Let m € N, Z,, = Z/mZ be the set of the residues
modulo m. If p is a prime, then Z, is a field of order
p. Let Z3 = Z, \ {0} be the set of invertible elements in
Zp. We take an arbitrary subgroup G of the group Z.
Let t = |G|. For brevity, we will write a = b instead of
a = b(modp).

For u € R we denote e(u) = exp(2miu). The function
e(-) is 1-periodic, and this allows us to talk about e(a/p)
for a € Z,,.

The main subject of my talks is the estimation of
exponential sums over G-

S(a,G) = Z e(ax/p), a € Z,.

relG



We can estimate S(a, G) trivially:

(1.3) S(a,G)[ < Y le(az/p)| = Y 1=]G].

relG relG

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(14)  S@,6)=o(C) (p—oc.ac)
or, for some d > 0.
(1.5) S(a,G) < |Glp™° (a € Z}).

We proved the simplest estimate for |S(a, G)|.
Theorem 1.7. We have

(1.15) 1S(a,G)| < p (a€Zy).

So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5)) provided that |G| > p'/219.
Our aim is to weaken this inequality for |G].
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To get better estimates for S(a,G) we define, for

k € N, Ty(G) as the number of the solutions to the
congruence

1+ -+ T =Ty + -+ Tk, 5[7j€G.
Clearly, T1(G) = t, and, for any k,
(1.17) th < Tp(G) < 281,

Also, we have

(1.18) pTi(G) = Y |S(a,G)**.

a€Zy

It easily follows from (1.18) that
(1.19) Tp(G) > 15(0,G)[** /p = t** /p.

We proved the following.
Proposition 1.9. We have

(1.21)  [S(a,G)| < WT(G) /)Y (aez).
In particular, if T} (G)/t2* < tp=¢/p then

S(a, G)| < |Glp~/¥) (a € Z;).



Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for £ = 1. If we use a trivial estimate
T (G) < t?=1 we get only

|S(CL, G)| S <pt2k—1/t) 1/(2k) _ t(p/t2)l/(2k)

This estimate is worse than the trivial one
S(a,G)| < tif |G| < p'/? and worse than the simplest
estimate |S(a,G)| < p'/? if |G| > p'/?. However, if
G| is close to p'/? then any improvement of the triv-
ial inequality T} (G) < t?*~! will improve estimates for
S(a,G)|.

Such an improvement was made by Shparlinski who
used the following result of A. Garcia and J. F. Voloch.

Theorem 2.1. Forb € Z, denote by No(b) the number
of solutions to the congruence x1 +x9 =0, x1,22 € G.

If

p—1
2.1
(21) 6l < =T

then for any b € Z; we have

(2.2) Ny (b) < 4|G|?/3.
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Using (2.2), one can nontrivially estimate T5(G) pro-
vided that (2.1) holds. Recall that T5(G) is the number
of solutions to

(23) T1+ T2 =T3+ Ty, TjE G.

The number of solutions to (2.3) with x3 + x4 = 0 is at
most |G|?. Next, if x3+x4 # 0, then, by (2.2), there are
at most 4|G/|%/3 pairs (1, x2) satisfying (2.3) Therefore,

(2.4) T5(G) < p? + 4p%/3 < 5p/3.

Now we can estimate exponential sums using Propo-
sition 1.9

(121)  |S(e, Q)| < (TW(@)/)* (aez).
for k = 2:
S(a,G)| < (5p)"*|GP* (a € Z;).

This is better than the estimate p'/? for |G| < p3/579,
p > p(9), and better than the trivial |G| for |G| >
p/™° p > p(8). Observing that (2.1) holds for |G| <

p3/ =0 p > p(6). Thus, the improvement was made for
pPT <G| < p¥F0 p > p(9).



D. R. Heath-Brown succeeded in applying Stepanov’s
method to the proof of the theorem of Garcia and Vo-
loch. Moreover, in our joint paper we used his technique
to improve estimate (2.4) for T»(G) if |G| < p?/3.

Theorem 2.2. If |G| < p?/3, then
(2.5) T»(G) < |G|/

We are not able to improve the estimate of Garcia
and Voloch
Ny (b) < |G*/?

for all b € Z;, but it can be improved in average, and
this implies (2.5). I shall present the proof of (2.5), but
first let us discuss its applications. To estimate exponen-
tial sums S(a, G), one can use Proposition 1.9; however,
the following more general fact sometimes gives better
estimates.



