Let $m \in \mathbb{N}$, $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ be the set of the residues modulo m. If p is a prime, then \mathbb{Z}_p is a field of order p. Let $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ be the set of invertible elements in \mathbb{Z}_p . For brevity, we will write $a \equiv b$ instead of $a \equiv b \pmod{p}$.

If * is a binary operation in a ring \mathcal{R} (\mathbb{Z}_p or \mathbb{C}) on \mathbb{Z}_p , $A, B \subset \mathcal{R}$, then we denote

$$A * B = \{a * b : a \in A, b \in B\}.$$

P. Erdős and E. Szemerédi asked the following question.

Problem 2.9. Is it true that for every nonempty finite $A \subset \mathbb{Z}$ and for every $\varepsilon > 0$

$$\max(|A+A|, |AA|) \gg_{\varepsilon} |A|^{2-\varepsilon}?$$

They proved that for some $\alpha > 0$

(2.30)
$$\max(|A + A|, |AA|) \gg |A|^{1+\alpha}.$$

M. Nathanson established (2.30) for $\alpha = 1/31$. This value was being improved by K. Ford, G. Elekes. J. Solymosi proved (2.30) for $\alpha = 3/11 - \varepsilon$ with an arbitrary $\varepsilon > 0$; moreover, (2.30) is true for any nonempty finite $A \subset \mathbb{C}$.

It was naturally to ask if (2.30) holds for \mathbb{Z}_p , but it was clear that it could not hold in full generality: indeed, for $A = \mathbb{Z}_p$ we have A + A = AA = A. But it was reasonable to conjecture the validity of (2.30) for small A, say, $|A| \leq p^{1/2}$.

Unfortunately no existing proofs of (2.30) for integer, real or complex numbers could be used for \mathbb{Z}_p . The assistance came from Algebra and Measure Theory.

G. A. Edgar and C. Miller gave a very elegant solution to an old problem by proving that a Borel subring of \mathbb{R} either has Hausdorff dimension 0 or is equal to \mathbb{R} . Using their technique, among other deep ideas, J. Bourgain, N. Katz, and T. Tao in the beginning of 2003 proved the following.

Theorem 3.1. For any $\delta > 0$ there exists $\varepsilon > 0$ such that for any $A \subset \mathbb{Z}_p$ with $p^{\delta} < |A| < p^{1-\delta}$ we have

(3.1) $\max(|A+A|, |AA|) \gg_{\delta} |A|^{1+\varepsilon}.$

Actually, it is not difficult to see from the proof that one can write

$$\max(|A+A|, |AA|) \gg |A|p^{c\delta}$$

for $p^{1/2} < |A| < p^{1-\delta}$.

In the paper of J. Bourgain and SK (3.1) was improved for small A.

Theorem 3.2. There exists c > 0 such that for any nonempty $A \subset \mathbb{Z}_p$ with $|A| \leq p^{1/2}$ we have

(3.2)
$$\max(|A+A|, |AA|) \gg |A|^{1+c}.$$

Another, more important, result of that paper, was related to exponential sums over subgroups.

We take an arbitrary subgroup G of the group \mathbb{Z}_p^* . Let t = |G|. For $u \in \mathbb{R}$ we denote $e(u) = \exp(2\pi i u)$. The function $e(\cdot)$ is 1-periodic, and this allows us to talk about e(a/p) for $a \in \mathbb{Z}_p$. We denote

$$S(a,G) = \sum_{x \in G} e(ax/p).$$

The following result has been established.

Theorem 3.3. For any $\delta > 0$ there exists $\varepsilon > 0$ such that for any G with $|G| > p^{\delta}$ we have

(3.3)
$$\max_{a \in \mathbb{Z}_p^*} |S(a,G)| \ll_{\delta} |G| p^{-\varepsilon}.$$

The proof of Theorem 3.3 uses the estimates in the sums— products problem. It suffices to use Theorem 3.1; using Theorem 3.2 gives

$$\varepsilon = \exp(-(1/\delta)^C)$$

with an absolute constant C.

Now we will discuss the proof of Theorem 3.2. Denote

$$I(A) = \{a_1(a_2 - a_3) + a_4(a_5 - a_6) : a_j \in A\}.$$

We proved the following estimates for |I(A)|.

