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Abstract

This paper presentsstatistical default logic, an expan-
sion of classical (i.e., Reiter) default logic that allows
us to model common inference patterns found in stan-
dard inferential statistics, including hypothesis testing
and the estimation of a populations mean, variance and
proportions. The logic replaces classical defaults with
ordered pairs consisting of a Reiter default in the first
coordinate and a real number within the unit interval
in the second coordinate. This real number represents
an upper-bound limit on the probability of accepting
the consequent of an applied default and that conse-
quent being false. A method for constructing extensions
is then defined that preserves this upper bound on the
probability of error under a (skeptical) non-monotonic
consequence relation.

Introduction
This paper presents a resource bounded default logic. The
motivation for the logic is found in a particular approach ad-
vanced in (Kyburg & Teng 1999), from the perspective of
knowledge representation, of representing the structure of
classical statistical inference (Fisher 1956; Lehman 1959)
and statistical argumentation (Neyman 1957; Kyburg 1974;
Mayo 1996) in terms of classical (Reiter 1980) defaults. In
making statistical inferences—a term intended to include
hypothesis testing and estimating basic parameters of pop-
ulations, such as their means, proportions and variances—
one accepts a conclusion along with a warning that there
is a small, preassigned chance that the conclusion is false.
The conditions that ensure the fit between a statistical model
and the actual probability of error that one is exposed to by
accepting the consequent are defeasible and the behavior of
this defeasibility may be captured in terms of defaults, points
developed in (Kyburg & Teng 1999).. What is missing from
this representational scheme, however, is a means to explic-
itly record the probability of error and to preserve this mea-
sure under (non-monotonic) consequence (Wheeler 2002).
This paper presents a default logic that achieves this aim.
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We will omit discussion of the merits of this approach
from a knowledge representational perspective. From the
perspective of this paper, statistical reasoning serves as a
motivation for the logic. However, it should be noted that
the modular construction of the logic—the sharp distinction
between the (standard) operation of the fixed point operator,
on the one hand, and the mechanism for preserving upper-
bound estimates of probabilities on the other—lends itself
as a technique, perhaps, to other circumstances calling for
a non-monotonic consequence operation that returns a con-
clusion set whose members must satisfy an additional con-
straint regarding length of proof.

Statistical Defaults
Although a connection between statistical statements and
default logic is developed in (Bacchuset al. 1993) and a
connection between statistical inference and default logic is
suggested in (Tan 1997), the first proposal to represent clas-
sical statistical inference in terms of defaults is (Kyburg &
Teng 1999). A default is an inference rule of the form

α : β1, ..., βn
γ

, (1)

interpreted roughly to mean that givenα and the absence of
any negatedβi’s, concludeγ by default. Kyburg and Teng
observe that default rule justifications—the formulae de-
noted by theβi’s in the default inference form—represent an
important structural feature of classical statistical inference,
namely the role randomization traditionally plays as a suf-
ficient condition for a sample being representative (Cramér
1951; Moore 1979; Baird 1992).

There is a problem representing statistical inferences di-
rectly within Reiter’s default logic, however, for represent-
ing classical statistical inference as a classical default ap-
pears to reward ignorance: givenα and no other informa-
tion whatsoever about how the sample was drawn other than
that the sample is consistent with what is known, we may
infer that the sample is representative by default. The prob-
lem is that there isn’t a way for classical defaults to encode
the information that would distinguish this feckless statisti-
cal inference from one that demands a rigorous attempt to
detect a bias in the sample. Put another way, what is miss-
ing from Reiter defaults is an explicit means for controlling
error.



A statistical default is an inference form that explicitly
acknowledges theupper limitof its frequency of error.1 Call
a default in the form of

α : β1, ..., βn
γ

ε, (2)

an s-defaultand the upper limit on the frequency of error-
parameterε anε-boundfor short, whereα:β1,...,βn

γ is a Reiter
default and0 ≤ ε ≤ 1. The schema (2) is interpreted to say
that providedα and no negatedβi’s, γ is false no more than
ε over the long-run application of that rule. (A Reiter default
is a special case of a statistical default, namely whenε = 0).
A statistical default is sound just when the upper limit of
the probability of error isin fact ε. An s-default is a good
inference rule if it is sound andε is relatively small, typically
less than0.05.

