
Let m ∈ N, Zm = Z/mZ be the set of the residues
modulo m. If p is a prime, then Zp is a field of order
p. Let Z

∗
p = Zp \ {0} be the set of invertible elements in

Zp. We take an arbitrary subgroup G of the group Z∗
p.

Let t = |G|. For brevity, we will write a ≡ b instead of
a ≡ b(modp).

For u ∈ R we denote e(u) = exp(2πiu). The function
e(·) is 1-periodic, and this allows us to talk about e(a/p)
for a ∈ Zp.

The main subject of my talks is the estimation of
exponential sums over G:

S(a, G) =
∑

x∈G

e(ax/p), a ∈ Zp.
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We can estimate S(a, G) trivially:

(1.3) |S(a, G)| ≤
∑

x∈G

|e(ax/p)| =
∑

x∈G

1 = |G|.

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗
p)

or, for some δ > 0.

(1.5) S(a, G) � |G|p−δ (a ∈ Z
∗
p).

We proved the simplest estimate for |S(a, G)|.
Theorem 1.7. We have

(1.15) |S(a, G)| ≤ √
p (a ∈ Z

∗
p).

So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5)) provided that |G| ≥ p1/2+δ.
Our aim is to weaken this inequality for |G|.
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To get better estimates for S(a, G) we define, for
k ∈ N, Tk(G) as the number of the solutions to the
congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ G.

Clearly, T1(G) = t, and, for any k,

(1.17) tk ≤ Tk(G) ≤ t2k−1.

Also, we have

(1.18) pTk(G) =
∑

a∈Zp

|S(a, G)|2k.

It easily follows from (1.18) that

(1.19) Tk(G) ≥ |S(0, G)|2k/p = t2k/p.

We proved the following.

Proposition 1.9. We have

(1.21) |S(a, G)| ≤ (pTk(G)/t)
1/(2k)

(a ∈ Z
∗
p).

In particular, if Tk(G)/t2k ≤ tp−ε/p then

|S(a, G)| ≤ |G|p−ε/(2k) (a ∈ Z
∗
p).



4

Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for k = 1. If we use a trivial estimate
Tk(G) ≤ t2k−1 we get only

|S(a, G)| ≤
(

pt2k−1/t
)1/(2k)

= t(p/t2)1/(2k).

This estimate is worse than the trivial one
|S(a, G)| ≤ t if |G| < p1/2 and worse than the simplest
estimate |S(a, G)| ≤ p1/2 if |G| > p1/2. However, if
|G| is close to p1/2 then any improvement of the triv-
ial inequality Tk(G) ≤ t2k−1 will improve estimates for
|S(a, G)|.

Such an improvement was made by Shparlinski who
used the following result of A. Garcia and J. F. Voloch.

Theorem 2.1. For b ∈ Zp denote by N2(b) the number
of solutions to the congruence x1 + x2 ≡ b, x1, x2 ∈ G.
If

(2.1) |G| <
p − 1

(p − 1)1/4 + 1
,

then for any b ∈ Z∗
p we have

(2.2) N2(b) ≤ 4|G|2/3.
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Using (2.2), one can nontrivially estimate T2(G) pro-
vided that (2.1) holds. Recall that T2(G) is the number
of solutions to

(2.3) x1 + x2 ≡ x3 + x4, xj ∈ G.

The number of solutions to (2.3) with x3 + x4 ≡ 0 is at
most |G|2. Next, if x3 +x4 6≡ 0, then, by (2.2), there are
at most 4|G|2/3 pairs (x1, x2) satisfying (2.3) Therefore,

(2.4) T2(G) ≤ p2 + 4p8/3 < 5p8/3.

Now we can estimate exponential sums using Propo-
sition 1.9

(1.21) |S(a, G)| ≤ (pTk(G)/t)1/(2k) (a ∈ Z
∗
p).

for k = 2:

|S(a, G)| ≤ (5p)1/4|G|5/12 (a ∈ Z
∗
p).

