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Abstract

This paper presentsatistical default logican expan-
sion of classical (i.e., Reiter) default logic that allows
us to model common inference patterns found in stan-
dard inferential statistics, including hypothesis testing
and the estimation of a populations mean, variance and
proportions. The logic replaces classical defaults with
ordered pairs consisting of a Reiter default in the first
coordinate and a real number within the unit interval
in the second coordinate. This real number represents

We will omit discussion of the merits of this approach
from a knowledge representational perspective. From the
perspective of this paper, statistical reasoning serves as a
motivation for the logic. However, it should be noted that
the modular construction of the logic—the sharp distinction
between the (standard) operation of the fixed point operator,
on the one hand, and the mechanism for preserving upper-
bound estimates of probabilities on the other—lends itself
as a technique, perhaps, to other circumstances calling for
a non-monotonic consequence operation that returns a con-

an upper-bound limit on the probability of accepting
the consequent of an applied default and that conse-
guent being false. A method for constructing extensions
is then defined that preserves this upper bound on the
probability of error under a (skeptical) non-monotonic
consequence relation.

clusion set whose members must satisfy an additional con-
straint regarding length of proof.

Statistical Defaults

Although a connection between statistical statements and
default logic is developed in (Bacches al. 1993) and a

. connection between statistical inference and default logic is
Introduction suggested in (Tan 1997), the first proposal to represent clas-
This paper presents a resource bounded default logic. The sjcal statistical inference in terms of defaults is (Kyburg &
motivation for the logic is found in a particular approach ad-  Teng 1999). A default is an inference rule of the form
vanced in (Kyburg & Teng 1999), from the perspective of
knowledge representation, of representing the structure of Py (1)
classical statistical inference (Fisher 1956; Lehman 1959) 2l ’

and statistical argumentation (Neyman 1957; Kyburg 1974; jnterpreted roughly to mean that giverand the absence of
Mayp 1996).|n_ terms of classical (Reltey 1980) defaglts. In any negateds;’s, concludey by default. Kyburg and Teng
making statistical inferences—a term intended to include gpserve that default rule justifications—the formulae de-
hypothesis testing and estimating basic parameters of pop- noted by the3;'s in the default inference form—represent an
ulations, such as their means, proportions and variances—jmportant structural feature of classical statistical inference,
one accepts a conclusion along with a warning that there pamely the role randomization traditionally plays as a suf-
is a small, preassigned chance that the conclusion is false. ficient condition for a sample being representative (Gram
The conditions that ensure the fit between a statistical model 1951; Moore 1979; Baird 1992).

and the actual probability of error that one is exposed to by There is a problem representing statistical inferences di-
accepting the consequent are defeasible and the behavior ofyectly within Reiter's default logic, however, for represent-
this defeasibility may be captured in terms of defaults, points jng classical statistical inference as a classical default ap-
developed in (Kyburg & Teng 1999).. What is missing from  pears to reward ignorance: givenand no other informa-
this representational scheme, however, is a means to explic-tjon whatsoever about how the sample was drawn other than
itly record the probability o_f error and to preserve this mea- that the sample is consistent with what is known, we may
sure under (non-monotonic) consequence (Wheeler 2002). infer that the sample is representative by default. The prob-
This paper presents a default logic that achieves this aim.  |om s that there isn’t a way for classical defaults to encode
"My thanks to Thomas Dietterich, Tony Hunter, Henry Kyburg, the _information that would distinguish this_ feckless statisti-
Choh Man Teng and Gabriel Uzquiano for discussion and com- Cal inference from one that demands a rigorous attempt to
ments on earlier drafts. This research was supported in part by the detect a bias in the sample. Put another way, what is miss-

Institute for Human and Machine CognitigfHMC), Pensacola, ing from Reiter defaults is an explicit means for controlling
and grant SES 990-6128 froffhe National Science Foundation error.



A statistical default is an inference form that explicitly
acknowledges thapper limitof its frequency of errot.Call
a default in the form of

a ﬁla aﬁ’n
v

an s-defaultand the upper limit on the frequency of error-

€ )

default and) < ¢ < 1. The schema (2) is interpreted to say
that providedy and no negated;’s, v is false no more than

e over the long-run application of that rule. (A Reiter default
is a special case of a statistical default, namely when0).

A statistical default is sound just when the upper limit of
the probability of error idn facte. An s-default is a good
inference rule if it is sound ands relatively small, typically
less thar0.05.

