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Lecture 1

During this series of lectures, (I should have included this in the title) we are
talking about infinite graphs and set systems, so this will be infinite combina-
torics. This subject was initiated by Paul Erdős in the late 1940’s.

I will try to show in these lectures how it becomes an important part of mod-
ern set theory, first serving as a test case for modern tools, but also influencing
their developments.

In the first few of the lectures, I will pretend that I am talking about a joint
work of István Juhász, Saharon Shelah and myself [23].

The actual highly technical result of this paper that appeared in the Fun-
damenta in 2000 will only be stated in the second or the third part of these
lectures. Meanwhile I will introduce the main concepts and state—and some-
times prove—simple results about them.

In the spirit of Erdős, graph means simple graph , i. e., graphs with no loops
and multiple edges.

Notation 1 (1) G = (V,E) is a graph if E ⊂ [V ]2 = {a : a ⊂ V ∧ |a| = 2}.
(2) Kλ denotes the complete graph of λ vertices for a cardinal λ.

Remark. Often E alone is viewed as a graph, then we mean V =
⋃
E.

Definition 2 Let G be a graph, γ an ordinal, then

(1) f : V → γ is a good coloring of G with γ colors if for every {u, v} ∈ E,
f(u) 6= f(v).

(2) The chromatic number is defined as

χ(G) = Chr(G)
:= min{κ : ∃f : V → κ such that f is a good coloring of G}.

We all know from the Four Color Theorem: if V is the set of faces of a planar
map and {u, v} ∈ E iff u, v have a common side, then Chr(G) ≤ 4.

One of the first questions of graph theory was what makes the chromatic
number large. It would be nice to know that, and it is also very hard to find
conditions for that. The next remark was the simplest observation:

Proposition 3 If Kn ⊂ G, then Chr(G) ≥ n.
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Actually Kn ⊂ G is not necessary to guarantee the large chromatic number.

Theorem 4 (Mycielski, [29]) For every n ∈ ω, there is a (finite) graph Gn

such that K3 6⊆ Gn and Chr(G) ≥ n.

Theorem 5 (Kőnig) A graph has Chr(G) ≤ 2 iff it contains no odd cycle.

In 1959, Erdős proved the following result, in a ground breaking paper on
finite combinatorics.

Definition 6 Given a graph G, the girth and odd girth are defined as

Girth(G) := min{r : G contains a cycle of r edges },
Oddgirth(G) := min{r : r is odd and G contains a cycle of r edges}.

Theorem 7 (Erdős, [5]) For all n, r ∈ ω there is a graph G such that

Chr(G) ≥ n and Girth(G) ≥ r.

This is one of the very first applications of the probabilistic method. Erdős
always wanted to know the possible infinite generalizations.

Theorem 8 (Erdős, Rado 1960, [18]) For every κ ≥ ω, there is a graph
G = (V,E) such that

K3 6⊂ G and Chr(G) = κ.

The above theorem is a generalization of Mycielski’s Theorem. The graph
they used was Specker(κ, 3) = E, with vertex set [κ]3, and for any two vertices
{α1, α2, α3} and {β1, β2, β3}, where α1 < α2 < α3, β1 < β2 < β3 and α1 < β1,
we have

{{α1, α2, α3}, {β1, β2, β3}} ∈ E iff α2 < β1 < α3 < β2.

Now I want to make a short detour talking history. I met Erdős for the first
time the spring of 1956 in Szeged, a small town in the southern part of Hungary,
where I just finished writing my PhD. He lived abroad in the West but started to
visit this year regularly to see his elderly mother and using this opportunity to
work with a great many new people. Those days this was not a small matter to
arrange and beside his worldwide fame this we could thank for the clever politics
of some of his influential friends. We started to write long joint papers as soon
as we met, and by 1960 we had quite a few to place in Hungarian journals. One
of the editors suggested that why don’t you rather write a book. (I suspect he
was not very happy to read our manuscripts written in a rather informal style)
Erdős seemed to like the idea, and I arrived one day to Mátraháza, a small place
in the mountains, armed with periodicals I felt necessary for the preparation
of this task. There was in this village a summerhouse for members of the
Hungarian Academy where Erdős spent his vacation with his mother working
simultaneously with many people. Rényi and Turán were usually there.
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I gave one of the papers to Paul to read and for some reason I left the room.
When I returned I found him reading excitedly, but not the paper I gave to him
but the one next to it. That was where we found property B, which was defined
by Miller in this remarkable paper written in 1937.

Definition 9 Let F be a family of sets, F has property B if there is a set
B ⊆ ∪F , such that for every F ∈ F , F ∩B, F −B are both nonempty.