This is better than the estimate p1/2 for |G| ≤ p3/5−δ,
p ≥ p(δ), and better than the trivial |G| for |G| ≥
p3/7+δ, p ≥ p(δ). Observing that (2.1) holds for |G| ≤
p3/4−δ, p ≥ p(δ). Thus, the improvement was made for
p3/7+δ ≤ |G| ≤ p3/5−δ, p ≥ p(δ).
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D. R. Heath-Brown succeeded in applying Stepanov’s
method to the proof of the theorem of Garcia and Vo-
loch. Moreover, in our joint paper we used his technique
to improve estimate (2.4) for T2(G) if |G| ≤ p2/3.

Theorem 2.2. If |G| ≤ p2/3, then

(2.5) T2(G) � |G|5/2.

We are not able to improve the estimate of Garcia
and Voloch

N2(b) � |G|2/3

for all b ∈ Z
∗
p, but it can be improved in average, and

this implies (2.5). I shall present the proof of (2.5), but
first let us discuss its applications. To estimate exponen-
tial sums S(a, G), one can use Proposition 1.9; however,
the following more general fact sometimes gives better
estimates.
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Theorem 2.3. If k, l ∈ N, a ∈ Z∗
p, then

(2.6) |S(a, G)| ≤ (pTk(G)Tl(G))1/(2kl) t1−1/k−1/l.

Clearly, for l = 1 Theorem 2.3 is just Proposition 1.9.
For k = l (2.6) can be written as

(2.7) |S(a, G)| ≤
(

Tk(G)p1/2

t2k

)1/(k2)

t.

Clearly, (2.7) supersedes the trivial estimate
|S(a, G)| ≤ t if and only if

(2.8) Tk(G) < t2kp−1/2.

In the most interesting case |G| < p1/2 (2.8) is
weaker than the condition Tk(G) < t2kt/p required to
have any benefit from Proposition 1.9.

Theorem 2.3 probably has to be attributed to
A. A. Karatsuba who in fact proved the following.
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Theorem 2.4. Let X ⊂ Z∗
p. For k ∈ N by Tk(X)

denote the number of the solutions to the congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ X.

Then for k, l ∈ N, a ∈ Z∗
p, we have

∣

∣

∣

∣

∣

∣

∑

x,y∈X

e(axy/p)

∣

∣

∣

∣

∣

∣

≤ (pTk(X)Tl(X))1/(2kl) |X|2−1/k−1/l.

Theorem 2.4 is similar to the results proven for esti-
mates of H. Weil’s sums by I. M. Vinogradov’s method.
Theorem 2.3 is contained in Theorem 2.4 since

∑

x,y∈G

e(axy/p) = |G|
∑

z∈G

e(az/p) = |G|S(a, G).

Combining Theorem 2.2 with Theorem 2.3 for k =
1, l = 2 if p1/2 < |G| ≤ p2/3 and for k = l = 2 if
|G| ≤ p1/2 we get for a ∈ Z

∗
p

(2.9) |S(a, G)| � p1/4|G|3/8 (p1/2 < |G| ≤ p2/3),

(2.10) |S(a, G)| � p1/8|G|5/8 (|G| ≤ p1/2).
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Observe that (2.9) supersedes the simplest estimate
|S(a, G)| ≤ p1/2 for |G| ≤ p2/3−δ, p ≥ p(δ), and (2.10)
supersedes the trivial estimate |S(a, G)| ≤ |G| for |G| ≥
p1/3+δ, p ≥ p(δ). For |G| ≥ p2/3 we cannot prove any-
thing better than |S(a, G)| � p1/2.

Let me recall the definition of 1/p-pseudo-random
generators of Blum, Blum, and Shub. Take an integer
g ≥ 2. We consider the g-ary expansion of 1/p. If g is
fixed then we can expect (and this is true indeed) that
for many primes p there is no large correlation among
close digits in this expansion, and we can talk about a
pseudo-random generator. Let G be the subgroup of Z

∗
p

generated by g, t = |G|. It is easy to see that t is the
(least) period of the g-ary expansion of 1/p. We are
interested in appearances of a sequence (d1, . . . , dk) of
g-ary digits in the expansion. We have proved that if

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

and

(2.11)
p

2gk
− 1 ≥ ηp/(1 + η)

then the g-ary expansion of 1/p contains any string of
length k. It is easy to see that (2.11) holds if k ≤
(log(1/η) − C)/ log g for some absolute constant C.
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Let me stress that we do not expect that the digits of
the g-ary expansion of 1/p are well-distributed for ALL
large p. For example, take g = 2. If p is a Mersenne
prime (that is, p = 2q − 1), then the expansion has the
string (0, . . . , 0, 1) of size q as its period; thus, the se-
quence is very far from being pseudo-random. However,
we can say that for ALMOST ALL primes the sequence
of digits is in a sense well-distributed.