The parametee is an essential feature of statistical de-
faults, just as explicit error control is essential to classical
statistical inference in general, and marks an important dif-
ference between statistical defaults and Reiter defaults.

The art of constructing a good statistical default, one
whose advertised-bound is an acceptable level and in fact

the deductive consequences will have the safibeund as a
constituent inferencé.

Another feature of Reiter’'s formulation is that an exten-
sion is closed under the set of defaults of a default théory.
Constructing a candidate default extension by successive ap-
plications of defaults results in a set of sentences, all of
which are on par: all sentences in an extension are true.
But we know that chaining statistical inferences typically
creaseur chance of error. So, again, there is no guarantee
that thee-bound of a statistical inference chain is identical
to that of any of the constituent inferences. So we cannot
close a statistical default extension under the default rules in
D either.

The problem is that neither classical logic nor standard
default logic restricts the length of permissible sequences of
inferences. An inference chain that is deductively valid or
one that generates an extension for a given default theory
may nevertheless fail to represent an acceptable statistical
argument because the error bound of that sequence of infer-
ence steps does not fall below the designated error bound for
acceptance. So, since a conclusion of a statistical argument
is acceptable only if the conclusion is the conclusion of an
inference chain bounded in error by a preassignéanust

true, depends upon the background knowledge necessary togefine a non-monotonic consequence relation that induces

form the set of s-default justifications that determine the fit
between a statistical model and its successful application.

only those non-monotonic consequences that are within a
designated error bound.

Disagreement about the soundness of a statistical default is 14" 5110w for bounded inference chains statistical de-

then similar to disagreement about the soundness of a deduc-

tive inference in the sense that a distinction is made between
the form of the inference and whether the constituents of the
inference are (or not known to be) true. Treatings an ex-
plicit parameter in statistical default forms allows there to be
an explicit constituent in the argument form that, much like
a premise in a deductive argument, is true or false.

Statistical Default Theories

A statistical default theory is analogous to a default théory
in that statistical defaults appear in the object language and
an s-default theory induces non-monotonic consequences
via a fix-point operator. Given the parametgrhowever,

how should accepted sentences interact in a statistical de-
fault extension? In Reiter’'s standard formulation, a default
extension is deductively closed. But bounds for probability
of error for particular statistical inferences do not necessar-
ily carry over unchanged when chained together to form a
statistical argument. Accepting a hypotheRiswith a con-
fidence0.95 and accepting another hypothesls indepen-
dently with a confidencé.95 doesn’t entail the acceptance

of H, and H, at0.95. So, one cannot simply close a sta-
tistical default extension under deduction and guarantee that

LA trivial corollary of the frequency of erraf for a statistical
inference is the upper limit of the probability of error, denoted by
e. So, if& = 0.03 is understood to mean that the probability of
committing a Type | error is 0.03, then= 0.03 is understood to
mean that the probability of committing a Type | error is no more
than 0.03.

2A default theory is a paitW, D) whereW is a set of closed
formulae andD is a (countable) set of defaults.

fault theoryis defined in terms of a set of s-defaults and a
set ofbounded sentences

Definition 1. Bounded sentencé\ sentencep bounded by
e is an ordered paifg, €), written (¢). for short, wherep
is a sentence in the first-order languagende < [0, 1].

(P)e = @, if e=0.

Definition 2. A statistical default theonA, is an ordered
pair (W, S), whereW is a set of bounded sentences, &hd
a set of statistical defaults.

Statistical inference chains may now be defined with re-
spect to a set of bounded sentendés;This is done in two

3This is a version of Henry Kyburg’s lottery paradox (Kyburg
1961; 1997). The paradox is generated by holding three plausible
assumptions about rational acceptance: i) If it is very likely that
a hypothesigd is true, then it is rational to accepf; ii) If it is
rational to accept and it is rational to accegt’, then it is rational
to acceptd A H'; iii) It is irrational to accept any set of propositions
that you know are inconsistent. A contradiction is generated by
supposing a level — ¢ of rational acceptance that is very close
to 1 (e.g.,e = 0.01) and then considering a fait-ticket lottery
designed to yield exactly one winner, where> % (e.g.,n =
1000). It is rational to accept that each ticket will lose. However,
closing this set under conjunction entails that all tickets lose, which
contradicts the supposition that one ticket will win.

