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Abstract 
This paper focuses on the role that social norms play in the 
selection of equilibrium points seen as social conventions 
under unforeseen contingencies – that is, their role in the 
emergence of regularities of behavior which are self-
enforcing and effectively adhered to by bounded rational 
agents due to their self-policing incentives. Differently 
stated, given a set of game situations imperfectly described, 
we want to understand how general and abstract norms 
provide at least the starting point for a norm-based 
equilibrium selection reasoning procedure which in the end 
will be able to determine which equilibrium point, belonging 
to perfectly described games, will be played as the unique 
solution of each imperfectly described game. In order to 
solve such a problem we introduces a selection process 
based on the reformulation of default logic in terms of 
possibility theory. 
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1.  Introduction and motivation  

We are not concerned here with the explanation that norms 
induce equilibrium points in games because of their 
structuring effects on payoffs and incentives. Equilibrium 
points are seen as pre-existing possible combinations of 
strategies in a given game situation. Norms, on the other 
hand, are primarily seen as sets of logically consistent 
normative statements prescribing a single action for each 
player in any game situation of a given class of games. 
Hence, these statements simply ask players to adopt a given 
equilibrium behaviour within the existing equilibrium set of 
the given game situation. Their effectiveness does resides 
only in their functioning as cognitive devices which induce 
the appropriate system of expectations about equilibrium 
behaviours. In fact, given the appropriate system of 
expectations, players have endogenous incentives to adopt 
the prescribed behaviour, as long as they expect the other 
players to execute the corresponding actions.  
Note, however, that most non-trivial non-cooperative game 
have numerous equilibrium points. Mixed-interest 
coordination games or the typical iterated Prisoners’ 
Dilemma, where the Folk theorem applies, can be regarded 

as the natural classes of game situations to which norms 
refer. Consequently, given multiple equilibria, there are 
also multiple possible norms in the meaning just defined. 
The multiplicity problem then ensues: given a multiplicity 
of equilibria - such that the expectation of each equilibrium 
supports the decision to comply with a different norm in 
turn - which norm should be chosen or followed? We 
assume that an equilibrium point gains its justificatory 
power in terms of individual rational choice, since shared 
knowledge1 that the equilibrium itself will be adopted as the 
solution of a game has gained general acceptance. Hence, 
multiple equilibria are situations such that, even if we know 
that some equilibrium point will be adopted, there is no 
implication as to which equilibrium will be adopted, and as 
a consequence we have no reason to act according to any of 
the possible equilibria. Unless we know which norm is to 
be adopted in order to solve the game, we cannot say that 
we have the belief system concerning the equilibrium 
behaviour that grounds a given norm in terms of the 
incentive-based reasons to act upon it.  
What we are looking for relates to the explanation that 
equilibrium points are selected because they are focal 
points or exhibit what is usually called salience (Shelling 
1960, Lewis 1969). In those approaches which view focal 
points not as primitive brute psychological facts attached to 
behaviors but rather as the result of existing social norms 
(Kreps 1990), norms work as the determinants of the state 
of knowledge that makes an equilibrium the predictable 
outcomes of the game, providing in their turn endogenous 
incentives to comply with the relevant norm. There is, 
however, a sort of circle here: equilibrium points are 
selected because of their focality, which in turn is due to 
social norms that give “salience” to that equilibrium. But 
on the other hand this may be so only because some of the 
possible multiple norms are focal points on their own 
account, ones able to co-ordinate expectations in the 
relevant class of games. Which requires no less explanation 
than the salience of equilibrium points as such.  
                                                           
1 For more information on the definition and use of the concept of 
knowledge see for instance Aumann (1976), Binmore & 
Brandeburger (1990), Fagin et al.(1995), Brafman & Tennenholtz 
(1997). 



