
Let m ∈ N, Zm = Z/mZ be the set of the residues
modulo m. If p is a prime, then Zp is a field of order
p. Let Z

∗
p = Zp \ {0} be the set of invertible elements in

Zp. We take an arbitrary subgroup G of the group Z
∗
p.

Let t = |G|. For brevity, we will write a ≡ b instead of
a ≡ b(modp).

For u ∈ R we denote e(u) = exp(2πiu). The function
e(·) is 1-periodic, and this allows us to talk about e(a/p)
for a ∈ Zp.

The main subject of my talks is the estimation of
exponential sums over G:

S(a, G) =
∑

x∈G

e(ax/p), a ∈ Zp.

There are some equivalent and related problems.

1
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1. Exponential sums with exponential func-

tions. Let g ∈ Z
∗
p and ordp(g) = t, namely

t = {min{k > 0 : gk ≡ 1}}.

For a ∈ Zp we consider

S(a, g) =
t−1
∑

k=0

e(agk/p).

Let G be the group generated by g. We have

G = {gk : k = 0, . . . , t − 1}.

Hence,
S(a, g) = S(a, G).

Conversely, if G is an arbitrary subgroup of Z
∗
p then G

is generated by some g ∈ Z
∗
p as a subgroup of a cyclic

group Z
∗
p, and we can consider an exponential sum over

G as an exponential sum with an exponential function.
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2. Gaussian sums. Let n ∈ N, m ∈ N, a ∈ Zm.
Consider the sum

Sn(a, m) =
∑

x∈Zm

e(axn/m).

Clearly, Sn(0, m) = m. The simplest case is n = 1. For
a ∈ Zm \ {0} we have

S1(a, m) =

m−1
∑

x=0

e(ax/m) =
e(ma/m) − e(0)

e(a/m) − 1
= 0.

Thus, we have

∑

x∈Zm

e(ax/m) =

{

m, a = 0,

0, a ∈ Zm \ {0}.

This simple property is a basic tool for using exponential
sums in study of different problems modulo m.

K. Gauss evaluated S2(a, m) and, in particular,
proved that |S2(a, p)| =

√
p for a ∈ Z

∗
p. Sometimes

Sn(a, m) are called Gaussian sums.
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For arbitrary n ∈ N denote d = gcd(n, p − 1),
t = (p − 1)/d. Consider the congruence

(1.1) xn ≡ 1.

Let g0 be a primitive root modulo p. If x = gu
0 , 0 ≤ u <

p − 1, then (1.1) is equivalent to the congruence

nu ≡ 0(mod(p − 1)),

or

(1.2) u ≡ 0(modt).

The number of u, 0 ≤ u < p − 1, satisfying (1.2), is
(p−1)/t = d. Therefore, for every y ∈ Z

∗
p the congruence

xn ≡ y

either does not have solutions or has d solutions. It is
easy to see that G = {xn : x ∈ Z

∗
p} is a subgroup of Z

∗
p

and |G| = t.
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Now we can write Sn(a) as follows

Sn(a) = 1 +
∑

x∈Z∗

p

e(axn/p)

= 1 +
∑

y∈Z∗

p

e(ay/p)|{x ∈ Z
∗
p : xn ≡ y}|

= 1 +
∑

y∈G

de(ax/p) = 1 +
p − 1

t
S(a, G).

We can estimate S(a, G) trivially:

(1.3) |S(a, G)| ≤
∑

x∈G

|e(ax/p)| =
∑

x∈G

1 = |G|.

This estimate corresponds to a trivial estimate for
Gaussian sums

|Sn(a)| ≤ p.

Clearly, inequality (1.3) is equality if a = 0. We are
interested in obtaining nontrivial estimates for S(a, G):

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗
p)

or, for some δ > 0.

(1.5) S(a, G) � |G|p−δ (a ∈ Z
∗
p).
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Recall that U � V means |U | ≤ CV where C > 0
may be an absolute constant or depend on some speci-
fied parameters. Of course, in (1.4) and (1.5) we assume
that a pair (p, G) belongs to some set of pairs. Trivially,
(1.4) does not hold in general. If |G| = 1, then for any
a ∈ Zp we have |S(a, G)| = 1. If p > 2, |G| = 2, that is,
G = {1,−1}, then

S(1, G) = e(1/p) + e(−1/p) = 2 cos(2π/p)

= |G| + O(p−2).