4In standard default logic, an extensidnis closed under a
default rule : 8/~ if it is not the case thatt € F and—-3 ¢ E
andv ¢ E; so, if« : 3/v applies toE theny € E. So an
extensionk is closed under a set of defaulisif E is closed under
every default inD. A sentencey is a default conclusiofrom E if
there is a defaull = %22 € D andd applies toF.



steps. Since statistical inference chains may include deduc-
tive or non-monotonic inference steps, the first step is to
define bounded inference chains composed of purely non-
monotonic inference steps (Theorem 1) and, in turn, to de-
fine bounded deductive inference chains (Theorem 2). This
yields bounded closure conditions for each type of inference
chain. From these results | then construct a bounded statis-
tical default extension (Theorem 4).

Before turning tae-bounded s-default closure conditions,
it will be useful to collect the sentences appearing in all the
pairs of bounded sentenceslininto a set—to crop the tails
of the sequences i, if you will. Let Crop(II) name that
function. So, for examplelrop({(¢1)e,, s -5 (Bn)e,, })
{¢17 eeey ¢n}

Since rule applicability is relative to a specified bound of
error e, | will define a closure condition for statistical de-
faults onlI bounded by in the next three definitions. While

IT here is treated as an arbitrary set of bounded sentences,

when we turn to defining statistical default extensions we

(81)ey, s s (Dn)e,,) ONIL, let Ty = ILI = IIp U
{(#1)ey, 1,112 = I U {(¢2)e,, }, and so on. Suppose
(Y)e, € Sn.(I0). Trivially, if (7)., € II then (y)., €
Sn(IT). So suppose thdty)., € Snc(II) but (v)c, ¢ Ilo.
By the definition of ane-bounded conclusion from a set
of bounded sentence§l,, there must be a particular sta-
tistical default ruIe"“ﬁl*ﬁ“"ﬁ"eS such that(a)., € I,
=81, ..., 0, ¢ Crop(Ily), e, +€s = €y ande, < e. Hence,
(7)e, is ane-bounded s-default conclusion froify. Hence
(7)e, € o U {(7)e,}- So there is an s-default inference
chain, namely((v), ), that yields(y)., as ane-bounded
conclusion fromlI. | now prove that if(y)., € Snc(II)
there is an inference chain of lengthhat yields(vy)., as
ane-bounded conclusion frofd;, for i > 0. By the defini-
tion of ane-bounded conclusion from a set of bounded sen-
tences]l;, there must be a particular statistical default rule

@bilne, such that(a)e, € U {($1)e,, - (Di)ey, }

_‘61; ceey _‘ﬂn ¢ CTOP(HU((bl)em PREET) ((bi)ed)i )a €qtes = €y

will use these operators on bounded-sentences that satisfyande, < e. Hence,(v)., is ane-bounded s-default con-

additional constraints.

Definition 3. S-defaulte-bounded conclusionA bounded
sentence(y)., is an e-bounded conclusion from a set
of bounded sentence$], under a statistical default rule
Me if and only if (a)., € II, =f1,..., 0, ¢
Crop(Il), eq + €; = e ande, < e.

Definition 4. A setII of bounded sentences is closed under
a particular s-defauk = Meé within e if and only if

every bounded senten¢e). that is ane-bounded default

conclusion fromiI unders is a member ofL.

Definition 5. S-defaulte-bounded closure A set IT of
bounded sentences is closed under aSeif s-defaults
within ¢ if and only if, for everys € S, Il is closed under

s within €. Let Sn.(S,II), called thee-bounded s-default
closure ofII with respect taS, name an operator afi and

IT that produces a sé&t’ of bounded sentences closed under
S within e. (WhenS ' is fixed by context | will simply write
Sn(I1).)

With the closure condition provided by Definition 5, |
may now show that if a bounded senter(eg., appears
in the e-bounded statistical default closure of some set of
bounded sentencds, then there is a chain of s-default in-
ferences fronil that hagy). as are-bounded consequence.

Theorem 1 Let S be a set of statistical defaultH, a set of
bounded sentencegy)., a bounded sentence asih, (I1)

be the s-default closure af under.S within . Define a
statistical default inference chain dm within ¢ as a se-
quence of bounded sentencé@i)c, ;- (¢n)e,, ), SUch

that ((i)i)% is an e-bounded conclusion fromII U
{(@1)eg, s (Pi1)ey, ,} » Where 1 < i < n. |If
(7)e., € Snc(II), then there is an s-default inference chain
{(61)ey. s (Bn)e,.» (7)c,) ONTI that yields(y).., as ane-
bounded conclusion.

