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Abstract. We show that the sequence of first order linear difference equations generated by Zeilberger’s
algorithm can be described recursively. Each of these difference equations induces a system of linear alge-
braic equations and the mentioned recurrent relations can be utilized so that the values computed during
the investigation of the J-th system can be used to accelerate the investigation of the (J+1)-th system. An
implementation of this result and an experimental comparison between this implementation and an imple-
mentation of the original Zeilberger’s algorithm are also done.
Résumé. Nous montrons que la suite des équations linéaires aux différences du premier ordre produites par
l’algorithme de Zeilberger peut être décrite de façon récursive. Chacune de ces équations aux différences in-
duit un système d’équations linéaires algébriques et les dites relations de récurrence peuvent être employées
de façon que les valeurs calculées pendant l’analyse du J-ème système puisse être utilisées pour accélérer
l’analyse du (J+1)-ème système. Nous faisons aussi une implantation de ce résultat et une comparaison
expérimentale de cette implantation et de l’implantation originale de l’algorithme de Zeilberger.

1. Introduction

Zeilberger’s algorithm, named hereafter as Z , has been shown to be a very useful tool in a wide range
of applications. These include finding closed forms of definite sums of hypergeometric terms, certifying large
classes of identities in combinatorics and in the theory of special functions [Z91, PWZ].

For a hypergeometric term (or simply a term) F (n, k), Z tries to find

(1.1) A0(n), . . . , AJ(n) ∈ K(n), AJ (n) 6= 0,

and a term S(n, k) such that

(1.2) AJ (n)F (n+J, k) + · · ·+A0(n)F (n, k) = S(n, k+1)− S(n, k).

The algorithm uses an item-by-item examination on the values of J . It starts with the value of 0 for
J , and keeps on incrementing J until it is successful in finding the A0, . . . , AJ and S(n, k) such that (1.2)
holds. For a particular value of J under investigation, Z constructs a system of linear algebraic equations
whose coefficients are in K(n), and its right hand side linearly depends on parameters A0, . . . , AJ . It then
checks for the existence of (1.1) such that the linear system is consistent (see [Z91, PWZ] for details). This
operation is expensive if the value of J is large.

While the problem of applicability of Z to a term has been completely solved [A03], the issue of efficiency
is still an on-going work. For the case where the input term is also a rational function, there is a direct
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algorithm [L03] which avoids the item-by-item examination strategy. For the non-rational hypergeometric
case, even though there is an algorithm which computes a non-trivial lower bound J0 for J [AL02], Z still
wastes resource on the fruitless examination at steps J0, J0 + 1, . . . , J − 1.

The examination done at each step is independent of that at other steps. However, there are relationships
between two consecutive steps, and it would be logical to try to utilize them. It is shown in this paper that
after we considered the system corresponding to step J and found that it is not consistent, we can use some
intermediate results of this step in order to either reduce the size of the linear system at step (J+1) or
simplify this system. In this context, “simplify” means the elimination of the parameters A0, . . . , AJ in a
number of equations of the (J+1)-th system.

Throughout the paper, K is a field of characteristic zero, N is the set of nonnegative integers. En, Ek

denote the shift operators w.r.t. n and k, respectively, defined by EnF (n, k) = F (n + 1, k), EkF (n, k) =
F (n, k + 1).

The basic idea of this work was presented in our poster at FPSAC 2003 [AL03]. In this paper, this idea is
further extended. The derivation of the relationships between two consecutive steps is significantly simplified.
A complete Maple implementation and an extensive experimental comparison with an implementation of
the original Zeilberger’s algorithm are added.

The Maple source code, the help page, and the test results reported in this paper are available, and can
be downloaded from

http://www.scg.uwaterloo.ca/~hqle/code/Linsys/Linsys.html.

2. Step-by-step examination in Z

2.1. Reduction to a linear algebra problem. For a term F (n, k) and for a particular value of J ∈ N,
set

(2.1) TJ(n, k) = AJ (n)F (n+ J, k) + · · ·+A1(n)F (n+ 1, k) +A0(n)F (n, k).