We can expect that (1.4) or (1.5) holds if |G| is not too
small comparatively to p.
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If maxa∈Z∗

p
|S(a, G)| is small comparatively to

t = |G|, then we can deduce that for any a ∈ Z
∗
p the frac-

tional parts {ax/p}, x ∈ G, are well-distributed on [0, 1).
To formulate this precisely, let us take an arbitrary real
sequence {u1, . . . , ut} and define its discrepancy as

D = Dt(u1, . . . , ut)

= sup
0≤α<β≤1

∣

∣

∣

∣

A([α, β); t)

t
− (β − α)

∣

∣

∣

∣

,

where A([α, β); t) = |{j : {uj} ∈ [α, β)}|. Thus, D is
small if the distribution of the sequence {u1, . . . , ut} is
close to the uniform one. The theorem of Erdős and
Turan asserts that for any n ∈ N

D ≤ 6

m + 1
+

4

π

m
∑

h=1

(

1

h
− 1

m + 1

)

∣

∣

∣

∣

∣

∣

1

t

t
∑

j=1

e(huj)

∣

∣

∣

∣

∣

∣

.

Take a0 ∈ Z
∗
p and {u1, . . . , ut} = {a0x/p : x ∈ G}.

Then the last inequality can be written as

D ≤ 6

m + 1
+

4

πt

m
∑

h=1

(

1

h
− 1

m + 1

)

|S(a0h, G)|.
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Therefore, if m < p, then

(1.6) D � 1

m
+ log(m + 1) max

a∈Z∗

p

|S(a, G)|/t.

Assume that for some η ∈ [1/p, 1] we have the estimate

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η.

Then, taking

m =

[

η−1

log(η−1) + 1

]

,

we deduce from (1.6)

(1.8) D � η(log(η−1) + 1).

In particular,

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗
p)

implies
D → 0 (p → ∞).



9

From the definition of the discrepancy we see that
if 0 ≤ α < β ≤ 1 and β − α > Dt(u1, . . . , ut) then
[α, β) ∩ {u1, . . . , ut} 6= ∅. In our case {u1, . . . , ut} =
{a0x/p : x ∈ G} we get from (1.8) under supposition
(1.7) that there is an absolute constant C > 0 such that
for h ∈ N, h ≥ Cη(log(η−1) + 1)p, n ∈ Z, and a0 ∈ Z

∗
p

the congruence

(1.9) n + j ≡ a0x, x ∈ G, |j| ≤ h,

has at least one solution. For small η this holds under
weaker restrictions on h.

Proposition 1.1. Assume that (1.7) holds, h ∈ N,
h = [ηp/(1 + η)], n ∈ Z, and a0 ∈ Z

∗
p. Then (1.9) has

at least one solution.

Thus, Proposition 1.1 asserts that if exponential sums
over G are small then a0G does not produce large gaps.
To prove of Proposition 1.1 we use the following Lemma.

Lemma 1.2. Let X ⊂ Zp. Then

∑

a∈Zp

∣

∣

∣

∣

∣

∑

x∈X

e(ax/p)

∣

∣

∣

∣

∣

2

= p|X|.
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Proof of Lemma 1.2. We have

∑

a∈Zp

∣

∣

∣

∣

∣

∑

x∈X

e(ax/p)

∣

∣

∣

∣

∣

2

=
∑

a∈Zp

∑

x∈X

e(ax/p)
∑

x∈X

e(−ax/p)

=
∑

a∈Zp

∑

x1∈X

e(ax1/p)
∑

x2∈X

e(−ax2/p)

=
∑

a∈Zp

∑

x1,x2∈X

e(a(x1 − x2)/p)

=
∑

x1,x2∈X

∑

a∈Zp

e(a(x1 − x2)/p)

=
∑

x1=x2∈X

p = p|X|,

as required.

In fact, we can treat

{
∑

x∈X

e(ax/p)}a∈Zp

as the Fourier transform of the characteristic function of
the set X, and Lemma 1.2 is merely Parseval’s identity.
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Proposition 1.1. Assume that (1.7) holds, h ∈ N,
h = [ηp/(1 + η)], n ∈ Z, and a0 ∈ Z

∗
p. Then the congru-

ence

(1.9) n + j ≡ a0x, x ∈ G, |j| ≤ h,

has at least one solution.

Proof of Proposition 1.1. Assume that congruence (1.9)
is unsolvable. Then

0 =
∑

x∈G

h
∑

u,v=0

∑

a∈Z∗

p

e(a(a0x − n − u + v)/p).