Felix Bernstein proved that the set of perfect subsets of R has property B,
i. e., there is a set B ⊆ R such that neither B nor its complement contains a
perfect subset. Miller invented the name property B in honor of Bernstein.

Theorem 10 (Miller 1937, [28]) Let n ∈ ω. Assume F is a family of sets
that are of size ω, and |F1 ∩F2| ≤ n for F1 6= F2 ∈ F . Then F has property B.

Erdős liked the subject and started to conjecture generalizations even before
we properly read the paper. Anyway reading meant reading the theorems and
making the proofs. This time this did not quite work. I had to read the proof.

First we proved that under this condition, F has even a stronger property.

Definition 11 Let F be a family of sets, F has property B(γ) if there is a set
B such that

0 < |B ∩ F| < γ, for all F ∈ F .

Now we can state a theorem as follows.

Theorem 12 (Erdős, Hajnal 1961, [9]) If F consists of sets of size ω, and
if |F1 ∩ F2| < n for some n < ω, then F has property B(ω).

Remark. In the theorem above in general we can not have property B(k) for
k < ω but I will not discuss this.

The real generalizations are when the sets are assumed to be larger. Before
stating them I will outline a proof of Miller’s theorem. But first let me rephrase
property B generalizing the concept of chromatic number and revealing the
connection with the subject discussed before.

Assuming |F | ≥ 2 for each |F | ∈ |F|, what does it mean that F has the
property B? Assume that F consists of subsets of S, define f(x) for x ∈ S

f(x) =

{
0, if x ∈ B,
1, if x /∈ B.

Then property B means exactly that there is a coloring of the vertices such
that for any F ∈ F , f is not constant on F .

Definition 13 Let F be any set system, such that |F | ≥ 2, for each F ∈ F .
Then we define

Chr(F) := min{κ : there is f : ∪F → κ, such that f � F is not constant,
for every F ∈ F}.
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Therefore, F has property B iff Chr(F) = 2. This explains why we have
similar phenomena in the theorems concerning the two concepts. And indeed
the theorem below was proved with method to be discussed and generalized in
the next lectures.

Theorem 14 (Erdős, Hajnal 1966, [10]) If Chr(G) > ω, then C4 ⊆ G,
where C4 denotes the cycle of length 4.

More generally,

Theorem 15 If Chr(G) > ω, then Kl,ω1 ⊆ G for every l < ω.

As a consequence, a G of chromatic number greater than ω must contain
every finite bipartite graph and as a corollary of this every even cycle. This
leaves open the problem of short odd cycles only, starting with the pentagon.

As soon as we discovered the theorem we could prove the following result.

Theorem 16 (Erdős Hajnal 1966, [11]) For every κ ≥ ω and every r, there
is a graph G, with Chr(G) = |G| = κ, such that

Oddgirth(G) > r.

I finish this lecture with a theorem, a corollary of which leads to an inter-
esting unsolved problem.

Theorem 17 (Erdős, Hajnal, Shelah 1972 [17]) If Chr(G) > ω, then for
some r0, G contains all cycles C2r+1 for any r > r0.

Corollary 18 If G1, G2 are two graphs each has Chr(Gi) ≥ ω, i = 1, 2. Then
there exists H such that

Chr(H) = 3 and H ⊆ Gi, for i < 2.

Problem 19 (Erdős) Can 3 be replaced by 4 in the above corollary?

One last remark: I learned from Erdős to always look at the simplest case of
the unsolved problem we were thinking about. This is often usefull but can
sometimes be misleading. Had we tried to generalize the finite theorem not
only for quadrilaterals but also for pentagons we would have discovered the
truth much faster.
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Lecture 2

In the last lecture, I promised a proof of Miller’s Theorem. Now let’s recall this
theorem as follows.

Theorem 20 (Miller 1937, [28]) Let n ∈ ω. Assume F is a family of sets
that are of size ω, and |F1 ∩F2| ≤ n for F1 6= F2 ∈ F . Then F has property B.

In fact, Erdős and Hajnal proved in 1961 that under this condition, F has
even stronger property B(ω).

Proof of Theorem 20. We will use cardinal induction. Let |F| = κ. We prove
the statement by induction on κ.

Case(i)
We can enumerate F = {Fi : i < ω}, and choose xi by induction on i so

that xi ∈ Fi. Assume we have chosen xj ∈ Fj , for j < i, in such a way that for
Xi = {xj : j < i}

|Xi ∩ Fl| ≤ n+ 1, for all l < ω.