The parameterε is an essential feature of statistical de-
faults, just as explicit error control is essential to classical
statistical inference in general, and marks an important dif-
ference between statistical defaults and Reiter defaults.

The art of constructing a good statistical default, one
whose advertisedε-bound is an acceptable level and in fact
true, depends upon the background knowledge necessary to
form the set of s-default justifications that determine the fit
between a statistical model and its successful application.
Disagreement about the soundness of a statistical default is
then similar to disagreement about the soundness of a deduc-
tive inference in the sense that a distinction is made between
the form of the inference and whether the constituents of the
inference are (or not known to be) true. Treatingε as an ex-
plicit parameter in statistical default forms allows there to be
an explicit constituent in the argument form that, much like
a premise in a deductive argument, is true or false.

Statistical Default Theories
A statistical default theory is analogous to a default theory2

in that statistical defaults appear in the object language and
an s-default theory induces non-monotonic consequences
via a fix-point operator. Given the parameterε, however,
how should accepted sentences interact in a statistical de-
fault extension? In Reiter’s standard formulation, a default
extension is deductively closed. But bounds for probability
of error for particular statistical inferences do not necessar-
ily carry over unchanged when chained together to form a
statistical argument. Accepting a hypothesisH1 with a con-
fidence0.95 and accepting another hypothesisH2 indepen-
dently with a confidence0.95 doesn’t entail the acceptance
of H1 andH2 at 0.95. So, one cannot simply close a sta-
tistical default extension under deduction and guarantee that

1A trivial corollary of the frequency of error̂α for a statistical
inference is the upper limit of the probability of error, denoted by
ε. So, if α̂ = 0.03 is understood to mean that the probability of
committing a Type I error is 0.03, thenε = 0.03 is understood to
mean that the probability of committing a Type I error is no more
than 0.03.

2A default theory is a pair〈W, D〉 whereW is a set of closed
formulae andD is a (countable) set of defaults.

the deductive consequences will have the sameε-bound as a
constituent inference.3

Another feature of Reiter’s formulation is that an exten-
sion is closed under the set of defaults of a default theory.4

Constructing a candidate default extension by successive ap-
plications of defaults results in a set of sentences, all of
which are on par: all sentences in an extension are true.
But we know that chaining statistical inferences typicallyin-
creasesour chance of error. So, again, there is no guarantee
that theε-bound of a statistical inference chain is identical
to that of any of the constituent inferences. So we cannot
close a statistical default extension under the default rules in
D either.

The problem is that neither classical logic nor standard
default logic restricts the length of permissible sequences of
inferences. An inference chain that is deductively valid or
one that generates an extension for a given default theory
may nevertheless fail to represent an acceptable statistical
argument because the error bound of that sequence of infer-
ence steps does not fall below the designated error bound for
acceptance. So, since a conclusion of a statistical argument
is acceptable only if the conclusion is the conclusion of an
inference chain bounded in error by a preassignedε, I must
define a non-monotonic consequence relation that induces
only those non-monotonic consequences that are within a
designated error bound.

To allow for bounded inference chains, astatistical de-
fault theoryis defined in terms of a set of s-defaults and a
set ofbounded sentences.

Definition 1. Bounded sentence: A sentenceφ bounded by
ε is an ordered pair〈φ, ε〉, written (φ)ε for short, whereφ
is a sentence in the first-order languageL and ε ∈ [0, 1].
(φ)ε ≡ φ, if ε = 0.

Definition 2. A statistical default theory∆s is an ordered
pair 〈W,S〉, whereW is a set of bounded sentences, andS
a set of statistical defaults.

Statistical inference chains may now be defined with re-
spect to a set of bounded sentences,Π. This is done in two

3This is a version of Henry Kyburg’s lottery paradox (Kyburg
1961; 1997). The paradox is generated by holding three plausible
assumptions about rational acceptance: i) If it is very likely that
a hypothesisH is true, then it is rational to acceptH; ii) If it is
rational to acceptH and it is rational to acceptH ′, then it is rational
to acceptH∧H ′; iii) It is irrational to accept any set of propositions
that you know are inconsistent. A contradiction is generated by
supposing a level1 − ε of rational acceptance that is very close
to 1 (e.g.,ε = 0.01) and then considering a fairn-ticket lottery
designed to yield exactly one winner, wheren > 1−ε

ε
(e.g.,n =

1000). It is rational to accept that each ticket will lose. However,
closing this set under conjunction entails that all tickets lose, which
contradicts the supposition that one ticket will win.