Fix g and take a large L ∈ N. Also,let T ∈ N. Let us
estimate the number N of primes p ≤ gL such that the
order of g in Zp is at most T . We have

N ≤
∑

t≤T

|{p : gt ≡ 1(modp)}| =
∑

t≤T

w(gt − 1)

�
∑

t≤T

t ≤ T 2.

On the other hand, the number of primes p ≤ gL is
� gL/L. Therefore, for every fixed ε > 0, specifying
T = g(1/2−ε)L, we see that for almost all primes p ≤ gL

the order of g in Zp is > T ≥ p1/2−ε. This means that
the proportion of exceptional primes amongst all the
primes ≤ gL tends to 0 as L → ∞.
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Next, if G is the subgroup of Z∗
p generated by g, t =

|G| > p1/2−ε, than, by (2.9) and (2.10),

(2.9) |S(a, G)| � p1/4|G|3/8 (p1/2 < |G| ≤ p2/3),

(2.10) |S(a, G)| � p1/8|G|5/8 (|G| ≤ p1/2).

we have
max
a∈Z∗

p

|S(a, G)|/t ≤ η

with η � p−
1

16
+ 3

8
ε. This implies, that the g-ary expan-

sion of 1/p contains any string of length
≤ ( 1

16− 3
8ε)L−C. Moreover, for large L all the strings of

length ≤ ( 1
16 − ε)L will appear with approximately the

same frequency. Observe that we cannot prove any re-
sults of this type using the simplest estimate |S(a, G)| ≤
p1/2.

We (SK, I. Shparlinski) can prove more: for almost
all primes p ≤ gL the g-ary expansion of 1/p contains
any string of length ≤ 3

37L.
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Now we shall make some preparations to prove the
estimate for T2(G). Take some cosets G1, . . . , Gs of the
group G in Z

∗
p. For any coset Gj denote

Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

Then
s

∑

j=1

Nj ≤ 2tL

[t/L]
.

Proof. Let K = [t/L]. We shall begin by taking a poly-
nomial Φ(X, Y, Z), for which

degX Φ < K, degY Φ < L, degZ Φ < L.

For j = 1, . . . , s we define the sets

Rj = {x ∈ G : x − 1 ∈ Gj}, R =
s

⋃

j=1

Rj .

Clearly,
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s
∑

j=1

Nj = |R|.

The underlying idea is then to arrange that the polyno-
mial

Ψ(X) = Φ(X, Xt, (X − 1)t)

has a zero of order at least K at each point x ∈ R. We
will therefore be able to conclude that

K
s

∑

j=1

Nj ≤ deg Ψ,

provided that Ψ does not vanish identically. We note
that

deg Ψ ≤ degX Φ+t degY Φ+t degZ Φ ≤ K−1+2t(L−1),

whence

s
∑

j=1

Nj ≤ K − 1 + 2t(L − 1)

K
<

2tL

[t/L]
,

provided that Ψ does not vanish identically.
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In order for Ψ to have a zero of multiplicity at least
K at a point x, we need

(

d

dx

)n

Ψ(X)

∣

∣

∣

∣

X=x

= 0 (n < K).

Since x 6= 0, 1 for x ∈ R, this will be equivalent to

(2.13) (X(X − 1))n

(

d

dx

)n

Ψ(X)

∣

∣

∣

∣

X=x

= 0.

We now observe that

Xm

(

d

dx

)m

Xu =
u!

(u − m)!
Xu,

Xm

(

d

dx

)m

Xtv =
(tv)!