(Note that xj is not necessarily one-to-one) If Xi∩Fi 6= ∅, we choose xi = xj

for the xj showing this.
Assume Xi ∩ Fi = ∅. There are infinitely many possibilities for xi ∈ Fi. If

we can not choose xi ∈ Fi satisfying the above equation, then for each x ∈ Fi

there are, T (x) ∈ [Xi]n+1 and l(x) ∈ ω, l(x) 6= i such that T (x) ∪ {x} ⊆ Fl(x)

and |T (x)| = n + 1,. Then T (x) = T ⊆ Fl(x) for infinitely many x ∈ Fi.Then
l(x) = l for all these x’s. Thus |Fl ∩ Fi| = ω, contradiction.

Assume now κ > ω and the statement is true for |F| < κ. We need to see
that the result is true for |F| = κ Instead of writing down the original proof,
we now learn a basic method of modern set theory, the method of elementary
submodels and elementary chains, which evolved 40–50 years later in the works
of Shelah. This of course is a waste of our shot for the special case, but we hope
that it will help to understand the general method.

First of all, we need some concepts of logic. Recall that a structure is a pair
A = 〈A,R〉, where A 6= ∅ and R is a relation over A. We will only consider
structures

〈A, ε〉 or 〈A, ε � A〉,

where ε � A := {〈x, y〉 : x, y ∈ A ∧ x ∈ y}.
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Definition 21 We say that the structure Ais an elementary substructure of the
structure B,A ≺ B in notation, if A ⊆ B, and for all formalas Ψ(x1, . . . , xn)
with free variables x1 . . . xn and ∀a1, . . . , an ∈ A, we have

A |= Ψ(a1, . . . , an) (= ΨA(a1, . . . , an))

iff
B |= Ψ(a1, . . . , an) (= ΨB(a1, . . . , an))

We need the well-known

Theorem 22 (Lőwenheim, Skolem) For all C ⊆ B, λ ≥ ω, |C| ≤ λ, there
is an A, such that C ⊂ A, |A| = λ, and

A ≺ B.

This says that we can extend a given small size elementary submodel of a
large model to a larger size. But—as it is well known—we can not insist on
elementary submodels of 〈V,∈〉, where V is the class of all sets. That is why
we need some big models similar to 〈V,∈〉. Big is meant “big relative to some
fixed cardinal”.

Definition 23 For a regular cardinal λ, H(λ) is the set of sets hereditarily of
cardinality less that λ.

Remark. If x ∈ H(λ) then |x| < λ, and if y ∈ x ∈ H(λ) then |y| < λ.

We can prove the existence of H(λ) as follows: Let Hα be defined by recur-
sion on α as follows,

H0 = ∅,
Hα+1 = Hα ∪ [Hα]<λ,

Hβ =
⋃

α<β

Hα, forβ limit,

and then,
H(λ) = Hλ.

Remark. H(λ) is very similar to 〈V,∈〉. 〈H(λ),∈〉 for a regular λ is a model of
all axioms of ZFC without the powerset axiom.

In the following we will use λ = κ+, the successor of κ. Also we will denote
〈N,∈〉 shortly by N , a jargon generally accepted in set theory.

Now let us present elementary chain method in case of Miller’s theorem.
First we will define a sequence Nα : α < κ by recursion on α.

(i) N0 = ∅, N1 ≺ N2 ≺ · · · ≺ Nα ≺ · · · ≺ H(κ+),
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(ii) F , κ ∈ N1, Nα ∈ Nα+1,

(iii) |Nα| ≤ |α|+ ω,

(iv) Nα =
⋃
{Nβ : β < α} for α a limit ordinal.

Theorem 22, makes this definition possible. Also we may assume
⋃
F = κ,

and as a consequence of this F ⊂ κ for F ∈ F .
Setting Sα = Nα ∩ κ, Rα = Sα+1 − Sα, we have

κ =
⋃

α<κ

Rα.

where the sets Rα are pairwise disjoint.
For F ∈ F , let

α(F ) := min{α : |F ∩ Sα+1| ≥ n+ 1},
Fα := {F ∈ F : α(F ) = α},

(1) If F ∈ Fα, then |F ∩ Sα| ≤ n by definition.
We now prove the following statement.

(2) If F ∈ Fα, then F ∈ Nα+1 and F ⊆ Sα+1.

Indeed, for X ∈ [κ]n+1, let

Φ(X) =

{
F, if F is the unique element of F such that X ⊆ F,

X, otherwise.

As this is an elementary definition, X ∈ Nα implies Φ(X) ∈ Nα. If F ∈ Fα

let X ∈ [Sα+1 ∩ F ]n+1. Then X ∈ Nα, Φ(X) ∈ Nα Therefore F ∈ Fα implies
F ∈ Nα+1.

