Let m € N, Z,, = Z/mZ be the set of the residues
modulo m. If p is a prime, then Z, is a field of order
p. Let Z3 = Z, \ {0} be the set of invertible elements in
Zp. We take an arbitrary subgroup G of the group Z.
Let t = |G|. For brevity, we will write a = b instead of
a = b(modp).

For u € R we denote e(u) = exp(2miu). The function
e(-) is 1-periodic, and this allows us to talk about e(a/p)
for a € Z,,.

The main subject of my talks is the estimation of
exponential sums over G-

S(a,G) = Z e(ax/p), a € Z,.

relG

There are some equivalent and related problems.



1. Exponential sums with exponential func-
tions. Let g € Z and ord,(g) = t, namely

t = {min{k > 0: g* = 1}}.

For a € Z, we consider

t—1

S(a,g) = _e(ag”/p).

k=0

Let G be the group generated by g. We have
G={¢":k=0,...,t—1}.

Hence,

S(a,g) = S(a,G).

Conversely, if G is an arbitrary subgroup of Z; then G
is generated by some g € Z, as a subgroup of a cyclic
group Z, and we can consider an exponential sum over
(GG as an exponential sum with an exponential function.
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2. Gaussian sums. Let n € N, m € N, a € Z,,.
Consider the sum

Sp(a,m) = Y " e(az"/m).

TEL,

Clearly, S,,(0,m) = m. The simplest case is n = 1. For
a € Zm \ {0} we have

Suam) = 3 efax/m) = 6(":’&//7;7’3)__61(0) 0.

Thus, we have

m, a = 0,
2. e<aw/m):{o,aezm\{0}.

TELm,

This simple property is a basic tool for using exponential
sums in study of different problems modulo m.

K. Gauss evaluated Ss(a, m) and, in particular,
proved that |Sz(a,p)| = /p for a € Z;. Sometimes
Sn(a,m) are called Gaussian sums.



For arbitrary n € N denote d = ged(n,p — 1),
t = (p—1)/d. Consider the congruence

(1.1) " = 1.

Let gg be a primitive root modulo p. If z = g§, 0 < u <
p — 1, then (1.1) is equivalent to the congruence

nu = 0(mod(p — 1)),
(1.2) u = 0(modt).

The number of u, 0 < u < p — 1, satisfying (1.2), is
(p—1)/t = d. Therefore, for every y € Z; the congruence

:C’I’L

Y

either does not have solutions or has d solutions. It is
easy to see that G = {z" : x € Z;} is a subgroup of Z
and |G| =t.



Now we can write S, (a) as follows

Spla) =1+ Z e(az™ /p)

ASY/
=1+ Z e(ay/p){x € Z, : =" = y}|
yeLy
—1
=1+ Z de(azx/p) =1+ p—S(a, G).
yel t

We can estimate S(a, G) trivially:

(1.3) S(a, @) < ) le(az/p)| = ) 1=1G|.

relG red

This estimate corresponds to a trivial estimate for
Gaussian sums

1Sn(a)| < p.

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(1.4) S(a,G) =o(|G]) (p— o0,a € Z,)
or, for some d > 0.

(1.5) S(a,G) < |Glp™° (a€ Ly).



Recall that U < V means |[U| < CV where C > 0
may be an absolute constant or depend on some speci-
fied parameters. Of course, in (1.4) and (1.5) we assume
that a pair (p, G) belongs to some set of pairs. Trivially,
(1.4) does not hold in general. If |G| = 1, then for any
a € Z, we have |S(a,G)| =1. If p> 2, |G| = 2, that is,
G ={1,—1}, then

S(1,G) =e(1/p) + e(—1/p) = 2cos(27/p)
~ G+ 0(™2)

We can expect that (1.4) or (1.5) holds if |G| is not too
small comparatively to p.



S(a,G)| is small comparatively to

t = |G|, then we can deduce that for any a € Zj the frac-
tional parts {ax/p}, ©r € G, are well-distributed on [0, 1).
To formulate this precisely, let us take an arbitrary real
sequence {uq,...,u:} and define its discrepancy as

If max,¢ z

D = D¢(uq, ..., u)

— Sup _(/B_Oé) ;
0<a<B<1 t

where A(|a, B);t) = {7 : {u;} € [, 8)}|. Thus, D is
small if the distribution of the sequence {uy,...,u;} is
close to the uniform one. The theorem of Erdés and
Turan asserts that for any n € N

m t
6 4 1 1 1
D < + — _— —E h
“m+1 7 1<h m—l—l) tjzle ;)

Take ag € Z3 and {uy,...,us} = {agz/p : © € G}.
Then the last inequality can be written as

m

6 4 1 1
D < E S
_m—|—1+7rth 1(h m + 1 )\S(aoh G)l




Therefore, if m < p, then

1
1.6 D« —+1 1
(1.6) < —+ og(m + H%%}g

S(a,G)|/t.