Theorem 3.4. If $|A| > \sqrt{p}$ then |I(A)| > p/2.

Theorem 3.5. If $0 < |A| \le \sqrt{p}$ then

(3.4)
$$|I(A)| \times |A - A| \gg |A|^{5/2}.$$

Take any element $a_0 \in A \cap \mathbb{Z}_p^*$. For any $b \in A - A$ we have $a_0 b \in I(A)$. Therefore, $|I(A)| \geq |A - A|$, and (3.4) implies

(3.5)
$$|I(A)| \gg |A|^{5/4}.$$

Now we comment how to get Theorem 3.2 from (3.5). first, observe that

$$I(A) \subset AA - AA + AA - AA,$$

and (3.5) implies

(3.6)
$$|AA - AA + AA - AA| \gg |A|^{5/4}.$$

Combining Lemma 2.4 and Lemma 2.2 from the paper of Bourgain, Katz, Tao, we have the following result (Katz, Tao, Nathanson, Ruzsa).

Lemma 3.6. There exist an absolute constant C > 0 such that if

$$\max(|A+A|, |AA|) \le K|A|,$$

then there exists a set $A' \subset A$ such that

$$|A'| \ge C^{-1} K^{-C} |A|$$

and

$$|A'A' - A'A' + A'A' - A'A'| \ll CK^C |A'|.$$

It is easy to see from Lemma 3.6 that if we take

$$|A| \le p^{1/2}, \quad K = \alpha |A|^{1/(5C)},$$

then

$$|A'A' - A'A' + A'A' - A'A'| \le \beta |A'|^{5/4},$$

where β is small if α is. But the last inequality does not agree with (3.6). This shows that

$$\max(|A + A|, |AA|) \gg |A|^{1 + 1/(5C)},$$

if $|A| \leq p^{1/2}$. For $\xi \in \mathbb{Z}_p$ we denote

$$S_{\xi}(A) := \{a + b\xi : a, b \in A\}.$$

To prove estimates for |I(A)| we need some Lemmas. Lemma 3.7. Let $\xi \in \mathbb{Z}_p$. Then the condition

Let interaction of the set of t

(3.7)
$$|S_{\xi}(A)| < |A|^2$$

is equivalent to existence of a_1, a_2, a_3, a_4 from A such that $a_2 \not\equiv a_4$ and $\xi \equiv (a_1 - a_3)/(a_4 - a_2)$.

Proof. Since the number of sums $a_1 + \xi a_2$ with $a_1, a_2 \in A$ is $|A|^2 > |S_{\xi}(A)|$, then (3.7) is equivalent to existence of a_1, a_2, a_3, a_4 such that $a_2 \not\equiv a_4$ and $a_1 + \xi a_2 \equiv a_3 + \xi a_4$ as required.

Lemma 3.8. Let $\xi \in \mathbb{Z}_p$ and (3.7) hold. Then

 $|I(A)| \ge |S_{\xi}(A)|.$

Proof. By Lemma 3.7, there exist a_1, a_2, a_3, a_4 such that $a_1 - a_3 \equiv \xi(a_4 - a_2)$. Now for any $a', a'' \in A$ we get

$$(a' + \xi a'')(a_4 - a_2) \equiv a'(a_4 - a_2) + a''(a_1 - a_3) \in I(A)$$

showing that $(a_4 - a_2)S_{\xi}(A) \subset I(A)$.

Lemma 3.9. For any $H \subset \mathbb{Z}_p$ there exists $\xi \in H$ such that

$$|S_{\xi}(A)| \ge \frac{|A|^2|H|}{|A|^2 + |H|}.$$

Proof. Set

$$\nu_{\xi}(b) = |\{(a_1, a_2) : a_1, a_2 \in A, b \equiv a_1 + \xi a_2\}|,$$

so that, by Cauchy—Schwartz inequality,

$$|A|^{4} = \left(\sum_{b} \nu_{\xi}(b)\right)^{2} \le |S_{\xi}(A)| \sum_{b} \nu_{\xi}^{2}(b).$$

