Let m € N, Z,, = Z/mZ be the set of the residues
modulo m. If p is a prime, then Z, is a field of order p.
Let Z; = Z, \ {0} be the set of invertible elements in Z,.
For brevity, we will write a = b instead of a = b( mod p).

If x is a binary operation in a ring R (Z, or C) on
Ly, A, B C 'R, then we denote

AxB={axb: aec Abec B}.

P. Erdos and E. Szemerédi asked the following ques-
tion.

Problem 2.9. Is it true that for every nonempty finite
A CZ and for every e >0

max(|A + A, [AA[) >, [A]*7=7
They proved that for some o > 0
(2.30) max(|A + A, |AA]) > |A]'T

M. Nathanson established (2.30) for « = 1/31. This
value was being improved by K. Ford, G. Elekes. J. Soly-
mosi proved (2.30) for & = 3/11 — ¢ with an arbitrary
e > 0; moreover, (2.30) is true for any nonempty finite

A c C.



It was naturally to ask if (2.30) holds for Z,, but
it was clear that it could not hold in full generality:
indeed, for A = Z, we have A+ A = AA = A. But
it was reasonable to conjecture the validity of (2.30) for
small A, say, |A| < p'/2.

Unfortunately no existing proofs of (2.30) for integer,
real or complex numbers could be used for Z,. The
assistance came from Algebra and Measure Theory.

G. A. Edgar and C. Miller gave a very elegant solution
to an old problem by proving that a Borel subring of R
either has Hausdorff dimension 0O or is equal to R. Using
their technique, among other deep ideas, J. Bourgain,
N. Katz, and T. Tao in the beginning of 2003 proved
the following.

Theorem 3.1. For any o > 0 there exists € > 0 such
that for any A C Z, with p° < |A| < p'=° we have

(3.1) max(|A + A, |AA]) > |A|*Te.

Actually, it is not difficult to see from the proof that
one can write

max(|A + A|,|AA|) > |Alp®

for pt/2 < |A] < p'—9.
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In the paper of J. Bourgain and SK (3.1) was im-
proved for small A.

Theorem 3.2. There exists ¢ > 0 such that for any
nonempty A C Z, with |A| < p*/? we have

(3.2) max(|A + A, |AA|) > |A|*Te.

Another, more important, result of that paper, was
related to exponential sums over subgroups.

We take an arbitrary subgroup G of the group Zj.
Let t = |G|. For u € R we denote e(u) = exp(2mwiu).
The function e(-) is 1-periodic, and this allows us to
talk about e(a/p) for a € Z,. We denote

S(a,G) = Z e(azx/p).

rzelG

The following result has been established.
Theorem 3.3. For any o > 0 there exists € > 0 such
that for any G with |G| > p° we have

(3.3) max

aEZ;

‘9(a7(;ﬂ <<5\(;ﬁf_€-



The proof of Theorem 3.3 uses the estimates in the
sums— products problem. It suffices to use Theorem
3.1; using Theorem 3.2 gives

e = exp(—(1/6)°)

with an absolute constant C.
Now we will discuss the proof of Theorem 3.2. Denote

I(A) = {CLl(CLQ — ag) + (I4(CL5 — a6) OPIS A}

We proved the following estimates for |I(A)|.
Theorem 3.4. If |A| > /p then |I(A)| > p/2.
Theorem 3.5. If 0 < |A| < /p then

(3.4) [T(A)] x |A— A > |A]?/2.
Take any element ag € ANZy. For any b € A— A we
have agb € I(A). Therefore, |[(A)] > |A— A|, and (3.4)

implies

(3.5) I(A)| > |APP*
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Now we comment how to get Theorem 3.2 from (3.5).
first, observe that

I(A) C AA— AA+ AA — AA,
and (3.5) implies
(3.6) AA — AA+ AA — AA| > |A]P/4
Combining Lemma 2.4 and Lemma 2.2 from the paper

of Bourgain, Katz, Tao, we have the following result
(Katz, Tao, Nathanson, Ruzsa).