Proof. ~ An inductive proof on the length of in-
ference chains is offered. Given an inference chain

clusion fromIl;, and ()., € Sn.(Il;). Hence(y)., €
IL U {(@1)eg, s (i)ey, s (V)e, }- SO there is an s-default
inference chain, namely(¢1)e,, ;- (di)e,, (V)e,), that
yields (7)., as ane-bounded conclusion frofl. m

In standard default theories, extensions are closed under
logical consequence. | noted at the beginning of this section
that this property won't hold for statistical default extensions
since the premises of a deductive inference may themselves
be s-default conclusions, each individually bounded in error
by somer (or other) such that the sum of error bounds of the
premises is greater than

Definition 6. Given a set of bounded sentendésand an
error parameter a bounded senten¢e)., is ane-bounded
consequencef II, writtenII = (v).,, if and only if:

4 (Qsl)elv"'v(gbn)en S H,
e ¢1...¢, -1, and
® &y = Z?:l € < €.

Definition 7. e-bounded logical closure:For any setll
of bounded sentences, the operat@n.(1I) = {(¢)
I = (¥)e, }- o _

I may now show similar results farbounded deductive
closure, namely that if the bounded sentefigg is in the
image set ofCn.(II), then there is a deductive inference
chain defined odl that has(v)., as ane-bounded, logical
consequence dfl.

€y

€y :

Theorem 2 Let IT be a set of bounded sentencgs,.,

a bounded sentence andn.(II) be the e-bound clo-
sure ofII. Define a deductive inference chain as a se-
quence ot-bounded sentencel)1 e, s -, (¥n)e,,, ) SUCh
that (wi)% is an e-bounded consequence ofll U
{(¥1)ey, s Wic1)e,, .}, where 1 < i < n. |f
(7)e, € Cnc(II), then there is a deductive inference chain
((@1)ey, s s (Bn)es, - (7)e, ) Of deductions odl that yields
(7)e, as ane-bounded conclusion.



Proof. An inductive proof on the length of deduc- sequences of inferences that will be of interest are only those
tive inference chains is offered. Given an inference chain wheree takes a value within the unit interval.
(W1)ey, s (Pn)ey, ) On 1L, let Iy = ILIL = Ilp U When the event in question is accepting the sentence
{(¥1)e,, 1,2 = Ty U {(¢p2)c,, }, and so on. Suppose and the probabilities_in guestion are a measure of the upper
(7)e, € Cnc(IT). By the definition of are-bounded conse- ~ bound on the probability of acceptingvhens is false, then
quence from a set of bounded sententkgs f Iy = (v) we may infer that we are exposed to no greater risk of being

€y

then there is a set of bounded senter{ggs., , ..., (én)c, € wrong about) than by accepting the sum of the probabilities
I, such thatg,...¢, F vy ande, = > e < e of mistakenly accepting each ofs gonstltuenté. o
Hence, (y)., is ane-bounded consequence frofh, and What remains is defining a statistical default extension in
(7)e, € Cne(Ily). Hence(y)., € IIp U {(7)c,}. So terms of a set of bounded sentenEEsan error parameter
there is an deductive inference chain, naméfy).. ), and the pair ot-bounded closure conditiortsn. andCn.
that yields(v).., as ane-bounded conclusion fronl. | for statistical defaults and bounded consequence.

now prove that if(y)., € Cn(II) there is an inference A candidate statistical default extension is constructed se-
chain of lengthi that yields(v).. as ane-bounded con- quentially, much like a candidate standard default extension.

sequence fronil;, for i > 0. By the definition of an A candidate set on a default theofiy/, D) is built sequen-
e-bounded consequence from a set of bounded sentencestially by first closing W under consequence, applying all
Il;, if T; = (7)., then there is a set of bounded sen- applicable defaults irD to the set of consequences Idf,
tences(¢1)e,, ..., (¢n)e, € II; such thatp; ... ¢, - ~ and closing that set under consequence, and so on. While a stan-
e, = Y €& < e Hence,(v)., is ane-bounded conse- dard default extension candidate is built sequentially by al-

quence fromll;, and (y)., € én,E(Hj). Hence(y). € ternatingly closing the set under consequence and the set of
I U {(¢1)e, (¥i)e, ”(7) }. So there is an deductive  defaults until no more defaults can be applied, statistical de-
VIR 1) €y, €y S

i ; ‘ fault extension candidates are built by alternatingly closing a
|ri1§(;2nce CZ?;}QS;T,?&?&Z;;;"Jfg)ggif;%;”>’ that set of bounded sentences under consequence (bounded by a
y (7)e, q - . specified threshold parametgrand the set of statistical de-
Theorem 3 If I is a set of0-bounded sentencek,is set of faults (also bounded hy) until no more deductive or default
sentences such th@trop(IT) = T', thenCn(IT) = Cn(T). inferences can be made at or belaw