Therefore,

$$|A|^{4} \leq |S_{\xi}(A)| \times |\{(a_{1}, a_{2}, a_{3}, a_{4}) : a_{1} + \xi a_{2} \equiv a_{3} + \xi a_{4}\}| = |S_{\xi}(A)|(|A|^{2} + N), \quad N = |\{(a_{1}, a_{2}, a_{3}, a_{4}) : a_{2} \neq a_{4}, a_{1} + \xi a_{2} \equiv a_{3} + \xi a_{4}\}|.$$

(We consider that all $a_j \in A$.) Summing up over all $\xi \in H$ and taking into account that for any $a_1, a_2, a_3, a_4 \in A$ with $a_2 \not\equiv a_4$ there exists at most one $\xi \in H$ satisfying $a_1 + \xi a_2 \equiv a_3 + \xi a_4$, we obtain

$$|A|^{4}|H| \le \max_{\xi \in} |S_{\xi}(A)|(|A|^{2}|H| + |A|^{4})$$

as required.

Theorem 3.4. If $|A| > \sqrt{p}$ then |I(A)| > p/2.

Theorem 3.4 is immediate from Lemmas 3.8 and 3.9: choose $H = \mathbb{Z}_p$ and notice that if $|A|^2 > p$ then $|S_{\xi}(A)| \leq p < |A|^2$ for any ξ and

$$\frac{|A|^2|H|}{|A|^2+|H|} > \frac{|A|^2p}{2|A|^2} = p/2.$$

Estimate (3.4) from Theorem 3.5

(3.4)
$$|I(A)| \times |A - A| \gg |A|^{5/2}$$

was improved by A. Glibichuk.

Theorem 3.10. If $0 < |A| \le \sqrt{p}$ then

(3.8)
$$|I(A)| \gg |A|^{3/2}.$$

It is easy to see the gap between Theorem 3.4 and Theorem 3.5 (or 3.10): if $|A| > \sqrt{p}$ then we prove that |I(A)| > p/2, but if |A| is close to $\sqrt{p}/2$ then we know only that $|I(A)| \gg p^{3/4}$. The proof of Theorem 3.4 can be interpreted as the using of the observation that for $|A| > \sqrt{p}$ we have $(A-A)/(A-A) = \mathbb{Z}_p$, but for smaller values of |A| we do not have satisfactory lower estimates for |(A-A)/(A-A)|. It would be interesting to know if (3.8) can be replaced by

(3.9)
$$|I(A)| \gg |A|^2$$

It is not difficult to show that (3.9) holds for $A \subset \mathbb{C}$.

To prove Theorem 3.10, we can consider that

$$A \subset \mathbb{Z}_p^*, \quad |A| \ge 2.$$

We take

$$u := 2|A|^2/(9|AA|),$$

 $R := \{ s \in \mathbb{Z}_p^* : |\{(a, b) : a, b \in A, s \equiv a/b\}| \ge u \}.$

We observe that $1 \in R$ since $u \leq 2|A|^2/(9|A|) \leq |A|$. Define G as the multiplicative subgroup of \mathbb{Z}_p^* generated by R. Also, let

$$F := \frac{A - A}{A - A}, \quad H = FG.$$

Recall that

$$S_{\xi}(A) := \{a + b\xi : a, b \in A\}.$$

Lemma 3.11. There exists $\xi \in H$ such that

(3.10)
$$\min\left(|A|u, |A|^2|H|/(|A|^2 + |H|)\right) \le |S_{\xi}(A)| < |A|^2.$$

Proof. We consider two cases.

1. Case 1: $RF \neq F$. Thus, there exist $r \in R$ and $\xi \in F$ such that $h \equiv r\xi \notin F$. Clearly, $h \in H$. By Lemma 3.7,

(3.11)
$$|S_h(A)| = |A|^2, |S_{\xi}(A)| < |A|^2.$$

Thus, the elements a+bh, $a, b \in A$ are pairwise distinct. Denote

$$A_r = \{ b \in A : b/r \in A \}.$$

We have $|A_r| \ge u$ because $r \in R$. By our supposition on h, all the sums $a + b\xi \equiv a + b(h/r) \equiv a + (b/r)h$, $a \in A$, $b \in A_r$, are distinct. Therefore, $S_{\xi}(A) \ge |A|u$. Taking into account (3.11) we get (3.10).

