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Abstract. The goal of this paper is to give a new unified axiomatic approach to the representation theory
of Coxeter groups and their Hecke algebras. Building upon fundamental works by Young and Kazhdan-
Lusztig, followed by Vershik and Ram, we propose a direct combinatorial construction, avoiding a priori use of
external concepts (such as Young tableaux). This is carried out by a natural assumption on the representation
matrices. For simply laced Coxeter groups, this assumption yields explicit simple matrices, generalizing the
Young forms. For the symmetric groups the resulting representations are completely classified and include
the irreducible ones. Analysis involves generalized descent classes and convexity (à la Tits) within the Hasse
diagram of the weak Bruhat poset.
Résumé. L’objectif de cet article est de donner une nouvelle approche axiomatique unifiée de la théorie des
représentation des groupes de Coxeter et de leurs algèbres de Hecke. En utilisant les travaux de Young,
Kazhdan-Lusztig ainsi que de Vershik et Ram, nous proposons une construction combinatoire directe qui
évite l’introduction de concepts extérieurs (par exemple les tableaux de Young). Cette construction est
faite à partir d’une hypothèse naturelle sur les matrices de représentation. Pour les groupes de Coxeter
simplement lacé, cette hypothèse donne des matrices simples explicites, généralisant la forme de Young.
Pour les groupes symmétriques les représentations associèes sont complètement classifiées, en particulier
celles qui sont irréductibles. Ce travail utilise les classes de descente généralisées et la convexité (à la Tits)
dans le diagramme de Hasse de l’ordre de Bruhat faible.

1. Introduction

The goal of the construction of abstract Young representations, presented in [ABR1], is to give a new
unified axiomatic approach to the representation theory of Coxeter groups and their Hecke algebras.

We want our construction to

(a) apply in a general context;
(b) be simple, direct and combinatorial; and
(c) avoid a priori use of concepts external to the group or algebra itself (such as standard Young

tableaux).

Goals (a) and (c) were stated and pursued by Kazhdan-Lusztig [KL] and Vershik [V]. Goal (b) was
posed in [BR].
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Our guiding lines are two fundamental methods to construct representations: Young theory and Kazhdan-
Lusztig theory.

In Young Theory (as explained by James [J]) the construction starts with Young tableaux, which are
sophisticated ad-hoc combinatorial objects. Modules (in particular, irreducible ones) are generated by sym-
metrizers of Young tableaux. Representing matrices are obtained as a side benefit.This theory is effective
for classical Weyl groups. For a detailed description see [J] and [JK].

Kazhdan-Lusztig Theory [KL] is a very general approach to the construction of Hecke algebra repre-
sentations. A distinguished basis, indexed by group elements, is compatible with the decomposition of the
Hecke algebra. The Coxeter group acts on linear spaces with bases indexed by special subsets of the group,
called cells. The basic tools in this construction are Kazhdan-Lusztig polynomials. Resulting representation
matrices are given in terms of coefficients of these polynomials [Hu2, §7.14]. Unfortunately, these coefficients
(and thus entries of the representing matrices) are very difficult to compute. For an axiomatic approach to
this construction via cellular algebras see [GL].

The idea of “reversing Young theory”, namely, constructing representations using explicit representation
matrices for the Coxeter generators, is apparently due to Vershik [V], and was further developed in works
of Vershik-Okounkov [V] [OV], Pushkarev [P] and Ram [Ra1] (see also [BR]). In these papers the external
objects (Young tableaux, or abstractions thereof) are applied as an important initial ingredient.

Our approach is different. The idea is, again, to reverse Young theory — but along “Kazhdan-Lusztig
language”. As in Kazhdan-Lusztig theory, we start with a (formal) basis indexed by group elements; de-
composition is compatible with special subsets of the group, called cells. The action is assumed to satisfy a
natural condition, as follows.

Let (W, S) be a Coxeter system, and let K be a subset of W . Let F be a suitable field of characteristic
zero (e.g., the field C(q) in the case of the Iwahori-Hecke algebra of type A), and let ρ be a representation of
(the Iwahori-Hecke algebra of) W on the vector space VK := spanF {Cw |w ∈ K}, with basis vectors indexed
by elements of K. Motivated by goals (a)–(c) above, we want to study the sets K and representations ρ

which satisfy the following axiom:

(A) For any generator s ∈ S and any element w ∈ K there exist scalars as(w), bs(w) ∈ F such that

ρs(Cw) = as(w)Cw + bs(w)Cws.

If w ∈ K but ws 6∈ K we assume bs(w) = 0.