Z attempts to compute the Ai’s ∈ K(n) in (2.1) and a term S such that (1.2) holds. Since F is a term, TJ

is also a term [Z91]. This allows Z to use Gosper’s algorithm [G77] to attain its goal. Given the term TJ

in (2.1), Gosper’s algorithm determines if there exists a term SJ such that

(2.2) TJ = (Ek − 1)SJ ,

and computes SJ if it exists. The algorithm transforms (2.2) into the problem of computing a polynomial
solution of a first-order linear recurrence equation with polynomial coefficients and polynomial right hand
side (2.4). The process can be summarized as follows.

(1) Compute a PNFk (also known as Gosper form) of the rational k-certificate TJ(n, k + 1)/TJ(n, k).
This results in a triple (aJ , bJ , cJ), aJ , bJ , cJ ∈ K(n)[k] \ {0} such that

(2.3)
TJ(n, k + 1)

TJ(n, k)
=
aJ

bJ
·
EkcJ
cJ

, gcd(aJ , E
h
k bJ) = 1 for all h ∈ N.

See [PWZ] for a description of such a construction.
(2) Find a polynomial solution y(k) of the linear recurrence

(2.4) aJ(k) y(k + 1)− bJ(k − 1) y(k) = cJ(k)

provided that such a solution exists.

If it does, then set

LJ = AJ (n)EJ
n + · · ·+A1(n)En +A0(n),(2.5)

SJ =
bJ(k − 1) y(k)

cJ(k)
TJ .(2.6)
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The computed Z-pair (LJ , SJ) defined in (2.5) and (2.6) is the output from Z . The recurrence operator LJ

is called a telescoper for the input term F .
The search for a polynomial solution y(k) of (2.4) can be done using the method of undetermined

coefficients. First one computes an upper bound d for the degree of the polynomial y(k). Then one substitutes
a generic polynomial of degree d for y(k) into (2.4), equates the coefficients of like powers in k. This results
in a system of linear algebraic equations. The problem is reduced to determining if this linear system is
consistent. If it is, then compute a solution of the system. Note that this enables one to compute not only
a polynomial solution y(k) in (2.4), but also the unknowns Ai’s in (2.1).

2.2. Simplificators and the J-increment of a system. The system of linear algebraic equations at
step J is of the form

(2.7) MJ xJ = uJ

where MJ is a ν × κ matrix whose entries are in the field K(n), and uJ is a column vector where each of its
ν entries is in the K(n)-linear space U and of the form

(2.8) R0A0 + · · ·+RJAJ , R0, . . . , RJ ∈ K(n).

We call the system (2.7) a J-parameterized system. If it is consistent, then the system is said to be J-solvable.
The following definition provides important concepts used in this paper.

Definition 2.1. For a J-parameterized system S of the form (2.7), a column vector yJ ∈ Uκ is a
simplificator of S if the first entry of uJ −MJ yJ is zero. The height of yJ is the number of all initial entries
of uJ −MJ yJ each of which equals zero. The J-increment of S is the number of all initial entries of uJ

which do not depend on A0, . . . , AJ−1.

Suppose the recognition of the J-solvability of system (2.7) is done by an elimination process. During
this process we can get an equation of the form

(2.9) 0 = R̃0A0 + R̃1A1 + · · ·+ R̃J−1AJ−1 + R̃JAJ , R̃i ∈ K(n).

Such an equation is called trivial if R̃0 = · · · = R̃J = 0; irregular if (R̃0 = · · · = R̃J−1 = 0 and R̃J 6= 0) or if

(R̃1 = · · · = R̃J = 0 and R̃0 6= 0); and regular otherwise. The existence of an irregular equation implies that
the system is not J-solvable.

Although the equations might change their orderings during the elimination process, we assign to each
equation a label which is the number of this equation in the original system, and hence are still able to
keep track of its position. The process results in two systems W and V : W is a trapezoidal system of
regular equations; and the equations of V are those obtained during the elimination process, but not of the
form (2.9).