2. Case 2: RF = F. By definition of the group G, we conclude that F = GF = H. By Lemma 3.7, $|S_{\xi}(A)| < |A|^2$ for every $\xi \in H$, and (3.10) follows from Lemma 3.9.

Notice that

$$|A|^{2}|H|/(|A|^{2}+|H|) \ge \min(|A|^{2}/2,|H|/2).$$

Thus, by Lemmas 3.9 and 3.11,

$$|I(A)| \ge |S_{\xi}(A)| \ge \min\left(|A|u, |A|^2|H|/(|A|^2 + |H|)\right)$$

(3.12)
$$\ge \min(2|A|^3/(9|AA|), |A|^2/2, |H|/2).$$

The inequality $|I(A)| \gg |A|^{3/2}$ obviously holds if $|I(A)| \ge |A|^2/2$. Next, observe that

$$AA - AA \subset I(A).$$

Indeed,

$$a_1a_2 - a_3a_4 \equiv a_1(a_2 - a_3) + a_3(a_1 - a_4) \in I(A).$$

Hence,

$$|I(A)| \ge |AA - AA| \ge |AA|.$$

Therefore, in the case $|I(A)| \ge 2|A|^3/(9|AA|)$ we again have $|I(A)| \gg |A|^{3/2}$. It remains to settle the case $|I(A)| \ge |H|/2$. So, it is enough to prove that

(3.13)
$$|H| \gg |A|^{3/2}$$
.

$$(3.14) |A \cap G_1| \ge |A|/3.$$

Proof. Assume the contrary. Let A_1, A_2, \ldots be the nonempty intersections of A with cosets of G. Take a minimal k so that

$$\left|\bigcup_{i=1}^{k} A_i\right| > |A|/3$$

and denote

$$A' = \bigcup_{i=1}^{k} A_i, \quad A'' = A \setminus A'.$$

We have |A'| > |A|/3. On the other hand,

$$|A'| \le \left| \bigcup_{i=1}^{k-1} A_i \right| + |A_k| < 2|A|/3.$$

Hence, |A|/3 < |A'| < 2|A|/3 and

(3.15) $|A'| \times |A''| = |A'|(|A| - |A'|) > 2|A|^2/9.$

Denote for $s \in \mathbb{Z}_p^*$

$$f(s) := \{ (a, b) : a \in A', b \in A'', a/b \equiv s \}.$$

Note that if $a \in A'$, $b \in A''$, then $a/b \notin G$ and, therefore, $a/b \notin R$. Hence, for any s we have the inequality $f(s) < 2|A|^2/(9|A \cdot A|)$. Thus,

(3.16)
$$\sum_{s \in F^*} f(s)^2 \leq \frac{2|A|^2}{9|AA|} \sum_{s \in F^*} f(s) = \frac{2|A|^2|A'| \times |A''|}{9|AA|}.$$

Denote for $s \in \mathbb{Z}_p^*$

$$g(s) := \{(a, b) : a \in A', b \in A'', ab \equiv s\}.$$

By Cauchy—Schwartz inequality,

$$\left(\sum_{s\in F} g(s)\right)^2 \le |AA| \sum_{s\in F} g(s)^2.$$

Therefore,

(3.17)
$$\sum_{s \in F^*} g(s)^2 \ge \left(\sum_{s \in F} g(s)\right)^2 / |AA| = \frac{(|A'| \times |A''|)^2}{|AA|}.$$

Now observe that both the sums $\sum_{s \in F^*} f(s)^2$ and $\sum_{s \in F^*} g(s)^2$ are equal to the number of solutions to the congruence $a'_1 a''_1 \equiv a'_2 a''_2$, $a'_1, a'_2 \in A'$, $a''_1, a''_2 \in A''$. Thus, comparing (3.16)

(3.16)
$$\sum_{s \in F^*} f(s)^2 \le \frac{2|A|^2 |A'| \times |A''|}{9|AA|}$$

and (3.17) we get

$$|A'| \times |A''| \le 2|A|^2/9.$$

But the last inequality does not agree with (3.15), and the proof is complete.

