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Abstract. We introduce a monomial basis for the coinvariant algebra of type D, that allows us to define a
new family of representations of Dn. We decompose the homogeneous components of the coinvariant algebra
into a direct sum of these representations and finally we give the decomposition of them into irreducible
components. This algebraic setting is then applied to find new, and generalize various, combinatorial
identities.

Résumé. On introduit une base monomiale de l’algèbre coinvariante de type D, ce qui nous permet de
definir une nouvelle classe de representations de Dn. On decompose les composantes homogènes de l’algèbre
coinvariante comme somme directe de ces representations et on decrit leur decomposition en modules irre-
ductibles. Ce contexte algebrique est finalement utilisé pour decouvrir des nouvelles identités combinatoires.

1. Introduction

Let W be one of the classical Weyl groups An−1, Bn or Dn and let IW
n be the ideal of the polynomial

ring Pn := C[x1, . . . , xn] generated by costant-term-free W -invariant polynomials. The quotient R(W ) :=
Pn/IW

n is called the coinvariant algebra of W and it’s well know that it has dimension |W | as a C-vector space.
The problem of finding a basis for the coinvariant algebra has been studied by a number of mathematicians
(see, e.g., [3, 4], [5]). Garsia and Stanton presented a descent basis for a finite dimensional quotient of the
Stanley-Reisner ring arising from a finite Weyl group (see [10]). For type A, unlike for other types, this
quotient is isomorphic to R(W ) and in this case the basis elements are monomials of degree equal to the
“major index” (maj) of the indexing permutation. On the other hand it is well known that R(W ) affords
the left regular representation of W (see e.g., [11]), i.e. the multiplicity of each irreducible representation is
its dimension. Moreover, the action of W preserves the natural grading induced from that of Pn by total
degree, and so it is natural to ask about the multiplicity of each irreducible representation of W in the
k-th homogeneous component RW

k . In the case of the symmetric group Sn, the answer is given by a well
known theorem, due independently to Kraskiewicz and Weymann [13] and Stanley [18], that expresses the

multiplicity of the irreducible Sn-representations in RSn

k in terms of the statistic maj defined on standard
Young tableaux (SY T ).

For type B these problems have been studied by Adin, Brenti and Roichman in [1]. They provide a
descent basis of R(B) and an extension of the construction of Solomon’s descent representations (see [17])
for this type.
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In this extended abstract we show how to extend these results to the Weyl groups of type D. We construct
an analogue of the descent basis for the coinvariant algebra of type D via a Straightening Lemma. The basis
elements are monomials of degree Dmaj, that is an analogous statistic of maj for Dn (see [7]). This basis
leads to the definition of a new family of Dn-modules RD,N , which have a basis indexed by the even-signed
permutations having D and N as “descent set” and “negative set”, respectively. For this reason we call them
negative-descent representations. They are analogous but different from Solomon descent representations
and Kazhdan-Lusztig representations (see [12]). We decompose RDn

k into a direct sums of these RD,N .
Finally, we introduce the concept of D-standard Young bitableaux. By extending the definition of Dmaj on
them we give an explicit decomposition into irreducible modules of these negative-descent representations,
refining a theorem of Stembridge [20]. This algebraic setting is then applied to obtain new multivariate
combinatorial identities.

2. Notation and preliminaries

In this section we give some definitions, notation and results that will be used in the rest of this work.
We let P := {1, 2, 3, . . .} , N := P ∪ {0}. For a ∈ N we let [a] := {1, 2, . . . , a} (where [0] := ∅). Given
n, m ∈ Z, n ≤ m, we let [n, m] := {n, n + 1, . . . , m}.

2.1. Statistics on Coxeter groups. We always consider the linear order on Z

−1 ≺ −2 ≺ · · · ≺ −n ≺ · · · ≺ 0 ≺ 1 ≺ 2 ≺ · · · ≺ n ≺ · · ·

instead of the usual ordering. Given a finite sequence σ = (σ1, . . . , σn) ∈ Zn we let

Inv(σ) := {(i, j) : i < j , σi � σj} and inv(σ) := |Inv(σ)|.

The set of descents and the descent number of σ are respectively

Des(σ) := {i ∈ [n− 1] : σi � σi+1} and des(σ) := |Des(σ)|.

The number of descents in σ from position i on is denoted by

(1) di(σ) := |{j ∈ Des(σ) : j ≥ i}|.