Proof. By the definition of a bounded SentenCE, for any Given a statistical default theOQ{S | wish to define a sta-
(¢)e, if € = 0then(¢). = ¢. ' = Crop(Il), so there is a tistical default extensiofll on A; ate. | offer the following

one-to-one mapping from evefy;). € Il to everyg; € I’ definition.
such that(¢;). = ¢;. Since for any» membered subset of Definition 8. WhereA, = (W, S) ate is a statistical default

iz € = 0, thenll = (¢), ifand only if ' - . m theory and( is some set of bounded sentencesElet (IT)

For each of the closure operatiofis. andCn. and any be a minimal set satisfying three conditions:

formula ¢ that is in the cropped image set of either oper- [SD1.]W C Ea(ID).

ation, the error bound parametey of ¢ is the sum of the [SD2.] Cn(Eaq(IT)) = Ea (T).
error bounds of the constituents participating in the imme- [SD3.] Ea.(II) is closed undelS within ¢, i.e. for
diate inference step terminating (®).,. If the bounde, all (@ea:(B)er s (Br)en & € S, (), € Ea,(ID),

. H i v

:ﬁgﬁjs(jsegh;ntr?é ;?t:z;\llsgcgnt.he designated boenthene, is By s & Crop(Il), eu + € = ¢, ande, < c.
Summing error bounds of constituent inference stepsisan A set of bounded sentencHSis astatistical extensiofor

imprecise but conservative estimate of the probability of ac- A ate iff Ea (IT) = II

cepting a false conclusion in arelement inference chain

and thereby provides an upper bound on possible error for Theorem 4 Let II be a set of bounded sentences, let

sound inference chains. Sinéeis by definition the proba- (@) eys (B)egs (Vess (@)e,, and (¥)e, be ¢;-bounded coun-
bility of accepting that the outcome of trial (inferencg)is terparts to sentences, 3,7, ¢,and¢ in £, and letAg =
true when in fact it is false, let = 1 — Pr(X) = Pr(X). (W, S) ate be a closed statistical default theory. Define

The justification for stating that summing error bounds pro-

vides an upper bound on probability of error for a chain of e Forall (¢;)e, € W.eg, = 0.

inferences is that we can face no greater risk than theriskof

mistakenly accepting each conclusion drawn in a line of rea- ®But is this measure too conservative? Compare the proposal
soning. Summing the error bound parameters provides this to sum error bounds to the Bonferroni adjustment (Holm 1979),

upper bound because of a theorem of classical probability, " adjustment applied to thielevels of multiple hypothesis tests

namely thaPr(X U X’) = Pr(X) + Pr(X’) — Pr(X, X") performed on the same data set. The adjustment works by divid-

which holds generally for event, X Boole"s in,- ing the accepted level by the number of tests performed. The
sy LAme

. Ay = , L result is that the significance of any one test would need t& be
equality Pr(X U X") < Pr(X) + Pr(X’), follows trivially. Unlike the Bonferroni adjustment, the proposal here preserves the

Notice that this procedure of summingdoes not yield significance of each individual test yet retains the property that the
a probablllty measure but rather a conservative estimate of sequence of tests has arevel no more than the assignedbound

&. We needn't be concerned that the sum-tiounds is not for acceptance. Hence, the proposal to sum error bounds, while
necessarily a probability, since, as we will soon see, for the conservative, is not as restrictive as the Bonferroni method.



e Iy = W, and fori > 0,
o I,y = Cn(I;) U {7\(O‘)éaz(ﬁl)“"”’(ﬁ")é" €s) € 8
)

" ,
where («)., € II; and =04, ...,~8, ¢ Crop(Il) and
€a + €5 < €}

ThenII is a statistical extension foAAg at e iff II
Uogigoo 1I;

Proof. Begin by observing that),.,. . II; enjoys the
following properties: T

[SDY.]W C UOSZ‘SO@ II;