Lemma 3.6. There exist an absolute constant C > 0
such that if

max(|A + A|, |AA|) < KA,
then there exists a set A" C A such that
A’ > CTK~C)A
and

AA —AA +AAN - AA| < CKC|A.



It is easy to see from Lemma 3.6 that if we take
|A‘ Spl/Q, K — Oz|A‘1/(5c),
then
JATA" — ATA + ATA — A'A'| < BIAT|P/4,

where 3 is small if « is. But the last inequality does not
agree with (3.6). This shows that

max(|A + A, |[AA|) > |A|1T/ 6O

if |A] < pl/2.
For § € Z, we denote

Se(A) :={a+0b:a,be A}

To prove estimates for |I(A)| we need some Lemmas.

Lemma 3.7. Let £ € Z,. Then the condition
(3.7) Se(A)] < |A[*

18 equivalent to existence of ay,as,as,as from A such
that as # aq and £ = (a1 — a3)/(ag — a2).



Proof. Since the number of sums a; + £ay with

ai,az € Ais |A]? > |S¢(A)[, then (3.7) is equivalent to
existence of a1, as, as, ag such that as # a4 and

a1 + Eas = a3z + Eay as required.

Lemma 3.8. Let £ € Z, and (3.7) hold. Then

[1(A)] = |Se(A)].

Proof. By Lemma 3.7, there exist a1, as, az, ag such that
a1 — a3z = &(aqg — az). Now for any a’,a” € A we get

(@' +&a")(ag —az) = d’'(ag — az) +a’ (a1 — a3) € I(A)

showing that (a4 — a2)Se(A) C I(A).

Lemma 3.9. For any H C Z, there exists £ € H such

that ,
|Al*|H|

A2 +[H|

[Se(A)] =

Proof. Set

ve(b) = |{(a1,a2) : a1,a2 € A,b= a1 + £az}l,



so that, by Cauchy—=Schwartz inequality,

Therefore,

|A[* < |Se(A)| x [{(a1, a2, a3,a4) : a1 + Eas = az
+aa}| = [Se(A)|(JAF + N), N = [{(a1,a2,a3,a4) :
az Z ag,a1 +8az = az + §aa}l.

(We consider that all a; € A.) Summing up over all £ €
H and taking into account that for any a1, as,a3,a4 € A
with ao # a4 there exists at most one ¢ € H satisfying
a1 + Eas = a3 + Eay, We obtain

A[H| < max [Se(A)|(JAF*|H| + A[)

as required.
Theorem 3.4. If |A| > \/p then |I(A)| > p/2.

Theorem 3.4 is immediate from Lemmas 3.8 and 3.9:
choose H = Z, and notice that if |A|* > p then
IS¢ (A)| < p < |AJ? for any & and



ARIH] A%
= n/2.
AP+ H]  2AR =Y

Estimate (3.4) from Theorem 3.5

(3.4) T(A)| x |A— A| > |A|?/?

was improved by A. Glibichuk.
Theorem 3.10. If0 < |A| < /p then

(3.8) T(A)| > |A]*/2.

It is easy to see the gap between Theorem 3.4 and
Theorem 3.5 (or 3.10): if |A] > ,/p then we prove that
[ I(A)| > p/2, but if |A| is close to /p/2 then we know
only that |I(A)| > p3/*. The proof of Theorem 3.4 can
be interpreted as the using of the observation that for
|A| > /p we have (A—A)/(A—A) = Z,, but for smaller
values of |A| we do not have satisfactory lower estimates
for (A — A)/(A — A)|. It would be interesting to know
if (3.8) can be replaced by

(3.9) [I(A)] > |A]°.

It is not difficult to show that (3.9) holds for A C C.
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To prove Theorem 3.10, we can consider that
ACZy, |Al>2.

We take
w:=2|A]*/(9]AA|),

R:={s€Z,:|{(a,b):a,b€ A s=a/b}| > u}.