Assume that for some 7 € [1/p, 1] we have the estimate

1.
(1.7) max

S(a,G)|/t <n.

Then, taking

p !
" llog(n‘l) + 1] |
we deduce from (1.6)
(1.8) D < n(log(n™) +1).
In particular,
(1.4) S(a,G) =o(|G|) (p— o0,a € Zy)

implies
D—0 (p— o0).
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From the definition of the discrepancy we see that
if0 <a<p <1and f—a > Di(ug,...,us) then
la, B) N {uy,...,uz} # 0. In our case {uy,...,us} =
{apz/p : © € G} we get from (1.8) under supposition
(1.7) that there is an absolute constant C' > 0 such that
for h € N, h > Cn(log(n™) + 1)p, n € Z, and ag € /
the congruence

(1.9) n+j=aox,x € G,|j| <h,

has at least one solution. For small 1 this holds under
weaker restrictions on h.

Proposition 1.1. Assume that (1.7) holds, h € N,
h=np/(1+mn)], n€Z, and ag € Z;. Then (1.9) has
at least one solution.

Thus, Proposition 1.1 asserts that if exponential sums
over GG are small then agG does not produce large gaps.
To prove of Proposition 1.1 we use the following Lemma.

Lemma 1.2. Let X C Z,. Then

2
= p|X|.

2

a€Zyp

" e(ax/p)

reX
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Proof of Lemma 1.2. We have

2

> 1D elaz/p)

a€ly, |lxeX
= 5" e(an/p) S e(—az/p)
a€ly, x€X zeX
=D D elarr/p) Y e(~aza/p)
a€lp x1€X roEX

= > ) ela(zr —x2)/p)

a€lp x1,02€X

Y Y a(r1 — z2)/p)

x1,r2€X a€Zyp

= >  p=plX]|

r1=x2€X

as required.

In fact, we can treat

{3 e(aw/p)}acs,

reX

as the Fourier transform of the characteristic function of
the set X, and Lemma 1.2 is merely Parseval’s identity.
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Proposition 1.1. Assume that (1.7) holds, h € N,
h=[np/(1+n)], n € Z, and ag € Z;. Then the congru-
ence

(1.9) n+j=aox,x € G,|j| <h,

has at least one solution.

Proof of Proposition 1.1. Assume that congruence (1.9)
is unsolvable. Then

0= S S elalans— - ut 0)p)

ze€G u,v=0 aEZ*

Changing the order of summation, separating the term
t(h+1)? corresponding to a = 0, and using (1.7) we get

h
2<Y DYDY elalagr —n—u+v)/p)

agzg reG u,v=0
. 2
= Z Ze(aaoz{;/p) ZG(GU/P)
a€ly |x€G u=0
2
(1.10) <nt ) Z (au/p)
a€Zy u=0
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Next, by Lemma, 1.2,

h 2

> elau/p)

u=0

2

aEZ;

— (h+1)?

h

> e(au/p)

u=0

3

a€Zyp
=p(h+1)— (h+1)°

After substitution of this equality into inequality (1.10)
we get

th+1)" < nt (p(h+1) = (h+1)%),

or, equivalently,

p
Lt 1)

h+1<np/(1+n).

But this does not agree with the choice of h
(h = [np/(1 + n)]). This completes the proof of the
proposition.
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Exponential sums over subgroups can be applied to
the study of 1/p-pseudo-random generators of Blum,
Blum, and Shub. Let g > 2 be an integer. We consider
the g-ary expansion of 1/p. If g is fixed then we can
expect (and this is true indeed) that for many primes p
there is no large correlation among close digits in this
expansion, and we can talk about a pseudo-random gen-
erator. Let G be the subgroup of Z7 generated by g,
t = |G|. It is easy to see that t is the (least) period
of the g-ary expansion of 1/p. We are interested in ap-
pearances of a sequence (di,...,d;) of g-ary digits in
the expansion. Denote by 04, 0 < o0; < g — 1, the g-ary

digits of 1/p:
1 = .
— =D 007
p Jr

We observe that, for 5 and any g-ary string we have
0j+is = d; for all e =1,... &, if and only if