To see the second claim of (2) we notice that there is ψ : ω → F for F ∈ Fα

which is onto, and clearly ψ ∈ H(κ+). It is also obvious that then

H(κ+) |= ∃ψ(ψ : ω → F ∧Ran(ψ) = F )

and by elementarity, there is a ψ ∈ Nα+1 satisfying the same formula in Nα+1.
Then

∀ξ ∈ F, ∃n ∈ ω, ψ(n) = ξ and this implies the second claim.
By (2) we know that |Fα| ≤ |Nα+1| < κ, and the same holds for

F̃α = {F ∩Rα : F ∈ Fα}.

Then by induction hypothesis, there is Bα ⊆ Rα, such that

0 < |Bα ∩ F | < ω, for F ∈ Fα.

Let B =
⋃

α<κBα, then 0 < |B ∩ F | ≤ n+ 1 + |Bα ∩ F | < ω for F ∈ Fα. �
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Remark. Note that this implies that if |F| ≤ ωk then |F ∩ B| ≤ (k + 1)n + 1,
and this is known to be best possible assuming GCH (Erdős, Hajnal 1961, [9]).

Miller of course did not define elementary submodels. He defined the sets
Sα to be closed with respect to the specific Skolem functions needed to verify
(1) and (2).

In 1961, we were interested in how to generalize Miller’s result for |F | = ω1

instead of ω. Then F consists of sets of size ω1, the assumption |F1 ∩ F2| ≤ n
is then too much, and |F1 ∩ F2| ≤ ω1 is not enough. We finally found that
|F1 ∩ F2| ≤ ω is the right assumption. We state the simplest instance of the
generalization first.

Theorem 24 (Erdős, Hajnal 1961, [9]) Assume 2ℵ0 = ℵ1, F consists of
sets of size of ω1 and F is strongly almost disjoint, i. e. |F0 ∩ F1| < ω for any
F0, F1 ∈ F . Then F has property B(ω1), provided |F| ≤ ℵω.

Remark. In the theorem above, we can have B(ω1), but not B(ω).

We proposed the problem: what happens with the above theorem for |F| =
ℵω

Taking the cue from Richard Rado who invented the ordinary partition sym-
bol we also introduced a general symbol involving many parameters to formulate
our results. I give this definition now.

Definition 25 The notation

M(κ, λ, µ) → B (resp. B(σ))

means that if F ⊆ [κ]λ, |F| = κ, F is µ–disjoint (i.e. |F0 ∩ F1| < µ for
F0 6= F1 ∈ F) then F has property B (resp. B(σ)).

And the notation

M(κ, λ, µ) 9 B (resp. B(σ))

means the negation of the statement.

Many people dislike this habit but I still find it usefull if used with good
taste end moderation. However I will not burden this section with stating the
general result. This will be done in the next lecture. In 1961 we did not quite
understand the strength of the method we rediscovered. We only proved the
graph theorem mentioned a few years later. I will talk about this proof first in
the next section.
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Lecture 3

First of all, let us recall the elementary chain method.
Given κ, we can choose a sequence Nα : α ≺ κ,

(i) N0 = ∅, N1 ≺ N2 ≺ · · · < Nα ≺ · · · ≺ H(κ+),

(ii) · · · ∈ N1, Nα ∈ Nα+1,

(iii) |Nα| ≤ |α|+ ω,

(iv) Nα =
⋃
Nβ , β < α if α is a limit ordinal.

Set Sα = Nα ∩ κ, Rα = Sα+1 − Sα, α < κ. Rα are pairwise disjoint. In the
sequence above, we can put anything we want into . . . in (ii).

Before stating the graph theorem, we introduce a new concept.

Definition 26 Let G = (V,E) be a graph, for a well-ordering ≺ of V , for
x ∈ V , define

G≺(x) = {y ∈ V : y ≺ x and {x, y} ∈ G}.

Definition 27

Col(G) := min{κ : there is a well ordering ≺ of V, such that
|G≺(x)| < κ for all x ∈ V }.

Lemma 28 If ≺ satisfies |G≺(x)| < κ then we can define a good coloring f(x)
by recursion on x.

Corollary 29 Col(G) ≥ Chr(G).

The next theorem is not this straightforward, but I omit the proof.

Theorem 30 If Col(G) = κ, then there is a well-ordering of type κ showing
this.

Example. Let G = Kω,ω1 . Then Chr(G) = 2, and by the above theorem,
Col(G) > ω.

Now we can state a generalization of the Erdős, Hajnal graph theorem.
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Theorem 31 If Kl,ω1 6⊆ G for some l < ω then Col(G) ≤ ω.

Proof. We use cardinal induction. It is trivial for κ ≤ ω.
Assume that it is true for λ < κ for some κ > ω. Let |G| = κ, we may

assume that V = κ. Assume for contradiction that Kl,ω1 6⊆ G for some l < ω.
Put G, κ ∈ N1.

For X ∈ [κ]l, let

Φ(X) := {y ∈ V : ∀u ∈ X, {u, y} ∈ E}.

