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Séries Formelles et Combinatoire Algébrique
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The Bergman Complex of a Matroid and Phylogenetic Trees

Federico Ardila and Caroline J. Klivans

Abstract. We study the Bergman complex B(M) of a matroid M : a polyhedral complex which arises in
algebraic geometry, but which we describe purely combinatorially. We prove that a natural subdivision of
the Bergman complex of M is a geometric realization of the order complex of its lattice of flats. In addition,

we show that the Bergman fan
�

B(Kn) of the graphical matroid of the complete graph Kn is homeomorphic
to the space of phylogenetic trees Tn.

1. Introduction

In [?], Bergman defined the logarithmic limit-set of an algebraic variety in order to study its exponential
behavior at infinity. We follow [?] in calling this set the Bergman complex of the variety. Bergman conjectured
that this set is a finite, pure polyhedral complex. He also posed the question of studying the geometric
structure of this set; e.g., its connectedness, homotopy, homology and cohomology. Bieri and Groves first
proved the conjecture in [?] using valuation theory.

Recently, Bergman complexes have received considerable attention in several areas, such as tropical
algebraic geometry and dynamical systems. They are the non-archimedean amoebas of [?] and the tropical

varieties of [?, ?]. In particular, Sturmfels [?] gave a new description of the Bergman complex and an
alternative proof of Bergman’s conjecture in the context of Gröbner basis theory. Moreover, when the
variety is a linear space, so the defining ideal I is generated by linear forms, he showed that the Bergman
complex can be described solely in terms of the matroid associated to the linear ideal.

Sturmfels used this description to define the Bergman complex of an arbitrary matroid, and suggested
studying its combinatorial, geometric and topological properties [?]. The goal of the paper is to undertake
this study.

In Section ?? we study the collection of bases of minimum weight of a matroid. We show that this
collection is itself the collection of bases of a matroid, and we give several descriptions of it.

In Section ?? we prove the main result of the paper. We show that, appropriately subdivided, the
Bergman complex of a matroid M is the order complex of the proper part of the lattice of flats LM of the
matroid. These order complexes are well-understood objects [?], and an immediate corollary of our result is
an answer to Bergman’s questions about the geometry of B(M) in this special case. The Bergman complex
of an arbitrary matroid M is a finite, pure polyhedral complex. In fact, it is homotopy equivalent to a wedge
of (r − 2)-dimensional spheres, where r is the rank of M .

In Section ??, we take a closer look at the Bergman complex of the graphical matroid of the complete

graph Kn. We show that the Bergman fan B̃(Kn) is exactly the space of ultrametrics on [n], which is
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homeomorphic to the space of phylogenetic trees as in [?]. As a consequence, we show that the order
complex of the partition lattice Πn is a subdivision of the link of the origin of this space. This provides a new
explanation for the known result that these two simplicial complexes are homotopy equivalent [?, ?, ?, ?, ?].

Finally, in the appendix, we review some matroid theory which we will use throughout the paper. For
a more thorough introduction, we refer the reader to [?].

2. The bases of minimum weight of a matroid

Let M be a matroid of rank r on the ground set [n] = {1, 2, . . . , n}, and let ω ∈ R
n. Regard ω as a weight

function on M , so that the weight of a basis B = {b1, . . . , br} of M is given by ωB = ωb1 + ωb2 + · · ·+ ωbr
.

Let Mω be the collection of bases of M having minimum ω-weight. This is one of the central objects
of our study, and we wish to understand it from three different points of view: geometric, algorithmic and
matroid theoretic.

Geometrically, we can understand Mω in terms of the matroid polytope. We will use the following charac-
terization of matroid polytopes, due to Gelfand and Serganova:

Theorem 2.1. [?, Theorem 1.11.1] Let S be a collection of r-subsets of [n]. Let PS be the polytope in R
n

with vertex set {eb1 + · · · + ebr
| {b1, . . . , br} ∈ S}, where ei is the i-th unit vector. Then S is the collection

of bases of a matroid if and only if every edge of PS is a translate of the vector ei − ej for some i, j ∈ [n].