Changing the order of summation, separating the term
t(h+1)2 corresponding to a = 0, and using (1.7) we get

t(h + 1)2 ≤
∑

a∈Z∗

p

∣

∣

∣

∣

∣

∑

x∈G

h
∑

u,v=0

e(a(a0x − n − u + v)/p)

∣

∣

∣

∣

∣

=
∑

a∈Z∗

p

∣

∣

∣

∣

∣

∑

x∈G

e(aa0x/p)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h
∑

u=0

e(au/p)

∣

∣

∣

∣

∣

2

≤ ηt
∑

a∈Z∗

p

∣

∣

∣

∣

∣

h
∑

u=0

e(au/p)

∣

∣

∣

∣

∣

2

.(1.10)
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Next, by Lemma 1.2,

∑

a∈Z∗

p

∣

∣

∣

∣

∣

h
∑

u=0

e(au/p)

∣

∣

∣

∣

∣

2

=
∑

a∈Zp

∣

∣

∣

∣

∣

h
∑

u=0

e(au/p)

∣

∣

∣

∣

∣

2

− (h + 1)2

= p(h + 1) − (h + 1)2.

After substitution of this equality into inequality (1.10)
we get

t(h + 1)2 ≤ ηt
(

p(h + 1) − (h + 1)2
)

,

or, equivalently,

1 ≤ η

(

p

h + 1
− 1

)

,

h + 1 ≤ ηp/(1 + η).

But this does not agree with the choice of h
(h = [ηp/(1 + η)]). This completes the proof of the
proposition.



13

Exponential sums over subgroups can be applied to
the study of 1/p-pseudo-random generators of Blum,
Blum, and Shub. Let g ≥ 2 be an integer. We consider
the g-ary expansion of 1/p. If g is fixed then we can
expect (and this is true indeed) that for many primes p
there is no large correlation among close digits in this
expansion, and we can talk about a pseudo-random gen-
erator. Let G be the subgroup of Z

∗
p generated by g,

t = |G|. It is easy to see that t is the (least) period
of the g-ary expansion of 1/p. We are interested in ap-
pearances of a sequence (d1, . . . , dk) of g-ary digits in
the expansion. Denote by σj , 0 ≤ σj ≤ g − 1, the g-ary
digits of 1/p:

1

p
=

∞
∑

j=1

σjg
−j .

We observe that, for j and any g-ary string we have
σj+i = di for all i = 1, . . . , k, if and only if

(1.11)
E

gk
≤

{

gj

p

}

<
E + 1

gk
,

where E = d1g
k−1 + d2g

k−2 + · · · + dk.
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Solvability of inequalities (1.11) both together is
equivalent to solvability of the congruence y ≡ x ∈ G
for some y from the interval

Ep

gk
≤ y <

(E + 1)p

gk
,

which follows from the solvability of the congruence

n + j ≡ x, x ∈ G, |j| ≤ h,

where

n =

[

(2E + 1)p

2gk

]

, h =

[

p

2gk
− 1

]

.

By Proposition 1.1, this congruence is solvable if

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

and
p

2gk
− 1 ≥ ηp/(1 + η).

So, the g-ary expansion of 1/p contains any string of
length k if k ≤ c log(1/η)/ log g for some absolute con-
stant c > 0.
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Moreover, we can estimate the number Np(d1, . . . , dk)
of appearances of the string (d1, . . . , dk) in the period of
the g-ary expansion of 1/p in terms of the discrepancy
D of the set {x/p : x ∈ G}. Observe that

Np(d1, . . . , dk) =

∣

∣

∣

∣

{

x ∈ G :
E

gk
≤ {x/p} <

(E + 1)

gk

}∣

∣

∣

∣

.

By the definition of the discrepancy, we have

∣

∣

∣

∣

Np(d1, . . . , dk) − t

gk

∣

∣

∣

∣

≤ Dt.

Hence, if D is much smaller than 1/gk then all strings of
length k appear approximately with the same frequency.
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The following magnitude is important in the study of
hyperelliptic curves. Let T (p) be the largest t with the
property that there exists a group G ⊂ Z

∗
p, |G| = t, such

that for some a0 ∈ Z
∗
p all the smallest positive residues of

a0x, x ∈ G, belong to the interval [1, (p− 1)/2]. Clearly
T (p) is odd. Also, we claim that the following inequality
holds

max
a∈Z∗

p

|S(a, G)| > t/3.

Indeed, otherwise (1.7) holds with η = 1/3, and we can
use Proposition 1.1 with h = [p/4] and n = (p+1)/2+h.
Hence, for some x ∈ G we have

n + j ≡ a0x, x ∈ G, |j| ≤ h.

Therefore, a0x is not congruent to any number from the
interval [1, (p − 1)/2]. Thus, we get the following.

