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Abstract

We present two methods that for infinitely many patterns q provide better upper
bounds for the number Sn(q) of permutations of length n avoiding the pattern q than the
recent general result of Marcus and Tardos. While achieving that, we define an apparently
new decomposition of permutations .

Résumé

Nous montrons deux méthodes qui prouvent des bornes supérieurs pour les nombres Sn(q)

dénombrant les permutations de longueur n évitant le motif q. Nos méthodes peuvent être ap-

pliquées pour un nombre infini des motifs, et les bornes obtenues sont meilleur que celles découlant

du résultat récent de Marcus et Tardos. Nous allons également définir une decomposition des per-

mutations qui semble d’être nouvelle.

1 Introduction

Let Sn(q) be the number of permutations of length n (or, in what follows, n-permutations)
that avoid the pattern q. The long-standing Stanley-Wilf conjecture claimed that for any given
pattern q, there exist an absolute constant cq so that Sn(q) < cn

q for all n. See [3] or [6] for the
relevant definitions.

The Stanley-Wilf conjecture was open for more than 20 years. It has recently been proved by
a spectacular, yet simple argument [11]. That argument actually proved a stronger conjecture,

∗Department of Mathematics, University of Florida, Gainesville FL 32611-8105. Supported by a Young
Investigator Grant of the National Security Agency.

1



the Füredi-Hajnal conjecture [8] , which was shown to imply the Stanley-Wilf conjecture three
years ago in [9].

Perhaps because the Stanley-Wilf conjecture was proved as a special case of a stronger
conjecture, the obtained upper bound seems far away from what is thought to be the truth.
Indeed, it is proved in [11] (along with another, stronger conjecture from [1]), that if q is a
pattern of length k, then

Sn(q) ≤ cn
q where cq ≤ 152k4(k

2

k
). (1)

For the rest of this paper, k will denote the length of the pattern q. For instance, if k = 3,
then the above result shows only that cq ≤ 1513608, while in fact it is well-known [3] that cq = 4
is sufficient. Therefore, it seems reasonable to think that in the near future significant research
will be devoted to the improvement of this upper bound. In fact, R. Arratia [2] conjectures that
cq ≤ (k − 1)2 for any patterns q. There are several patterns, for instance, monotone patterns,
for which (k − 1)2 is known [10] to be the smallest possible value of cq.

In this paper we present two methods that can prove upper bounds for certain patterns
from the upper bounds for certain shorter patterns.

For instance, one of our methods will provide upper bounds for all layered patterns, which
are patterns consisting of decreasing subsequences that increase among the layers. The other
one will work for all decomposable permutations. The arguments will be remarkably simple,
compared to previous work on layered patterns. While our upper bounds will still be signif-
icantly weaker than the conjectured (k − 1)2n, they will not be doubly exponential, like the
result shown in (1).

We mention that it follows from subsequent work of present author ([4], to be presented
at the subsequent Pattern Avoiding Permutations conference) that for any layered pattern q

of length k, we have L(q) = limn→∞
n

√

Sn(q) ≥ (k − 1)2. In other words, in the asymptotic
sense, layered patterns are at least as easy to avoid as the monotone patterns. Present paper
complements those results by bounding L(q) from above.

2 The Pattern 1324

We explain our method by demonstrating it on the pattern 1324, but this is only to make our
discussion easier to read. The crucial properties of this pattern for our purposes are that it
starts with its minimal entry, it ends with its maximal entry, and that if we remove either of
these entries, we get a pattern (132 or 213) for which a good exponential upper bound is known.

Our crucial definition is the following.
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Definition 2.1 We will say that an n-permutation p = p1p2 · · · pn is orderly if p1 < pn. We
will say that p is dual orderly if the entry 1 of p precedes the maximal entry n of p.

It is clear that p is orderly if and only if p−1 is dual orderly.

The importance of these permutations for us is explained by the following lemma.

Lemma 2.2 The number of orderly (resp. dual orderly) 1324-avoiding n-permutations is less
than 8n/4(n + 1).

Proof: It suffices to prove the statement for orderly permutations as we can take inverses after
that to get the other statement.

The crucial idea is this. Each entry pi of p has at least one of the following two properties.

(a) pi ≥ p1;

(b) pi ≤ pn.

In words, everything is either larger than the first entry, or smaller than the last, possibly both.
This would not be the case had we not required that p be orderly.