Let PM be the matroid polytope of M . We can now think of ω as a linear functional in R
n. The bases

in Mω correspond to the vertices of PM which minimize the linear functional ω. Their convex hull is PMω
,

the face of PM where ω is minimized. It follows that the edges of PMω
, being edges of PM also, are parallel

to vectors of the form ei − ej . Therefore Mω is the collection of bases of a matroid.

Algorithmically, matroids have the property that their ω-minimum bases are precisely the possible outputs
of the greedy algorithm: Start with B = ∅. At each stage, look for an ω-minimum element of [n] which can
be added to B without making it dependent, and add it. After r steps, output the basis B. [?, Theorem
1.8.5]

Definition 2.2. Given ω ∈ R
n, let F(ω) denote the unique flag of subsets

∅ =: F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Fk+1 := E

for which ω is constant on each set Fi − Fi−1 and has ω|Fi−Fi−1
< ω|Fi+1−Fi

. The weight class of a flag F
is the set of vectors ω such that F(ω) = F .

We can describe weight classes by their defining equalities and inequalities. For example, one of the
weight classes in R

5 is the set of vectors ω such that ω1 = ω4 < ω2 < ω3 = ω5. It corresponds to the flag
{∅ ⊂ {1, 4} ⊂ {1, 2, 4} ⊂ {1, 2, 3, 4, 5}}.

Proposition 2.3. If ω is in the weight class of F = {∅ =: F0 ⊂ . . . ⊂ Fk+1 := E}, then the ω-minimum

bases of M are exactly those containing r(Fi)− r(Fi−1) elements of Fi−Fi−1, for each i. Consequently, Mω

depends only on F , and we call it MF .

Proof. The greedy algorithm picks r(F1) elements of the lowest weight, until it reaches a basis of F1;
then it picks r(F2) − r(F1) elements of the second lowest weight, until it reaches a basis of F2, and so on.
Therefore, the possible outputs of the algorithm are precisely the ones described.

�

Matroid theoretically, Mω can be constructed as a direct sum of minors of M , and its lattice of flats LMω

can be constructed from intervals of LM , as follows:
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Proposition 2.4. If F = {∅ =: F0 ⊂ . . . ⊂ Fk+1 := E}, then

MF =

k+1⊕

i=1

(M |Fi)/Fi−1 and LMF

∼=

k+1∏

i=1

[Fi−1, Fi].

Proof. After r(Fi−1) steps, the greedy algorithm has chosen a basis of Fi−1. In the following r(Fi)−
r(Fi−1) steps, it needs to choose elements which, when added to Fi−1, give a basis of Fi. The possible choices
are, precisely, the bases of (M |Fi)/Fi−1. The first equality follows, and the second one follows from it.

�

3. The Bergman complex

We now define the two main objects of study of this paper.

Definition 3.1. The Bergman fan of a matroid M with ground set [n] is the set

B̃(M) := {ω ∈ R
n : Mω has no loops}.

The Bergman complex of M is

B(M) := {ω ∈ Sn−2 : Mω has no loops},

where Sn−2 is the sphere {ω ∈ R
n : ω1 + · · ·+ ωn = 0 , ω2

1 + · · ·+ ω2
n = 1}.

For the moment, we are slightly abusing notation by calling these two objects a fan and a complex.
We will very soon see that they are a polyhedral fan and a spherical polyhedral complex, respectively; this
justifies their name. We will concentrate on the Bergman complex, but the same arguments apply to the
Bergman fan.

Definition 3.2. The weight class of a flag F is valid for M if MF has no loops.

Since the matroid Mω only depends on the weight class that ω is in, the Bergman complex of M is a
disjoint union of the following weight classes:

Definition 3.3. The weight class of a flag F is valid for M if MF has no loops.

We will study two polyhedral subdivisions of B(M), one of which is clearly finer than the other.