The relevant question to ask is therefore the following: 
where does the basic shared knowledge about norm-
following behaviour come from? There must be an 
independent process of reasoning which induces us to 
believe that everybody will comply with the norm and the 
prescribed behaviour during the given game in order to 
generate the system of expectations about the strategies 
adopted in the game which rationally justifies a player’s 
adoption of his equilibrium strategy because of its best 
response property. We shall seek to deal with this problem 
by investigating how players come to believe that in a 
given game all the players will conform with a general 
norm before they begin calculating that, because it is 
known that all of the players will conform with the norm, 
they then play the given equilibrium. To simplify, let us 
introduce an ex ante/ex post distinction into players’ 
reasoning processes: it is ex post reasoning to say that, 
because it is common knowledge that a given equilibrium 
is the solution of the game, then players have the incentive 
to comply with it. By contrast, it is ex ante reasoning that 
takes us from the knowledge of a multiplicity of pre-
existing norms, each endowed with prescriptive meaning 
and generally accepted as the solution concept appropriate 
for a given game class, to the conclusion that one of these  
norm is in fact the one also accepted as the solution theory 
in the given game that concerns us, so that the ex post 
common knowledge-based reasoning may then emerge. By 
‘equilibrium selection process’ is meant the ex ante 
reasoning that brings the players to a state of shared 
knowledge that a given equilibrium will be the solution of a 
given game since the game situation confronts player with 
a choice among many equilibrium strategies.  
Equilibrium selection is a topic widely addressed in game 
theory (Harsanyi 1975, Harsanyi-Selten 1988, Binmore 
1987/88, Fudenberg-Levine 1998, Samuelson 1997). 
Harsanyi and Selten put forward the first theory of 
equilibrium selection,  basing it on a model of the 
outguessing regress idea – which consists of the supposition 
that players reciprocally simulate the each others’ 
reasoning processes by repeatedly assigning their own 
previous reasoning steps to the counterpart – an approach 
that Binmore (1987) calls “eductive” (and which we shall 
adopt in this work). However, they developed their theory 
under overly strong epistemic assumptions - so strong that 
not even their equilibrium selection model could satisfy 
them (Sacconi 1995b). 
However, we are looking for a solution to the equilibrium 
selection problem which is not usually addressed because it 
ranges over games where equilibrium points must be 
selected by players with incomplete knowledge of the 
possible states of the world and consequently of the game 
in which they are involved. Multiplicity occurs in this 
context because of the ambiguity concerning the game that 
players are about to play. This can be construed as if they 
were able to predict the single equilibrium with which they 
could solve a game if there were no ambiguity about the 
game that they are going to play. Nevertheless, multiplicity 
returns because of the ambiguity about the game that they 

are to play occasioned by unforeseen contingencies. To be 
clear, this is not the same as extending the standard 
approach of games under incomplete information (Harsanyi 
1967/68). Players are not uncertain about the game selected 
by Nature, because they do not know the occurring state of 
the world. They perfectly know to be in an unforeseen 
state. The problem is that in this state the game to be played 
is imperfectly described – i.e. it is ambiguous what norm 
must be applied to be game under consideration.. Our 
approach is to model how players come to the conclusion 
that a given ambiguous game falls within the domain of a 
pre-existing general norm. The point to be understood is 
how players come to recognise that a given game situation 
is an exemplar of a general abstract norm so that they can 
reasonably believe that in the game to be played they must 
comply with that norm while everybody else must also 
follow the same norm.  
In a sense this is not to eliminate the presumption that there 
exists some “common knowledge” in the world about how 
players will act given certain norms and forms of 
interaction. This presumption can be retained, but we want 
to minimise its impact. In fact, we break the implication 
that because we know that a general norm is followed in 
some games class, then everybody knows that in the game 
that they are playing (which belongs to the class) the norm 
will be followed. The chain of reasoning is broken where it 
states that because there is a norm, and because it is shared 
knowledge that it is followed in a certain class of game 
situations, then it is also shared knowledge that it will be 
followed in our game. This inference cannot be made as a 
matter of pure logic, nor can it be taken for granted as a 
primitive psychological fact. It must be explained by 
explicit modelling of the limited reasoning process 
performed by the players when they face game situations 
and reason as to whether these games can be understood 
according to the pattern of a solution theory devised for a 
general abstract game form. It is by this reasoning that we 
can explain from whence derives the required “common 
knowledge” (or something less than common but which can 
perform the same role - call it “shared knowledge”) in the 
concrete game situations that the players face.  
We intend to show that such reasoning employs fuzzy 
pattern recognition and default logic2.  These two building 
blocks of the equilibrium selection reasoning process can 
be viewed as providing a new account of how deliberative 
rationality, together with general social norms, aids 
equilibrium selection in games by subsuming new games 
under the domain of norms when this concerns not logical 
consequences but genuine default extensions of the domain 
of the existing general norms. Of course, all this makes 
sense only in contexts where norms make sense: games 
played under incomplete knowledge about unforeseen 
                                                           