If W is consistent with AJ 6= 0, A0 6= 0, then the original system is J-solvable. Otherwise, it is not
J-solvable, and we can construct a simplificator of the system as follows.

(i) Find the maximal N such that equations labeled 1, . . . , N are in V ;
(ii) For all i = 1, . . . , N , the unknown xi was eliminated by an equation with label j, 1 ≤ j ≤ N .

This results in a system V ′, a subsystem of V and consisting of equations labeled 1, . . . , N . The vector
(x1, . . . , xN , 0, . . . , 0)T is evidently a simplificator of height ≥ N of the original system.

3. A simplification scheme

3.1. Relationships among J-parameterized systems. Let F (n, k) be the input term. At step J of
the item-by-item examination, Z tries to compute a telescoper LJ of the form (2.5) for F . The k-certificate
(EkTJ)/TJ of the term TJ(n, k) = LJ F can be written in the form

(3.1)
vJ (n, k)

wJ(n, k)
=
ϕJ (n, k)

ψJ (n, k)

pJ(A0, . . . , AJ , n, k + 1)

pJ(A0, . . . , AJ , n, k)
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where vJ , wJ ∈ K[n, k]; ϕJ (n, k), ψJ (n, k) ∈ K[n, k] and do not depend on A0, . . . , AJ ; pJ is in the K(n, k)-
space of linear forms in A0, . . . , AJ .

Let s1(n, k), s2(n, k) be relatively prime polynomials such that

F (n, k)

F (n− 1, k)
=
s1(n, k)

s2(n, k)
.

Then we can derive the following recurrences:

pJ+1(A0, . . . , AJ+1, n, k) = pJ(A0, . . . , AJ , n, k) s2(n+ J + 1, k) +

AJ+1

J+1
∏

i=1

s1(n+ i, k),(3.2)

ϕJ+1(n, k) = ϕJ (n, k) s2(n+ J + 1, k),(3.3)

ψJ+1(n, k) = ψJ(n, k) s2(n+ J + 1, k + 1).(3.4)

(They are similar to (6.3.6)–(6.3.8) in [PWZ].) Let

(3.5) PNFk

(

ϕJ

ψJ

)

=
aJ(k)

bJ(k)

ξJ (k + 1)

ξJ(k)
.

It follows from (3.3), (3.4) and (3.5) that

aJ(k) = a0(k)
s2(n+J, k) · · · s2(n+1, k)

s2(n+J, k + 1) · · · s2(n+1, k+1)

ξ0(k+1)

ξ0(k)

ξJ (k)

ξJ (k+1)

bJ(k)

b0(k)
.(3.6)

Let a, b be polynomials in k. Define

Ga(k),b(k) = a(k)Ek − b(k − 1).(3.7)

By (3.6) and (3.7), we obtain the following theorem which shows the relationsips between GaJ (k),bJ (k) and
GaJ+1(k),bJ+1(k).

Theorem 3.1. The operators GaJ (k),bJ (k) and GaJ+1(k),bJ+1(k) for J ∈ N are related by the following
recurrence:

(3.8) GaJ (k),bJ (k) =
ξJ (k)

s2(n+J+1, k)ξJ+1(k)
GaJ+1(k),bJ+1(k) ◦

s2(n+J+1, k)ξJ+1(k)bJ (k−1)

ξJ(k)bJ+1(k−1)
.

3.2. Polynomial simplification. At step J of the item-by-item examination, it follows
from (2.4) and (3.7) that the recurrence

(3.9) GaJ (k),bJ (k)y(k) = cJ(k)

where cJ(k) = ξJ (k)pJ (k), J ∈ N, is considered. By (3.2)

(3.10) cJ+1(k) =
ξJ+1(k)

ξJ (k)
s2(n+ J + 1, k)cJ(k) + ξJ+1(k)AJ+1

J+1
∏

i=1

s1(n+ i, k).