Thus |Φ(X)| ≤ ω, Φ is defined in (Nα,∈).
Therefore, just like in the proof given in Lecture 2, ifX ∈ [Sα]l, then Φ(X) ⊆

Sα. As a corollary, if u ∈ Rα, then |G(u) ∩ Sα| < l, where

G(u) := {v : {u, v} ∈ E}.

By the induction hypothesis there is a well-ordering ≺α of Rα showing that
G has coloring number ≤ ω on Rα. The lexicographic sum ≺ of the ≺α’s is a
well-ordering of κ that shows Col(G) ≤ ω. �

Let us go back to the room where Erdős started conjecturing: Let G be
assumed not to contain Kω,ω2 and try to prove Col(G) ≤ ω1.

Looking back to the last proof, l < ω will have to be replaced by ω. To have
some hope Sα has to be closed with respect to countable subsets, We must have
[Nα]ω ⊆ Nα For this we will have to assume the Continuum Hypothesis, CH,
and for the general theorem the Generalized Continuum Hypothesis, GCH. As
GCH itself is independent of the axioms of set theory, the reader (audience)has
to trust our judgement that it is more interesting to investigate the problem
under GCH then without it. Assuming GCH and have many theorems was
certainly our preference. Following the old proofs and using the elementary
chain method we will get up to κ ≤ ℵω

Theorem 32 Assume GCH,

a) If |G| ≤ κ ≤ ℵω, Kω,ω2 6⊆ G, then Col(G) ≤ ω.

b) F consists of set of size ω1, |F| ≤ ℵω, |F0 ∩F1| < ω for F0 6= F1 then the
family F has property B(ω1).

c) F consists of set of size ℵω, |F| ≤ ℵω, |F0 ∩F1| < ω for F0 6= F1 then the
family F has property B(ω1).

Remark. The case |F| = κ = ℵω+1 of all three statements is independent of
ZFC ( relative to some large cardinal). This is proved for a) and b) in the first
paper by Hajnal, Juhász and Shelah in 1986 [22] and for c) in 2000 [23] by the
same authors.

The consistency with GCH is the “easy” one. Assuming say the axiom of
constructibility V = L all three are true for all κ, in each instance one can
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use the corresponding instance of Jensen’s �κ principle, or some consequence
of it. This is really due to no one, it was just realized by many people. For the
definitions of different large cardinals, V = L and �κ we refer to [24].

An interesting curiosity: We already realized in 1960 that the ” problems for
ℵω+1” are very interesting and devised a statement that would give a positive
solution.

For each α < ℵω+1 there is a partition {Sα
n : n < ω} of α such that for each

α < ℵω+1

|Sα
n | = ℵn

and for cf(α) = ω1 there is a sequence αν ↗ α, ν < ω1 such that for each n < ω
〈Sαν

n : ν < ω1〉 is increasing in ν.
This easily follows from �ℵω

, but of course in 1960 we had no idea how to
prove it. It took the insight of Jensen, to show �ℵω from the constructibility
axiom. Later it was realized that they can be forced in with easy forcings. After
that the problem was to make them false.
This requires large cardinals. By the results of [22], the negations of a), b) are
consistent relative to a supercompact cardinal.

By the results of [23], the negation of c) is consistent relative to an even
larger cardinal.

Here is a general form of the Theorem 32 stated on page 10,using the defi-
nition of

M(κ, λ, µ) → B (resp. B(σ))

given in Lecture 2.

Theorem 33 Assume GCH, ρ is regular and λ ≤ κ. Then

a) M(κ, λ, ρ) → B(ρ+), for ρ ≤ ρ(+ρ);

b) M(κ, λ, ρ) → B(ρ++), for all ρ.

Here ρ+σ denotes the σ-th successor of the cardinal ρ. If in addition, �κ holds
for every κ, e. g. if V = L is true, then in a) we can drop the assumption
ρ ≤ ρ(+ρ). In HJS we proved that the theorem is best possible.

Here is the precise form.

Theorem 34 Assume GCH and ρ is regular.

a) If there is a supercompact cardinal above ρ, then there is a ρ-closed forcing
notion P such that in V P , GCH is true and

M(ρ(+ρ+1), ρ+, ρ) 9 B holds.

b) If there is a 2-huge cardinal above, then

M(ρ+(ρ+1), λ, ρ) → B(ρ+) holds for all λ ≤ ρ(+(ρ+1)).

This is in [23]. Instead of 2-huge we use the following weaker property.
There is an elementary embedding γ : V → M with crit(γ) = κ, γ(κ) = λ and
Mλ+(ρ+3) ⊆M .

The necessity of using large cardinals is proved in [1, 23, 25].
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Lecture 4

In this lecture, I am going to talk about compactness properties of the chromatic
number.