4In standard default logic, an extensionE is closed under a
default ruleα : β/γ if it is not the case thatα ∈ E and¬β /∈ E
and γ /∈ E; so, if α : β/γ applies toE then γ ∈ E. So an
extensionE is closed under a set of defaultsD if E is closed under
every default inD. A sentenceγ is a default conclusionfrom E if
there is a defaultd = α:β1,...,βn

γ
∈ D andd applies toE.



steps. Since statistical inference chains may include deduc-
tive or non-monotonic inference steps, the first step is to
define bounded inference chains composed of purely non-
monotonic inference steps (Theorem 1) and, in turn, to de-
fine bounded deductive inference chains (Theorem 2). This
yields bounded closure conditions for each type of inference
chain. From these results I then construct a bounded statis-
tical default extension (Theorem 4).

Before turning toε-bounded s-default closure conditions,
it will be useful to collect the sentences appearing in all the
pairs of bounded sentences inΠ into a set—to crop the tails
of the sequences inΠ, if you will. Let Crop(Π) name that
function. So, for example,Crop({(φ1)εφ1

, ..., (φn)εφn}) =
{φ1, ..., φn}.

Since rule applicability is relative to a specified bound of
error ε, I will define a closure condition for statistical de-
faults onΠ bounded byε in the next three definitions. While
Π here is treated as an arbitrary set of bounded sentences,
when we turn to defining statistical default extensions we
will use these operators on bounded-sentences that satisfy
additional constraints.

Definition 3. S-defaultε-bounded conclusion: A bounded
sentence(γ)εγ is an ε-bounded conclusion from a set
of bounded sentences,Π, under a statistical default rule
α:β1,...,βn

γ εs if and only if (α)εα ∈ Π, ¬β1, ...,¬βn /∈
Crop(Π), εα + εs = εγ andεγ ≤ ε.

Definition 4. A setΠ of bounded sentences is closed under
a particular s-defaults = α:β1,...,βn

γ εs within ε if and only if
every bounded sentence(γ)εγi that is anε-bounded default
conclusion fromΠ unders is a member ofΠ.

Definition 5. S-defaultε-bounded closure: A set Π of
bounded sentences is closed under a setS of s-defaults
within ε if and only if, for everys ∈ S, Π is closed under
s within ε. Let Snε(S,Π), called theε-bounded s-default
closure ofΠ with respect toS, name an operator onS and
Π that produces a setΠ′ of bounded sentences closed under
S within ε. (WhenS is fixed by context I will simply write
Snε(Π).)

With the closure condition provided by Definition 5, I
may now show that if a bounded sentence(γ)εγ appears
in the ε-bounded statistical default closure of some set of
bounded sentencesΠ, then there is a chain of s-default in-
ferences fromΠ that has(γ)εγas anε-bounded consequence.

Theorem 1 Let S be a set of statistical defaults,Π a set of
bounded sentences, (γ)εγ a bounded sentence andSnε(Π)
be the s-default closure ofΠ underS within ε. Define a
statistical default inference chain onΠ within ε as a se-
quence of bounded sentences,〈(φ1)εφ1

, ..., (φn)εφn 〉, such
that (φi)εφi is an ε-bounded conclusion fromΠ ∪
{(φ1)εφ1

, ..., (φi−1)εφi−1
} , where 1 ≤ i ≤ n . If

(γ)εγ ∈ Snε(Π), then there is an s-default inference chain
〈(φ1)εφ1

, ..., (φn)εφn , (γ)εγ 〉 on Π that yields(γ)εγ as anε-
bounded conclusion.

Proof. An inductive proof on the length of in-
ference chains is offered. Given an inference chain

〈(φ1)εφ1
, ..., (φn)εφn 〉 on Π, let Π0 = Π,Π1 = Π0 ∪

{(φ1)εφ1
},Π2 = Π1 ∪ {(φ2)εφ2

}, and so on. Suppose
(γ)εγ ∈ Snε(Π). Trivially, if (γ)εγ ∈ Π then (γ)εγ ∈
Snε(Π). So suppose that(γ)εγ ∈ Snε(Π) but (γ)εγ /∈ Π0.
By the definition of anε-bounded conclusion from a set
of bounded sentences,Π0, there must be a particular sta-
tistical default rule α:β1,...,βn