Define S = {i|pi ≥ p1} and T = {i|pi < p1}. Then S and T are disjoint, S ∪ T = [n], and
crucially, if i ∈ T , then, in particular, pi < pn. Recall that for any pattern q of length three, we
have Sn(q) = Cn =

(

2n
n

)

/(n+1), and that the numbers Cn are the well-known Catalan numbers

[3]. Let |S| = s and |T | = t. Then we have Cs−1 possibilities for the substring pS of entries
belonging to indices in S, and Ct = Cn−s possibilities for the substring pT of entries belonging
to indices in S. Indeed, pS starts with its smallest entry, and then the rest of it must avoid
213, (otherwise, together with p1, a 1324-pattern is formed) and pT must avoid 132 (otherwise,

together with pn, a 1324-pattern is formed). Finally, we have
(

n−2
s−2

)

choices for the set of indices

that we denoted by S. Once s is known, we have no liberty in choosing the entries pi, (i ∈ S)
as they must simply be the s largest entries.

Therefore, the total number of possibilities is

n
∑

s=2

(

n− 2

s− 2

)

Cs−1Cn−s < 2n−2
n
∑

s=2

Cs−1Cn−s < 2n−2Cn <
8n

4(n + 1)
.

3

We have seen that it helps in our efforts to limit the number of 1324-avoiding permutations
if a large element is preceded by a small one. To make good use of this observation, look at all

3



non-inversions of a generic permutation p = p1p2 · · · pn; that is, pairs (i, j) so that i < j and
pi < pj. Find the non-inversion (i, j) for which

max
(i,j)

(j − i, pj − pi) (2)

is maximal. If there are several such pairs, take one of them, say the one that is lexico-
graphically first. Call this pair (i, j) the critical pair of p.

Recall that an entry of a permutation is called a left-to-right minimum if it is smaller than
all entries on its left. Similarly, an entry is a right-to-left maximum if it is larger than all entries
on its right.

The following proposition is obvious, but it will be important in what follows, so we explicitly
state it.

Proposition 2.3 For any permutation p1p2 · · · pn, the critical pair (i, j) is always a pair in
which pi is a left-to-right minimum, and pj is a right-to-left maximum.

The following definition proved to be useful for treating 1324-avoiding permutations in the
past [7].

Definition 2.4 We say that two permutations are in the same class if they have the same
left-to-right minima, and the same right-to-left maxima, and they are in the same positions.

Example 2.5 The permutations 3612745 and 3416725 are in the same class.

Proposition 2.6 The number of nonempty classes of n-permutations is less than 9n.

Proof: Each such class contains exactly one 1234-avoiding permutation, namely the one in
which all entries that are not left-to-right minima or right-to-left maxima are written in de-
creasing order. As it is well-known that Sn(1234) < 9n, the statement is proved. 3

To achieve our goal, it suffices to find a constant C so that each class contains at most Cn

1324-avoiding n-permutations.

Choose a class A. By Proposition 2.3, we see that the critical pair of any permutation p ∈ A
is the same as it depends only on the left-to-right minima and the right-to-left maxima, and
those are the same for all permutations in A.
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We will now find an upper bound for the number of 1324-avoiding n-permutations in A.

For symmetry reasons, we can assume that in the critical pair of p ∈ A, we have j−i ≥ pj−pi,
in other words, the maximum (2) is attained by j − i.

We will now reconstruct p from its critical pair. First, all entries that precede pi must
be larger than pj. Indeed, if there existed k < i so that pk < pj, then the pair (j, k) would
be a “longer” non-inversion than the pair (i, j), contradicting the critical property of (i, j).
Similarly, all entries that are on the right of pj must be smaller than pi.

This shows that all entries pt for which pi < pt < pj must be positioned between pi and pj,
that is, i < t < j must hold for them. However, if j − i = pj − pi + b, where b is a positive
integer, then we can select b additional entries that will be located between pi and pj. We will
call them excess entries; that is, an excess entry is an entry pu that is located between pi and
pj, but does not satisfy pi < pu < pj.

The good news is that we do not have too many choices for the excess entries. No excess
entry can be smaller than pi − b. Indeed, if we had pu < pi − b for an excess entry, then for
the pair (u, j) the value defined by (2) would be larger than for the pair (i, j), contradicting
the critical property of (i, j). By the analogous argument, no excess entry can be larger than
pj + b. Therefore, the set of b excess entries must be a subset of the at-most-(2b)-element set
({pi − b, pi − b + 1, · · · , pi − 1} ∪ {pj + 1, pj + 2, · · · , pj + b}) ∩ [n]. Therefore, we have at most
(

2b
b

)

choices for the set of excess entries, and consequently, we have
(

2b
b

)

choices for the set of
j − i− 1 + b elements that are located between pi and pj. As pi < pj, the partial permutation
pipi+1 · · · pj is orderly, and certainly 1324-avoiding. Therefore, by Lemma 2.2, we have less than
8j−i+1/4(j − i + 1) choices for it once the set of entries has been chosen.