Definition 3.4. The fine subdivision of B(M) is the subdivision of B(M) into valid weight classes: two
vectors u and v of B(M) are in the same class if and only if F(u) = F(v).

The coarse subdivision of B(M) is the subdivision of B(M) into Mω-equivalence classes: two vectors u
and v of B(M) are in the same class if and only if Mu = Mv.

Theorem 3.5. The weight class of a flag F is valid for M if and only if F is a flag of flats of M .

Therefore, the fine subdivision of the Bergman complex B(M) is a geometric realization of ∆(LM −{ 0̂ , 1̂ } ),
the order complex of the proper part of the lattice of flats of M .

Proof. Assume Fi in F is not a flat of M , so there exists some e ∈ Fi − Fi. By Proposition ??, any
basis B in MF contains r(Fi) elements of Fi; since e is dependent on them, it cannot be in B. Hence e is a
loop in MF , so the weight class of F is not valid.

Conversely, assume every Fi in F is a flat of M . Consider any e ∈ E, and find the value of i such that
e ∈ Fi − Fi−1. After r(Fi−1) steps the greedy algorithm produces a basis of Fi−1. Since Fi−1 is a flat, e is
not dependent on it, and in the next step of the algorithm we can choose e. In the end, this produces an
ω-minimum basis of M containing e. Therefore the weight class of F is valid. �

The order complex ∆(LM − { 0̂ , 1̂ } ) is a well understood object [?]. As an immediate consequence of
Theorem ??, we get the following result.

Corollary 3.6. The Bergman complex B(M) is homotopy equivalent to a wedge of µ̂(LM ) (r − 2)-
dimensional spheres. Its subdivision into weight classes is a pure, shellable simplicial complex.
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Here µ̂(LM ) = (−1)r(M)µLM
(0̂, 1̂) is an evaluation of the Möbius function µLM

of the lattice LM . The
Möbius function is an extremely useful combinatorial invariant of a poset; for more information, see [?,
Chapter 3].

Example: Let M be the graphical matroid of the complete graph on four nodes. The bases of this
matroid are given by spanning trees. The flats are complete subgraphs and vertex disjoint unions of complete
subgraphs (see Figure ??). Note that in this case, the flats are in correspondence with the partitions of the
set {A, B, C, D}. In general, the flats of the graphical matroid of Kn are in bijection with partitions of the
set [n]. Furthermore, the lattice of flats is the partition lattice Πn, which orders partitions by refinement.

������ ���� ������ ������ 	�	
 ������


�
�

���� ������ ������ ���� ������ ���� ���������� ��� 

!�!"#�#$�$ %�%�%�%�%&�&�&�&�&'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'
'�'�'�'�'

(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(
(�(�(�(�(

)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)
)�)�)�)�)

*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*
*�*�*�*�*

1

2

3

4

6

5

+�+,

-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-
-�-�-�-�-�-�-

.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.
.�.�.�.�.�.�.

/�/�/�/
/�/�/�/
/�/�/�/
/�/�/�/

0�0�0�0
0�0�0�0
0�0�0�0
0�0�0�0

1�1�1
1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2
2�2�2

3�3
3�3
3�3
3�3

4�4
4�4
4�4
4�4

5�5�5�5
5�5�5�5
5�5�5�5
5�5�5�5

6�6�6�6
6�6�6�6
6�6�6�6
6�6�6�6

7�7�7�7�7�7�7
7�7�7�7�7�7�7
7�7�7�7�7�7�7
7�7�7�7�7�7�7

8�8�8�8�8�8�8
8�8�8�8�8�8�8
8�8�8�8�8�8�8
8�8�8�8�8�8�82 3 4 5 6

123456

125 13 24 345 56 236

1

A

C

B

D

146

Figure 1. The graph K4 and the lattice of flats of the corresponding matroid.