We take a coset G_1 of G in accordance with Lemma 3.12. Fix an arbitrary $g_1 \in G_1$. Let

$$B := \{b \in G : g_1 b \in A\}.$$

We have

$$g_1 B = A \cap G_1, \quad |B| = |A \cap G_1| \ge |A|/3.$$

Now we use the supposition $|A| \leq \sqrt{p}$ and Corollary 2.7. Corollary 2.7. Let $B \subset G$ and $0 < |B| \leq p^{1/2}$. Then

(2.20)
$$|G(B-B)| \gg |B|^{3/2}.$$

Therefore,

(3.18)
$$|G(B-B)| \gg |A|^{3/2}.$$

Fixing distinct $a_1, a_2 \in A$, we have

$$|G(B - B)| = |G(A \cap G_1 - A \cap G_1)| \le |G(A - A)|$$

= $|G(A - A)/(a_1 - a_2)| \le |G(A - A)/(A - A)| = |H|.$

So, using (3.18), we get

(3.13)
$$|H| \gg |A|^{3/2},$$

and this completes the proof of Theorem 3.10.

Now let us turn to estimates for exponential sums.

Theorem 3.3. For any $\delta > 0$ there exists $\varepsilon > 0$ such that for any G with $|G| > p^{\delta}$ we have

(3.3)
$$\max_{a \in \mathbb{Z}_p^*} |S(a,G)| \ll_{\delta} |G| p^{-\varepsilon}.$$

As the proof is quite long and technical, I can give only a very short sketch now.

Recall, that by $T_k(G)$ we denote the number of solutions to the congruence

$$x_1 + \dots + x_k \equiv y_1 + \dots + y_k, \quad x_1, \dots, x_k, y_1, \dots, y_k \in G.$$

Our aim is to show that the following inequality holds for some $k \leq k(\delta)$ and $C = C(\delta)$:

(3.19)
$$T_k(G) \le C|G|^{2k} p^{-0.6}.$$

We have seen that for large p one can deduce (3.13) from (3.19) sums using the inequality

$$\forall a \in \mathbb{Z}_p^* \quad \left| \sum_{x \in G} e(ax/p) \right| \le (pT_k(G)^2)^{1/2k^2} |G|^{1-2/k}.$$

Of course, the number 0.6 in (3.19) can be replaced by any number greater than 1/2.

The main part of the proof is the following Lemma.

Lemma 3.13. There exists an absolute positive constant β satisfying the following property: for some $C = C(\delta)$ and any $k \ge k(\delta)$ there exists $k' \le k^3$ such that

$$T_{k'}(G)|G|^{-2k'} \le (T_k(G)|G|^{-2k})^{1+\beta}$$

or

$$T_{k'}(G) \le C|G|^{2k'}p^{-0.6}$$

Starting with some $k_0 \ge k(\delta)$, using the trivial inequality

$$T_{k_0}(G)/|G|^{2k_0} \le |G|^{-1}$$

and iterating Claim 1 we get (3.19) for $k \leq k(\delta)$ with some computable $k(\delta)$.

For the proof of Lemma 3.13, we take k' as the largest power of 2 not exceeding k^3 . Denote

$$\rho = T_k(G)|G|^{-2k}$$

and assume that (3.20)

$$T_{k'}(G)|G|^{-2k'} > \rho^{1+\beta}, \quad T_{k'}(G)|G|^{-2k'} > cp^{-0.6}.$$

Our aim is to show that for some $\beta > 0$ (3.20) cannot hold for large p, and this will prove Lemma 3.13.