This proves that altogether, we have less than

4b ·
8j−i+1

4(j − i + 1)
< 32j−i

possibilities for the string pipi+1 · · · pj. We used the fact that b ≤ j− i−1 as b counts the excess
entries between i and j. Note that we have some room to spare here, so we can say that the
above upper bound remains valid even if we include the permutations in which the maximum
was attained by (pi, pj), and not by (i, j).

We can now remove the entries pi+1 · · ·pj−1 from our permutations. This will split our
permutations into two parts, pL on the left, and pR on the right. It is possible that one of them
is empty. We know exactly what entries belong to pL and what entries belong to pR; indeed
each entry of pL is larger than each entry of pR. Therefore, we do not loose any information
if we relabel the entries in each of pL and pR so that they both start at 1 (we call this the
standardization of the strings). This will not change the location and relative value of the
left-to-right minima and right-to-left maxima either. The string pi+1 · · ·pj−1 should not be
standardized, however, as that would result in loss of information.
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See Figure 1 for the diagram of a generic permutation, its critical pair, and the strings pL

and pR.

p

p

L

R

j

i
p

p

Figure 1: A generic permutation and its critical pair.

Then we iterate our procedure. That is, we find the critical pairs of pL and pR, denote them
by (iL, jL) and (iR, jR), and prove, just as above, that there are at most 32jL−iL possibilities for
the string between iL and jL, and there are at most 32jR−iR possibilities for the string between
iR and jR. Then we remove these strings again, cutting our permutations into more parts, and
so on, building a binary tree-like structure of strings. Note that the leaves of this tree will be
orderly or dual orderly permutations.

Note that this procedure of decomposing of our permutations is injective. Indeed, given the
standardized string pL, the partial permutation pi · · · pj, and the standardized string pR, we
can easily recover p.

Iterating this algorithm until all entries of p that are not left-to-right minima or right-to-left
maxima are removed, we prove the following.

Lemma 2.7 The number of 1324-avoiding n-permutations in any given class A is at most 32n.

Proof: The above description of the removal of entries by our method shows that the total
number of 1324-avoiding permutations in A is less than

32
∑

k
jk−ik

where the summation ranges through all intervals (ik, jk) whose endpoints were critical pairs
at some point. As these interiors of these intervals are all disjoint,

∑

k jk − ik = n− 1, and our
claim is proved. 3

Now proving the upper bound for Sn(1324) is a breeze.

6



Theorem 2.8 For all positive integers n, we have Sn(1324) < 288n.

Proof: As there are less than 9n classes and less than 32n n-permutations in each class that
avoid 1324, the statement is proved. 3

Note that an alternative way of proving our theorem would have been by induction on n.
We could have used the induction hypothesis for the class A′ that is obtained from A by making
pi and pj consecutive entries by omitting all positions between them, and setting their values
so that each entry on the left of pi is larger than each entry after pj.

Finally, we point out that using specific properties of the pattern 1324, we could have
decreased the upper bound a little further, but that is not our goal here. Our goal is to find a
method that works for many patterns.

3 Layered Patterns

As a generalization, we look at patterns like 14325, 154326, and so on, that is, patterns that
start with 1, end with their maximal entry k, and consist of a decreasing sequence all the way
between.

Theorem 3.1 Let k ≥ 4, and let qk = 1 k− 1 k− 2 · · ·2 k. Then for all positive integers n, we
have

Sn(qk) < 72n(k − 2)2n =
(

72(k − 2)2
)n

.

Proof: We again look at orderly permutations first. If p is orderly and avoids qk, then define
S, pS and T , pT just as in the proof of Lemma 2.2. Then pS starts with its smallest entry, and
the rest must avoid q′k = k − 2 · · · 2 1 k − 1, whereas pT must avoid q′′k = 1 k − 1 k − 2 · · ·2. It
is known that Sn(q′k) = Sn(q′′k) = Sn(12 · · · (k − 1)) < (k − 2)2n, so it follows, just as in Lemma
2.2 that the number of orderly (resp. dual orderly) n-permutations that avoid qk is less than
(2(k − 2)2)n.

The transition from orderly permutations to generic permutations is identical to what we
described in the case of q4 = 1324. 3

Let us now find an upper bound for all layered patterns. Recall that a permutation is called
layered if it is the concatenation of decreasing subsequences d1, d2, · · · , dt so that each entry of
di is less than each entry of dj for all i < j. For instance, 321546 is a layered pattern. We will
use the following definition and lemma, first used in [7].
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Definition 3.2 Let q be a pattern, and let y be an entry of q. Then to replace y by the pattern
w is to add y − 1 to all entries of w, then to delete y and to succesively insert the entries of w
at its position.