Theorem 2.3. If k,l €N, a € Z;, then

(2.6)  |S(a,@)| < (PTr(G)T(G))"/ PFD) 1= 1/k=1/L,

Clearly, for [ = 1 Theorem 2.3 is just Proposition 1.9.
For k =1 (2.6) can be written as

/(K?)
T.(G)p!/? 1
@0 Is@o< (HGES)

Clearly, (2.7) supersedes the trivial estimate
S(a,G)| < tif and only if

(2.8) Tw(G) < t¥*p=1/2,

In the most interesting case |G| < p'/? (2.8) is
weaker than the condition T} (G) < t?*t/p required to
have any benefit from Proposition 1.9.
Theorem 2.3 probably has to be attributed to
A. A. Karatsuba who in fact proved the following.
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Theorem 2.4. Let X C Z;. For k € N by Typ(X)
denote the number of the solutions to the congruence

1+ -+ T = Tpy1 + -0+ o, £E‘j€X.

we have

Then for k,l € N, a € Z

p7

S elay/p)| < (PTL(X)TH(X))Y R0 | x prt/kmtn
r,yeX

Theorem 2.4 is similar to the results proven for esti-
mates of H. Weil’s sums by I. M. Vinogradov’s method.
Theorem 2.3 is contained in Theorem 2.4 since

> elaxy/p) =G| ) elaz/p) = |G|S(a,G).

z,yeG =te:

Combining Theorem 2.2 with Theorem 2.3 for £ =
1,1 = 2if p'/?2 < |G| < p*/? and for k = | = 2 if
G| < p'/? we get for a € Z},

(29)  [S(a, ) < p "GP (V2 < |G <p*7),

(2.10) S(a, G)| < p' PGP (|G < p'?).
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Observe that (2.9) supersedes the simplest estimate
1S(a,G)| < pV/2 for |G| < p*/3=%, p > p(9), and (2.10)
supersedes the trivial estimate |S(a, G)| < |G| for |G| >
/3% p > p(8). For |G| > p?/3 we cannot prove any-
thing better than |S(a, G)| < p'/2.

Let me recall the definition of 1/p-pseudo-random
generators of Blum, Blum, and Shub. Take an integer
g > 2. We consider the g-ary expansion of 1/p. If g is
fixed then we can expect (and this is true indeed) that
for many primes p there is no large correlation among
close digits in this expansion, and we can talk about a
pseudo-random generator. Let G be the subgroup of Z;
generated by g, t = |G|. It is easy to see that t is the
(least) period of the g-ary expansion of 1/p. We are
interested in appearances of a sequence (dq,...,d;) of
g-ary digits in the expansion. We have proved that if

(1.7) max [S(a, G)|/t < n
and
p
. 1>
(2.11) o~ 12 np/(1+ )

then the g-ary expansion of 1/p contains any string of
length k. It is easy to see that (2.11) holds if £ <
(log(1/n) — C')/log g for some absolute constant C.
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Let me stress that we do not expect that the digits of
the g-ary expansion of 1/p are well-distributed for ALL
large p. For example, take g = 2. If p is a Mersenne
prime (that is, p = 2?7 — 1), then the expansion has the
string (0,...,0,1) of size g as its period; thus, the se-
quence is very far from being pseudo-random. However,
we can say that for ALMOST ALL primes the sequence
of digits is in a sense well-distributed.

Fix g and take a large L € N. Also,let T' € N. Let us
estimate the number N of primes p < g% such that the
order of g in Z,, is at most T'. We have

NSZ\{p:gtE (modp)}| = ng —1)

t<T t<T

<Y t<T?

t<T

On the other hand, the number of primes p < g”
> gl /L. Therefore, for every fixed ¢ > 0, specifying
T = ¢g(1/2=9)L  we see that for almost all primes p < g~
the order of g in Z, is > T > p'/27¢. This means that
the proportion of exceptional primes amongst all the
primes < g% tends to 0 as L — oo.
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Next, it G is the subgroup of Z, generated by g, ¢t =
|G| > p/27¢, than, by (2.9) and (2.10),