[SD2.] Cn, (Uo . Hi) — Upeseoe I

[SD3] If ((X)Ea:(ﬁl)e’ylﬁ“-v(ﬁn)sn e, € Sand(a), €
UOSiSOO 11;, _‘ﬂl, ceey _‘ﬂn ¢ CT’Op(H) andes +ey <€
then(v)e,+e. € Up<icoo i

So, by the minimality oE A (IT), we have

Ea(MC (J M

0<i<oo

®3)

(=) Proof by induction thafl; C Il ate forall 0 < i <
oo from | J <<, H; € II. For short, IT" will stand for ‘II
ate'. Clearly Iy C II, sincell = Ea(II). Assume some
II; C IT and considefy)., € 1. If (7)c, € Cnc(1L;),
then sincell; C II we have(y)., € Cnc(Il) = II. Oth-

erwise there is a defauifx)m:(Bl)iyl"“’(ﬁ")i" €s € S, where
(), € II; and—p, ..., 28, ¢ Crop(Il) ande,, + €, < e.
Therefore, sincél; C II, ()., € II = Ea(II). Hence,
by SD3 (7)e,=c.4+ea<e € Ea(II). Furthermore, since
Ea(IT) = II, we have(y). € II. Therefore| J,, . II; €
I1. By equation (3) and the fact thBt = Ex (IT) because of
the definition of a fixed point, we havé =  J,, . II;.

(<) Proof by induction thafl, C EA(II) for all i <
i < oofromIl = (Jye;<oo IIi € Ea(II). By appeal-
ing to equation (3) we will then havE = Ea(II) from
whencell is an extension ofA, at e. Clearly I, C
EA(II), so assumél; C Ex(II) and conside(y)., € II;.
If (7v)e, € Cne(Il;), then sincell; € E(II) we have
(7)e, € Cne(Ea(I)) = EA(II). Otherwise there is a de-
fault (a)ea:(ﬁl);l""’(ﬁ")‘" €s € S where(a)., € II; and
=B1, ..y 2B ¢ Crop(Il), bute, = e, + ese OF (V)e, &
II;. Then sincell; C EA(II), ()., € Ea(II). Hence
(V)e,=cate.<e € Ea(IT) by SD3. Hencdl; 1 C Ea(II).
]

Statistical Default Consequencei~,

| first make some observations about statistical default ex-
tensions.

A statistical default extension contains the Bétrepre-
senting the uncontested (i.e.= 0) world knowledge of the
statistical default theory, along with the consequences infer-
able by logical deduction and s-default rule chaining within

the prescribed error bound The e-bounded logical clo-
sure of the set of uncontested world knowledges equiv-
alent to the classical closure of the cropped sentencBs,of
since, by Theorem 2 and Theorem 3'ifs the set such that
' = Crop(W), thenCn(T") = Cn.(W).

A consequence of this definition is that only, is equiv-
alent to a deductively closed set of propositions and none of
theIl,’s for i > 0 is closed under either deduction or con-
junction.

Note also that foe = 0, the statistical default extensions
I1; of A, = (W, S) at 0 are identical to the standard default
extensions of the standard default thedry= (W, D), mod-
ulo Theorem 2, wher® is the set of all default rules ii of
confidence 14 = 0).

To illustrate how statistical default extensions are con-
structed, consider the following example.

Example 1 Let Al = (W, S) be a statistical default theory,
wherelV = () and.S contains four s-defaults:

S = {40.01, :Bo.01, 42:%0.01 A2B:=C 0,01}

For an error bound parameter= 0.02, there is one sta-
tistical default extensiofl' whereCrop(I1') contains

A, B,ANB,C.

The bounded sentencéat ¢4 is included in extensioml*
by applying the defaulﬁA and bounded sentenégatep is

included by applying the defaulg, where each inference
has an error bound of 0.01, $@)0.01 and (B)g.01. (A A
B).,.; isincluded in the extension, since the sum of the
error bounds of conjoiningl and B is 0.02, that is(A A
B)o.02- The bounded senten€géat e is included by using
A, whose error bound is 0.01, to apply the defatif:,
whose error bound is also 0.01. Her{€g), 2. The default
AAB:2C cannot be applied because the resulting conclusion
—C would have an error bound 6£03, (—C')g.03 Which is
above the designated threshe|d= 0.02.