The major index of σ (first defined by MacMahon in [15]) is

maj(σ) :=
∑

i∈Des(σ)

i.

Note that d1(σ) = des(σ) and
∑n

i=1 di(σ) = maj(σ). Moreover we let

Neg(σ) := {i ∈ [n] : σi < 0} and neg(σ) := |Neg(σ)|.

The generating function of the joint distribution of des and maj over Sn is given by the following Carlitz’s
Identity, (see, e.g., [9]). Let n ∈ P. Then

∑

r≥0

[r + 1]nq tr =

∑

σ∈Sn
tdes(σ)qmaj(σ)

∏n
i=0(1− tqi)

in Z[q][[t]], where [i]q := 1 + q + q2 + . . . + qi−1.
Let Bn be the group of all bijections β of the set [−n, n] \ {0} onto itself such that β(−i) = −β(i) for

all i ∈ [−n, n] \ {0}, with composition as the group operation. We will usually identify β ∈ Bn with the
sequence (β(1), . . . , β(n)) and we call this the window notation of β. Following [2] we define the flag-major

index of β ∈ Bn by fmaj(β) := 2maj(β) + neg(β)
It’s known that fmaj is equidistributed with length on Bn and that it satisfies many other algebraic

properties (see, for example, [1] and [2]).
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We denote by Dn the subgroup of Bn consisting of all the signed permutations having an even number
of negative entries in their window notation, i.e.

Dn := {γ ∈ Bn : neg(γ) ≡ 0 (mod 2)}.

Following [7] for γ ∈ Dn we let

|γ|n := (γ(1), . . . , γ(n− 1), |γ(n)|) ∈ Bn,

Dγ := Des(|γ|n) and Nγ := Neg(|γ|n).

Then we define the D-major index of γ ∈ Dn by

Dmaj(γ) := 2
∑

i∈Dγ

i + |Nγ |,

and the D-descent number of γ by

Ddes(γ) := 2|Dγ |+ η1(γ)

where

η1(γ) :=

{

1, if γ(1) < 0,
0, otherwise.

For example if γ = [2,−5, 3, 1,−4], then Dγ = {1, 3} and Nγ = {2} and hence Dmaj(γ) = 9 and Ddes(γ) =
4.

The statistic Dmaj is Mahonian (i.e. equidistributed with length) on Dn and the generating function
of the pair (Ddes, Dmaj) is given by

(2)
∑

r≥0

[r + 1]nq tr =

∑

γ∈Dn
tDdes(γ)qDmaj(γ)

(1− t)(1− tqn)
∏n−1

i=1 (1− t2q2i)

in Z[q][[t]], (see [7, Theorem 4.3] for a proof).

2.2. Partitions and tableaux. A partition λ of a nonnegative integer n is an integer sequence
(λ1, λ2, . . . , λ`(λ)), where λ1 ≥ λ2 ≥ · · · ≥ λ`(λ) and |λ| :=

∑

i λi = n, denoted also λ ` n. We denote
by λ′ the conjugate partition of λ. The dominance order is a partial order defined on the set of partitions
of a fixed nonnegative integer n as follows. Let µ and λ two partitions of n. We define µ E λ if for all i ≥ 1

µ1 + µ2 + · · ·+ µi ≤ λ1 + λ2 + · · ·+ λi.

A standard Young tableau of shape λ is obtained by inserting the integers 1, 2, . . . , n (where n = |λ|) as
entries in the cells of the Young diagram of shape λ in such a way that the entries increase along rows and
columns. We denote by SY T (λ) the set of all standard Young tableaux of shape λ. For example the tableau
T in Figure 1 belongs to SY T (5, 3, 2, 1).

1 3 5 8 10

2 6 7

4 11

9

T:=

Figure 1
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A descent in a standard Young tableau T is an entry i such that i + 1 is strictly below i. We denote the set
of descents in T by Des(T ). The major index of a tableau T is

maj(T ) :=
∑

i∈Des(T )

i.

In the example in Figure 1 Des(T ) = {1, 3, 5, 8, 10} and so maj(T ) = 27.
A bipartition of a nonnegative integer n is an ordered pair (λ, µ) of partitions such that |λ| + |µ| = n

denoted by (λ, µ) ` n. The Young diagram of shape (λ, µ) is obtained by the union of the Young diagrams
of shape λ and µ by positioning the second to the south-west of the first. A standard Young bitableau

T = (T1, T2) of shape (λ, µ) ` n is obtained by inserting the integers 1, 2, . . . , n in the corresponding Young
diagram increasing along rows and columns.