A pair (ρ,K) satisfying Axiom (A) is called an abstract Young (AY) pair; ρ is an AY representation, and
K is an AY cell. If K 6= ∅ and has no proper subset ∅ ⊂ K′ ⊂ K such that VK′ is ρ-invariant, then (ρ,K) is
called a minimal AY pair. (This is much weaker than assuming ρ to be irreducible.)

Surprisingly, Axiom (A) leads to very concrete matrices, whose entries are essentially inverse linear.
Analysis of the construction involves a convexity theorem of Tits [T] and the generalized descent classes
introduced by Björner and Wachs [BW1].

This extended abstract is based on the paper [ABR1]. Main definitions and results of that paper are
surveyed in Sections 2 and 3. A new result on boundary conditions, not yet available in preprint form,
is proved in Section 4. A combinatorial characterization of minimal AY cells and representations for the
symmetric group is given in Section 5. For proofs and more details see [ABR1].

Note Added: Having completed the current version of [ABR1], we have been informed of the important
recent paper [Ra2]. Although it differs from our work in context, initial assumptions, motivation and
language, there are points of contact and similarity in some of the results. In particular, the linear functional
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〈f, ·〉 which appears in the coefficients of a minimal AY pair (see Theorem 3.6 below) is a basic ingredient
in [Ra2].

2. Abstract Young Cells

Recall the definition of AY cells and representations from the previous section.

Problem 2.1. (Kazhdan [K]) Given a subset K ⊆ W , how many nonisomorphic abstract Young repre-
sentations may be defined on VK?

In particular,

Problem 2.2. Which subsets of W are (minimal) AY cells?

Observation 2.3. Every nonempty AY cell is a left translate of an AY cell containing the identity
element of W .

Let T be the set of all reflections in W , and let A ⊆ T be any subset. The (left) A-descent set of an
element w ∈ W is defined by

DesA(w) := {t ∈ A | `(tw) < `(w)}.

For D ⊆ A ⊆ T , the corresponding generalized descent class is

W D
A := {w ∈ W |DesA(w) = D}.

These sets were studied by Tits [T, Ch. 2] and Björner-Wachs [BW1, BW2].
The right Cayley graph X(W, S) has W as the set of vertices, and has a directed edge w → ws whenever

w ∈ W and s ∈ S. A subset K of W is convex in X(W, S) if every shortest path between any two elements
of K has all its vertices in K.

Using [T, Theorem 2.19 ] we prove

Theorem 2.4. Every minimal AY cell is a generalized descent class; in particular, it is convex in the
right Cayley graph X(W, S) (or, equivalently, under right weak Bruhat order).

3. Abstract Young Representations

In [ABR1] it is shown that, under mild conditions (see Theorem 3.1 below), Axiom (A) is equivalent
to the following more specific version.

(B) There exist scalars ȧt, ḃt, ät, b̈t ∈ F (∀t ∈ T ) such that, for all s ∈ S and w ∈ K:

ρs(Cw) =

{

ȧwsw−1Cw + ḃwsw−1Cws, if `(w) < `(ws);

äwsw−1Cw + b̈wsw−1Cws, if `(w) > `(ws).

If w ∈ K and ws 6∈ K we assume that ḃwsw−1 = 0 (if `(w) < `(ws)) or b̈wsw−1 = 0 (if `(w) > `(ws)).

Theorem 3.1. Let (ρ,K) be a minimal AY pair for the Iwahori-Hecke algebra of (W, S). If as(w) =
as′(w

′) =⇒ bs(w) = bs′(w
′) (∀s, s′ ∈ S, w, w′ ∈ K), then Axioms (A) and (B) are equivalent.

This theorem shows that the coefficients as(w) and bs(w) in Axiom (A) depend only on the reflection
wsw−1 ∈ T and on the relation between w and ws under right weak Bruhat order.

The assumption regarding the coefficients bs(w) in Theorem 3.1 is merely a normalization condition.
Thus, in order to determine an AY representation, it suffices to determine the coefficients ȧt and ät (actually,

ȧt will suffice) for all reflections t and to choose a normalization for the ḃt and b̈t. One such normalization
is defined as follows (assuming, for simplicity, that K contains the identity element of W ). Let

TK := {wsw−1 | s ∈ S, w, ws ∈ K},
T∂K := {wsw−1 | s ∈ S, w ∈ K, ws 6∈ K}.

Fact 3.2.
TK ∩ T∂K = ∅.
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The row stochastic normalization satisfies

ȧt + ät = 1− q, ḃt = 1− ȧt, b̈t = 1− ät (∀t ∈ TK);

ȧt ∈ {1,−q}, ḃt = 0 (∀t ∈ T∂K).