The Bergman complex B(K4) is shown in Figure ??. It is a wedge of six 1-spheres. More generally,
B(Kn) is a wedge of µ̂(Πn) = (n − 1)! spheres of dimension n − 3. The vertices of B(K4) are labeled with
the corresponding flats, and a few of the corresponding weight classes are shown. Notice that the ground
set of a matroid is always a flat, which corresponds to the weight class in which all weights are equal. We
removed this weight class when normalizing the Bergman complex to the sphere.
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Figure 2. The Bergman complex of the graphical matroid of K4.
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The fine subdivision of the Bergman complex is almost the Petersen graph. The only difference is the
presence of the three extra vertices, 13, 24 and 56. In the coarse subdivision into Mω-equivalence classes,
these three vertices do not appear. For example, the weight class ω1 < ω3 < ω2 = ω4 = ω5 = ω6 induces the
same matroid Mω as ω1 = ω3 < ω2 = ω4 = ω5 = ω6 and ω3 < ω1 < ω2 = ω4 = ω5 = ω6. Next we describe
the relationship between these two subdivisions in general.

The coarse decomposition of B(M) into cells which induce the same Mω is also a pure, polyhedral com-
plex: it is a subcomplex of the spherical polar to the matroid polytope of M. To describe this decomposition,
it is enough to describe its full-dimensional cells.

Therefore, we only need to determine when two full-dimensional weight classes give the same matroid Mω.
It is clearly enough to answer this question when the two weight classes are adjacent ; i.e., the intersection
of their closures is a facet of both. This happens when the two corresponding flags, which have one flat in
each rank, are equal in all but one rank.

Let ♦ be the diamond poset ; i.e., the rank 2 poset consisting of a minimum element, a maximum element,
and two rank 1 elements.

Theorem 3.7. Suppose that the weight classes of two maximal flags F are F ′ are adjacent. Say F and

F ′ only differ in rank i; that is, F − Fi = F ′ − F ′
i . Then the following conditions are equivalent:

(i) MF = MF ′ .

(ii) MF = MF−Fi
.

(iii) Fi ∪ F ′
i = Fi+1.

(iv) The interval [Fi−1, Fi+1] of LM is a diamond poset.

Proof. Let Mj = (M |Fj)/Fj−1, M ′
j = (M |F ′

j)/F ′
j−1, Ni = (M |Fi+1)/Fi−1, and N = M1 ⊕ · · · ⊕

Mi−1 ⊕Mi+2 ⊕ · · · ⊕Mk+1. By Proposition ??,

MF = N ⊕Mi ⊕Mi+1, MF ′ = N ⊕M ′
i ⊕M ′

i+1, MF−Fi
= N ⊕Ni.

Since Mi, Mi+1, M
′
i and Mi+1 have rank 1 and Ni has rank 2,

LMi⊕Mi+1
= {∅, Fi − Fi−1, Fi+1 − Fi, Fi+1 − Fi−1} ∼= ♦,

LM ′

i
⊕M ′

i+1
= {∅, F ′

i − Fi−1, Fi+1 − F ′
i , Fi+1 − Fi−1} ∼= ♦,

LNi
= {F − Fi−1 : F ∈ [Fi−1, Fi+1]} ∼= [Fi−1, Fi+1].

If (iv) does not hold, then we know immediately that LNi
6= LMi⊕Mi+1

. Also Fi ∪ F ′
i 6= Fi+1, and

therefore LMi⊕Mi+1
6= LM ′

i
⊕M ′

i+1
.

If (iv) holds, then Fi and F ′
i are the only rank i flats of M in [Fi−1, Fi+1]. Since Ni has no loops, (iii)

holds; and therefore LMi⊕Mi+1
= LM ′

i
⊕M ′

i+1
= LNi

. �

4. The space of phylogenetic trees

In this section, we show that the Bergman fan B̃(Kn) of the matroid of the complete graph Kn is
homeomorphic to the space of phylogenetic trees Tn, as defined in [?]. To do so, we start by reviewing the
connection between phylogenetic trees and ultrametrics.