Definition. Given two partitions λ, µ such that |λ| + |µ| = n, we define a D-standard bitableau T =
(T1, T2) of type {λ, µ} as a standard Young bitableau of shape (λ, µ) or (µ, λ) such that n is an entry of T1.

We let Des(T ) and maj(T ) be as above and we let Neg(T ) be the set of entries of T2. The D-major

index of a D-standard bitableau is defined by

Dmaj(T ) := 2 ·maj(T ) + |Neg(T )|.

For example T and S in Figure 2 are two D-standard bitableau of type {(3, 1), (2, 2, 1)} and we have
Dmaj(T ) = 2 · 15 + 5 = 35 and Dmaj(S) = 2 · 13 + 4 = 30.

3 6 7

9

41

2 5

8

T:=

1 2

4 5

9

863

7

S:=

Figure 2

We denote by DSY T{λ, µ} the set of all D-standard bitableaux of type {λ, µ}.

2.3. Irreducible representations of classical Weyl groups. Recall that the irreducible represen-
tations of the symmetric group Sn are indexed by partitions of n in a classical way (see, for example, [19,
§7.18]) and denote Sλ the irreducible module corresponding to λ

In the case of Bn the irreducible representations are parametrized by ordered pairs of partitions such
that the total sum of their parts is equal to n (see, for example, [14]), and we denote by Sλ,µ the irreducible
module corresponding to (λ, µ).

Since Dn is a subgroup of index 2 of the Weyl group Bn, the restrictions of an irreducible representation
of Bn to Dn is either irreducible, or splits up into two irreducible components. Let (λ, µ) be a pair of
partitions with total size n. If λ 6= µ then the restrictions of the irreducible representations of Bn labeled
by (λ, µ) and (µ, λ) are irreducible and equal. If λ = µ then the restriction of the character labeled by
(λ, λ) splits into two irreducible components, which we denote by (λ, λ)+ and (λ, λ)−. Note that this can
only happen if n is even. Hence we may denote all irreducible modules of Dn by Sλ,µ,ε where λ and µ are
two partitions such that |λ| + |µ| = n, λ � µ in some total order ≺ on the set of all integer partitions, and
ε is equal to ≺ if λ 6= µ and ε is equal to + or− if λ = µ.
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3. Monomial bases of coinvariant algebras

Let Pn := C[x1, . . . , xn] and consider the natural action ϕ of a classical Weyl group W (with W =
An−1, Bn, Dn) on Pn defined on the generators by

ϕ(w) : xi 7→
w(i)

|w(i)|
x|w(i)|,

for all w ∈ W and extended uniquely to an algebra homomorphism. Let IW
n be the ideal of Pn generated

by the elements in PW
n without costant term. The quotient

R(W ) := Pn/IW
n

is called the coinvariant algebra of W and it is well known that it has dimension |W | as a C-vector space.
Moreover, W acts naturally as a group of linear operators on this space and it can be shown that this
representation of W is isomorphic to the regular representation (see e.g., [11, § 3.6]). All these properties
naturally lead to the problem of finding a “nice” basis for R(W ). A basis for the coinvariant algebra of type
A has been found by Garsia and Stanton [10]. For σ ∈ Sn they define

aσ :=
∏

j∈Des(σ)

(xσ(1) · · ·xσ(j)).

It’s immediate to see that aσ :=
∏n

i=1 x
di(σ)
σ(i) where di(σ) is defined in (1). They show that the set {aσ +ISn

n :

σ ∈ Sn} is a basis of R(Sn), called the descent basis. Note that the representatives aσ of this basis are actually
monomials with deg(aσ) = maj(σ).

Allen ([4]) constructed a non-monomial basis for R(W ) for all classical Weyl groups and Adin, Brenti
and Roichman ([1]) defined for any β ∈ Bn a monomial bβ of degree fmaj(β) such that the set of the
corresponding classes in the coinvariant algebra of type B is a linear basis of this vector space.

The first main goal of this work is to define a family of monomials, indexed by Dn, and to show that the
corresponding classes form a basis of the coinvariant algebra of type D. To this end we present a straightening
lemma for expanding an arbitrary monomial in Pn in terms of the descent basis with coefficients in PDn

n .
This algorithm is a generalization of the one presented in [1] for type A and B.