Theorem 35 (de Bruijn, Erdős 1951) Assume k < ω, and Chr(G′) ≤ k for
every finite G′ ⊆ G. Then Chr(G) ≤ k.

This we call the compactness of the chromatic number in ω. The proof fol-
lows from both, Gődel’s compactness theorem and Tychonov’s product theorem.

Can ω be replaced by ω1?
Let us consider the simplest case. Assume |G| = (|V |) = ω2. Assume

Chr(G′) ≤ ω for every G′ ⊆ G, |G′| < ω2.

Is Chr(G′) ≤ ω or Chr(G′) ≤ ω1?

We started to ask this in the early 60’s. Finally we solved the first question
in the negative assuming CH in [12].

Theorem 36 For every κ ≥ ω, there is a graph G on V = (2κ)+ such that the
Chr(G) ≥ κ+ and for every G′ ⊆ G with |G′| ≤ 2κ, Chr(G′) ≤ κ.

Here is the proof for 2ω = ω1, κ+ = ω2.

Proof. Define a graph on V = [ω2]2, |V | = ω2,

E = Shift(ω2, 2) = {{{α, β}, {β, γ}} : α < β < γ < ω2}.

First see Chr(G) ≥ ω1.
Assume f : [ω2]2 → ω is a coloring of the vertex set with ω colors. By the

Erdős-Rado theorem 2ω → (ω1)2ω there is a monochromatic triangle {α, β, γ}
α < β < γ < ω. Then {{α, β}, {β, γ}} ∈ E and f({α, β}) = f({β, γ}), f is not
a good coloring.

Note that Shift(κ, 2) does not contain a triangle. If n → (3)2κ for n, κ,
then Shift(n, 2) is a graph with chromatic number no less than κ containing no
triangle (This gives -as promised-a proof of the Mycielski’s result mentioned in
Lecture 1).

To finish the proof we must see that

Chr(Shift(α, 2)) ≤ ω
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for |α| ≤ 2ω. It is easy to see that one can choose a sequence

{Aβ : β < α}

of subsets of ω such that Aβ is not a subset of Aγ for β 6= γ < α. We can define
a partition proving this by :

f({β, γ}) = min(Aβ \Aγ)

for β < γ. �
It can be seen directly that

Chr(Shift(2n + 1, 2)) ≥ n+ 1, while
Chr(Shift(2n, 2)) ≤ n, for n ∈ ω.

The next result appeared eightteen years later. Baumgartner in [2] gave a
forcing construction for a graph G with Chr(G) = |G| = ω2 all whose subgraphs
of size ω1 have chromatic number no more than ω.

This says that “the chromatic number may jump 2”. Six years later, Shelah
proved the following theorem.

Theorem 37 (Shelah,1990) If V = L and κ is not weakly compact, i. e.
κ 9 (κ)22 then there is a G with Chr(G) = |G| = κ such that for all G′ ⊆ G and
|G′| < κ, we have Chr(G′) ≤ ω.

Remark. Therefore there may be “arbitrarily large”jumps.

On the other hand, Foreman and Laver proved it consistent with GCH rela-
tive to a large cardinal in [19] in 1988 that every graph on ω2 with Chr(G) = ω2

contains a subgraph G′ of chromatic number and size ω1. Thus the second
problem we stated at the beginning of the lecture is independent. We will come
back to this later.

The following is a usual definition of the product of two graphs. Assume
Gi = 〈Vi, Ei〉, i < 2 are graphs. Define G0 ×G1 as follows:

V (G0 ×G1) = V0 × V1, {(x0, x1), (y0, y1)} ∈ E(G0 ×G1)

iff {xi, yi} ∈ Ei for i < 2.
Hedetniemi conjectured that for n ∈ ω, n ≥ 2 the product of two n chromatic

graphs is n chromatic.
This was proved for n = 3, 4 by El-Zahar and Sauer, and is unsolved for

4 < n < ω.
During one of my visits in Calgary, I proved the following result.

Theorem 38 The conjecture is true for n = ℵ0 and false for n = κ+ provided
κ ≥ ω.
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It occured to me to ask if it is possible that the product of two ω2-chromatic
graphs is at most ω-chromatic.

Here is the connection: assume that Gi are ω2 chromatic for i < 2 and
Chr(G0 × G1) ≤ ω. Then each Gi is an example of an ω2-chromatic graph all
whose subgraphs of size ω1 are at most ω-chromatic.

Proof. Assume for contradiction that, say, there is a U ⊆ V0 such that G[U ]
is ω1 chromatic, and |U | = ω1. Assume f : V0 × V1 shows that G0 × G1 is
ω-chromatic. Then for each y ∈ V1 there are x1(y) 6= x2(y) ∈ U such that
f(〈x1(y), y〉) = f(〈x2(y), y〉).