γ εs such that(α)εα ∈ Π0,
¬β1, ...,¬βn /∈ Crop(Π0), εα+εs = εγ andεγ ≤ ε.Hence,
(γ)εγ is anε-bounded s-default conclusion fromΠ0. Hence
(γ)εγ ∈ Π0 ∪ {(γ)εγ}. So there is an s-default inference
chain, namely〈(γ)εγ 〉, that yields(γ)εγ as anε-bounded
conclusion fromΠ. I now prove that if(γ)εγ ∈ Snε(Π)
there is an inference chain of lengthi that yields(γ)εγ as
anε-bounded conclusion fromΠi, for i ≥ 0. By the defini-
tion of anε-bounded conclusion from a set of bounded sen-
tences,Πi, there must be a particular statistical default rule
α:β1,...,βn

γ εs such that(α)εα ∈ Π ∪ {(φ1)εφ1
, ..., (φi)εφi},

¬β1, ...,¬βn /∈ Crop(Π∪(φ1)εφ1
, ..., (φi)εφi ), εα+εs = εγ

and εγ ≤ ε. Hence,(γ)εγ is an ε-bounded s-default con-
clusion fromΠi, and (γ)εγ ∈ Snε(Πi). Hence(γ)εγ ∈
Πi ∪ {(φ1)εφ1

, ..., (φi)εφi , (γ)εγ}. So there is an s-default
inference chain, namely〈(φ1)εφ1

, ..., (φi)εφi , (γ)εγ 〉, that
yields(γ)εγ as anε-bounded conclusion fromΠ.

In standard default theories, extensions are closed under
logical consequence. I noted at the beginning of this section
that this property won’t hold for statistical default extensions
since the premises of a deductive inference may themselves
be s-default conclusions, each individually bounded in error
by someε (or other) such that the sum of error bounds of the
premises is greater thanε.

Definition 6. Given a set of bounded sentencesΠ and an
error parameterε a bounded sentence(ψ)εψ is anε-bounded
consequenceof Π, writtenΠ ⇒ε (ψ)εψ if and only if:

• (φ1)ε1 , ..., (φn)εn ∈ Π,

• φ1 . . . φn ` ψ, and

• εψ =
∑n
i=1 εi ≤ ε.

Definition 7. ε-bounded logical closure:For any setΠ
of bounded sentences, the operationCnε(Π) = {(ψ)εψ :
Π ⇒ε (ψ)εψ}.

I may now show similar results forε-bounded deductive
closure, namely that if the bounded sentence(γ)εγ is in the
image set ofCnε(Π), then there is a deductive inference
chain defined onΠ that has(γ)εγ as anε-bounded, logical
consequence ofΠ.

Theorem 2 Let Π be a set of bounded sentences,(γ)εγ
a bounded sentence andCnε(Π) be the ε-bound clo-
sure of Π. Define a deductive inference chain as a se-
quence ofε-bounded sentences,〈(ψ1)εψ1

, ..., (ψn)εψn 〉 such
that (ψi)εψi is an ε-bounded consequence ofΠ ∪
{(ψ1)εψ1

, ..., (ψi−1)εψi−1
}, where 1 ≤ i ≤ n. If

(γ)εγ ∈ Cnε(Π), then there is a deductive inference chain
〈(φ1)εφ1

, ..., (φn)εφn , (γ)εγ 〉 of deductions onΠ that yields
(γ)εγ as anε-bounded conclusion.



Proof. An inductive proof on the length of deduc-
tive inference chains is offered. Given an inference chain
〈(ψ1)εψ1

, ..., (ψn)εψn 〉 on Π, let Π0 = Π,Π1 = Π0 ∪
{(ψ1)εψ1

},Π2 = Π1 ∪ {(ψ2)εψ2
}, and so on. Suppose

(γ)εγ ∈ Cnε(Π). By the definition of anε-bounded conse-
quence from a set of bounded sentences,Π0, if Π0 ⇒ε (γ)εγ
then there is a set of bounded sentences(φ1)ε1 , ..., (φn)εn ∈
Π0 such thatφ1 . . . φn ` γ and εγ =

∑n
i=0 εi ≤ ε.