(29)  [S(a,G)| < pVHGPE (2 < |G| < p*),

(2.10) 1S(a, Q)| < pBIGIP8 (|G| < p'/?).
we have
max [S(a, G)|/t <7

with n < p_1_16+%€. This implies, that the g-ary expan-
sion of 1 / p contains any string of length

< (15 —2e)L—C. Moreover, for large L all the strings of

length < (— — ¢)L will appear with approximately the
same frequency. Observe that we cannot prove any re-
sults of this type using the simplest estimate |S(a, G)| <
pl/2,

We (SK, I. Shparlinski) can prove more: for almost
all primes p < g% the g ary expansion of 1/p contains
any string of length < 2 L
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Now we shall make some preparations to prove the
estimate for T5(G). Take some cosets G, ..., G of the
group G in Z;. For any coset G; denote
=H{zreG:z—-1€eG;}.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L<t, tL<p, s<L’/(2).
Then
2t L
N
Z — t/L
Proof. Let K = [t/L]. We shall begin by taking a poly-
nomial ®(X,Y, 7Z), for which

deg, ® < K, degy ® <L, deg,® < L.

For j =1,...,s we define the sets
Rj:{CUEGZZC—léGj}, R:URj.

Clearly,
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> N;=|R|.
j=1

The underlying idea is then to arrange that the polyno-
mial
U(X)=o(X, X" (X - 1))

has a zero of order at least K at each point x € R. We
will therefore be able to conclude that

KiNj < deg V¥,

j=1

provided that ¥ does not vanish identically. We note
that

deg¥ < degy ®+tdegy P+tdeg, & < K—1+2t(L—1),

whence

K S /L

K —14+2t(L -1 2L
SN < B tEE ]

provided that ¥ does not vanish identically.
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In order for ¥ to have a zero of multiplicity at least
K at a point x, we need

(d )n\I!(X)| =0 (n<K)

@ X=x
Since ¢ # 0,1 for x € R, this will be equivalent to

(2.13) (X(X —1)" (%)n \D(X)‘X:x = 0.

We now observe that

m !
X (i) Xt= —

dx u—m)!
m d " tv __ (tv)! tv
X (%) A= (tv—m)!X ’
x-vm () -y = ey

It follows that
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k
(X (X — 1))k (%{) XuX(X —1)tw

= Pruow(X)X7W(X — 1)

where Py o, . either vanishes or is a polynomial of de-
gree at most k 4+ u. We therefore deduce that for any

j=1,...,s and for any = € R;, we have
g\ F
(X (X — 1)k (—> Xuxt(X —1)w
dx e

— af;'UPk:,u,v,w (.I’)

where a; = y* for y € Gj; the crucial argument here
is that y' does not depend on the choice of y € G or
(TR~ Gj.

We now write

(XY, Z)= Y AuouwX'Y'Z"

uU,V,Ww

and
Pk,j(X) = Z Au,v,w@?}Pk,u,v,w(X)

UV, W
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so that deg P, ; < A+ k and

k
(X(X —1))F (diX) (X, X" (X -1)"

= Py j(x)
X=x

for any x € R;. We shall arrange, by appropriate choice
of the coeflicients A, 4w, that Py ;(X) vanishes identi-
cally for £ < K. This will ensure that

(2.13) (X(X — 1)) (%)n \D(X)‘X:x =0

holds at every point x € R. Each polynomial Py ;(X)
has at most K + k < 2K coefficients which are linear
forms in the original A, 4 . Thus if

(2.14) sK(2K) < KL?,
there will be a set of coeflicients A, , ., not all zero, for
which the polynomials Py ;(X) vanish for all £ < K.
But, since K = [t/L] <t/L and s < L3/(2t),

sK(2K) = 2sK* < 2sKt/L < KL?,

and (2.14) holds.
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We must now consider whether the polynomial
P(X, X" (X — 1)) can vanish if ®(X,Y,Z) does not.

