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Sign balance for finite groups of Lie type (Extended Abstract)

Eli Bagno and Yona Cherniavsky

Abstract. A product formula for the parity generating function of the number of 1′s in invertible matrices
over

�
2 is given. The computation is based on algebraic tools such as the Bruhat decomposition. The same

technique is used to obtain a parity generating function also for symplectic matrices over
�

2. We present
also a generating function for the sum of entries modulo p of matrices over

�
p. This formula is a new

appearance of the Mahonian distribution.

1. Introduction

Let G be a subgroup of GLn(Z2). For every K ∈ G define o(K) to be the number of 1’s in K. A natural
problem is to find the number of matrices with a given number of 1’s, or in other words, to compute the
following generating function:

O(G, t) =
∑

K∈G

to(K).

It is not hard to see that in the case G = GLn(Z2), O(G, t) has n! as a factor but the complete generating
function can be rather hard to compute. A weaker variation of this problem is to evaluate O(G,−1). This
is equivalent to determining the difference between the numbers of even and odd matrices, where a matrix
is called even if it has an even number of 1’s and odd otherwise. The number O(G,−1) will be called the
parity difference or the imbalance of G. A set S is called sign-balanced if O(S,−1) = 0.

The notion of sign-balance has recently reappeared in a number of contexts. Simion and Schmidt [9]
proved that the number of 321-avoiding even permutations is equal to the number of such odd permutations
if n is even, and exceeds it by the Catalan number C 1

2
(n−1) otherwise. Adin and Roichman [1] refined

this result by taking into account the maximum descent. In a recent paper [11], Stanley established the
importance of the sign-balance.

In this work we calculate the parity difference for GLn(Z2) as well as for the symplectic groups Sp2n(Z2).
We also generalize the problem of sign-balance to matrix groups over prime fields other than Z2. It

turns out that the appropriate parameter for these fields is the sum of non zero entries of the matrix (mod p)
rather than just the number of nonzero elements. A generalization of these results to groups over arbitrary
finite fields has also been done. It will be published in a future publication.

Another aspect of this work is the occurrence of the Mahonian distribution in our results. Recall that a
permutation statistic over Sn is called Mahonian if it has the same distribution as the number of inversions.
MacMahon proved that major index has such distribution, explicitly:
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∑

π∈Sn

qinv(π) =
∑

π∈Sn

qmaj(π) = [n]q!

where [n]q = 1−qn

1−q
.

Our results can also be seen as an example of the cyclic sieving phenomenon (See [8] for details). They
also hint at the existence of permutation statistics theory for finite groups of Lie type. For a pioneering
results in this direction see [5].

We finally note that another approach to the case of type A was proposed to us by Alex Samorodnitzky
[10], and will be explained elsewhere.

2. Preliminaries

2.1. The groups of Lie Type A. Let F be any field and let G = GLn(F) be the group of invertible
n× n matrices over F. Let H be the subgroup of G consisting of the diagonal matrices. This is a choice of
a torus in G. It is easy to show that the normalizer of H , N(H), is the group of monomial matrices (where
each row and column contains exactly one non-zero element). The quotient N(H)/H is called the Weyl
group of type A, and is isomorphic to Sn, the group of permutations on n letters. The Borel subgroup B

+

of the group G consists of the upper triangular matrices in G. The opposite Borel subgroup, consisting of
the lower triangular matrices, is denoted by B

−. We denote by U
+ and U

− the groups of upper and lower
triangular matrices (respectively,) with 1’s along the diagonal.

We finish this section with the following:

Proposition 2.1. (See for example [6, p.20]) For every finite field F with q elements the order of GLn(F)
is

q(
n

2)(q − 1)n[n]q !

2.2. Lie Type C. Let J denote the n× n matrix








0 · · 1
0 · 1 0
· · · ·
1 0 · 0









and let

M =

(

0 J
−J 0

)

.

The Lie group of type C, or the symplectic group, is defined over the field F by:

Sp2n(F) = {AT ∈ SL2n(F) | AT MA = M}.

This is the set of fixed points of the automorphism ϕ : SL2n(F) −→ SL2n(F) given by: ϕ(A) = M−1(AT )−1M .
An alternative way to present the symplectic group is the following: We define first a bilinear form on

F
2n:

Definition 2.2. For every x = (x1, ..., x2n), y = (y1, ..., y2n) ∈ F
2n

B(x, y) =

n
∑

i=1

xi · y2n+1−i −

2n
∑

i=n+1

xi · y2n+1−i.