We observe that 1 € R since u < 2|A|?/(9]4]) < |A].
Define G as the multiplicative subgroup of Z generated
by R. Also, let

A—A
Fi=—— H=FG.
A—A’ G

Recall that
Se(A) :={a+0b:a,be A}

Lemma 3.11. There exists £ € H such that

min (|Alu, |A]*|H|/(|A]* + |H|))
(3.10) < [Se(A)] < AP,

Proof. We consider two cases.
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1. Case 1: RF # F. Thus, there exist r € R and
¢ € F such that h = r¢& ¢ F. Clearly, h € H. By
Lemma 3.7,

(3.11) [Sn(A)| = [AF, [S:(A)] < |A]*.

Thus, the elements a+bh, a,b € A are pairwise distinct.
Denote

A.={be A:b/r € A}

We have |A,| > u because r € R. By our supposition on
h, all the sums a+b& =a+b(h/r) =a+ (b/r)h, a € A,
b € A,, are distinct. Therefore, S¢(A) > |A|u. Taking
into account (3.11) we get (3.10).

2. Case 2: RF = F. By definition of the group
(GG, we conclude that FF = GF = H. By Lemma 3.7,
IS¢ (A)| < |AJ? for every £ € H, and (3.10) follows from
Lemma 3.9.

Notice that
[AP|H|/(JA]® + |H|) > min(|A]? /2, |H|/2).

Thus, by Lemmas 3.9 and 3.11,
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[1(A)| > [Se(A)| > min (|Afu, [A]*[H|/(|A]* + |H]))
(3.12) > min(2|A[}/(9]AA|), |A|?/2, |H|/2).

The inequality |I(A)| > |A|?/? obviously holds if
[I(A)] > |AJ?/2. Next, observe that

AA — AA C I(A).
Indeed,
a1 — aslyqg = (11(&2 — (13) + (13(&1 — (14) S I(A)

Hence,

T(A)| > |AA — AA| > |AA].

Therefore, in the case |I(A)| > 2|A|?/(9|AA|) we again
have [I(A)] > |A]’/2. It remains to settle the case
[I(A)| > |H|/2. So, it is enough to prove that

(3.13) H| > |A]P/2
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Lemma 3.12. There is a coset G1 of G such that

(3.14) ANGy| > |A|/3.

Proof. Assume the contrary. Let A;, As,... be the
nonempty intersections of A with cosets of GG. Take a
minimal k£ so that

k
) 4| > 14]/3
=1
and denote
k
A =4, A"=A\4.
1=1

We have |A’| > |A|/3. On the other hand,

k—1
41 < | A + 14l < 21413

1=1

Hence, |A|/3 < |A’| < 2|A|/3 and

(3.15) A/ x |A"] = |A|(JA] - |A"]) > 2|A]/9.
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Denote for s € Z;
f(s):={(a,b):ac A", be A", a/b = s}.

Note that ifa € A", b € A” then a/b ¢ G and, therefore,
a/b & R. Hence, for any s we have the inequality
f(s) < 2|A]?/(9]A - A]). Thus,

S s)? < 245 5
seF'* a 9‘AA’ secF'*
~ 2|AP|A| x |A”]
B 9|AA ‘

(3.16)

Denote for s € Z;
g(s) :={(a,b) :ac A", be A" ab = s}.
By Cauchy—Schwartz inequality,

<Z g(S)) < [AA] ) g(s)*.

secF

Therefore,
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}:QGV>(>29®0 /IAA]

seEF'™* SEF
(JA"] x |A"])?
[AAl

(3.17) =

Now observe that both the sums . f(s)? and
> eep 9(s)? are equal to the number of solutions to
the congruence a’af = abay, a’,ay € A, a,a € A",

Thus, comparing (3.16)

2|AP[A] x |A"
3.16) f(s)? <
( 2; (s) O[AA

and (3.17) we get
A’ > |A"] < 2|A[F/9.

But the last inequality does not agree with (3.15), and
the proof is complete.
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We take a coset G; of GG in accordance with Lemma
3.12. Fix an arbitrary g; € GG;. Let

B:={beG: ¢g1be A}.
We have
g1 B=ANGy, ‘B‘:‘AﬂGl‘ZL/‘H/B

Now we use the supposition |A| < ,/p and Corollary 2.7.
Corollary 2.7. Let B C G and 0 < |B| < p'/2. Then

(2.20) |G(B — B)| > |B|*/2.
Therefore,
(3.18) IG(B — B)| > |A]?/2.