We shall write

(XY, 7)

ZCD (X,Y)Z

and take wg to be the smallest value w for which
¢, (X,Y) is not identically zero. It follows that

(X, X" (X —-1)Y

= (X — 1)two Z D, (X, Xt)(X - 1)t(w—w0)’
wo<w<B

so that if &(X, X*, (X —

have

1)%) is identically zero, we must

(2.15) Dy, (X, X") = 0(mod (X — 1)").
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We show, by induction on NV, that if a polynomial
f(X) € Z,|X] of degree deg f < pis a sum of N >1
distinct monomials, then (X — 1) cannot divide f(X).
The case N =1 is trivial. Now suppose that N > 1 and

let
f(X) = Z Cox”V

where w runs over N distinct values. Then the polyno-
mial

g(X) = Xf1(X)=Wf(X) =D cwlw—W)X",

w

where W = degw, contains exactly N — 1 terms. (No-
tice that c,,(w — W) € Z, is nonzero for w < W since
W < p.) We then see that if (X — 1)¥ divides f(X),
then (X — 1)V~ divides g(X) contrary to our induction
hypothesis.

We have
deg @, (X, X") <K —-1+¢t(L—1) <tL.
Therefore, the congruence

(2.15) Dy, (X, X") = 0(mod (X — 1))

is impossible provided that KL < t, tL < p. But these
inequalities hold, and Lemma 2.5 is proven.
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Now take all the cosets G1,...,G, of the group G
in Zy; thus, n = (p — 1)/t. Again, for any coset G; we
denote

=H{redG:z—-1€eG,;}.
Hence,
—{reGyeG:a—1=y},
tNj = {z1,22 € G,y € Gj : 1 — 12 =y},
and for any y € G; we have
N; =H{(z1,22) € G: z1 —z2 =y}

Therefore,

T5(G) = {(z1,22,23,24) : x; € G217 — X3 = X3 — T4}
= Z {(z1,22) : 21,22 € G, 21 — 29 = Yy}

YELyp

< t? 4+ Z Z {(z1,72) : 21,22 € G, 21 — 29 = y}|?

J=1lyeqG;

(2.16) —t2+z > N’ —t2+tZN2

J=1yeqG;
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Also, observe that

- Z {(x1,22) : 1,22 € G, 01 — 12 = Y}

YELyp

mn
> Z Z |{($1,ZB2) t 21,02 € G, 11 — T2 = ?J}|
1=1yedG;

-—§:§:pJ—t§:N.

J=1yeG;
Hence,
(2.17) d N; <t
j=1

Now we are in position to prove Theorem 2.2.

Theorem 2.2. If |G| < p?/3, then
(2.5) T»(G) < |G|/

We assume that t = |G| is large enough and the cosets
G4,...,G,, are ordered in such a way that

N1 2 Ng--- > Npy.
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Then for 1 < s < tY/2/3 and L = [(2st)"/3] + 1 the
conditions

(2.12) L<t, tL<p, s<L’/(2t).

of Lemma 2.5 are satisfied, and it can be applied giving

> ON; < 2R

j=1

Hence,

(2.18) N, < s713¢23 (s < t1/2/3).
For s > t'/2/3 the following estimate holds:
(2.19) Ny < Nyjaja g < 12

Using (2.16) and combining the bounds (2.18) and (2.19)
with (2.17) we get
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To(G) <t*+t ) N?

s=1
<t*4+t » N2+t Y N?
s<tl/2/3 s>t1/2/3

2
<ttty (5—1/3t2/3) +t Y 2N,
s<t1/2/3 s>t1/2/3

2
<4t Y (5—1/3t2/3) +t(tY?)t < t7/2,
s<t1/2/3

and we have the desired result.
Now we will prove a corollary from Lemma 2.5. If x
is a binary operation on Z,, A, B C Z,, then we denote

AxB={axb: ac Abec B}.
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Corollary 2.7. (A. Glibichuk.) Let B C G and 0 <
|B| < p'/2. Then

(2.20) |G(B — B)| > |B|*/?.

Proof. Let Gy,...,Gs be all the cosets of G in Z; con-
taining elements from B — B. Then G; C G(B — B) for
7 =1,...,s, and hence

(2.21) |G(B — B)| =s|G| + 1.
Inequality (2.20) follows immediately from (2.21) for s >

|B|3/2/(17|G]) (and, in particular, for |G| > |B|*/2/17).
Thus, we can assume that

(222) |G| <|BPF?/T, s < [BP/a7G)).

Also, assume that |B| is large enough. Fixed zg € B.
Recall that

Ni=H{xeG: 2—-1€G,}.
Equivalently,

Nj:‘{ZE‘EGZ ZU—ZC()EG]'H.