Hence,(γ)εγ is an ε-bounded consequence fromΠ0, and
(γ)εγ ∈ Cnε(Π0). Hence (γ)εγ ∈ Π0 ∪ {(γ)εγ}. So
there is an deductive inference chain, namely〈(γ)εγ 〉,
that yields(γ)εγ as anε-bounded conclusion fromΠ. I
now prove that if(γ)εγ ∈ Cnε(Π) there is an inference
chain of lengthi that yields(γ)εγ as anε-bounded con-
sequence fromΠi, for i ≥ 0. By the definition of an
ε-bounded consequence from a set of bounded sentences,
Πi, if Πi ⇒ε (γ)εγ then there is a set of bounded sen-
tences(φ1)ε1 , ..., (φn)εn ∈ Πi such thatφ1 . . . φn ` γ and
εγ =

∑n
i=0 εi ≤ ε. Hence,(γ)εγ is an ε-bounded conse-

quence fromΠi, and (γ)εγ ∈ Cnε(Πi). Hence(γ)εγ ∈
Πi ∪ {(ψ1)εψ1

, ..., (ψi)εψi , (γ)εγ}. So there is an deductive
inference chain, namely〈(ψ1)εψ1

, ..., (ψi)εψi , (γ)εγ 〉, that
yields(γ)εγ as anε-bounded consequence fromΠi.

Theorem 3 If Π is a set of0-bounded sentences,Γ is set of
sentences such thatCrop(Π) = Γ, thenCnε(Π) = Cn(Γ).

Proof. By the definition of a bounded sentence, for any
(φ)ε, if ε = 0 then(φ)ε ≡ φ. Γ = Crop(Π), so there is a
one-to-one mapping from every(φi)ε ∈ Π to everyφi ∈ Γ
such that(φi)ε ≡ φi. Since for anyn membered subset ofΠ∑n
i=0 εi = 0, thenΠ ⇒ε (ψ)εψ if and only if Γ ` ψ.

For each of the closure operationsSnε andCnε and any
formula φ that is in the cropped image set of either oper-
ation, the error bound parameterεφ of φ is the sum of the
error bounds of the constituents participating in the imme-
diate inference step terminating in(φ)εφ . If the boundεφ
is less than or equal to the designated boundε, thenεφ is
included in the extension.

Summing error bounds of constituent inference steps is an
imprecise but conservative estimate of the probability of ac-
cepting a false conclusion in ann-element inference chain
and thereby provides an upper bound on possible error for
sound inference chains. Sinceα̂ is by definition the proba-
bility of accepting that the outcome of trial (inference)X is
true when in fact it is false, let̂α = 1 − Pr(X) = Pr(X̄).
The justification for stating that summing error bounds pro-
vides an upper bound on probability of error for a chain of
inferences is that we can face no greater risk than the risk of
mistakenly accepting each conclusion drawn in a line of rea-
soning. Summing the error bound parameters provides this
upper bound because of a theorem of classical probability,
namely thatPr(X̄ ∪ X̄ ′) = Pr(X̄) + Pr(X̄ ′)−Pr(X̄, X̄ ′),
which holds generally for eventsX1, ..., Xn. Boole’s in-
equality, Pr(X̄ ∪ X̄ ′) ≤ Pr(X̄) + Pr(X̄ ′), follows trivially.

Notice that this procedure of summingε does not yield
a probability measure but rather a conservative estimate of
α̂. We needn’t be concerned that the sum ofε-bounds is not
necessarily a probability, since, as we will soon see, for the

sequences of inferences that will be of interest are only those
whereε takes a value within the unit interval.

When the event in question is accepting the sentenceφ
and the probabilities in question are a measure of the upper
bound on the probability of acceptingφwhenφ is false, then
we may infer that we are exposed to no greater risk of being
wrong aboutφ than by accepting the sum of the probabilities
of mistakenly accepting each ofφ’s constituents.5

What remains is defining a statistical default extension in
terms of a set of bounded sentencesΠ, an error parameterε,
and the pair ofε-bounded closure conditionsSnε andCnε
for statistical defaults and bounded consequence.

A candidate statistical default extension is constructed se-
quentially, much like a candidate standard default extension.
A candidate set on a default theory〈W,D〉 is built sequen-
tially by first closingW under consequence, applying all
applicable defaults inD to the set of consequences ofW ,
closing that set under consequence, and so on. While a stan-
dard default extension candidate is built sequentially by al-
ternatingly closing the set under consequence and the set of
defaults until no more defaults can be applied, statistical de-
fault extension candidates are built by alternatingly closing a
set of bounded sentences under consequence (bounded by a
specified threshold parameterε) and the set of statistical de-
faults (also bounded byε) until no more deductive or default
inferences can be made at or belowε.