Proposition 1.3. Let t0 be such that for every group
G ⊂ Z

∗
p of an odd order with |G| > t0 we have

max
a∈Z∗

p

|S(a, G)| ≤ |G|/3.

Then T (p) ≤ t0.
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Estimates for exponential sums over subgroups are
closely related to additive properties of subgroups.

Proposition 1.4. Let δ > 0 be such that

(1.5’) |S(a, G)| ≤ |G|p−δ (a ∈ Z
∗
p),

b1, . . . , bd ∈ Z
∗
p. Then the number N of the solutions to

the congruence

(1.12)
∑

j=1

bjxj ≡ 0 (x1, . . . , xd ∈ X)

satisfies the inequality

(1.13)

∣

∣

∣

∣

N − |G|d
p

∣

∣

∣

∣

< |G|dp−δd.

In particular, N > 0 if d ≥ 1/δ.

We note that if δ and d > 1/δ are fixed and (1.5)
holds for the family of pairs (p, G) then (1.13) gives an
asymptotic formula for the number of the solutions of
(1.12) as p → ∞.
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Proof of Proposition 1.4. We have

pN =
∑

x1,...,xd∈G

∑

a∈Zp

e



a
∑

j=1

bjxj/p





=
∑

a∈Zp

d
∏

j=1

∑

xj∈G

e(abjxj/p)

=
∑

a∈Zp

d
∏

j=1

S(abj , G).(1.14)

Separating the term |G|d corresponding to a = 0, we
get

|pN − |G|d| =

∣

∣

∣

∣

∣

∣

∑

a∈Z∗

p

d
∏

j=1

S(abj , G)

∣

∣

∣

∣

∣

∣

≤ (p − 1)

(

max
a∈Z∗

p

|S(a, G)|
)d

,

and using (1.5’) completes the proof of the proposition.
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In a particular case b1 = · · · = bd−1 = −1, bd = b,
congruence (1.12) has a form

bxd ≡
d−1
∑

j=1

xj ,

or

b ≡
d−1
∑

j=1

xj/xd.

Observing that xj/xd ∈ G we obtain the following.

Corollary 1.5. If (1.5’) holds and d ≥ 1/δ then for
every b ∈ Z

∗
p the congruence

b ≡
d−1
∑

j=1

xj , xj ∈ X

is solvable.

Corollary 1.5 gives a simple estimate for a number of
summands in Waring problem for G.
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To estimate S(a, G) we need one more simple lemma.

Lemma 1.6. For any a ∈ Zp and x ∈ G we have
S(a, G) = S(ax, G).

Proof.

S(ax, G) =
∑

y∈G

e(axy/p) =
∑

z=xy,y∈G

e(az/p)

=
∑

z∈G

e(az/p) = S(a, G).

Now we are ready to prove the simplest estimate for
|S(a, G)|.
Theorem 1.7. We have

(1.15) |S(a0, G)| ≤ √
p (a0 ∈ Z

∗
p).

Proof. By Lemma 1.6 and Lemma 1.2, we get

|G||S(a0, G)|2 =
∑

x∈G

|S(a0x, G)|2

≤
∑

a∈G

|S(a, G)|2 = p|G|,

and the theorem follows.



21

So, we have a nontrivial estimate for exponential
sums over G (namely, (1.5’)) provided that |G| ≥ p1/2+δ.
Our aim is to weaken this inequality for |G|.

However, it turns out that there is no nontrivial esti-
mate

(1.4) S(a, G) = o(|G|) (p → ∞, a ∈ Z
∗
p)

if |G| � log p.

Theorem 1.8. For every u > 0 there are p(u) and
v > 0 such that for p ≥ p(u) inequality

(1.16) |G| ≤ u log p

implies
max
a∈Z∗

p

|S(a, G)| ≥ v|G|.

Proof. Take some T ∈ N, T ≤ t = |G|, and some X ⊂
G with |X| = T . By pigeonhole principle, there is an
integer a, 1 ≤ a < p, such that ‖ax/p‖ ≤ p−1/T for all
x ∈ X, where ‖z‖ denotes the distance form z to the
nearest integer. Therefore, there is an interval
[α, β) ∈ [0, 1), β − α ≤ p−1/T , and a set Y ⊂ X, |Y | ≥
T/2, such that {ax/p} ∈ [α, β) for all x ∈ Y . Thus, we
have the following estimate for the discrepancy D of the
set {ax/p : x ∈ G}:
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(1.17) D ≥ |Y |
t

− (β − α) ≥ |Y |
t

− p1/T .