(tv − m)!
Xtv,

(X − 1)m

(

d

dx

)m

(X − 1)tw =
(tw)!

(tw − m)!
(X − 1)tw.

It follows that
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(X(X − 1))k

(

d

dX

)k

XuXtv(X − 1)tw

= Pk,u,v,w(X)Xtv(X − 1)tw

where Pk,u,v,w either vanishes or is a polynomial of de-
gree at most k + u. We therefore deduce that for any
j = 1, . . . , s and for any x ∈ Rj , we have

(X(X − 1))k

(

d

dx

)k

XuXtv(X − 1)tw

∣

∣

∣

∣

X=x

= aw
j Pk,u,v,w(x)

where aj = yt for y ∈ Gj ; the crucial argument here
is that yt does not depend on the choice of y ∈ G or
y ∈ Gj .

We now write

Φ(X, Y, Z) =
∑

u,v,w

λu,v,wXuY vZw

and
Pk,j(X) =

∑

u,v,w

λu,v,waw
j Pk,u,v,w(X)
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so that deg Pk,j < A + k and

(X(X − 1))k

(

d

dX

)k

Φ(X, Xt, (X − 1)t)

∣

∣

∣

∣

X=x

= Pk,j(x)

for any x ∈ Rj . We shall arrange, by appropriate choice
of the coefficients λu,v,w, that Pk,j(X) vanishes identi-
cally for k < K. This will ensure that

(2.13) (X(X − 1))n

(

d

dx

)n

Ψ(X)

∣

∣

∣

∣

X=x

= 0

holds at every point x ∈ R. Each polynomial Pk,j(X)
has at most K + k < 2K coefficients which are linear
forms in the original λu,v,w. Thus if

(2.14) sK(2K) < KL2,

there will be a set of coefficients λu,v,w, not all zero, for
which the polynomials Pk,j(X) vanish for all k < K.
But, since K = [t/L] ≤ t/L and s < L3/(2t),

sK(2K) = 2sK2 ≤ 2sKt/L < KL2,

and (2.14) holds.
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We must now consider whether the polynomial
Φ(X, Xt, (X − 1)t) can vanish if Φ(X, Y, Z) does not.
We shall write

Φ(X, Y, Z) =
∑

w

Φw(X, Y )Zw,

and take w0 to be the smallest value w for which
Φw(X, Y ) is not identically zero. It follows that

Φ(X, Xt, (X − 1)t)

= (X − 1)tw0

∑

w0≤w≤B

Φw(X, Xt)(X − 1)t(w−w0),

so that if Φ(X, Xt, (X−1)t) is identically zero, we must
have

(2.15) Φw0
(X, Xt) ≡ 0(mod(X − 1)t).
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We show, by induction on N , that if a polynomial
f(X) ∈ Zp[X] of degree deg f < p is a sum of N ≥ 1
distinct monomials, then (X − 1)N cannot divide f(X).
The case N = 1 is trivial. Now suppose that N > 1 and
let

f(X) =
∑

w

cwxW

where w runs over N distinct values. Then the polyno-
mial

g(X) = Xf ′(X) − Wf(X) =
∑

w

cw(w − W )Xw,

where W = deg w, contains exactly N − 1 terms. (No-
tice that cw(w − W ) ∈ Zp is nonzero for w < W since
W < p.) We then see that if (X − 1)N divides f(X),
then (X−1)N−1 divides g(X) contrary to our induction
hypothesis.

We have

deg Φw0
(X, Xt) ≤ K − 1 + t(L − 1) < tL.

Therefore, the congruence

(2.15) Φw0
(X, Xt) ≡ 0(mod(X − 1)t)

is impossible provided that KL ≤ t, tL ≤ p. But these
inequalities hold, and Lemma 2.5 is proven.
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Now take all the cosets G1, . . . , Gn of the group G
in Z

∗
p; thus, n = (p − 1)/t. Again, for any coset Gj we

denote
Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Hence,

Nj = |{x ∈ G, y ∈ Gj : x − 1 ≡ y}|,

tNj = |{x1, x2 ∈ G, y ∈ Gj : x1 − x2 ≡ y}|,

and for any y ∈ Gj we have

Nj = |{(x1, x2) ∈ G : x1 − x2 ≡ y}|.