As |U×V | = ω1, this partitions V2 to ω1 calsses each of which is independent
for G2 in contradiction and the fact that G2 is ω2-chromatic. �

Now, we have the following theorem.

Theorem 39 (Soukup, [33]) It is consistent with GCH that there are two
ω2-chromatic graphs of size ω2 whose product is ω-chromatic.

This is a generalization of Baumgartner’s theorem mentioned. But no one
succeeded in the generalization of Shelah’s result.

Problem 40 Is it consistent with GCH that there are graphs Gi with Chr(Gi) =
ω3 for i < 2 so that Chr(G0 ×G1) ≥ ω3?

Turning back to the Foreman-Laver result, we defined with Erdős a graph,
say Eh(ω2, ω) = Eh, with V = ω2ω, {f, g} ∈ E iff f, g are eventually different
i. e. for some α < ω2, f(β) 6= g(β) for β > α.

It is obvious that every subgraph of size at most ω1 of this graph Eh is
ω-chromatic, moreover every such graph of cardinality ≤ ω2 can be embedded
to it.

Proof of this fact : Assume G = 〈ω2, E〉 and all subgraphs of size ≤ ω1 of it are
ω-chromatic. Then for each α < ω2 there is an fα : α→ ω showing this.

Now we define the embedding Φ : G −→ Eh by defining Φ(β) for β < ω2,
Φ(β) ∈ ω2ω by

Φ(β)(α) =

{
fα(β), for β < α,

0, otherwise.

�
It follows from the Erdős-Hajnal theorem mentioned that

2ω = ω1 implies Chr(Eh) ≥ ω1.

Foreman strengthened his earlier mentioned result with Laver by proving it
consistent relative to a large cardinal that Chr(Eh) ≤ ω1.

He did this by proving consistent that there is an ω1 complete, ω1-dense set
ideal I in P(ω2). (This implies easily that Chr(Eh) ≤ ω1).
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Remember: I is ω1-complete if

I ′ ⊆ I ∧ |I ′| ≤ ω =⇒
⋂
I ′ ∈ I.

I is ω1-dense if there is F ⊆ I+, |F| ≤ ω1 such that for all A ∈ I+ there is
B ∈ F with B −A ∈ I. Note that I+ is the complement of I.

Finally Todorčević [36] proved in ZFC that

Chr(Eh) ≥ ω1.

This gives us the unexpected

Corollary 41 (ZFC) There exists a graph G of chromatic number greater than
ω that has size greater than ω1 all whose subgraphs of size at most ω1 have
chromatic number at most ω.

But it does not answer our first problem as stated, since

|Eh| = ωω2 ≥ ω3.
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Lecture 5

In this section, I will focus on sets of finite subgraphs of uncountable chromatic
graphs.

In 1979, we wrote a triple paper with Erdős and Szemerédi [15] in which
we stated a few problems that were all mixtures of finite combinatorics and set
theory which all involved the subject just mentioned.

First I will speak about one of them, I may come back to some other if I will
have time.

We first need a generalization of the graph Shift(κ, 2).

Definition 42 For α an ordinal, r ∈ ω, r ≥ 2, Shift(α, r) is a graph with vertex
set V = [α]r, edge set E = {{α0, . . . , αr−1}, {α1, . . . , αr}}, where α1 < · · · <
αr < α.

Fact 1. Shift(α, r) 6⊃ C2i+1, 1 ≤ i < r.

Fact 2. Chr(Shift(α, r)) ≥ κ+ iff |α| ≥ expr−1(κ)+.

The proof of the first statement is an exercise in finite combinatorics. We
proved the case r = 2 in the last lecture, the proof of this statement uses the
same ideas.

Definition 43 For a graph G of Chr(G) ≥ ω define fG : ω → ω

fG(n) := min{|A| : A| ⊆ V ∧ Chr(G[A]) ≥ n}

for n ∈ ω.

Corollary 44
fShift(α,r)(n) ≥ expr−1(n),

for r ≥ 2, n ≥ nr, α ≥ ω.

This motivated us to ask the problem: is it true that for every f : ω → ω,
there is a graph G with

fG(n) ≥ f(n), for n ≥ 3.

The following results are all from a forthcoming paper [26] of P. Komjáth
and S. Shelah.
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Theorem 45 (Shelah, [26]) For every model of ZFC+♦+GCH, there is a
forcing extension P of cardinality ω1 in which the answer to the problem is
yes, GCH and ♦ remain true.

Remark. This is a very tricky iterated forcing argument. To tell the truth, we
asked this question as a curiosity, not really believing in the feasibility of an
answer.