2 As far as we know, the first time that default logic was 
suggested as one possible approach to the foundations of some 
game theoretical concepts was Bacharach (1994) with reference to 
rationalisability. However, here we complement it with fuzzy 
logic and possibility theory and address a different game 
theoretical problem. 



 

states of the world (that is to say, a typical domain of 
bounded rationality). 
The paper proceeds as follows. First (sec.2), we define two 
versions of a basic game such that in each of them it is 
assumed that players know that a given solution (norm) is 
shared knowledge (the Nash product for the “ demand 
game”  version and the typical non-cooperative solution for 
the “ enlarged DP”  version – both coinciding with 
equilibrium points of the two versions of the basic game). 
Then (sects. 3 and 4), we introduce the basic incomplete 
knowledge situation by assuming that a move of Nature 
selects states of world where one of the two versions of the 
basic game could be played. Default reasoning then enters 
the scene. In section 5 we introduce a proper selection 
process based on the reformulation of default logic in terms 
of possibility theory suggested - after Zadeh (1978) - by 
Dubois, Prade and Benferhat (Dubois& Prade (1995a-b-
1996), Dubois et al. (1992)) together with many 
applications of possibility theory in decision theory (Dubois 
et al. (1997), Dubois et al. (1999)). We end by suggesting 
that the resulting equilibrium will be supported by what in 
default logic is called an “ extension”  of a given theory - 
which is usually characterised as a fixed point (Reiter 
1980) - obtained by the iterate application onto itself of the 
set of accepted defaults, without introducing any 
contradiction. A remarkable feature of the result is that the 
equilibrium achieved rests essentially on the non-
monotonicity of default logic, and hence allows for 
mistakes and revisions which seem to pertain to the very 
nature of bounded rationality. 

2.  Two games of reference 

The first game, G1, is the typical demand game. 100 dollars 
are to be divided into two shares according to demands 
made by two players. If shares sum to 100 or less, the 
players obtain what they demand, but if the demanded 
shares sum to more than 100, they do not obtain anything. 
The players participate in the game by announcing 
proposals to share that they accept and that they think can 
be compatible with the proposal to share that the other 
player is simultaneously making. In fact, they make 
demands and offers at the same time, and only once. They 
can also refuse to demand or offer anything, and this will 
end the game notwithstanding the other player’ s proposal, 
even though he would have been ready to concede the 
entire sum to the first player. If one or both refuse to agree, 
the result is the status quo (zero dollars). Thus players must 
guess demands that may be acceptable to the counterpart, 
under the condition that only couples of demands that sum 
to no more than 100 are allowed.  
Let us assume (this is where the announced assumption of 
background shared knowledge comes in) that the players 
know that in games like this there is a unique rational 
solution: that is, maximising Nash bargaining function 
(N.b.f.) which, under the appropriate utility representation, 
coincides with the 50-50 sharing rule. We simply assume 