Therefore,

T2(G) = |{(x1, x2, x3, x4) : xj ∈ G, x1 − x2 ≡ x3 − x4}|
=

∑

y∈Zp

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|2

≤ t2 +
n

∑

j=1

∑

y∈Gj

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|2

= t2 +
n

∑

j=1

∑

y∈Gj

N2
j = t2 + t

n
∑

j=1

N2
j .(2.16)
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Also, observe that

t2 =
∑

y∈Zp

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|

≥
n

∑

j=1

∑

y∈Gj

|{(x1, x2) : x1, x2 ∈ G, x1 − x2 ≡ y}|

=
n

∑

j=1

∑

y∈Gj

Nj = t
n

∑

j=1

Nj .

Hence,

(2.17)
n

∑

j=1

Nj ≤ t.

Now we are in position to prove Theorem 2.2.

Theorem 2.2. If |G| ≤ p2/3, then

(2.5) T2(G) � |G|5/2.

We assume that t = |G| is large enough and the cosets
G1, . . . , Gn are ordered in such a way that

N1 ≥ N2 · · · ≥ Nn.
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Then for 1 ≤ s ≤ t1/2/3 and L = [(2st)1/3] + 1 the
conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

of Lemma 2.5 are satisfied, and it can be applied giving

s
∑

j=1

Nj � s2/3t2/3.

Hence,

(2.18) Ns � s−1/3t2/3 (s ≤ t1/2/3).

For s > t1/2/3 the following estimate holds:

(2.19) Ns ≤ N[t1/2/3] � t1/2.

Using (2.16) and combining the bounds (2.18) and (2.19)
with (2.17) we get



22

T2(G) ≤ t2 + t
n

∑

s=1

N2
s

≤ t2 + t
∑

s≤t1/2/3

N2
s + t

∑

s>t1/2/3

N2
s

� t2 + t
∑

s≤t1/2/3

(

s−1/3t2/3
)2

+ t
∑

s>t1/2/3

t1/2Ns

� t2 + t
∑

s≤t1/2/3

(

s−1/3t2/3
)2

+ t(t1/2)t � t5/2,

and we have the desired result.
Now we will prove a corollary from Lemma 2.5. If ∗

is a binary operation on Zp, A, B ⊂ Zp, then we denote

A ∗ B = {a ∗ b : a ∈ A, b ∈ B}.
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Corollary 2.7. (A. Glibichuk.) Let B ⊂ G and 0 <
|B| ≤ p1/2. Then

(2.20) |G(B − B)| � |B|3/2.

Proof. Let G1, . . . , Gs be all the cosets of G in Z∗
p con-

taining elements from B −B. Then Gj ⊂ G(B −B) for
j = 1, . . . , s, and hence

(2.21) |G(B − B)| = s|G| + 1.

Inequality (2.20) follows immediately from (2.21) for s >
|B|3/2/(17|G|) (and, in particular, for |G| > |B|3/2/17).
Thus, we can assume that

(2.22) |G| ≤ |B|3/2/17, s ≤ |B|3/2/(17|G|).

Also, assume that |B| is large enough. Fixed x0 ∈ B.
Recall that

Nj = |{x ∈ G : x − 1 ∈ Gj}|.

Equivalently,

Nj = |{x ∈ G : x − x0 ∈ Gj}|.
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Since for every x ∈ B \ {x0} we have x− x0 ∈ Gj for
some j = 1, . . . , s,

(2.23) |B|− 1 =

s
∑

j=1

|{x ∈ B : x−x0 ∈ Gj}| ≤
s

∑

j=1

Nj .

Take L = [(2st)1/3] + 1. Now we can use Lemma 2.5.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L < t, tL ≤ p, s < L3/(2t).

Then
s

∑

j=1

Nj ≤ 2tL

[t/L]
.

We have

(2.24) L ≤ [(2|B|3/2/17)1/3] + 1 < (|B| − 1)1/2/2.