Denoting by {x1, ..., x2n} the set of columns of X it is easy to see that X ∈ Sp2n(F) if and only if the
columns satisfy the following set of equations:
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B(vi, vj) =

{

(−1)i−j i + j = 2n + 1
0 i + j 6= 2n + 1

We end this section with the following well known fact:

Proposition 2.3. (See for example [6, p.35])
For every finite field F with q elements the order of Sp2n(F) is:

qn2

(q − 1)n[2]q · · · [2n]q

2.3. The Bruhat Decomposition for type A. The Bruhat decomposition is a way to write every
invertible matrix as a product of two triangular matrices and a permutation matrix. We start with the
following definitions:

Recall from Section 2.1 the definition of the Borel subgroup B
+ and the unipotent subgroup U

−. For
every permutation π ∈ Sn we identify π with the matrix:

[π]i,j =

{

1 i = π(j)
0 otherwise

Define for every π ∈ Sn:

Uπ = U
− ∩ (πU

−π−1).

Uπ consists of the matrices with 1-s along the diagonal and zeros in place (i, j) whenever i < j or
π−1(i) < π−1(j). This is an affine space of dimension

(

n
2

)

− `(π) over F. (`(π) is the length of π with respect
to the Coxeter generators).

Now, given g ∈ G, we can column reduce g by multiplying on the right by Borel matrices in order to get
an element gb−1 satisfying the following condition:

The right most nonzero entry in each row is 1

and it is the first nonzero entry in its column.
(∗)

Those ”leading entries” form a permutation matrix corresponding to π ∈ Sn.
Now we can use π−1 to rearrange the columns of gb−1 in order to get gb−1π−1 = u ∈ Uπ, i.e., g = uπb.

This is called the Bruhat decomposition of the matrix g. One can prove that this decomposition is unique,
and thus we have a partition of G into double cosets indexed by the elements of the Weyl group Sn.

If π ∈ Sn then the double coset indexed by π decomposes into left B
+-cosets in the following way: For

every choice of u ∈ Uπ, uπ is a representative of the left coset uπB
+. Thus a general representative of the

double coset Uπ can be taken as matrix of the form (∗), with every column filled with free parameters beyond
the leading 1.

We summarize the information we gathered about the Bruhat decomposition for type A in the following:

Proposition 2.4. The group GLn(F) is a disjoint union of double cosets of the form UππB
+, where

π runs through Sn. Every double coset decomposes into cosets of the form AB
+ where A is a general

representative of the form (∗). The number of free parameters in A is equal to
(

n
2

)

− `(π).

Here is an example of the coset decomposition for GL3(Z2):

U11B
+ =











1 0 0
α 1 0
β γ 1



 B
+ | α, β, γ ∈ Z2






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Us1
s1B

+ =











0 1 0
1 0 0
α β 1



 B
+ | α, β ∈ Z2







Us2
s2B

+ =











1 0 0
α 0 1
β 1 0



 B
+ | α, β ∈ Z2







Us2s1
s2s1B

+ =











0 1 0
0 α 1
1 0 0



 B
+ | α ∈ Z2







Us1s2
s1s2B

+ =











0 0 1
1 0 0
α 1 0



 B
+ | α ∈ Z2







Us1s2s1
s1s2s1B

+ =





0 0 1
0 1 0
1 0 0



B
+

2.4. Bruhat Decomposition for Type C. In order to be able to present the Bruhat decomposition
for type C, we must first define a Borel subgroup for Sp2n(F). We present this subject following [11]. Note
that although the exposition of [11] deals with groups over algebraically closed fields, the results hold also
over finite fields. Start with the Borel subgroup B

+, chosen for type A, consisting of the upper triangular
matrices.

If X = ( A B
0 C ) ∈ B

+, then ϕ(X) =
(

J(CT )−1J J(CT )−1BT (AT )−1J

0 J(AT )−1J

)

∈ B
+. (The automorphism ϕ was

defined in Section 2.2). Moreover, the automorphism ϕ keeps the Borel subgroup B
+, as well as the groups

of diagonal and monomial matrices (denoted by H and N(H) respectively in Section 2.1) invariant. Thus
we can take B

+
C = Sp2n(F) ∩ B

+ and B
−

C = Sp2n(F) ∩ B
− as the Borel subgroup and the opposite Borel

subgroup of Sp2n(F) respectively, and similarly for H and N(H).
The Weyl group of type C can be realized as the group of those permutations π ∈ S2n such that

π(2n + 1− i) = 2n + 1− π(i). This group is isomorphic to the hyperoctahedral group Bn (See definition in
Section ??). The isomorphism can be seen by labelling the basis elements of the space on which Sp2n(F)
acts by indices n, n− 1, ..., 1, ...,−n.