Definition 4.1. A dissimilarity map on [n] is a map δ : [n]× [n] → R such that δ(i, i) = 0 for all i ∈ [n],
and δ(i, j) = δ(j, i) for all i, j ∈ [n].

Definition 4.2. A dissimilarity map is an ultrametric if, for all i, j, k ∈ [n], two of the values δ(i, j), δ(j, k)
and δ(i, k) are equal and not less than the third.

Let T be a rooted metric n-tree; that is, a tree with n leaves labeled 1, 2, . . . , n, together with a length
assigned to each one of its edges. For each pair of leaves u, v of the tree, we define the distance dT (u, v) to be
the length of the unique path joining leaves u and v in T . This gives us a distance function dT : [n]× [n] → R.
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We will only consider equidistant n-trees. These are the rooted metric n-trees such that the distance between
the root and any leaf is equal to 1, and the lengths of the interior edges are positive. (For technical reasons,
the edges incident to a leaf are allowed to have negative lengths.)

We can think of equidistant trees as a model for the evolutionary relationships between a certain set
of species. The various species, represented by the leaves, descend from a single root. The descent from
the root to a leaf tells us the history of how a particular species branched off from the others. For more
information on the applications of this and other similar models, see for example [?] and [?].

The connection between equidistant trees and ultrametrics is given by the following theorem.

Theorem 4.3. [?, Theorem 7.2.5] A map δ : [n] × [n] → R is an ultrametric if and only if it is the

distance function of an equidistant n-tree.

We can think of a dissimilarity map δ : [n]× [n] → R as a weight function ωδ on the edges of the complete
graph Kn. This leads us to the following result, which connects these ideas to the Bergman fan.

Theorem 4.4. A dissimilarity map δ : [n]× [n] → R is an ultrametric if and only if ωδ is in the Bergman

fan B̃(Kn).

Proof. We claim that the following three statements about a weight function on the edges of Kn are
equivalent.

(i) In any triangle, the largest weight is achieved (at least) twice.
(ii) In any cycle, the largest weight is achieved (at least) twice.

(iii) Every edge is in a spanning tree of minimum weight.

The theorem will follow from this claim, because ultrametrics are characterized by (i) and weight func-
tions in the Bergman complex are characterized by (iii).

The implication (ii) ⇒ (i) is trivial. Conversely, assume that (i) holds and (ii) does not. Without loss of
generality, assume that the cycle v1v2 . . . vk has v1v2 as its unique edge of largest weight. The largest weight
in triangle v1v2v3 must be achieved at ω(v1v2) = ω(v1v3). The largest weight in triangle v1v3v4 must then
be achieved at ω(v1v3) = ω(v1v4). Continuing in this way we get that ω(v1v2) = ω(v1v3) = · · · = ω(v1vk),
and (ii) follows.

Now we prove (ii) ⇒ (iii). Consider an arbitrary edge f . Let T be a spanning tree of minimum weight.
If f ∈ T we are done; otherwise, T ∪ f has a unique cycle. There is at least one edge e in this cycle with
ω(e) ≥ ω(f). Therefore, the weight of the spanning tree T\e ∪ f is not larger than the weight of T . This is
then a spanning tree of minimum weight containing f .

Finally, assume that (iii) holds and (i) does not. Assume that the triangle with edges e, f, g has
ω(e) > ω(f), ω(g), and consider a spanning tree T of minimum weight which contains edge e. If f is in T ,
then g cannot be in T , and replacing e with g will give a spanning tree of smaller weight. If neither f nor g
is in T , we can still replace e with one of them to obtain a spanning tree of smaller weight. If we could not,
that would imply that both f and g form a cycle when added to T\e. Call these cycles Cf and Cg . But
then (Cf\f) ∪ (Cg\g) ∪ e would contain a cycle in T , a contradiction. �

The previous two theorems give us a one-to-one correspondence between the vectors in the Bergman fan