For γ ∈ Dn and i ∈ [n− 1], we let

δi(γ) :=| {j ∈ Dγ : j ≥ i} |, ηi(γ) :=

{

1, if γ(i) < 0;
0, otherwise,

and

hi(γ) := 2δi(γ) + ηi(γ).

Note that

(3)
n−1
∑

i=1

hi(γ) = Dmaj(γ) and h1(γ) = Ddes(γ).

Definition. For any γ ∈ Dn, we define

cγ :=

n−1
∏

i=1

x
hi(γ)
|γ(i)|.

For example, if γ := (6,−4,−2, 3,−5,−1) ∈ D6, then (h1(γ), . . . , h5(γ)) = (6, 5, 3, 2, 1) and cγ = x6
6x

5
4x

3
2x

2
3x

1
5.

The goal of this section is to show how we can prove that the set {cγ + ID
n : γ ∈ Dn} is a linear basis

for the coinvariant algebra of type D. We call it the negative-descent basis. We denote by

fi(x1, . . . , xn) :=

{

ei(x
2
1, . . . , x

2
n), for i ∈ [n− 1];

x1 · · ·xn, for i = n,
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where ei is the i-th elementary symmetric function. It is clear that the polynomials fj are invariant under
the action of Dn. Moreover, for any partition λ = (λ1, . . . , λt) with λ1 ≤ n, we define fλ := fλ1 · · · fλt

.
Let’s restrict our attention to the quotient S := Pn/(fn) and we denote by π : Pn → S the natural projection.
We start by associating to any monomial M ∈ S an even-signed permutation γ(M) and a partition µ(M).
Let M be a monomial such that π(M) 6= 0, M =

∏n
i=1 xpi

i (note that pi = 0 for some i ≥ 1). We define
γ = γ(M) ∈ Dn as the unique even-signed permutation such that, for i ∈ [n− 1],

i) p|γ(i)| ≥ p|γ(i+1)|;
ii) p|γ(i)| = p|γ(i+1)| =⇒ |γ(i)| < |γ(i + 1)|;

iii) p|γ(i)| ≡ 0 (mod 2) ⇐⇒ γ(i) > 0.

Note that the last condition determines also the sign of γ(n).
We show how to determine γ(M) with an example. For n = 6, let M = x7

1x2x
6
3x5x

4
6. Reorder the

variables in such a way that the exponents are weakly decreasing without inverting the variables having the
same exponent. We obtain M = x7

1x
6
3x

4
6x

1
2x

1
5x

0
4. Then γ(M) is given by the indices of M reordered in this

way and we put a minus sign in the first six entries according to the parity of the corresponding exponent in
M . Hence we obtain γ(M) = (−1, 3, 6,−2,−5,−4). To define the partition µ(M) we first need the following
observation.

Lemma 3.1. Let M =
∏n

i=1 xpi

i such that π(M) 6= 0. Then the sequence (p|γ(i)| − hi(γ(M))), i =
1, . . . , n− 1, consists of nonnegative even integers and is weakly decreasing.

We denote by µ(M) the partition conjugate to
(

p|γ(i)|−hi(γ)

2

)n−1

i=1
, where γ = γ(M) (note that µ(M)1 <

n). In our running example we have (h1(γ), . . . , h5(γ)) = (3, 2, 2, 1, 1) and hence µ(M) = (3, 2).
Now we introduce a technical partial order on the monomials of the same total degree that we will use

later on.

Definition. Let M and M ′ be monomials such that π(M) 6= 0 and π(M ′) 6= 0 with the same total
degree and such that the exponents of xi in M and M ′ have the same parity for every i ∈ [n]. Then we
write M ′ < M if one of the following holds

1. λ(M ′) C λ(M), or
2. λ(M ′) = λ(M) and inv(|γ(M ′)|n) > inv(|γ(M)|n).

Lemma 3.2 (Straightening Lemma). Let M be a monomial in S. Then M admits the following expression

M = fµ(M) · cγ(M) +
∑

M ′<M

nM ′,Mfµ(M ′) · cγ(M ′),

where nM,M ′ are integers.

For example, let n = 4 and M = x4
1x2x

4
4. We have γ(M) = [1, 4,−2,−3], (h1, h2, h3) = (2, 2, 1),

cγ(M) = x2
1x2x

2
4 and µ(M) = (2). Then, if we set M1 = x4

1x
3
2x

2
4 and M2 = x2

1x
3
2x

4
4, we have that

M = cγ(M)f2 −M1 −M2

in S, with Mi < M for i = 1, 2. One can easily verifies that γ(M1) = [1,−2, 4,−3], µ(M1) = ∅, γ(M2) =
[4,−2, 1,−3] and µ(M2) = (3) and concludes that

M = cγ(M) f2 − cγ(M1) − cγ(M2) f3.