If |G| ≤ log p we take T = t. Then |Y | ≥ t/2, and (1.17)
implies

D ≥ 1/2 − 1/e.

If |G| > log p (and, thus, u > 1) we take T = [log p/(3u)]
and p(u) so that T ≥ 1 for p ≥ p(u). Then

|Y | ≥ max(1, [log p/(6u)] > log p/(12u),

and, by (1.17),

D >
(log p)/(12u)

u log p
− e−3u =

1

12u2
− e−3u > 0.

So, in both cases we have D ≥ c(u) > 0, and inequality

(1.7) max
a∈Z∗

p

|S(a, G)|/t ≤ η

cannot hold for small η > 0 since it would imply

D � η(log(η−1) + 1).
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But the last inequality is not compatible with our
lower estimates for D if η is small enough. This com-
pletes the proof of Theorem 1.8.

Also, one can prove lower estimates for |S(a, G)| using
results on Turan’s problem. Let t and N be positive
integers. It is required to evaluate or to estimate

Ut(N) = min
α1,...,αt

max
a=1,...,N

∣

∣

∣

∣

∣

∣

t
∑

j=1

e(aαj)

∣

∣

∣

∣

∣

∣

.

Taking G = {x1, . . . , xt}, αj = e(xj/p), we see that

max
a∈Z∗

p

|S(a, G)| ≥ Ut(p − 1).

Theorem 1.8 follows from H. Montgomery’s lower esti-
mates for Ut(p − 1). H. Montgomery conjectured that
for a ∈ Z

∗
p

|S(a, G)| ≤ (1 + η)

(

2t log
p2

t

)1/2

,

where η → 0 as p → ∞. If this is true, then S(a, G) =
o(|G|) as |G|/ log p → ∞.
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Observe that neither of these proofs uses that G is a
group. Thus, the following is true.

Theorem 1.8’. For every u > 0 there are p(u) and
v > 0 such that for p ≥ p(u) and X ⊂ Zp inequality

(1.16’) |X| ≤ u log p

implies

max
a∈Z∗

p

∣

∣

∣

∣

∣

∑

x∈X

e(ax/p)

∣

∣

∣

∣

∣

≥ v|X|.

To get better estimates for S(a, G) we define, for
k ∈ N, Tk(G) as the number of the solutions to the
congruence

x1 + · · · + xk ≡ xk+1 + · · · + x2k, xj ∈ G.

Clearly, T1(G) = t, and, for any k,

(1.17) tk ≤ Tk(G) ≤ t2k−1.

Identity (1.14) in our case can be written as

(1.18) pTk(G) =
∑

a∈Zp

|S(a, G)|2k.
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It easily follows from (1.18) that

(1.19) Tk(G) ≥ |S(0, G)|2k/p = t2k/p

and

(1.20) Tk+1(G)/t2(k+1) ≤ Tk(G)/t2k.

Moreover, (1.18) shows that Tk(G)/t2k is close to 1/p
for large k if all sums |S(a, G)|, a ∈ Z

∗
p, are small. In

particular, it follows from Proposition 1.4 or directly
from (1.18) that if we have

(1.5’) S(a, G) ≤ |G|p−δ (a ∈ Z
∗
p),

and 2k ≥ 1/δ, then Tk(G) ≤ 2t2k/p. We will show now
that, conversely, if Tk(G) is close to t2k/p for some small
k, then we can get bound |S(a, G)| well.

Proposition 1.9. We have

(1.21) |S(a0, G)| ≤ (pTk(G)/t)
1/(2k)

(a0 ∈ Z
∗
p).
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Proof. By Lemma 1.6 and (1.18), we get

t|S(a0, G)|2k =
∑

x∈G

|S(a0x, G)|2

≤
∑

a∈G

|S(a, G)|2k = pTk(G),

and the proposition follows.

In particular, if Tk(G)/t2k ≤ tp−ε/p then

|S(a, G)| ≤ |G|p−ε/(2k) (a ∈ Z
∗
p).

Observe that Theorem 1.7 is a particular case of Pro-
position 1.9 for k = 1. If we use a trivial estimate
Tk(G) ≤ t2k−1 we get only

|S(a, G)| ≤
(

pt2k−1/t
)1/(2k)

= t(p/t2)1/(2k).

This estimate is worse than the trivial one
|S(a, G)| ≤ t if |G| < p1/2 and worse than the simplest
estimate |S(a, G)| ≤ p1/2 if |G| > p1/2. However, if
|G| is close to p1/2 then any improvement of the triv-
ial inequality Tk(G) ≤ t2k−1 will improve estimates for
|S(a, G)|.