If the right hand side cJ(k) of the J-th recurrence (3.9) is simplified by means of a polynomial fJ(k), then
it gets transformed to c′J(k) where

(3.11) c′J(k) = cJ (k)−GaJ (k),bJ (k)fJ(k), degk cJ > degk c
′

J .

It follows from (3.2), (3.8) and (3.11) that if we replace cJ(k) by c′J(k) in the right hand side of (3.10), then

the first term ξJ+1(k)
ξJ (k) s2(n+ J + 1, k)c′J(k) of this right hand side equals

ξJ+1(k)s2(n+J+1, k)pJ(k)−GaJ+1,bJ+1

s2(n+J+1, k)ξJ+1(k)bJ(k−1)

ξJ(k)bJ+1(k−1)
fJ(k).
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This induces the change of cJ+1(k) by c̃J+1(k) where

(3.12) c̃J+1(k) = cJ+1(k)−GaJ+1,bJ+1

s2(n+ J + 1, k)ξJ+1(k)bJ (k − 1)

ξJ(k)bJ+1(k − 1)
fJ(k).

Once a polynomial gJ+1(k) is found such that for

c′J+1(k) = c̃J+1(k)−GaJ+1,bJ+1
gJ+1(k),

we have degk c
′

J+1 < degk cJ+1. Then the right hand side cJ+1(k) of the (J+1)-th recurrenceGaJ+1(k),bJ+1(k)y(k) =
cJ+1(k) will be simplified by means of the polynomial fJ+1(k) where

fJ+1(k) =
s2(n+ J + 1, k)ξJ+1(k)bJ (k − 1)

ξJ(k)bJ+1(k − 1)
fJ(k) + gJ+1(k).

Let degk cJ − degk c
′

J = HJ > 0. Let the two terms in the right hand side of (3.10) be R and S, i.e.,

R =
ξJ+1(k)

ξJ(k)
s2(n+ J + 1, k)cJ(k), S = ξJ+1(k)AJ+1

J+1
∏

i=1

s1(n+ i, k).

Note that S is independent of A0, . . . , AJ . By comparing the degrees of R and S in (3.10), we obtain the
following theorem which reflects changes to the (J+1)-system because of the replacement of cJ by c′J .

Theorem 3.2. Suppose it is recognized that the J-system of the form (2.7) is not J-solvable, and that a
simplificator yJ(k) of height HJ > 0 for this system is computed.

(1) degk S > degk R: let σJ , σJ+1 be the J-increment of the J-system, and the (J+1)-increment of the
(J+1)-system, respectively. Then

σJ+1 = degk S − degk R+ max{HJ , σJ},

i.e., if HJ > σJ then the (J+1)-increment of the (J+1)-system is increased, and we have a simpler
(J+1)-system;

(2) degk S ≤ degkR: the degree of cJ+1 w.r.t. k is decreased by min{HJ , degk R− degk S}. This leads
to a system of linear algebraic equations of smaller size to be solved.

4. Implementation

We implemented the result of this paper in the computer algebra system Maple [M], and performed
experiments of our program (calledM) on four different sets of data. A comparison between this implementa-
tion and the one of the originalZ (called Z) in Maple 9 (the function Zeilberger in the SumTools:-Hypergeometric
module) was also done. Note that the development of M is based on Z.

The result shows that it is worthwhile incorporating the simplification scheme presented in this paper
into Z .

Experiment 1. The first set of input consists of seven hypergeometric terms

Ti(n, k) =

(

2n

2 k

)i

, 2 ≤ i ≤ 8.

Table 1 shows the time and space requirements1. ordLi indicates the order of the computed minimal
telescoper Li of the input term Ti.

Each input term in the following three sets of data is an r-term [A03]. Since every hypergeometric term
is conjugate to an r-term, i.e., they share the same rational certificates, and since Z in principal only works
with the certificates of the input term, the sets of data we use can be considered to cover all possible forms
of input hypergeometric terms.