Given a statistical default theory∆s I wish to define a sta-
tistical default extensionΠ on∆s at ε. I offer the following
definition.

Definition 8. Where∆s = 〈W,S〉 atε is a statistical default
theory andΠ is some set of bounded sentences, letE∆S

(Π)
be a minimal set satisfying three conditions:

[SD1.]W ⊆ E∆S
(Π).

[SD2.] Cnε(E∆S
(Π)) = E∆S

(Π).
[SD3.] E∆S

(Π) is closed underS within ε, i.e. for

all
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs ∈ S, (α)εα ∈ E∆S
(Π),

¬β1, ...,¬βn /∈ Crop(Π), εα + εs = εγ andεγ ≤ ε.

A set of bounded sentencesΠ is astatistical extensionfor
∆s at ε iff E∆S

(Π) = Π.

Theorem 4 Let Π be a set of bounded sentences, let
(α)ε1 , (β)ε2 , (γ)ε3 , (φ)ε4 , and (ψ)ε5 be εi-bounded coun-
terparts to sentencesα, β, γ, φ,andψ in L, and let∆S =
〈W,S〉 at ε be a closed statistical default theory. Define

• For all (φi)εφi ∈W, εφi = 0.

5But is this measure too conservative? Compare the proposal
to sum error bounds to the Bonferroni adjustment (Holm 1979),
an adjustment applied to thêα levels of multiple hypothesis tests
performed on the same data set. The adjustment works by divid-
ing the accepted̂α level by the numbern of tests performed. The
result is that the significance of any one test would need to beα̂

n
Unlike the Bonferroni adjustment, the proposal here preserves the
significance of each individual test yet retains the property that the
sequence of tests has anα̂ level no more than the assignedε-bound
for acceptance. Hence, the proposal to sum error bounds, while
conservative, is not as restrictive as the Bonferroni method.



• Π0 = W, and fori ≥ 0,

• Πi+1 = Cnε(Πi) ∪ {γ| (α)εα :(β1)ε1 ,...,(βn)εn
γ εs) ∈ S,

where (α)εα ∈ Πi and¬β1, ...,¬βn /∈ Crop(Π) and
εα + εs ≤ ε}.
Then Π is a statistical extension for∆S at ε iff Π =⋃
0≤i≤∞Πi

Proof. Begin by observing that
⋃

0≤i≤∞Πi enjoys the
following properties:

[SD1′.] W ⊆
⋃

0≤i≤∞Πi

[SD2′.] Cnε
(⋃

0≤i≤∞Πi

)
=

⋃
0≤i≤∞Πi

[SD3′.] If
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs ∈ S and (α)εα ∈⋃
0≤i≤∞Πi,¬β1, ...,¬βn /∈ Crop(Π) andεs+εα ≤ ε

then(γ)εs+εα ∈
⋃

0≤i≤∞Πi.

So, by the minimality ofE∆(Π), we have

E∆(Π) ⊆
⋃

0≤i≤∞

Πi. (3)

(⇒) Proof by induction thatΠi ⊆ Π at ε for all 0 ≤ i ≤
∞ from

⋃
0≤i≤∞Πi ⊆ Π. For short, ‘Π’ will stand for ‘Π

at ε’. Clearly Π0 ⊆ Π, sinceΠ = E∆(Π). Assume some
Πi ⊆ Π and consider(γ)εγ ∈ Πi+1. If (γ)εγ ∈ Cnε(Πi),
then sinceΠi ⊆ Π we have(γ)εγ ∈ Cnε(Π) = Π. Oth-

erwise there is a default
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs ∈ S, where
(α)εα ∈ Πi and¬β1, ...,¬βn /∈ Crop(Π) andεα + εs ≤ ε.
Therefore, sinceΠi ⊆ Π, (α)εα ∈ Π = E∆(Π). Hence,
by SD3 (γ)εγ=εs+εα≤ε ∈ E∆(Π). Furthermore, since
E∆(Π) = Π, we have(γ)εγ ∈ Π. Therefore,

⋃
0≤i≤∞Πi ⊆

Π. By equation (3) and the fact thatΠ = E∆(Π) because of
the definition of a fixed point, we haveΠ =

⋃
0≤i≤∞Πi.