For a threshold parametey = 0.03, there are two statis-
tical default extension!, which is the same as described
above, and1?, whereCrop(11%) contains

A, B,ANB,-C.

The default rule that could not be applied before is now ap-
plicable with respect te,, giving rise to the second (partial)
extensionI2.’

Example 2Let A2 = (W5, S;) be a statistical default the-
ory, wherelV, = () andS, = {2:€0.0q :£0.02 %L0.0,
=B :=B,A —A

=50,03 =B:40,01, =40.01}.

For an error-bound parameter= 0.02, there is no statistical
default extension, since while boti2:0.00, :£0.02 yield

C only the bounded senten¢€, 0.00) from =2:0.00 may

®Recall that statistical defaults are standard defaults when
0.

"The complete cropped extensions: when= 0.02, II'=
{AB,AAB,C}; whene = 0.03, II' = {A,B,AA B,C, AN
C, B A C} andII? ={A,B,AAB, -~C?.



be substituted for the antecedent§£0.01 which in turn is

applicable in extensions consistent with But ”g’CO.OO
is applicable only in extensions consistent with.
For an error-bound parameter= 0.03, there are three
extensions. Because this example highlights the role that
error bounds play in constructing extensions we display the
partial extensions first in uncropped form, then in cropped

form.

' © {{C,0.00), (C,0.02), (=B, 0.03), (4,0.01)}
12 5 {(C,0.00), (C,0.02), (—B,0.03), (=A,0.01)}
13 © {(C,0.02), (B,0.01), (—A,0.01)}

And the three corresponding cropped partial extensions at
e = 0.03 are:

Crop(Il') > {C,-B, A}

Crop(I1?) D {C,-B,-A}
Crop(Il®) > {C, B,~A}

Like their default logic counterparts, it is not uncommon
for statistical default theories to have multiple extensions.

Corollary 1 The family of statistical default consequence
operators are non-monotonitf A; = (W, .S) is a statistical
default theory at with an extensiodl, S’ is a non-empty set
of defaults and?’ a non-empty set of bounded sentences,
thenA!, = (SU S, W U W’) ate may have no cropped
extensiorll’ such thafl C IT'.

Proof. Suppose(a)m:(ﬁl)j’“"(B")e" € €85, (), €W

and no—g;’s are inCrop(IT). Hence;y € Crop(IT). Now
suppose &; in W’ or as a consequent of an applied default
inS’. Theny ¢ II', soII Z IT'. m

A sentenced is a skeptical consequence of a default the-
ory A justin cased is in every extension foAA. | now define
an analogous consequence relation for statistical default the-
ories.

Definition 9. Skeptical Statistical Consequentet A, =
(W, S) be a statistical default theory aand A a sentence.
Then A is a skeptical consequence Af, at e—written, A
. A—just in casedA € Crop(II) for each extensiofl on
Ay ate.

The consequence relatidr. is non-monotonic. No-
tice, from Corollary 1, that by either augmenting the set of
bounded-sentences in thEé-component of a default theory
or adding new default rules to tlfecomponent a previously
induced statistical consequence (at a particular error bound)
may then fail to remain supported by the statistical default
theory (at that particular error bound).

Corollary 2. Skeptical statistical default consequence is
supra-classical If A; = (W, S) is a statistical default the-
ory ate and the sef of s-defaults is empty, then there is one
extension ofA; which is identical toaCn(Crop(W)).

Proof. By the definitions of an s-default extension,
an extensionIl W and II; 4 Cn.(I1;) U

{7|(a)eﬂ:(ﬁl):""’(ﬁ")f" €s} € S, where(a)., € II; and

e

=81, ...y 20 & Crop(Il) ande, + €5 < €}.. ButS = () by
hypothesis, s&'n(Crop(W)) for all T1;. m

Conclusion

In this paper I've presented a non-monotonic framework for
representing arguments composed, at least in part, of classi-
cal statistical inferences. Building on Kyburg and Teng’s
observation that Reiter defaults mirror the general struc-
ture of classical statistical inference, an extension of de-
fault logic was proposed callestatistical default logic It

was noted that statistical default logic admits of a skepti-
cal consequence relation that sanctions a single conclusion
set bounded in error byand that this consequence relation

is non-monotonic. Thus statistical default logic features a
means for preserving the property of a monotonically de-
creasing measure of the upper limit of the probability of er-
ror associated with a sequence of statistical reasoning and
yet preserves the non-monotonic behavior of statistical in-
ference.
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