Fixing distinct aq,a2 € A, we have

|G(B—B)|=|G(ANG: —ANGy)| < |G(A - A)
= |G(A = A)/(a1 —a2)| < |G(A = A) /(A= A)| = |H|.
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So, using (3.18), we get
(3.13) H| > |A]P/?,

and this completes the proof of Theorem 3.10.
Now let us turn to estimates for exponential sums.

Theorem 3.3. For any o > 0 there exists € > 0 such
that for any G with |G| > p° we have

(3.3) géazzg

S(a,G)| <5 |Glp~°©.

As the proof is quite long and technical, I can give
only a very short sketch now.

Recall, that by Tx(G) we denote the number of solu-
tions to the congruence

T+ +Tg =Y1+- T Yk, wla"'amkayla"wyk€G°

Our aim is to show that the following inequality holds

for some k < k(6) and C' = C(6):
(3.19) T.(G) < C|G|**p~ 09,

We have seen that for large p one can deduce (3.13) from
(3.19) sums using the inequality
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Va € Z < (pTW(G)?)V/2¥ |G| =27k,

Of course, the number 0.6 in (3.19) can be replaced by
any number greater than 1/2.
The main part of the proof is the following Lemma.

Lemma 3.13. There exists an absolute positive con-
stant B satisfying the following property: for some C =
C(6) and any k > k() there exists k' < k3 such that

T (G)|G72* < (T1(G)|G| 291
or ,
Tk/(G) < C‘G|2k p—0.6.

Starting with some kg > k(6), using the trivial in-
equality
Ti (G) /|G < |G|

and iterating Claim 1 we get (3.19) for k£ < k(6) with
some computable k(9).
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For the proof of Lemma 3.13, we take k" as the largest
power of 2 not exceeding k?. Denote

p=Ti(G)|G|~**

and assume that

(3.20)
Tk/(G)lG‘_Qk/ . 101+/87 Tk/(G)|G‘_2k/ ~ Cp_O'G.

Our aim is to show that for some 3 > 0 (3.20) cannot
hold for large p, and this will prove Lemma 3.13.
Denote

> elaz/p)

zelG

A:{aEZp: 2|Gp1/k3}.

Using (3.20), it is easy to show that
Al +1>ppttP, |A]+1 > p°L

For an even positive integer k and y € Z, let Bi(G,y)
be the number of solutions to the congruence

x1—To+ -+ T 1 —TE=yY, x1,...,25 € G.
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Now observe that

> elaz/p)
xeG
k/2 k/2
= > 6(%‘/19)) (Z 6(@56/19))
reG zed

= Z e(a(xy —x2 + -+ +Tp—1 — Tk)/P)

=Y Br(G,y)e(ay/p).

Yy

Hence, for any a € A we have

(3.21) D Bi(G.y)elay/p) = |G*p~ /"

This is close to the trivial upper bound

Y Bi(G,y)e(ay/p) <> Bi(G,y) =|GI".

By w we denote any function on p satisfying inequality
2
w > p~ ¢k we allow w and C to change line to line.
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We can choose sets Y7, A1 C A so that for Y/ = Y7,
A = A,

(3.22) A > wlAl,
(3.23)
Y Br(Gy)elay/p)| = U = w|G|* (a € A"),
yey’
: ] < .

Let us say that Y’ is GOOD, if conditions (3.22)—(3.24)
are satisfied for some A’. So, Y7 is GOOD. Moreover,
we shall say that Y’ is HEREDITARILY GOOD if for
any Y C Y’ we have

Y//
ac A : Z Bi(G,y)e(ay/p)| > 2|\Y’||U

er”

Y
>
— Y

|A'].
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Both sets Y/, Y" are supposed to be invariant under
multiplication by G and —1.