24

Since for every x € B\ {xo} we have x —xy € G, for
some ] =1,...,s,

S

(2.23) |B|-1=) Hz€B:az—xz€G;} <) N

j=1 j=1

Take L = [(2st)'/3] + 1. Now we can use Lemma 2.5.

Lemma 2.5. Let |G| = t and suppose that a positive
integer L satisfies the conditions

(2.12) L<t, tL<p, s<L?/(2t).
Then .
ZN <z
We have

(2.24) L <[(2|B|>?/11)*3] +1 < (|B| — 1)*/2)2.

Therefore,
L < |B|*? <|B|<t,
tL < (|BI*2/17)(|1B|'/?) < |BJ* < p.
So, (2.12) are fulfilled. By Lemma 2.5 and (2.24),
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Y N; <4L? < |B| -1,

j=1

but his does not agree with (2.23), and Corollary 2.7
follows.

Using Stepanov— Heath-Brown’s method, Theorem
2.2 can be extended to k > 2 provided that |G| < p'/2.

Theorem 2.8. If |G| < p'/2, k € N, then

21—I~c

(2.25) T (G) <5 |G]PR—212 7,
It follows from Theorem 2.3 that we can get nontrivial

estimates for exponential sums if for some k£ and € > 0
we have

(2.26) Ti(G) ke |G|?ep=t/27¢,

Namely, (2.26) implies |S(a, G)| <k e p~</*° |G| for
a € Z;. By Theorem 2.8, (2.26) holds for

(2.27) G| > pt/ie

and k > k(e). Thus, we have nontrivial estimates for
exponential sums under supposition (2.27).
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It is likely that Theorem 2.8 and restriction (2.27)
correspond to natural thresholds of Stepanov— Heath-
Brown’s method.

Let me mention a corollary from Theorem 2.8. For

b € Z,, k € N we denote by Ni(b) the number of the
solutions to the congruence

x1+--+xr=b, x1,...,71 € G.

It is not difficult to prove that

Y Ne(0)? = Th(G)

(we have checked this for kK = 2). Hence, by Cauchy—
Schwartz inequality

kG| > |GI*" /Ti(G),

and from Theorem 2.8 we get the following.

Corollary 2.9. If |G| < p'/2, k € N, then

(2.28) kG| >y, |G)272 .
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To weaken restriction
(2.27) G| > pl/ate

we had to show that for |G| < p'/# and for some k and

3
Tk(G) < ‘G|2k_2_€.

This would imply
kG| > |G]*T=.

But before 2003 it was not clear how to exclude the
situation

(2.29) Vk3dp, G : |G| < pt4, kG| < |G?.

Now it is time to have an excursion to a very exciting
number theoretical and combinatorial problem.
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P. Erdos and E. Szemerédi asked the following ques-
tion.

Problem 2.9. Is it true that for every nonempty finite
A C 7Z and for every e > 0

max(|A + Al, |AA]) >, |A]*7=?
They proved that for some a > 0
(2.30) max(|A + A, |AA]) > |A]'T

M. Nathanson established (2.30) for « = 1/31. This
value was being improved by K. Ford, G. Elekes. J. Soly-
mosi proved (2.30) for o = 3/11 — € with an arbitrary
e > 0; moreover, (2.30) is true for any nonempty finite
AcCC.

It was naturally to ask if (2.30) holds for Z,, but
it was clear that it could not hold in full generality:
indeed, for A = Z, we have A + A = AA = A. But
it was reasonable to conjecture the validity of (2.30) for
small A, say, |A| < p/2. This would exclude

(2.29) Ykdp, G : |G| < p**, Niu(G) < |GJ2.
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Indeed, take a large k and use (2.29) with k replaced
by k2. Then we have |G| < p'/4,

(2.28) kG| >, |G,
but, by (2.29),
(2.31) 2G| < |G|?.
This inequality implies
kG| < |k2G| < p'/2.
Since
kG + kG = 2kG, (kG)(kG) C k*G,

we deduce from conjectural (2.30)

k2G| > max(kG + kG, (kG)(kG)) >, |G|(272 ") 0+a)

but this does not agree with (2.30) for k¥ = k(a) and
sufficiently large p.

Unfortunately no existing proofs of (2.30) for integer,
real or complex numbers could be used for Z,.