Now the main result of this section is a mere consequence of Lemma 3.2.

Theorem 3.3. The set

{cγ + ID
n : γ ∈ Dn}

is a basis for R(Dn).
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4. Negative-descent representations of Dn

The coinvariant algebra has a natural grading induced from the grading of Pn by total degree and we
denote by Rk its k-th homogeneous component, so that

R(W ) =
⊕

k≥0

Rk.

In the case of the symmetric group the major index on standard Young tableaux plays a crucial role in
the decomposition of Rk into irreducible representations. The following theorem due independently to
Kraskiewicz and Weymann [13] and Stanley [18, Proposition 4.11] (see also, [16, Theorem 8.8]) holds.

Theorem 4.1. In type A, for 0 ≤ k ≤
(

n
2

)

, the representation Rk is isomorphic to the direct sum

⊕mk,λSλ, where λ runs through all partitions of n, Sλ is the corresponding irreducible Sn-representation,

and

mk,λ =| {T ∈ SY T (λ) : maj(T ) = k} | .

The following is the analogous result for Dn and was proved by Stembridge [20] (see also [4]). Here we
state it in our terminology.

Theorem 4.2. In type D, for 0 ≤ k ≤ n2 − n, the representation RD
k is isomorphic to the direct sum

⊕mk,(λ,µ,ε)S
λ,µ,ε, where Sλ,µ,ε is the irreducible representation of Dn labelled as in §2.3, and

mk,(λ,µ,ε) :=| {T ∈ DSY T{λ, µ} : Dmaj(T ) = k} | .

Now we introduce a new family of Dn-modules RD,N . We decompose RDn

k into a direct sum of these
modules and finally we compute the multiplicity of each irreducible representation of Dn in RD,N . This
result is a refinement of Theorem 4.2.
For any D ⊆ [n−1] we define the partition λD := (λ1, . . . , λn−1), where λi := |D∩[i, n−1]|. For D, N ⊆ [n−1],
we define the vector

λD,N := 2 · λD + 1N ,

where 1N ∈ {0, 1}n−1 is the characteristic vector of N . If λD,N is a partition we say that (D, N) is an
admissible couple. It is easy to see that (Dγ , Nγ) is admissible for all γ ∈ Dn. If (D, N) and (D′, N ′) are
two admissible couples then we write (D, N) ≤ (D′, N ′) if λD,N E λD′,N ′ . A direct consequence of Lemma
3.2 is that, for all γ, ξ ∈ Dn, we have

ξ · cγ =
∑

{u∈Dn : (Du,Nu)≤(Dγ ,Nγ)}

nucu + p,

where nu ∈ Z and p ∈ ID
n . It clearly follows that

J≤D,N := spanC{cγ + ID
n | γ ∈ Dn, (Dγ , Nγ) ≤ (D, N)}

and

J<
D,N := span

C
{cγ + ID

n | γ ∈ Dn, (Dγ , Nγ) < (D, N)}

are two submodules of RD
k , where k = |λD,N |, for all admissible couples (D, N). Their quotient is still a

Dn-module denoted by

RD,N :=
JC

D,N

J<
D,N

.

If (D, N) is not admissible we let RD,N := 0.

Proposition 4.3. For any D, N ⊆ [n− 1], the set

{c̄γ : γ ∈ Dn, Dγ = D and Nγ = N},

where c̄γ is the image of cγ in the quotient RD,N , is a linear basis of RD,N .
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By the previous proposition it is natural to call the Dn-module RD,N a negative-descent representation.
Now we are ready to state the following decomposition of the homogeneous components of the coinvariant
algebra.

Theorem 4.4. For every 0 ≤ k ≤ n2 − n,

RD
k
∼=

⊕

D,N

RD,N

as Dn-modules, where the sum is over all D, N ∈ [n− 1] such that 2 ·
∑

i∈D i + |N | = k.

Our next goal is to show a simple combinatorial way to compute the multiplicities of the irreducible
representations of Dn in RD,N .