Lemma 3.3 (“replacing an element by a pattern”) Let q be a pattern and let y be an entry of
q so that for any entry x preceding y we have x < y and for any entry z preceded by y we have
y < z. Suppose that Sn(q) < Kn for some constant K and for all n.

Let w be a pattern of length m starting with 1 and ending with m so that Sn(w) < Cn holds
for all n, for some constant C. Let q′ be the pattern obtained by replacing the entry y by the
pattern w in q. Then Sn(q′) < (4CK)n.

Proof: Take an n-permutation p which avoids q′. Suppose it contains q. Then consider all
copies of q in p and consider their entries y. Color these entries blue, that is, and entry is blue
if it can play the role of y in a copy of q. Clearly, these entries must form a permutation which
does not contain w. For suppose they do, and denote y1 and ym the first and last elements of
that purported copy of w. Then the initial segment of the copy of q which contains y1 followed
by the y2 through yk−1 and the ending segment of the copy of q which contains yk would form
a copy of q′.

Therefore, if p avoids q′, then it either avoids q, or the substring of its blue entries avoids
w. As we have at most 2n−1 choices for the set of blue entries, and at most 2n−1 choices for
their positions, this shows that less than (4C)n−1 ·Kn + Kn < (4CK)n permutations of length
n can avoid q′. 3

Now let Q = Q(a1, a2, · · · , at) be the layered pattern whose layers are of length a1, a2, · · · , at.
It is then clear that Q is contained in the pattern Q′ = Q(1, a1, 1, a2, 1, · · ·1, at, 1). Therefore,

Sn(Q) ≤ Sn(Q′). (3)

On the other hand, Q′ can be obtained if we take qa1 = Q(1, a1, 1), then replace the last entry
of this pattern by the pattern qa2 = Q(1, a2, 1), then replace the last entry of the obtained
pattern by qa3 = Q(1, a3, 1), and so on.

Then it follows by iterated applications of Theorem 3.1 and Lemma 3.3 that

Sn(Q′) ≤ 4tn · 72tn
t
∏

i=1

a2n
i = 288tn

t
∏

i=1

a2n
i .

So by (3), we have

Sn(Q) ≤ 288tn
t
∏

i=1

a2n
i .

For any fixed layered pattern Q, the number of layers t will be fixed, so 288tn is simply expo-
nential. While

∏t
i=1 ai can be as large as 3k/3, which makes cQ an exponential function of k, it

is still not doubly exponential, unlike the general result (1).
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4 Further Generalizations

We can find a somewhat more general application of our methodology. For a pattern q, let 1q
denote the pattern obtained from q by adding one to each of the entries and then writing 1
to the front, and let qm denote the pattern that we obtain from q by simply affixing a new
maximal element to the end of q. Finally, let 1qm denote the pattern (1q)m = 1(qm). So for
example, if q = 2413, then 1q = 13524, and qm = 24135, while 1qm = 135246.

Theorem 4.1 Let q be a pattern so that there exist constants c1 and c2 satisfying Sn(1q) < cn
1

and Sn(qm) < cn
2 for all n. Then for all positive integers n, we have

Sn(1qm) < 72n · (max(c1, c2))
n.

Proof: Similar to the proof of Theorem 3.1. The upper bound for orderly permutations is
2n · (max(c1, c2))

n, the number of classes is 9n, and the remaining 4n comes from the choices
for the excess entries. 3

This theorem permits a little improvement on the general upper bound (1) for all patterns
that start with their minimal entry and end in their maximal entry.

Corollary 4.2 If r = 1qm, then

cr ≤ 72n · 152(k−1)4((k−1)2

k−1 ).

Proof: Follows from (1), applied to the patterns 1q and qm, and Theorem 4.1. 3

While this last corollary is not a significant improvement as far as principles are concerned,
numerically it still decreases cr by several orders of magnitude.

Another improvement comes from a variation of Lemma 3.3.

Lemma 4.3 Let q be as in lemma 3.3 and let y be its last entry. Replace y by any pattern w
which starts with its smallest entry. Then for the pattern q ′ obtained this way, we have

Sn(q′) < (4CK)n.

Proof: This can be proved exactly as Lemma 3.3. The special values and positions of y obviate
the omitted restrictions. 3
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Let us call a permutation v decomposable if v = LR so that all entries of L are less than
all entries of R, for some nonempty strings L and R. Let v = LR be decomposable, and insert
the entry |L|+ 1 = h immediately after L, increasing all entries of R by one. Call the obtained
permutation pattern q′. Then q′ is nothing else but the pattern q = Lh in which we replace the
entry h by the pattern 1R. Therefore, Lemma 4.3 applies, and we have

Sn(v) ≤ Sn(q′) < (4cqcR)n.

This leads to significant numerical improvements over the general result, particularly if L and
R are also decomposable.
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