Therefore,
L < |B|1/2 ≤ |B| ≤ t,

tL < (|B|3/2/17)(|B|1/2) < |B|2 < p.

So, (2.12) are fulfilled. By Lemma 2.5 and (2.24),



25

s
∑

j=1

Nj ≤ 4L2 < |B| − 1,

but his does not agree with (2.23), and Corollary 2.7
follows.

Using Stepanov— Heath-Brown’s method, Theorem
2.2 can be extended to k > 2 provided that |G| ≤ p1/2.

Theorem 2.8. If |G| ≤ p1/2, k ∈ N, then

(2.25) Tk(G) �k |G|2k−2+21−k

.

It follows from Theorem 2.3 that we can get nontrivial
estimates for exponential sums if for some k and ε > 0
we have

(2.26) Tk(G) �k,ε |G|2kp−1/2−ε.

Namely, (2.26) implies |S(a, G)| �k,ε p−ε/k2 |G| for
a ∈ Z∗

p. By Theorem 2.8, (2.26) holds for

(2.27) |G| ≥ p1/4+ε

and k ≥ k(ε). Thus, we have nontrivial estimates for
exponential sums under supposition (2.27).
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It is likely that Theorem 2.8 and restriction (2.27)
correspond to natural thresholds of Stepanov— Heath-
Brown’s method.

Let me mention a corollary from Theorem 2.8. For
b ∈ Zp, k ∈ N we denote by Nk(b) the number of the
solutions to the congruence

x1 + · · · + xk ≡ b, x1, . . . , xk ∈ G.

It is not difficult to prove that

∑

b∈kG

Nk(b) = |G|k,

∑

b∈kG

Nk(b)2 = Tk(G)

(we have checked this for k = 2). Hence, by Cauchy—
Schwartz inequality

|kG| ≥ |G|2k/Tk(G),

and from Theorem 2.8 we get the following.

Corollary 2.9. If |G| ≤ p1/2, k ∈ N, then

(2.28) |kG| �k |G|2−21−k

.



27

To weaken restriction

(2.27) |G| ≥ p1/4+ε

we had to show that for |G| ≤ p1/4 and for some k and
ε

Tk(G) � |G|2k−2−ε.

This would imply

|kG| � |G|2+ε.

But before 2003 it was not clear how to exclude the
situation

(2.29) ∀k ∃p, G : |G| ≤ p1/4, |kG| < |G|2.

Now it is time to have an excursion to a very exciting
number theoretical and combinatorial problem.
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P. Erdős and E. Szemerédi asked the following ques-
tion.

Problem 2.9. Is it true that for every nonempty finite
A ⊂ Z and for every ε > 0

max(|A + A|, |AA|) �ε |A|2−ε?

They proved that for some α > 0

(2.30) max(|A + A|, |AA|) � |A|1+α.

M. Nathanson established (2.30) for α = 1/31. This
value was being improved by K. Ford, G. Elekes. J. Soly-
mosi proved (2.30) for α = 3/11 − ε with an arbitrary
ε > 0; moreover, (2.30) is true for any nonempty finite
A ⊂ C.

It was naturally to ask if (2.30) holds for Zp, but
it was clear that it could not hold in full generality:
indeed, for A = Zp we have A + A = AA = A. But
it was reasonable to conjecture the validity of (2.30) for
small A, say, |A| ≤ p1/2. This would exclude

(2.29) ∀k ∃p, G : |G| ≤ p1/4, Nk(G) < |G|2.
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Indeed, take a large k and use (2.29) with k replaced
by k2. Then we have |G| ≤ p1/4,

(2.28) |kG| �k |G|2−21−k

,

but, by (2.29),

(2.31) |k2G| < |G|2.

This inequality implies

|kG| ≤ |k2G| < p1/2.

Since

kG + kG = 2kG, (kG)(kG) ⊂ k2G,

we deduce from conjectural (2.30)

|k2G| ≥ max(kG + kG, (kG)(kG)) �k |G|(2−21−k)(1+α),

but this does not agree with (2.30) for k = k(α) and
sufficiently large p.

Unfortunately no existing proofs of (2.30) for integer,
real or complex numbers could be used for Zp.