Denote

$$A = \left\{ a \in \mathbb{Z}_p : \left| \sum_{x \in G} e(ax/p) \right| \ge |G| p^{-1/k^3} \right\}.$$

Using (3.20), it is easy to show that

$$|A| + 1 > p\rho^{1+\beta}, \quad |A| + 1 > p^{0.4}$$

For an even positive integer k and $y \in \mathbb{Z}_p$ let $B_k(G, y)$ be the number of solutions to the congruence

$$x_1 - x_2 + \dots + x_{k-1} - x_k \equiv y, \quad x_1, \dots, x_k \in G.$$

Now observe that

$$\left|\sum_{x \in G} e(ax/p)\right|^{k}$$
$$= \left(\sum_{x \in G} e(ax/p)\right)^{k/2} \left(\sum_{x \in G} e(-ax/p)\right)^{k/2}$$
$$= \sum_{x_1, \dots, x_k \in G} e(a(x_1 - x_2 + \dots + x_{k-1} - x_k)/p)$$
$$= \sum_{y} B_k(G, y) e(ay/p).$$

Hence, for any $a \in A$ we have

(3.21)
$$\sum_{y} B_k(G, y) e(ay/p) \ge |G|^k p^{-1/k^2}$$

This is close to the trivial upper bound

$$\sum_{y} B_k(G, y) e(ay/p) \le \sum_{y} B_k(G, y) = |G|^k.$$

By ω we denote any function on p satisfying inequality $\omega \gg p^{-C/k^2}$; we allow ω and C to change line to line.

We can choose sets $Y_1, A_1 \subset A$ so that for $Y' = Y_1, A' = A_1$

$$(3.22) |A'| \ge \omega |A|,$$

$$(3.23)$$

$$\left|\sum_{y\in Y'} B_k(G,y)e(ay/p)\right| \ge U := \omega |G|^k \quad (a \in A'),$$

(3.24)
$$\min_{y \in Y'} B_k(G, y) \le \max_{y \in Y'} B_k(G, y)/2.$$

Let us say that Y' is GOOD, if conditions (3.22)—(3.24)are satisfied for some A'. So, Y_1 is GOOD. Moreover, we shall say that Y' is HEREDITARILY GOOD if for any $Y'' \subset Y'$ we have

$$\left| \left\{ a \in A' : \left| \sum_{y \in Y''} B_k(G, y) e(ay/p) \right| \ge \frac{|Y''|}{2|Y'|} U \right\} \right|$$
$$\ge \frac{|Y''|}{|Y'|} |A'|.$$

Both sets Y', Y'' are supposed to be invariant under multiplication by G and -1.

We do not claim that Y_1 is HEREDITARILY GOOD. But it is not difficult to show that Y_1 contains a HERED-ITARILY GOOD subset Y_2 ($|Y_2| \ge \omega |Y_1|$). Denote

$$A_2 = \left\{ a \in A_1 : \left| \sum_{y \in Y_1} B_k(G, y) e(ay/p) \right| \ge \frac{|Y_2|}{2|Y_1|} U \right\}.$$

So, for all $a \in A_2$ we have

(3.25)
$$\left| \sum_{y \in Y_1} B_k(G, y) e(ay/p) \right| \ge \frac{|Y_2|}{2|Y_1|} U.$$

Next step in the proof is to deduce from (3.25) that, if k is a power of 2, then

$$\sum_{x_1,\dots,x_k\in G} \sum_{y\in Y_2} B_k(G,y) e(a(x_1-x_2+\dots-x_k)y/p)$$

$$\geq |G|^k V\left(\frac{\sum_{y\in Y_2} B_k(G,y) e(axy/p)}{V}\right)^k,$$

where $V = \sum_{y \in Y_2} B_k(G, y)$.

The last inequality implies

$$\sum_{x \in \mathbb{Z}_p} \sum_{y \in Y_2} B_k(G, x) B_k(G, y) e(axy/p) \ge U' |H|^{2k}$$

for all $a \in A_2$, where

$$U' = p^{-C/k}.$$

Similarly to the choice of Y_1 one can choose $X_1, A_3 \subset A_2$ so that

$$|A_3| \ge \omega |A_1|,$$

(3.26)
$$\left| \sum_{x \in X_1} \sum_{y \in Y_2} B_k(G, x) B_k(G, y) e(axy/p) \right|$$
$$\geq \omega U' |H|^{2k} \quad (a \in A_3),$$
$$\min_{x \in X_1} B_k(G, x) \leq \max_{x \in X_1} B_k(G, x)/2.$$