We define also the groups U
+
C = U

+ ∩ Sp2n(F) and U
−

C = U
− ∩ Sp2n(F) to be the upper and lower

unipotent subgroups respectively. For every π ∈ Bn we define U
C
π = U

−

C ∩ (πU
−

Cπ−1). U
C
π is the intersection

of Sp2n(F) with the set of matrices with 1’s along the diagonal and zeros at entries in location (i, j) whenever
i < j or π−1(i) < π−1(j). This is an affine space of dimension n2 − `(π). (Here, `(π) is the length function
of Bn).

Now, we can use the Bruhat decomposition of GL2n(F) to produce the Bruhat decomposition for Sp2n(F).
Let g ∈ Sp2n(F). Consider g as an element of GL2n(F) and write g = uπb where π ∈ S2n, u ∈ Uπ and
b ∈ B

+. We have:

g = ϕ(g) = ϕ(u)ϕ(π)ϕ(b),

but from the uniqueness of the decomposition in GL2n(F) we have:

ϕ(u) = u, ϕ(π) = πh−1, ϕ(b) = hb

where h is diagonal and thus π ∈ Bn and b ∈ B
+
C . This gives us the Bruhat decomposition. The description

of the double cosets and the coset representatives is similar to the one given for type A, with the exception
that here we have to intersect with Sp2n(F).

We summarize the information we gathered about the Bruhat decomposition for type C in the following:



SIGN BALANCE FOR FINITE GROUPS OF LIE TYPE (EXTENDED ABSTRACT) 5

Proposition 2.5. The group Sp2n(F) decomposes into double cosets of the form U
C
π πB

+
C , where π runs

through Bn. Every double coset decomposes into cosets of the form AB
+
C where A is a general representative

of the form (∗). The number of free parameters in A is equal to n2 − `(π).

3. Sign Balance for Type A

3.1. Sign Balance over Z2. In this section we present the results concerning the imbalance of the
groups of type A over the field Z2 . The proofs are written in ??.

Theorem 3.1.
∑

K∈GLn(Z2)

(−1)o(K) = −2(n

2)[n− 1]2!

where [k]q = 1−qk

1−q
.

The following corollary is immediate:

Corollary 3.2. The number of even matrices in GLn(Z2) is exactly

[n− 1]2!2
(n

2)(2n−1 − 1)

while the number of odd matrices in GLn(Z2) is:

[n− 1]2!2
(n

2)+n−1

�

3.2. Sign Balance for Prime Fields. In this section we present the results concerning the imbalance
of the groups of type A over the field Zp . The proofs are written in ??.

Let p be a prime number and denote by Zp the field with p elements. The results of Section 3.1 can be
extended to invertible matrices over the field Zp, provided we substitute a primitive complex p-th root of
unity in the generating function of the sum of elements of a matrix mod p. Explicitly, we use the information
we gathered in the previous section to get the following:

Theorem 3.3.
∑

K∈GLn(Zp)

ωs(K)
p = −(p− 1)n−1p(n

2)[n− 1]p!.

where s(K) is the sum (mod p) of the elements of the matrix K, and ωp is a primitive complex p-th root
of unity.

The following corollary is immediate:

Corollary 3.4. The number of matrices in GLn(Zp) whose sum of entries modulo p is 0 is exactly

[n− 1]p!(p− 1)n−1p(n

2)(pn−1 − 1)

while for every 1 ≤ i ≤ p− 1, the number of matrices in GLn(Zp) whose entries add up to i modulo p is:

[n− 1]p!(p− 1)n−1p(n

2)+n−1.