1All the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with 1Gb RAM.
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Table 1. First experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

2 2 0.54 0.54 2,977 2,959
3 3 3.57 2.81 18,168 15,335
4 4 31.24 23.35 179,221 132,859
5 5 199.40 142.13 1,021,542 762,488
6 6 1,523.86 1,242.03 6,429,441 4,902,558
7 7 8,563.81 6,205.83 28,326,178 18,530,142
8 8 42,122.52 36,917.47 92,161,603 66,414,167
Total time 52,444.94 44,534.16

Experiment 2. The second set of tests consists of twenty randomly-generated hypergeometric terms
each of which is of the form

Ti(n, k) =
1

(ai n+ bi k + ci)!
, −15 ≤ ai, bi, ci ≤ 15, |bi| ≥ 6.

Table 2 shows the time and space requirements.

Table 2. Second experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

1 3 1.05 0.72 5,722 4,176
2 5 19.43 19.58 98,068 105,292
3 6 116.98 91.04 561,628 552,879
4 8 196.16 118.29 787,282 675,806
5 3 7.58 7.02 54,561 53,492
6 6 15.23 14.45 79,553 70,003
7 8 34.68 16.30 173,941 105,203
8 3 1.99 1.46 10,592 9,270
9 10 3,163.60 1,369.30 7,799,715 5,418,995
10 6 79.05 65.70 342,584 287,447
11 15 14,558.05 4,568.70 23,774,518 14,933,116
12 13 4,503.45 3,226.63 10,566,736 10,922,477
13 7 29.58 31.93 170,337 177,498
14 5 166.36 155.62 693,555 761,711
15 7 5.90 5.38 29,689 27,090
16 11 2,456.17 1,402.33 6,576,152 5,966,455
17 3 17.33 15.53 92,278 101,312
18 3 3.04 4.16 30,133 32,015
19 13 133.53 95.87 640,949 536,200
20 3 10.79 10.66 61,675 56,596
Total time 25,519.95 11,220.67
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Experiment 3. The third set of tests consists of twenty randomly-generated hypergeometric terms each
of which is of the form

Ti(n, k) =
(ai1n+ bi1k + ci1)

(ai3n+ bi3k + ci3)

(ai2n+ bi2k + ci2)!

(ai4n+ bi4k + ci4)!

where −5 ≤ aij , bij , cij ≤ 5, 1 ≤ j ≤ 4. Table 3 shows the time and space requirements.

Table 3. Third experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

1 7 251.94 213.26 1,149,488 1,105,805
2 6 362.69 259.91 1,744,877 1,258,468
3 2 0.89 0.78 4,529 4,184
4 6 41.57 31.33 214,770 180,945
5 4 21.26 13.89 106,702 72,569
6 8 261.54 185.26 1,426,237 902,509
7 6 87.39 49.76 449,139 285,798
8 5 98.97 63.83 527,146 308,765
9 9 740.47 708.66 3,580,681 3,488,491
10 5 5.36 4.39 24,382 22,782
11 2 0.70 0.58 3,661 3,380
12 5 61.74 48.81 301,470 251,228
13 4 14.08 11.54 76,225 67,605
14 8 1,191.93 1,098.12 5,615,755 5,450,072
15 8 2,424.06 2,157.03 9,813,850 9,280,051
16 8 1,470.97 1,185.56 7,071,945 5,827,483
17 7 1.60 1.51 7,987 7,864
18 1 0.71 0.52 3,966 3,093
19 6 180.37 145.82 778,584 673,263
20 5 7.88 7.74 43,221 39,400
Total time 7,226.12 6,188.30

Experiment 4. The fourth set of tests consists of twenty randomly-generated hypergeometric terms
each of which is of the form

Ti(n, k) =
(ai1n+ bi1k + ci1)! (ai2n+ bi2k + ci2)!

(ai3n+ bi3k + ci3)! (ai4n+ bi4k + ci4)!

where −6 ≤ aij , bij , cij ≤ 6, 1 ≤ j ≤ 4. Table 4 shows the time and space requirements.
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