(⇐) Proof by induction thatΠi ⊆ E∆(Π) for all i ≤
i ≤ ∞ from Π =

⋃
0≤i≤∞Πi ⊆ E∆(Π). By appeal-

ing to equation (3) we will then haveΠ = E∆(Π) from
whenceΠ is an extension of∆s at ε. Clearly Π0 ⊆
E∆(Π), so assumeΠi ⊆ E∆(Π) and consider(γ)εγ ∈ Πi.
If (γ)εγ ∈ Cnε(Πi), then sinceΠi ∈ E∆(Π) we have
(γ)εγ ∈ Cnε(E∆(Π)) = E∆(Π). Otherwise there is a de-

fault
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs ∈ S where(α)εα ∈ Πi and
¬β1, ...,¬βn /∈ Crop(Π), but εγ = εα + εsε or (γ)εγ /∈
Πi. Then sinceΠi ⊆ E∆(Π), (α)εα ∈ E∆(Π). Hence
(γ)εγ=εα+εs≤ε ∈ E∆(Π) by SD3. HenceΠi+1 ⊆ E∆(Π).

Statistical Default Consequence:|∼ε

I first make some observations about statistical default ex-
tensions.

A statistical default extension contains the setW repre-
senting the uncontested (i.e.,ε = 0) world knowledge of the
statistical default theory, along with the consequences infer-
able by logical deduction and s-default rule chaining within

the prescribed error boundε. The ε-bounded logical clo-
sure of the set of uncontested world knowledgeW is equiv-
alent to the classical closure of the cropped sentences ofW ,
since, by Theorem 2 and Theorem 3 ifΓ is the set such that
Γ = Crop(W ), thenCn(Γ) = Cnε(W ).

A consequence of this definition is that onlyΠ0 is equiv-
alent to a deductively closed set of propositions and none of
theΠi’s for i > 0 is closed under either deduction or con-
junction.

Note also that forε = 0, the statistical default extensions
Πi of ∆s = 〈W,S〉 at 0 are identical to the standard default
extensions of the standard default theory∆ = 〈W,D〉, mod-
ulo Theorem 2, whereD is the set of all default rules inS of
confidence 1 (ε = 0).6

To illustrate how statistical default extensions are con-
structed, consider the following example.

Example 1 Let ∆1
s = 〈W,S〉 be a statistical default theory,

whereW = ∅ andS contains four s-defaults:
S = { :A

A 0.01, :B
B 0.01, A:B,C

C 0.01, A∧B:¬C
¬C 0.01}

For an error bound parameterε1 = 0.02, there is one sta-
tistical default extensionΠ1 whereCrop(Π1) contains

A,B,A ∧B,C.
The bounded sentenceA at εA is included in extensionΠ1

by applying the default:AA and bounded sentenceB at εB is
included by applying the default:BB , where each inference
has an error bound of 0.01, so(A)0.01 and(B)0.01. (A ∧
B)εA∧B is included in the extension, since the sum of the
error bounds of conjoiningA andB is 0.02, that is(A ∧
B)0.02. The bounded sentenceC at εC is included by using
A, whose error bound is 0.01, to apply the defaultA:B,C

C ,
whose error bound is also 0.01. Hence(C)0.02. The default
A∧B:¬C
¬C cannot be applied because the resulting conclusion

¬C would have an error bound of0.03, (¬C)0.03 which is
above the designated thresholdε1 = 0.02.

For a threshold parameterε2 = 0.03, there are two statis-
tical default extensionsΠ1, which is the same as described
above, andΠ2, whereCrop(Π2) contains

A,B,A ∧B,¬C.
The default rule that could not be applied before is now ap-
plicable with respect toε2, giving rise to the second (partial)
extensionΠ2.7

Example 2Let ∆2
s = 〈W2, S2〉 be a statistical default the-

ory, whereW2 = ∅ andS2 = { :¬B,C
C 0.00, :C

C 0.02, C:B
B 0.01,

:¬B
¬B 0.03, :¬B,A

A 0.01, :¬A
¬A 0.01}.

For an error-bound parameterε = 0.02, there is no statistical
default extension, since while both:¬B,CC 0.00, :C

C 0.02 yield
C only the bounded sentence〈C, 0.00〉 from :¬B,C

C 0.00 may

6Recall that statistical defaults are standard defaults whenε =
0.