E iy B4
(1.11) 7§{i}< i,
g p g

where F = d1g" ' +dog" 2+ - 4+ dj.
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Solvability of inequalities (1.11) both together is
equivalent to solvability of the congruence y =z € G
for some y from the interval

which follows from the solvability of the congruence
n+j=xxcG,lj| <h,

where

2] ae [

By Proposition 1.1, this congruence is solvable if

(1.7) max [S(a, G)|/t < n
and
p

— —1> 1 :

2t 12 np/(1+n)

So, the g-ary expansion of 1/p contains any string of
length k if £ < clog(1/n)/log g for some absolute con-
stant ¢ > 0.
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Moreover, we can estimate the number N,(dy, ..., d)
of appearances of the string (dy, ..., dy) in the period of

the g-ary expansion of 1/p in terms of the discrepancy
D of the set {x/p: x € G}. Observe that

Ny(dy,...,d;) = HweG: g%g {z/p} < (E;l; 1)}|.

By the definition of the discrepancy, we have

t

|Np(d1, o dy) — —| < Dt

gk:

Hence, if D is much smaller than 1/¢”* then all strings of
length k appear approximately with the same frequency.
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The following magnitude is important in the study of
hyperelliptic curves. Let T'(p) be the largest ¢ with the
property that there exists a group G' C Z3, |G| = t, such
that for some ag € Z; all the smallest positive residues of
apx, © € G, belong to the interval |1, (p —1)/2]. Clearly
T'(p) is odd. Also, we claim that the following inequality
holds

S(a, G| > t/3.

IMax
aEZ;

Indeed, otherwise (1.7) holds with n = 1/3, and we can
use Proposition 1.1 with h = [p/4] and n = (p+1)/2+h.
Hence, for some x € G we have

n+j=aor,xr € G,|j| < h.

Therefore, agx is not congruent to any number from the
interval [1, (p — 1)/2]. Thus, we get the following.

Proposition 1.3. Let ty be such that for every group
G C Zy of an odd order with |G| > to we have

max
aEZ;

S(a,G)| < |G|/3.

Then T (p) < to.
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Estimates for exponential sums over subgroups are
closely related to additive properties of subgroups.

Proposition 1.4. Let 0 > 0 be such that
(1.57) S(a, G)| < |Gp~° (a€Zyp),

b1,...,bq € Z,. Then the number N of the solutions to
the congruence

(1.12) Y bjz;=0 (21,...,24 € X)
j=1

satisfies the inequality

d
(1.13) ‘N— 61

< |G|%p~o.
p

In particular, N >0 if d > 1/9.

We note that if 6 and d > 1/4 are fixed and (1.5)
holds for the family of pairs (p, G) then (1.13) gives an
asymptotic formula for the number of the solutions of
(1.12) as p — oo.
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Proof of Proposition 1.4. We have

pN = Z Z @ijmj/p

L1yeeny rq€G CLEZ

=) H D elabjz;/p)

a€Zy, j=1z;€G

(1.14) = ][ S(ab;,G).

aCZy =1

Separating the term |G|¢ corresponding to a = 0, we
get

pN — |G| = S(abj, G)

||'::]g

<(p—1) (max S(a, G)I)d,

aEZ;

and using (1.5’) completes the proof of the proposition.



19

In a particular case by = --- = byg_1 = —1, by = b,
congruence (1.12) has a form

d—1
bry = E Z;,
j=1
or

d—1
b= Z T;/Tq.
j=1

Observing that x; /x4 € G we obtain the following.

Corollary 1.5. If (1.5°) holds and d > 1/6 then for
every b € Z; the congruence

d—1
b= ij, x; € X

j=1

15 solvable.

Corollary 1.5 gives a simple estimate for a number of
summands in Waring problem for G.



20

To estimate S(a, G) we need one more simple lemma.

Lemma 1.6. For any a € Z, and x € G we have

S(a,G) = S(ax,G).
Proof.

S(az,G) = e(azy/p)= > e(az/p)

yed z=xy,yeG
= Z e(az/p) = S(a, G).
zeG

Now we are ready to prove the simplest estimate for

1S(a,G).
Theorem 1.7. We have

(1.15) 1S(ao, G)| < \/p (a0 € Z3).

Proof. By Lemma 1.6 and Lemma 1.2, we get

G||S(a0, G)* =) |S(aoz, G)|
relG
<) 19(a, G)* = plG]
aceG

and the theorem follows.
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So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5°)) provided that |G| > p'/219.
Our aim is to weaken this inequality for |G].

However, it turns out that there is no nontrivial esti-
mate

(1.4) S(a,G) =o(|G]) (p— o0,a € Z)

if |G| < logp.