�
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4. Sign Balance for Type C

In this section we prove the following result:

Theorem 4.1.
∑

K∈Sp2n(Z2)

(−1)o(K) = −2n2

· [2]2[4]2 · · · [2n− 2]2

The following corollary is immediate:

Corollary 4.2. The number of even matrices in Sp2n(Z2) is exactly

2n2
−1[2]2 · · · [2n− 2]2([2n]2 − 1)

while the number of odd matrices is

2n2
−1[2]2 · · · [2n− 2]2([2n]2 + 1). �

In order to prove the theorem, we take the following direction: Instead of summing over the whole group
of matrices, we sum over every coset separately. It turns out that some of the cosets are sign-balanced, while
the others have only odd matrices. We start with the following definition:

Definition 4.3. A coset consisting entirely of odd matrices is called an odd coset.

The following lemma identifies the sign-balanced cosets.

Lemma 4.4. Let A be a general representative of the double coset UC
π πB

+
C corresponding to π ∈ Bn.

Make some substitution in the free parameters of A to get a coset representative, and call it Ã. If Ã has an
odd column which is not the last one, then the coset [Ã] = {ÃB|B ∈ B

+
C} is sign-balanced, i.e.,

∑

K∈ÃB
+

C

(−1)o(K) = 0.

Proof. An element of B
+
C is an invertible upper triangular matrix which is also symplectic. The

condition of being symplectic is expressed by imposing a set of equations on the columns of the matrix. If
we take b to be an upper triangular matrix with a set of columns {v1, ..., v2n} then, as was stated in Section
2.2, forcing it to be symplectic is equivalent to imposing the equations (note that we are working over Z2):

B(vi, vj) =

{

1 i + j = 2n + 1
0 i + j 6= 2n + 1

As is easy to check, the equations of the form B(vi, vi) = 0 are trivial over Z2. The equations of the form

B(vi, v2n+1−i) = 1 are also trivial. (Indeed, B(vi, v2n+1−i) =
2n
∑

k=1

bk,i · b2n+1−k,2n+1−i but since b is upper

triangular, over Z2 we have bii · b2n+1−i,2n+1−i = 1 and the other summands vanish since for k > i one has
bki = 0 and for k > 2n + 1− i one has b2n+1−k,2n+1−i = 0).

Now, the only non trivial equations involving the parameters appearing in the last column are the ones
of the form:

B(vi, v2n) = 0, (2 ≤ i ≤ 2n− 1)

and each such equation can be written in such a way that the parameters of the last column are free while
the parameters of the first row depend on them. Explicitly, we write the equation B(vi, v2n) = 0 as

b1i =

2n
∑

k=2

bki · b2n+1−k,2n.

Note that the elements of the last column of the matrix b have no appearance as a part of a linear
combination in any place other than the first row. This is justified by the fact that every non trivial
equation, involving the first row, which we have not treated yet must be of the form B(vi, vj) = 0 for
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1 ≤ i < j ≤ 2n − 1. Thanks to the upper triangularity of b, the elements laying in the first row vanish in
these equations.

Let us look at the following example:

b =









1 b12 b13 b14

0 1 b23 b24

0 0 1 b34

0 0 0 1









.

The only non trivial equations involving the last column are: B(v2, v4) = 0 and B(v3, v4) = 0.
These equations can be written as:

b12 = b34

b13 = b24 + b23 · b34

so after intersecting with Sp2n(Z2), the matrix b looks like:

b =









1 b34 b24 + b23 · b34 b14

0 1 b23 b24

0 0 1 b34

0 0 0 1









.

The elements of the last column appear only in the first row and in the equations of the form B(vi, vj) = 0
the elements located in the first row vanish.

Note that in this case all of the parameters outside the first row are free. This doesn’t hold in general.
Nevertheless, as we have proven, we can arrange the parameters such that the elements of the last column
reappear only in the first row.

Returning now to the proof, we have two cases:

• The first column of Ã is odd. In this case we can use the element located in place (1, 2n) to

construct a bijection between odd and even matrices inside the coset ÃB
+
C . This is done in the

same way described earlier for type A: Divide B
+
C into two disjoint subsets:

B
+
C0 = {T = (ti,j) ∈ B

+
C | t1,2n = 0}

B
+
C1 = {T = (ti,j) ∈ B

+
C | t1,2n = 1}.

For every matrix X ∈ ÃB
+
C , the k-th column of X is a linear combination of the first k columns

of Ã. Now, due to the fact that the parameter appearing in the location (1, 2n) has no other
appearance, for every B ∈ B

+
C0 there is some B′ ∈ B

+
C1 such that B and B′ differ only in the entry

numbered (1, 2n).