Problem 3.3. (Kazhdan [K]) Do the coefficients as(w) determine all the character values?

An (affirmative) answer to this problem, independent of the choice of normalization, will be given
in [ABR3].

It turns out that for simply laced Coxeter groups the coefficients ȧt are given by a linear functional (see
Theorems 3.5 and 3.6 below).

Let V be the root space of W , and let 〈 , 〉 be an arbitrary positive definite bilinear form on V . For a
reflection t ∈ T , let αt ∈ V be the corresponding positive root.

Definition 3.4. Let K be a convex subset of W containing the identity element. A vector f in the root
space V is K-generic if:

(i) For all t ∈ TK,

〈f, αt〉 6∈ {0, 1,−1}.

(ii) For all t ∈ T∂K,

〈f, αt〉 ∈ {1,−1}.

(iii) If w ∈ K, s, t ∈ S, (st)3 = 1 and ws, wt 6∈ K then

〈f, αwsw−1〉 = 〈f, αwtw−1〉.

By Observation 2.3, every abstract Young representation is isomorphic to one on an AY cell containing
the identity element. Therefore, in the following theorems, we assume that K contains the identity element.

Theorem 3.5. Let W be an irreducible simply laced Coxeter group, and let K be a convex subset of W

containing the identity element. Let 〈 , 〉 be an arbitrary positive definite bilinear form on the root space V .
If f ∈ V is K-generic then

ȧwsw−1 :=
1

〈f, αwsw−1〉
(∀w ∈ K, s ∈ S),

together with äwsw−1 , ḃwsw−1 and b̈wsw−1 satisfying appropriate normalization conditions, define a represen-
tation ρ such that (ρ,K) is a minimal AY pair.

For n ∈ Z let

[n]q :=
1− qn

1− q
∈ Z[q, q−1].

Replacing 〈f, αt〉 by its q-analogue [〈f, αt〉]q gives representations of the Iwahori-Hecke algebra Hq(W ).
See [ABR1, Theorem 8.5].

The following theorem is complementary.

Theorem 3.6. Let W be an irreducible simply laced Coxeter group and let K be a subset of W containing
the identity element. Assume that ȧwsw−1 6= 0 (∀w ∈ K, s ∈ S ). If (ρ,K) is a minimal AY pair satisfying
Axiom (B) then there exists a K-generic f ∈ V such that

ȧwsw−1 =
1

〈f, αwsw−1〉
(∀ w ∈ K, s ∈ S).

For an Iwahori-Hecke algebra analogue see [ABR1, Theorem 8.6].
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4. Boundary Conditions

In this section it is shown that the action of the group W on the boundary of a cell determines the
representation up to isomorphism. As this result is not yet available in preprint form, it is given with a
proof.

Definition 4.1. Let W be a finite Coxeter group, and let V be its root space. A basic (affine) hyperplane
in V has the form

Ht,ε := {f ∈ V | 〈f, αt〉 = ε},

where t ∈ T and ε = ±1.
A basic (proper) flat in V is an intersection (other than ∅ or V ) of basic hyperplanes.
For a basic proper flat L, let

A = AL := {t ∈ T |L ⊆ Ht,ε for some ε = ±1}.

Then {W D
A |D ⊆ A} (see Section 2 for the definition of W D

A ) is a partition of W into convex subsets, called
the L-partition of W .

Let f be a K-generic vector in V . Denote by ρf the representation determined by f on K (say with the
row stochastic normalization).

Theorem 4.2. Let W be a finite simply laced Coxeter group. Let L be a basic proper flat in V , and fix
some nonempty convex set K in the L-partition of W . Then, for any two K-generic vectors f, g ∈ L, the
representations ρf and ρg on K are isomorphic.

Proof. Choose f0 ∈ L, and let {f1, . . . , fk} be a basis for the linear subspace L− f0 of V . Each f ∈ L

has a unique expression as

f = f0 + r1f1 + · · ·+ rkfk,

where r1, . . . , rk ∈ R. For any t ∈ TK ∪ T∂K, 〈f, αt〉 is a linear combination of 1, r1, . . . , rk, and is nonzero if
f is K-generic. Thus, for any K-generic f ∈ L and any s ∈ S, each entry of the matrix ρf (s) is a rational
function of r1, . . . , rk; and the same holds for each entry of ρf (w) (∀w ∈ W ) and for the character values
Tr(ρf (w)). Note that the coefficients of these rational functions (unlike the actual values of r1, . . . , rk) do
not depend on the choice of K-generic f ∈ L, even though the set of all such f may be disconnected (see
example below). By discreteness of character values and continuity in a small neighborhood of a K-generic
f ∈ L, each character value is constant in each such neighborhood, and is thus represented by a constant
rational function. It is therefore the same for all the K-generic vectors in L, as claimed.