B̃(Kn) and the equidistant n-trees: B̃(Kn) parameterizes equidistant n-trees by the distances between their
leaves. This leads us to consider the space of trees Tn of [?]. This space parameterizes equidistant n-trees in
a different way: it keeps track of their combinatorial type, and the lengths of their internal edges. We recall
the construction of the space Tn. Each maximal cell corresponds to a combinatorial type of rooted binary
tree on n labeled leaves; i.e., a rooted tree where each internal vertex has two descendants. Such trees have
n− 2 internal edges, and are parameterized by vectors in R

n−2
>0 recording these edge lengths. Moving to a

lower dimensional face of a maximal cell corresponds to setting some of these edge lengths to 0, which gives
non-binary degenerate cases of the original tree. Maximal cells are glued along these lower-dimensional cells
when two trees specialize to the same degenerate tree.
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Given a fixed combinatorial type of tree and the vector of internal edge lengths, we can recover the
pairwise distances of leaves as linear functions on the internal edge lengths. For example, consider the tree
type of Figure ??. We obtain (δ(A, B), δ(A, C), δ(A, D), δ(B, C), δ(B, D), δ(C, D)) ∈ B(K4) from (x, y) by
the map f : (x, y) 7→ (2(1 − x − y), 2(1− y), 2, 2(1− y), 2, 2). The converse is also true; given the pairwise
distances of leaves we can recover the internal edge lengths via linear relations on these distances [?].

B C DA

x

y

1

Figure 3. Combinatorial type of tree with 4 leaves.

In general, doing this for each type of tree, we get a map f : Tn → B̃(Kn). It follows from the previous

two theorems that f is a one-to-one correspondence between Tn and B̃(Kn). We will now see that, in fact,

Tn and B̃(Kn) have the same combinatorial structure.

Proposition 4.5. The map f : Tn → B̃(Kn) is a piecewise linear homeomorphism. It identifies the

decomposition of the space of trees Tn into combinatorial tree types with the coarse decomposition of the

Bergman fan B̃(Kn).

Proof. Restricting to a maximal cell of Tn, corresponding to a fixed tree type, f is a linear map from
the lengths of internal edges (in the space of trees) to the pairwise distances of the leaves (in the space of
ultrametrics). Also, it is clear that when two maximal cells of Tn intersect, the linear restrictions of f to
these two cells agree on their intersection. The first claim follows.

Suppose we are given a combinatorial type of equidistant n-tree. From the branching order of each triple
of leaves (i.e., which, if any, of the three branched off first), we can recover which edges of each triangle of
Kn are maximum in the corresponding weight vector. In turn, this allows us to recover which edges of any
cycle are maximum: one can check that an edge is maximum in a cycle C if and only if it is maximum in each
triangle that it forms with a vertex of C. Knowing the maximum edges of each cycle of the graph, we can
determine Mω using the following version of the greedy algorithm. Start with the complete graph Kn and
break its cycles successively: at each step pick an existing cycle, and remove one of its maximum edges. The
trees which can result by applying this procedure are precisely the ω-minimum spanning trees [?]. Therefore
f maps a fixed tree type class of Tn to a fixed Mω-equivalence class; i.e., a fixed cell in the coarse subdivision

of B̃(Kn).
Conversely, suppose we are given Mω (which has no loops) and we want to determine the combinatorial

tree type of f−1(ω). Consider the edges {e, f, g} of any triangle in Kn; we can find out whether e is maximum
in this triangle as follows. Take a minimum spanning tree T containing e. Either T\e ∪ f or T\e ∪ g is a
spanning tree; assume it is the first. If T\e ∪ f is a minimum spanning tree, then ω(e) = ω(f), and e is
maximum in the triangle. Otherwise ω(e) < ω(f) and e is not maximum in the triangle. Determining this
information for each triangle tells us, for each triple of leaves, which one (if any) branched off first in the
corresponding tree. It is easy to reconstruct the combinatorial type of the tree from this data, in the same
way that one recovers an equidistant tree from its corresponding ultrametric [?, Theorem 7.2.5]. �

The link of the origin in the coarse subdivision of Tn, which we call Tn, is a simplicial complex which has
appeared in many different contexts. It was first considered by Boardman [?], and also studied by Readdy
[?], Robinson and Whitehouse [?], Sundaram [?], Trappmann and Ziegler [?], Vogtmann [?], and Wachs [?],



8 FEDERICO ARDILA AND CAROLINE J. KLIVANS

among others. By Theorem ??, the link of the origin in the fine subdivision of B̃(Kn) is the order complex
of the partition lattice Πn. We conclude the following result.

