], Andrews considers partitions with respect to size, number of odd parts, and number of odd parts
of the conjugate. He derives the following generating function

(1.1)
∑

λ∈Par

rθ(λ)sθ(λ′)q|λ| =
∞∏

j=1

(1 + rsq2j−1)

(1− q4j)(1− r2q4j−2)(1− s2q4j−2)

where Par denotes the set of all partitions, |λ| denotes the size (sum of the parts) of λ, θ(λ) denotes the
number of odd parts in the partition λ, and θ(λ′) denotes the number of odd parts in the conjugate of λ.
Combinatorial proofs of Andrews’ result have also been found by Sills in [Si] and by Yee in [Y].

We generalize this result and outline a combinatorial proof of our generalization. This gives a simpler
combinatorial proof of (1.1) than the ones found in [Si] and [Y].

2. Main Result

Let λ = (λ1, λ2, . . . ) be a partition of n, denoted λ ` n. Consider the following weight functions on the
set of all partitions:

α(λ) =
∑

dλ2i−1/2e

β(λ) =
∑

bλ2i−1/2c

γ(λ) =
∑

dλ2i/2e

δ(λ) =
∑

bλ2i/2c.
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Also, let a, b, c, d be (commuting) indeterminants, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then α(λ) is the number of a’s in the following diagram for λ, β(λ) is the
number of b’s in the diagram, γ(λ) is the number of c’s in the diagram, and δ(λ) is the number of d’s in the
diagram. Moreover, w(λ) is the product of the entries of the diagram.

a b a b a
c d c d
a b a b
c d c
a b

These weights were first introduced by Stanley in [St].
Let Φ(a, b, c, d) =

∑
w(λ), where the sum is over all partitions λ, and let Ψ(a, b, c, d) =

∑
w(λ), where

the sum is over all partitions λ with distinct parts. We obtain the following product formulas for Φ(a, b, c, d)
and Ψ(a, b, c, d):

Theorem 2.1.

Φ(a, b, c, d) =

∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)

Corollary 2.2.

Ψ(a, b, c, d) =

∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcj−1dj−1)

If we transform Φ(a, b, c, d) by sending a 7→ rsq, b 7→ r−1sq, c 7→ rs−1q, and d 7→ r−1s−1q, a straightfor-
ward computation gives Andrews’ result (1.1).

Our main result is a generalization of Theorem 2.1 and Corollary 2.2. It is the corresponding product
formula in the case where we restrict the the parts to some congruence class (mod k) and we restrict the
number of times those parts can occur. Let R be a subset of positive integers congruent to i(mod k)
and let ρ be a map from R to the even positive integers. Let Par(i, k; R, ρ) be the set of all partitions
with parts congruent to i(mod k) such that if r ∈ R, then r appears as a part less than ρ(r) times. Let
Φi,k;R,ρ(a, b, c, d) =

∑
λ w(λ) where the sum is over all partitions in Par(i, k; R, ρ).

For example, Par(1, 1; ∅, ρ) is Par, the set of all partitions. Also, if we let R be the set of all positive
integers and ρ map every positive integer to 2, then Par(1, 1; R, ρ) is the set of all partitions with distinct
parts. These are the two cases found in Theorem 2.1 and Corollary 2.2.

Theorem 2.3.

Φi,k;R,ρ(a, b, c, d) = ST

where

S =

∞∏

j=1

(1 + ad
(j+1)k+i

2 ebb
(j+1)k+i

2 ccd
jk+i

2 edb
jk+i

2 c)

(1− ad
jk+i

2 ebb
jk+i

2 ccd
jk+i

2 edb
jk+i

2 c)(1− ajkb(j−1)kcjkd(j−1)k)

and

T =
∏

r∈R

(1− ad
r
2 e

ρ(r)
2 bb

r
2 c

ρ(r)
2 cd

r
2 e

ρ(r)
2 db

r
2 c

ρ(r)
2 )
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(9,9)

(2,1)
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(5,5)

(5,5)

Figure 1. λ = (9, 9, 6, 5, 5, 5, 5, 5, 2, 1, 1) decomposes into blocks {(9, 9), (6, 5), (5, 5), (5, 5), (2, 1), (1, 0)}

3. Combinatorial Proof of these Results

The proof of Theorem 2.3 is a slight modification of the proof of Theorem 2.1 and Corollary 2.2. The
details of these proofs can be found in the complete version of the paper available at math.CO/0308012.

Sketched Proof of Theorem 2.1. Consider the following class of partitions:

R = {λ ∈ Par : λ2i−1 − λ2i ≤ 1}.

We are restricting the difference between a part of λ which is at an odd level and the following part of λ to
be at most 1.

To find the generating function for partitions in R under weight w(λ) we will decompose λ ∈ R into
blocks of height 2. Since the difference of parts is restricted to either 0 or 1 at odd levels, we can only get
two types of block: for any k ≥ 1, we can have a block with two parts of length k, and, for any k ≥ 1, we
can have a block with one part of length k and then other of length k − 1. Figure 1 shows an example of
such a decomposition.

By considering the weights of these parts, we obtain the following generating function:

∑

λ∈R

w(λ) =

∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbj−1cjdj−1)
.

Let S be the set of partitions whose conjugates have only odd parts each of which is repeated an even
number of times. We give a bijection f : R× S → Par, such that S contributes exactly the missing terms.
The map f consists of taking the partition whose columns are the union of the columns of the partition from
R and the columns of the partition for S. An example is shown in Figure 2. The weight of the partition
from S does not change when f is applied and contributes

∞∏

j=1

1

1− ajbjcj−1dj−1
,

the terms missing in
∑

λ∈R w(λ).
�

Sketched Proof of Corollary 2.2. To obtain this corollary, consider the following bijection. Let
D denote the set of partitions with distinct parts and let E denote the set of partitions whose parts appear
an even number of times. Then we have a bijection g : Par → D × E with g(λ) = (µ, ν) defined as follows.
Suppose λ has k parts equal to i. If k is even then ν has k parts equal to i, and if k is odd then ν has k− 1
parts equal to i. The parts of λ which were not removed to form ν, at most one of each cardinality, give µ.
It is clear that under this bijection, w(λ) = w(µ)w(ν).
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λ = µ = ν  = ’ 

Figure 2. λ = (14, 11, 11, 6, 3, 3, 3, 1) and f(µ, ν ′) = λ where ν = (7, 7, 3, 3, 3, 3, 1, 1) and
µ = (6, 5, 5, 4, 1, 1, 1, 1)

By considering the weights of partition in E we get that

Φ(a, b, c, d) = Ψ(a, b, c, d)

∞∏

j=1

1

(1− ajbjcjdj)(1− ajbj−1cjdj−1)

and the result follows. �
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