7The complete cropped extensions: whenε = 0.02, Π1=
{A,B,A∧B, C}; when ε = 0.03, Π1 = {A, B, A ∧ B, C, A ∧
C, B ∧ C} andΠ2 ={A,B,A∧B,¬C}.



be substituted for the antecedent ofC:B
B 0.01 which in turn is

applicable in extensions consistent withB. But :¬B,C
C 0.00

is applicable only in extensions consistent with¬B.
For an error-bound parameterε = 0.03, there are three

extensions. Because this example highlights the role that
error bounds play in constructing extensions we display the
partial extensions first in uncropped form, then in cropped
form.

Π1 ⊃ {〈C, 0.00〉, 〈C, 0.02〉, 〈¬B, 0.03〉, 〈A, 0.01〉}
Π2 ⊃ {〈C, 0.00〉, 〈C, 0.02〉, 〈¬B, 0.03〉, 〈¬A, 0.01〉}
Π3 ⊃ {〈C, 0.02〉, 〈B, 0.01〉, 〈¬A, 0.01〉}

And the three corresponding cropped partial extensions at
ε = 0.03 are:

Crop(Π1) ⊃ {C,¬B,A}
Crop(Π2) ⊃ {C,¬B,¬A}
Crop(Π3) ⊃ {C,B,¬A}

Like their default logic counterparts, it is not uncommon
for statistical default theories to have multiple extensions.

Corollary 1 The family of statistical default consequence
operators are non-monotonic. If ∆s = 〈W,S〉 is a statistical
default theory atεwith an extensionΠ, S′ is a non-empty set
of defaults andW ′ a non-empty set of bounded sentences,
then∆′

s = 〈S ∪ S′,W ∪ W ′〉 at ε may have no cropped
extensionΠ′ such thatΠ ⊆ Π′.

Proof. Suppose
(α)εα :(β1)ε1 ,...,(βn)εn

γ εs ∈ S, (α)εα ∈ W
and no¬βi’s are inCrop(Π). Hence,γ ∈ Crop(Π). Now
suppose aβi in W ′ or as a consequent of an applied default
in S′. Thenγ /∈ Π′, soΠ 6⊆ Π′.

A sentenceA is a skeptical consequence of a default the-
ory∆ just in caseA is in every extension for∆. I now define
an analogous consequence relation for statistical default the-
ories.

Definition 9. Skeptical Statistical Consequence: Let ∆s =
〈W,S〉 be a statistical default theory atε andA a sentence.
ThenA is a skeptical consequence of∆s at ε—written, ∆
|∼ε A—just in caseA ∈ Crop(Π) for each extensionΠ on
∆s at ε.

The consequence relation|∼ε is non-monotonic. No-
tice, from Corollary 1, that by either augmenting the set of
bounded-sentences in theW -component of a default theory
or adding new default rules to theS-component a previously
induced statistical consequence (at a particular error bound)
may then fail to remain supported by the statistical default
theory (at that particular error bound).

Corollary 2 . Skeptical statistical default consequence is
supra-classical. If ∆s = 〈W,S〉 is a statistical default the-
ory atε and the setS of s-defaults is empty, then there is one
extension of∆s which is identical toCn(Crop(W )).

Proof. By the definitions of an s-default extension,
an extensionΠ0 = W and Πi+1 = Cnε(Πi) ∪
{γ| (α)εα :(β1)ε1 ,...,(βn)εn

γ εs} ∈ S, where(α)εα ∈ Πi and

¬β1, ...,¬βn /∈ Crop(Π) andεα + εs ≤ ε}.. ButS = ∅ by
hypothesis, soCn(Crop(W )) for all Πi.

Conclusion
In this paper I’ve presented a non-monotonic framework for
representing arguments composed, at least in part, of classi-
cal statistical inferences. Building on Kyburg and Teng’s
observation that Reiter defaults mirror the general struc-
ture of classical statistical inference, an extension of de-
fault logic was proposed calledstatistical default logic. It
was noted that statistical default logic admits of a skepti-
cal consequence relation that sanctions a single conclusion
set bounded in error byε and that this consequence relation
is non-monotonic. Thus statistical default logic features a
means for preserving the property of a monotonically de-
creasing measure of the upper limit of the probability of er-
ror associated with a sequence of statistical reasoning and
yet preserves the non-monotonic behavior of statistical in-
ference.
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