that it is shared knowledge that in this game players will 
adopt the Nash bargaining solution because they accept the 
bargaining axioms given by John Nash (or the equivalent 
Harsanyi-Zeuthen’ s axiomatisation). This is an abstract 
norm generally accepted for solving games like the one 
under consideration, and it is shared knowledge that it is so. 
It also requires one more condition: games like the demand 
game are cooperative bargaining games; which means that 
the demands and offers made by a player are binding for 
him and, as far as they are accepted by the counterpart, the 
proponent cannot renege on them -  i.e. he must comply 
with any agreement once it has been reached. Let us 
consider a situation in which two compatible proposals are 
made. A pair of demands and offers determining an 
agreement then results, and it will necessarily be executed. 
The player cannot make defection (in the remaining of the 
paper strategy D) on the agreement: he cannot refuse to 
concede the share offered and cannot expropriate the full 
sum by cheating the other party to the agreement. This 
amounts to saying that, within the demand game, it is 
shared knowledge that the game is cooperative, which 
implies that one more rule - pacta  sunt servanda – applies 
to it, and it is shared knowledge that it is binding. There 
may be many reasons why it is known that this is an 
effective rule of the game (it may be that neither player is 
physically able to breach announced agreements, or the 
players may dislike cheating  in the sense that the payoffs 
which they attach to defection are zero, or the game could 
be embedded in an un-modelled and even larger repeated 
game, where respecting pacts would be a self-enforcing 
convention).  Here we do not ask why this is so, and simply 
assume that inasmuch as the players understand the demand 
game - so that it is shared knowledge that N.b.f. is the 
accepted solution - they must also understand that players 
cannot successfully make defection. The main assumption 
in game G1 is that players accept the cooperative theory of 
bargaining (a set or normative statements): this is shared 
knowledge. We may say that games like G1 belong to the 
domain of a general abstract norm: the solution theory σ1, 
i.e. N.b.f. 
Next, let us assume that the players also know that there are 
some other games where this is not the case. As far as the 
opportunity to share 100 dollars by agreement is concerned, 
these further games are completely identical to the demand 
games. However they are non-co-operative – i.e. they are 
game situations that do not satisfy the requirement that all 
players accept the rule pacta sunt servanda.  
This is the case of the second game G2 consisting of a 
slight payoff change to the demand game G1. In G2 the 
defection strategy D has an effective role to play, because 
the players are now able to free-ride the counterpart by 
refusing to co-operate, and at the same time by 
appropriating the entire sum if the counterpart decides to 
make a proposal for agreement. This can be read as 
cheating the other player and obtaining the entire sum after 
the other player has made a proposal. For example, let the 
second player make any proposal. What he immediately 



sees is the first player refusing to co-operate by leaving the 
bargaining table and tipping it over. Next, however, the 
first player considers the situation more carefully and 
realises that the entire sum to be shared has been stolen. 
According to the rule of the demand game, that sum should 
be forgone by both players. On the contrary, in game G2 
the defecting player may obtain the entire sum by taking 
unilateral advantage of the other player’ s disposition to 
agree.  
There is no assumption of any co-operative structure 
underlying this game. Moreover, G2 is meant to represent 
that no agreement has any chance of being self-enforced 
because the defection strategy is dominant in the game 
(which is in fact an enlarged PD game). The explicit 
representation through the defection strategy of the ability 
to frustrate any cooperative endeavour and gain advantage 
from this conduct shows that the underlying game situation 
no longer belongs to the domain of cooperative game 
theory. Pacta are not seen by the players as being servanda, 
and there is shared knowledge that the rules of the game do 
not imply that any agreement will be enforced by some 
unrepresented mechanism on the back of the situation. 
Moreover there is no shared knowledge that N.b.f. is the 
accepted norm in this game. On the contrary, there is a 
quite different norm accepted by both the players, and 
whose acceptance by them is shared knowledge: the 
solution theory σ2, i.e. “ if there is an outcome in dominant 
strategies, it can be expected to be the solution of the 
game” .   