To be able to state the next problem we need the following

Definition 46 For every graph G let Fin(G) be the set (of isomorphism classes)
of finite subgraphs.

Note that |Fin(G)| ≤ 2ℵ0 .

Lemma 47 There is a cardinal κ(∗) such that if Chr(G) ≥ κ(∗) then for every
λ there is a graph G′ with Chr(G′) ≥ λ and Fin(G′) ⊆ Fin(G).

Proof: Call a set S of finite graphs bounded if there is a cardinal λ such that
there is no graph G with Chr(G) ≥ λ and Fin(G) ⊆ S. For a bounded S let
λ(S) be the smallest bound. Then

κ(∗) = sup{λ(S)+ : Sbounded}

satisfies the requirement.

Problem 48 (W. Taylor[34, 35]) Is κ(∗) = ω1?

Note that κ(∗) is defined like the Hanff number of a logic. Erdős liked and
popularized this problem, he stated it in many problem papers, e. g. [6, 7, 8, 13]
though he usually stated his own problems only. The following two theorems
contain significant results on this problem.

Theorem 49 (Komjáth [26]) It is consistent that κ(∗) ≥ ω2.

Proof in outline: Start with a model of ZFC+GCH+♦. Let P be a forcing
adding a Cohen real. Then as it is known there is an undominated f : ω → ω
(not dominated by any g : ω → ω in the ground model). Then GCH and ♦
remain true after forcing with P . Prepare Shelah’s forcing Q for this function
f , call the graph obtained by X.

We claim that after forcing with P ∗Q the following is true:

If Fin(Y ) ⊆ Fin(X) then Chr(Y ) ≤ ℵ2. (This clearly implies the claim.)

Let Y be such that Fin(Y ) ⊆ Fin(X). As |P × Q| = ℵ1, Y is the union of
ℵ1 graphs Z such that Z is in the ground model and

Fin(Z) ⊆ Fin(X)

Now for any of the above Z, Chr(Z) ≤ ω otherwise the function fZ defined on
the previous page would be in the ground model and would majorize f . Then

Chr(Y ) ≤ ℵℵ1
0 = ℵ2.

The next theorem gives a bound from the other direction.

17



Theorem 50 (Komjáth,[26]) It is consistent that κ(∗) ≤ ω2.

Hint for the proof: Start with a model of ZFC+GCH, and collapse κ(∗) to ω.
The claim is true in the resulting model.
Now we turn to an other problems treated in [15]

Definition 51

f1
G(n) := max {min{|Z| : Z ⊆ V ∧ |Z| = n ∧G[A− Z] is bipartite }} .

Remark. f1
G(n) ≤ f(n) means that we can omit f(n) vertices from each n

element set that G is bipartite.
We proved in [15] the following result.

Theorem 52 For every ε > 0, for every κ there is a graph G with Chr(G) > κ
and f1

G(n) ≤ εn.

Remark. This is basicly best possible. I omit the details of this.

Problem 53 Can the theorem be proved under the additional condition that
|G| = κ ?

The next problem deals with an analogous question for edge omission instead
of vertex omission.

Definition 54

f2
G(n) := max {min{|E′| : G[A]− E′ is bipartite } : A ⊆ V ∧ |A| = n} .

Remark. f2
G(n) ≤ f(n) means that we can omit f(n) edges from each n element

subgraph so that the remaining graph is bipartite. Here we know surprisingly
little.

Theorem 55 ([15])

(i) There exsits a graph G with Chr(G) > ω such that f2
G(n) ≤ cn3/2.

(ii) If Chr(G) > ω then ∃k ∈ ω such that f2
G(n) ≥ 1

kn for infinitely many
n ∈ ω.

We could not fill up the enormous gap between (i) and(ii). We expected a
positive answer to the next problem:

Problem 56 ([15]) Does there exist a graph G with Chr(G) > ω, f2
G(n) < cn

for some real number c ?

However here the real problem is finitary.

Problem 57 ([15]) Is it true that for every f : ω → ω tending increasingly to
infinity there is a graph G with Chr(G) = ω and f2

G(n) = O(f(n)) ?

Theorem 58 (Rödl, [30]) The answer is affirmative for 3-uniform hypegraphs.
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For graphs—to the best of my knowledge—the following is the strongest
known result:

Theorem 59 (Lovász [27]; Rödl [30]) For every 2 ≤ r ≤ ω, and for large
enough m ∈ ω there is a graph Gr

m such that Chr(Gr
m) ≥ r + 2 and for some

c > 0,
f2

Gr
m

(n) ≤ cn1− 1
r

19



Bibliography

[1] Z. T. Balogh, S. W. Davis, W. Just, S. Shelah and J. Szeptýcki, Strongly
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