�

Example 4.3. Take W = S3 = 〈s1, s2〉 (type A2) and the basic flat L = {f ∈ V | 〈f, αs1s2s1
〉 = −1}.

Then A = {s1s2s1}, and we may choose K = {1W , s1, s2}. In that case, TK = {s1, s2} and T∂K = {s1s2s1} =
A. L is an affine line in V ∼= R

2, and the K-generic points in L form five disjoint open intervals (three of
them bounded). For any K-generic vector f ∈ L, ρf is the 3-dimensional representation isomorphic to the
direct sum of the sign representation and the unique irreducible 2-dimensional representation of S3.

5. The Symmetric Group

5.1. Minimal AY Cells. The following theorem characterizes the minimal AY cells in the symmetric
group Sn.

Theorem 5.1. Let K be a nonempty subset of the symmetric group Sn, and let σ ∈ K. Then K is a
minimal AY cell if and only if there exists a standard Young tableau Q such that

σ−1K = {π ∈ Sn| Qπ is standard},

where Qπ is the tableau obtained from Q by replacing each entry i by π(i).
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Proof. First observe that any basic proper flat of the symmetric group contains a vector with integer
coordinates. Combining this observation with Theorem 4.2 and Observation 2.3 allows one to reduce the
discussion to minimal AY cells, containing the identity element, which are determined by integer valued
linear functionals. Theorem 5.2 below completes the proof.

�

For a vector v = (v1, . . . , vn) ∈ F n denote

∆ v := (v2 − v1, . . . , vn − vn−1) ∈ F n−1.

For a (skew) standard Young tableau T denote c(k) := j − i, where k is the entry in row i and column j of
T . Call cont(T ) := (c(1), . . . , c(n)) the content vector of T , and call ∆ cont(T ) the derived content vector (or
axial distance vector) of T .

Let w ∈ W , and let f be an arbitrary vector in the root space V of W . Let

Af := {t ∈ T | 〈f, αt〉 ∈ {1,−1}},

and denote by Kf (w) the generalized descent class containing w, taken with respect to A = Af . If f is
Kf (w)-generic then the corresponding AY representation of W , with any appropriate normalization, will be
denoted ρf (w).

Theorem 5.2. Let f ∈ V have integer coordinates. Then: the cell Kf (1W ) is a minimal AY cell for
W = Sn if and only if there exists a skew standard Young tableau T of size n such that

f = ∆ cont(T ).

Note that the cell Kf (1W ) is the generalized descent class W ∅
Af

(see Section 2). The proof of Theorem 5.2

relies on the following lemmas. The proofs of these lemmas are purely combinatorial, see [ABR1]. Here αij

is the positive root corresponding to the reflection (transposition) (i, j) ∈ Sn (1 ≤ i < j ≤ n).

Lemma 5.3. Under the assumptions of Theorem 5.2, if i < j and 〈f, αij〉 ∈ {0, 1,−1} then w−1(i) <

w−1(j) for all w ∈ Kf (1W ).

Lemma 5.4. Let f ∈ V be an arbitrary vector. The cell K := Kf (1W ) is a minimal AY cell for W = Sn

if and only if, for all 1 ≤ i < j ≤ n:

(5.1) 〈f, αij〉 = 0 =⇒ ∃ r1, r2 ∈ [i + 1, j − 1] s.t. 〈f, αir1
〉 = −〈f, αir2

〉 = 1.

Lemma 5.5. The vector c = (c1, . . . , cn) ∈ Z
n is a content vector for some skew standard Young tableaux

if and only if for all 1 ≤ i < j ≤ n

(5.2) ci = cj =⇒ ∃ r1, r2 ∈ [i + 1, j − 1] s.t. cr1
= ci + 1 and cr2

= ci − 1.

5.2. Minimal AY Representations of Sn. A direct combinatorial bijection between elements of
minimal AY cells and standard Young tableaux follows from Theorem 5.2. This is used to prove the following
result.

Theorem 5.6. The minimal AY representations of the symmetric group Sn are exactly the skew repre-
sentations, i.e., the representations determined by Young symmetrizers of skew shape. In particular, every
irreducible representation of Sn may be realized as a minimal abstract Young representation.
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