We do not claim that Y7 is HEREDITARILY GOOD.
But it is not difficult to show that Y7 contains a HERED-
ITARILY GOOD subset Y5 (|Y2| > w|Y1|). Denote

Y-
Ao =<a€ A : Z Br(G,y)e(ay/p)| > 2‘|;‘|U
yeYy 1
So, for all a € Ay we have
Yo
(3.25) Y Bi(G,y)e(ay/p)| = U
YyeY]

Next step in the proof is to deduce from (3.25) that, if
k is a power of 2, then

Z Z Br(G,y)e(a(xy —x2 + -+ — xk)y/p)

L1yeeny rreEG YEYs

> ey, Br(G y)e(azy/p)\ "
: )

> \G|’“V<

where V = > Br(G,y).

yeYo
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The last inequality implies

> 2 Bi(G.2)Bu(G,y)e(axy/p) > U'|H|**

wEZp yeYs

for all a € Ay, where

Similarly to the choice of Y7 one can choose X7, A3 C A,
so that
[As| > w|Aq],

Y > Bi(G,z)By(G,y)e(axy/p)

reX1 yeYs
(3.26) > wU'|H|**  (a € A3),

min By(G,x) < max B (G, x)/2.
re Xy reXq



24

Setting z = xy we can rewrite the left-hand side of
(3.26) as

> P(2)e(az/p)|,

2€Lyp

where

P)= S BulG,a)Bu(G.y).

z=xy,
r€X1,Y€Y>

Using (3.26) and the identity

pY (P(2))*= > |> P(2)elaz/p)| ,

2€Lyp a€ly |z€2Lp

we can estimate Zzezp(P(Z))Q from below; this gives

a lower bound for the number of the solutions to the
congruence

T1Y1 = TaY2, X1,T2 € X1, Y1,Y2 € Yo.

This, in turn, implies the estimate for the number N of
the solutions to the congruence

(3.27) Y1Y2 = YsYs, Y € Y.
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We show that
N > p2ﬁp_c/k|Y3‘3.

Recall that
p=Ti(G)|G|*"

and (3 is a small fixed positive number.
Now we can use the Balog—Szemeredi—Gowers the-
orem claiming that there is a subset Y3 C Y5 such that

V3| > (N|Ya| ™) |val,

g\ —C
YaYa| < (N[Y2| ) 77 |13,

At this point we use that the set Y5 is HEREDITARILY
GOOD: there is a large A4 C A5 such that all the sums

> Bi(G,y)elay/p)|, a€ Ay,

yeYs

are large. This implies a lower estimate for the number
of the solutions to the congruence

Y1 +Yy2 =ys +ya, Y; € Ys.
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Using the Balog—Szemeredi—Gowers theorem again
we get the existence of a large set Y, C Y3 such that
Y, + Y, is small. Also, observing that

V.Y, < |Y3Y3),

we conclude that both the sets Y, + Yy, Y4Y, are small.
But for a small § this does not agree with the sums—
products theorem asserting that

(3.2) max(|A + A, |AA|) > |A|*TC

provided that |A| < p?/3 (it is not difficult to check that
V1| < p?/3; hence we can use (3.2) for A =Y, C V7).
So, we see that additive properties of subgroups of
Z,, help us to prove sums— products estimates for ar-
bitrary subsets of Z,; conversely, sums— products esti-
mates imply advanced additive properties of subgroups
and estimates for exponential sums over subgroups.
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Recently J. Bourgain has proved estimates for expo-
nential sums over sets from a much wider class than
groups.

Theorem 3.14. For all () € N, there is 7 > 0 and
k € N with the following property.
Let H C Z;, satisfy

HH| < |H|'TT.

Then

2k

1
S 2

a€Zyp

< [H[* (ColH|=@ + p+1/2).

> elaz/p)

reH

Sometimes Theorem 3.14 implies uniform estimated

for > cpyelax/p). Theorem 3.3 can be generalized to
the following.

Theorem 3.15. For any 6 > 0 there exists € > 0 such
that for any g € Z;; and any T with T > p° if the ele-

ments ¢7, 0 < j < T, are distinct, then

T—-1

J Tpe.
me ;e(ag /p)| <s Tp