Note that ÃB and ÃB′ are obtained from Ã by the same sequence of column operations except
for the first column which was used in producing AB but was not used in producing ÃB′. Hence
ÃB and ÃB′ have opposite parity. This gives us a bijection between the odd and the even matrices
of the coset AB

+
C .

• The first column of Ã is even. Denoting by j the number of the first odd column of Ã, we use the
element located in place (j, 2n) to construct a bijection between the odd and even matrices inside

ÃB
+
C in the same way as in the previous case. Note that since the element located in place (j, 2n)

in the matrices of the Borel subgroup can reappear only in the first row, it affects only the first
column of Ã, which is even.

�

We turn now to treat the odd cosets.
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Lemma 4.5. Let π ∈ Bn. Let A be a general representative of the double coset UππB
+
C corresponding to

π ∈ Bn. Make some substitution in the free parameters of A to get a coset representative, and call it Ã. If
all of the first 2n − 1 columns of Ã are even then all of the matrices belonging to the coset ÃB

+
C are odd.

The imbalance calculated inside this coset is:

∑

K∈ÃB
+

C

(−1)o(K) = −|B+
C | = −2n2

.

Proof. The last column of Ã is always odd and thus since all other columns of Ã are even, Ã itself is

an odd matrix and the same holds for ÃB for every B ∈ B
+
C . The size of the coset ÃB

+ is 2n2

, and the
result follows. �

Lemma 4.6. Let π ∈ Bn. The double coset UC
π πB

+
C contains odd cosets if and only if π(2n) = 2n.

Proof. Let A be a general representative of the double coset UC
π πB

+
C . Write U = Aπ−1. Then U ∈ U

C
π

is a lower triangular matrix and since π(2n) = 2n (which implies also π(1) = 1), the first column as well as
the last row of U contain 2n− 1 parameters. Note that UT ∈ B

+
C and thus by the considerations described

in Lemma 4.4, the parameters appearing in the last column of UT can reappear only in the first row of UT .
We conclude that the parameters of the last row of U can reappear only in the first column of U . Now,
for every column numbered 2 ≤ k ≤ 2n − 1 in U and for every choice of the first elements of the column
numbered k, we are free to choose the parameter located in the bottom of this column, (2n, k), in such a
way that the column will be even. The parameter located in the place (2n, 1) has no other appearance and
thus we can choose all of the first 2n−1 columns of U to be even. Getting back to the general representative
A, since π(2n) = 2n, we have also π(1) = 1 and thus A and U differ only in the columns 1 < k < 2n so that
the proof works also for A.

On the other hand, if π(2n) 6= 2n then π contains a column numbered k < 2n which has only one
nonzero element, located in place (2n, k). By the construction of the general representative A, there are
only zeros above the 1 coming from the permutation and thus this odd column appears also in A. By the
previous lemma, the coset {ÃB|B ∈ B

+
C} is sign-balanced. �

Now, we have to count the imbalance on the odd cosets. By Lemma 4.6 we are interested only in the
double cosets corresponding to the permutations π ∈ Bn−1. The following lemma shows how to count.

Lemma 4.7. Let π ∈ Bn such that π(n) = n . The double coset U
C
π πB

+
C contains exactly 2(n−1)2−`(π)

odd cosets.

Proof. Let A be representative of the double coset U
C
π πB

+
C . As was shown in the previous lemma, the

parity of a each one of the first 2n − 1 columns of A is determined by the free parameter in its bottom.
Since there are a total of n2 − `(π) free parameters and exactly 2n− 1 ’bottom parameters’, the number of

substitutions of parameters giving all of the 2n − 1 first columns even is 2n2
−`(π)−(2n−1). This is also the

number of odd cosets in the double coset U
C
π . �

�

We turn now to the proof of Theorem 4.1. In order to calculate the imbalance we have to count only odd
cosets. By Lemma 4.6, we are interested only in the double cosets corresponding to permutations π ∈ Bn−1.

By Lemma 4.7, every such double coset contains 2(n−1)2−`(π) odd cosets. By Lemma 4.5, each odd coset

contributes −2n2

to the imbalance, and we have in total:
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∑

K∈Sp2n(Z2)

(−1)o(K) =
∑

π∈Bn

π(n)=n

−2n2

· 2(n−1)2−`(π)

= −2n2
∑

π∈Bn−1

2(n−1)2−`(π)

= −2n2
∑

π∈Bn−1

2`(π)

= −2n2

[n− 1]2!

= −2n2

· [2]2[4]2 · · · [2n− 2]2
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