Theorem 1.8. For every u > 0 there are p(u) and
v > 0 such that for p > p(u) inequality

(1.16) |G| < ulogp

implies

max
aEZ;

S(a,G)| > v|G|.

Proof. Take some T' € N, T' < t = |G|, and some X C
G with | X| = T. By pigeonhole principle, there is an
integer a, 1 < a < p, such that |laz/p| < p~ /7T for all
x € X, where ||z]| denotes the distance form z to the
nearest integer. Therefore, there is an interval

(o, 8) €[0,1), —a<p YT andasetY C X, |Y]| >
T /2, such that {ax/p} € |, B) for all z € Y. Thus, we
have the following estimate for the discrepancy D of the
set {ax/p: x € G}:
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Y Y
(1.17) Dz‘—t‘—(ﬁ—a)zl |—p1/T.
If |G| <logp we take T'=t. Then |Y| > ¢/2, and (1.17)

implies
D>1/2—-1/e.

If |G| > logp (and, thus, u > 1) we take T' = [log p/(3u)]
and p(u) so that T'> 1 for p > p(u). Then

Y| > max(1, [log p/(6u)] > log p/(12u),
and, by (1.17),

1 12 1
p < Udogp)/(12u)  _s, s

ulog p T 122

So, in both cases we have D > c¢(u) > 0, and inequality

1.
(1.7) max

S(a, G)|/t <1

cannot hold for small n > 0 since it would imply

D < n(log(n™") +1).
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But the last inequality is not compatible with our
lower estimates for D if n is small enough. This com-
pletes the proof of Theorem 1.8.

Also, one can prove lower estimates for |S(a, G)| using
results on Turan’s problem. Let ¢ and N be positive
integers. It is required to evaluate or to estimate

Us(N)= min max

Aa1,...,00¢ CL:1,...,N

t
e(aa;)| .

J

1
Taking G = {x1,...,2}, aj = e(x;/p), we see that

IMnax
aEZ;

S(a, G)| = Uy(p - 1).

Theorem 1.8 follows from H. Montgomery’s lower esti-
mates for U;(p — 1). H. Montgomery conjectured that
for a € Z;

o 1/2
S(6)| < (1) (21067 )

where n — 0 as p — oo. If this is true, then S(a,G) =
o(|G]) as |G|/ logp — oo.
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Observe that neither of these proofs uses that GG is a
group. Thus, the following is true.

Theorem 1.8°. For every u > 0 there are p(u) and
v > 0 such that for p > p(u) and X C Z,, inequality

(1.16) | X| <wulogp
implies
> v|X|.
e ;{e(ax/p) > | X]|

To get better estimates for S(a,G) we define, for
k € N, Ti(G) as the number of the solutions to the
congruence

T+ Tk = Thp1 + -+ x2k, T €G.
Clearly, T1(G) = t, and, for any k,
(1.17) th < TW(G) < 2R,

Identity (1.14) in our case can be written as

(1.18) PTH(G) = 3 15(a,G) ™

a€ Ly
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It easily follows from (1.18) that

(1.19) Ti(G) > |8(0,G)|** /p = t** /p
and
(1.20) Trer1(G)/2FHD) < T (@) /82F.

Moreover, (1.18) shows that T3 (G)/t?* is close to 1/p

for large k if all sums |S(a,G)|, a € Z3, are small. In

particular, it follows from Proposition 1.4 or directly
from (1.18) that if we have

(1.57) S(a,G) <|Glp™° (ac€ L),

and 2k > 1/6, then T3 (G) < 2t2* /p. We will show now
that, conversely, if T} (G) is close to t2* /p for some small
k, then we can get bound |S(a,G)| well.

Proposition 1.9. We have

(1.21)  |S(a0, G)| < WT(G) /)Y (ag € Z).
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Proof. By Lemma 1.6 and (1.18), we get

t|S (a0, G)|** = |S(apw, G)

relG

< Z 1S(a, G)|** = pTi(G),

aceG

and the proposition follows.

In particular, if T} (G)/t2* < tp=¢/p then
S(a, Q) < [Glp™/®P (a € Zp).

Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for £ = 1. If we use a trivial estimate
T (G) < t?=1 we get only

1S(a, G)| < (pt2F=2 /1)) = t(p )1/ 2k),

This estimate is worse than the trivial one

S(a,G)| < tif |G| < p'/? and worse than the simplest
estimate |S(a,G)| < p'/? if |G| > p'/2. However, if
|G| is close to p'/? then any improvement of the triv-
ial inequality T (G) < t?*~! will improve estimates for

|15 (a, G)|.