Corollary 4.6. The order complex of the partition lattice Πn is a subdivision of the complex Tn.

This provides a new explanation of the known result [?, ?, ?, ?, ?, ?] that these two simplicial complexes
are homotopy equivalent; namely, they have the homotopy type of a wedge of (n − 1)! (n − 3)-dimensional
spheres.
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Figure 4. The fine subdivision of B(K4).

Let us now revisit the example of the last section. In Figure ?? we show the Bergman complex B(K4),
with some of the corresponding trees. We now know that this is a subdivision of T4, the link of the origin in
the space of phylogenetic trees with 4 leaves, which is the Petersen graph. The three extra vertices in the fine
subdivision are 13, 24 and 56. The tree corresponding to vertex 24 of the fine subdivision has the property
that the vertex joining the leaves C and D is at the same height as the vertex joining the leaves A and B.
This information is not captured by the combinatorial type of the tree; i.e., by the coarse subdivision.

In Figure ??, we show a representative piece of the fine subdivision of the space of trees with 5 leaves,
with K5 labeled as shown.
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Figure 5. A piece of the fine subdivision of B(K5).

6. Appendix: Matroids

Definition 6.1. A matroid M on a finite ground set E is a collection of subsets I such that:
(1) ∅ ∈ I
(2) If I1 ∈ I and I2 ⊆ I1 then I2 ∈ I.
(3) If I1, I2 ∈ I and |I1| < |I2| then there exists an element x ∈ I2 − I1 such that I1 ∪ x ∈ I.

Elements of I are referred to as the independent sets of M

For example, let V be a finite set of vectors in R
n. Let I be the collection of all linearly independent

subsets of V . Then I is the collection of independent sets of a matroid on the ground set V . This fundamental
example motivates many concepts and results in matroid theory.

First we review some standard matroid concepts. A basis is a maximal independent set. A circuit is a
minimal dependent set and we call a one element dependent set a loop.

Definition 6.2. The rank of a subset X ⊂ E, r(X), is the size of the largest independent set in X . A
set X is a flat if for all elements e ∈ E − X , r(X ∪ e) > r(X). The closure X of a subset X of E is the
minimal flat that contains it. The poset of flats ordered by containment is a lattice, which we call the lattice

of flats, LM .

Definition 6.3. The order complex of a finite poset P is the simplicial complex ∆(P ) = {C ⊂ P |C is
a chain of P}.

Definition 6.4. The matroid polytope of M is the polytope PM in R
E with vertex set {eb1 + · · · +

ebr
| {b1, . . . , br} is a basis of M}, where ei is the i-th unit vector.
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Definition 6.5. For a subset T ⊂ E, the restriction of M to T , or deletion of E − T from M , is the
matroid on the ground set T , whose rank function is rM |T (X) = rM (X) for X ⊆ T . This matroid is denoted
M |T or M\(E − T ).

Definition 6.6. For a subset T ⊂ E, the contraction of T from M is the matroid on the ground set
E − T , whose rank function is rM/T (X) = rM (X ∪ T )− rM (T ). This matroid is denoted M/T .

Definition 6.7. Given two matroids M1 and M2 on disjoint sets E1 and E2, there is a matroid M1⊕M2

on the ground set E1 ∪ E2, called the direct sum of M1 and M2. Its bases are the sets of the form B1 ∪B2,
where B1 and B2 are bases of M1 and M2 respectively. Its flats are the sets of the form F1 ∪ F2, where F1

and F2 are flats of M1 and M2 respectively.
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