Setting z = xy we can rewrite the left-hand side of (3.26) as

$$\sum_{z\in\mathbb{Z}_p} P(z)e(az/p) \bigg|,$$

where

$$P(z) = \sum_{\substack{z = xy, \\ x \in X_1, y \in Y_2}} B_k(G, x) B_k(G, y).$$

Using (3.26) and the identity

$$p\sum_{z\in\mathbb{Z}_p} (P(z))^2 = \sum_{a\in\mathbb{Z}_p} \left|\sum_{z\in\mathbb{Z}_p} P(z)e(az/p)\right|^2,$$

we can estimate $\sum_{z \in \mathbb{Z}_p} (P(z))^2$ from below; this gives a lower bound for the number of the solutions to the congruence

$$x_1y_1 \equiv x_2y_2, \quad x_1, x_2 \in X_1, \ y_1, y_2 \in Y_2.$$

This, in turn, implies the estimate for the number N of the solutions to the congruence

(3.27) $y_1 y_2 \equiv y_3 y_4, \quad y_j \in Y_2.$

We show that

$$N \ge \rho^{2\beta} p^{-C/k} |Y_3|^3.$$

Recall that

$$\rho = T_k(G)|G|^{-2k}$$

and β is a small fixed positive number.

Now we can use the Balog—Szemeredi—Gowers theorem claiming that there is a subset $Y_3 \subset Y_2$ such that

$$|Y_3| \ge \left(N|Y_2|^{-3}\right)^{C_1} |Y_2|,$$
$$|Y_3Y_3| \le \left(N|Y_2|^{-3}\right)^{-C_1} |Y_3|$$

At this point we use that the set Y_2 is HEREDITARILY GOOD: there is a large $A_4 \subset A_2$ such that all the sums

$$\left|\sum_{y \in Y_3} B_k(G, y) e(ay/p)\right|, \quad a \in A_4,$$

are large. This implies a lower estimate for the number of the solutions to the congruence

$$y_1 + y_2 \equiv y_3 + y_4, \quad y_j \in Y_3.$$

Using the Balog—Szemeredi—Gowers theorem again we get the existence of a large set $Y_4 \subset Y_3$ such that $Y_4 + Y_4$ is small. Also, observing that

$$|Y_4Y_4| \le |Y_3Y_3|,$$

we conclude that both the sets $Y_4 + Y_4$, Y_4Y_4 are small. But for a small β this does not agree with the sumsproducts theorem asserting that

(3.2)
$$\max(|A + A|, |AA|) \gg |A|^{1+c}$$

provided that $|A| \leq p^{2/3}$ (it is not difficult to check that $|Y_1| \leq p^{2/3}$; hence we can use (3.2) for $A = Y_4 \subset Y_1$).

So, we see that additive properties of subgroups of \mathbb{Z}_p^* help us to prove sums- products estimates for arbitrary subsets of \mathbb{Z}_p ; conversely, sums- products estimates imply advanced additive properties of subgroups and estimates for exponential sums over subgroups.

Recently J. Bourgain has proved estimates for exponential sums over sets from a much wider class than groups.

Theorem 3.14. For all $Q \in \mathbb{N}$, there is $\tau > 0$ and $k \in \mathbb{N}$ with the following property. Let $H \subset \mathbb{Z}_p^*$ satisfy

$$|HH| < |H|^{1+\tau}.$$

Then

$$\frac{1}{p} \sum_{a \in \mathbb{Z}_p} \left| \sum_{x \in H} e(ax/p) \right|^{2k}$$
$$< |H|^{2k} \left(C_Q |H|^{-Q} + p^{-1+1/Q} \right)$$

Sometimes Theorem 3.14 implies uniform estimated for $\sum_{x \in H} e(ax/p)$. Theorem 3.3 can be generalized to the following.

Theorem 3.15. For any $\delta > 0$ there exists $\varepsilon > 0$ such that for any $g \in \mathbb{Z}_p^*$ and any T with $T > p^{\delta}$ if the elements g^j , $0 \leq j < T$, are distinct, then

$$\max_{a \in \mathbb{Z}_p^*} \left| \sum_{j=0}^{T-1} e(ag^j/p) \right| \ll_{\delta} Tp^{-\varepsilon}.$$