For any standard Young bitableau T = (T1, T2) of shape (λ, µ), following [1], we define for i ∈ [n] ,

(4) hi(T ) := 2 · di(T ) + εi(T ),

where di(T ) := |{j ≥ i : j ∈ Des(T )}, and εi(T ) := 1, if i ∈ Neg(T ) and εi(T ) := 0 otherwise.
The following technical lemma is the key ingredient in the proof of the next theorem.

Lemma 4.5. Let T = (T1, T2) be a Young standard bitableau of total size n such that n ∈ T1. Then

hi(T1, T2) = hi(T2, T1) + 1

for all i = 1, . . . , n.

Theorem 4.6. For any pair of subset D, N ⊆ [n− 1], and a bipartition of n (λ, µ) ` n, the multiplicity

of the irreducible Dn-representation corresponding to (λ, µ)ε in RD,N is

mD,N,(λ,µ)ε := |{T ∈ DSY T{λ, µ} : Des(T ) = D and Neg(T ) = N}|.

Theorem 4.2 easily follows from this and Theorem 4.4, by observing that
∑n−1

i=1 hi(T ) = Dmaj(T ), for any
T ∈ DSY T{λ, µ}.

5. Combinatorial Identities

In this last section we compute the Hilbert series of the polynomial ring Pn with respect to multi-degree
rearranged into a weakly decreasing sequence in two different ways and we deduce from this some new
combinatorial identities. In particular we obtain one of the main results of [7, Corollary 4.4] as a special
case of Corollary 5.3.

Following [6] we recall the negative statistics on Dn. For γ ∈ Dn we define the D-negative descent

multiset

(5) DDes(γ) = Des(γ)
⊎

{Neg(γ−1)} \ {n}.

and we let
ddes(γ) := |DDes(γ)| and dmaj(γ) :=

∑

i∈DDes(γ)

i.

The Hilbert series of Pn can be computed by considering the even-signed descent basis for the coinvariant
algebra of type D and applying the Straightening Lemma. It’s easy to see that the map Pn → Dn × P(n)
given by

(6) M 7→ (γ(M), µ̄(M)′),

is a bijection, where, if M = f t
nM ′, with M ′ ∈ S, then µ̄(M) = ((n)t, µ(M ′)). For a partition λ we let

mj(λ) := |{i ∈ [n] : λi = j}|, and
(

n

m̄(λ)

)

:=

(

n

m0(λ), m1(λ), . . .

)

,

be the multinomial coefficient.
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Theorem 5.1. Let n ∈ P. Then

∑

`(λ)≤n

(

n

m̄(λ)

) n
∏

i=1

qλi

i =

∑

γ∈Dn

∏n−1
i=1 q

2δi(γ)+ηi(γ)
i

(1− q1 · · · qn)
∏n−1

i=1 (1− q2
1 · · · q

2
i )

,

in Z[[q1, . . . , qn]].

Now we compute the Hilbert series in a different way using the following observation. Let T := {σ ∈
Dn : des(σ) = 0}. It is well known, and easy to see, that

(7) Dn =
⊎

u∈Sn

{σu : σ ∈ T},

where
⊎

denotes disjoint union. Now define n̄i(γ) := |{j ≥ i : j ∈ Neg(|γ|n)}|. It follows that

(8) ddes(γ) = d1(γ) + n̄1(γ).

Theorem 5.2. Let n ∈ P. Then

∑

`(λ)≤n

(

n

m̄(λ)

) n
∏

i=1

qλi

i =

∑

γ∈Dn

∏n−1
i=1 q

di(γ)+n̄i(γ
−1)

i
∏n−1

i=1 (1− q2
1 · · · q

2
i )(1− q1 · · · qn)

,

in Z[[q1, . . . , qn]].

The following beautiful identity easily follows by Theorems 5.1 and 5.2.

Corollary 5.3. Let n ∈ P. Then

∑

γ∈Dn

n−1
∏

i=1

q
di(γ)+n̄i(γ

−1)
i =

∑

γ∈Dn

n−1
∏

i=1

q
2δi(γ)+ηi(γ)
i .

�

The two pair of statistics (ddes, dmaj) and (Ddes, Dmaj) have the same distribution on Dn, (see [7,
Corollary 4.4]) given by (2). Now it is clear that this result follows directly by Corollary 5.3 by setting
q1 = qt and qi = q for i ≥ 2.

Corollary 5.4. Let n ∈ P. Then
∑

γ∈Dn

tddes(γ)qdmaj(γ) =
∑

γ∈Dn

tDdes(γ)qDmaj(γ).
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