3.  Unforeseen states of the world: vagueness on the 
appropriate solution concept  

The foregoing section was only preparatory to our main 
analysis. Consider the following game situation. Two 
players P1 and P2 are in a position to play a game under 
incomplete knowledge, which means that they can be 
subjected to choices by a Nature that selects states of the 
world which they were not yet able to imagine before the 
start of the game. We assume that they know the two 
abstract classes of games - the demand game and the 
enlarged DP game - depicted above. They have the 
necessary background in game theory, and consequently 
also know the accepted solution theories to be applied to 
the two prototypal game situations, i.e. the two solution 
theories σ1 and σ2 that, according to our point of view, are 
two established social norms. They of course have shared 
knowledge that if the game that Nature induces them to 
play were G1, it would be obvious for them to play 
according to the norm σ1 (N.b.f.), but if Nature were to 
involve them in a G2 game then it would be obvious to 
them that they must adhere to the norm σ2. That is to say,  
at the back of their minds P1 and P2 have the 
representation of a set of possible states of the world which 
all and only match one of two possible events - having to 
play G1 or G2 - and they expect to be confronted by 

Nature’ s choices that will put them in states where 
alternatively G1 or G2 are to be played.  
The game starts with a Nature’ s move. Nature may select 
one of two states w1 and w2, in each of which it is true that 
either G1 or G2 (but not both) will be played. However, 
Nature may also select (or, more exactly, let the players 
discover) a set Ω of unforeseen (by the players) states of 
the world, which are states that do not conform with the 
properties and predicates in use in P1’ s and P2’ s language 
with which they in general describe games. Owing to their 
unforeseen characteristics, these states do not exactly 
match the foreseen events that the players are prepared to 
learn. That is to say, in each ω∈Ω it is neither true nor 
false that G1 or G2 is to be played. Note that this is not the 
usual game under uncertainty: it is not the case that the 
players have information partitions defined over the 
possible states’  set which are not refined enough to 
discriminate exactly the occurrence of states where it is 
true that the game G1 is to be played from the occurrence 
of states where on the contrary it is true that game G2 is to 
be played. After Nature’ s choice, the players discriminate 
perfectly among the states and there is no uncertainty about 
which state has been reached. The situation is meant on the 
contrary to represent the ambiguity or vagueness that the 
players face, as long as any state is scrutinised, about 
whether in that particular state the game G1 or G2 is to be 
played. Vagueness is the consequence of their lack of ex 
ante knowledge about the entire set of states that ex post 
Nature reveals to be possible, which implies that these are 
unforeseen states. Thus vagueness is the consequence of the 
players’  lack of the conceptual and linguistic tools with 
which to clearly describe each ω∈Ω in any detail or, in 
other words, the consequence of the fact that each ω∈Ω is 
unclear as to the game to be played in it. If it were clearly 
specified ex post whether in any state ω∈Ω the game G1 or 
G2 is to be played, then the players would have been able 
to foresee these states at least as states of the world that ex 
ante they knew to be possible. 
According to one of the present authors (Sacconi 2000, 
2001), however, unforeseen states of the world can be 
analysed in terms of fuzzy events, which are the fuzzy sub-
sets of the reference set Ω. A general norm, construed by 
the theory as the solution for a given abstract class of 
games, has a domain of application (a set) which is defined 
by the membership functions of each state in the set 
representing that domain. Foreseen states have crisp 
membership functions (from the beginning we are able to 
say whether these states, if they occurred, would make a 
case for a specific norm). Unforeseen states, by contrast, 
cannot a priori be classified as belonging to one or another.  
When they are revealed they make the judgment about their 
belonging vague.  Hence, ex post they have fuzzy (graded) 
membership functions taking their values into the real line 
[0,1] and expressing the degree to which the ex post 
revealed states can be recognised as belonging to the 
domain of any given norm.  



 

So far, we have had two possible norms, each prescribing a 
unique equilibrium point of the game within which it is the 
accepted solution theory. But in the game under incomplete 
knowledge and unforeseen states of the world, players 
cannot say at first glance which equilibrium point will 
come about, because they cannot say which solution theory 
is appropriate to the game that they are going to play (or, 
better, in the current state of the world). We want to 
understand how general and abstract norms provide at least 
the starting point for a norm-based equilibrium selection 
reasoning procedure which in the end will be able to 
determine which equilibrium point, belonging either to 
game G1 or game G2, will be played as the unique solution 
of the game. As expected, the answer will prove to depend 
on Nature’ s choice of the state of the world. This does not 
introduce any uncertainty, nor does it make room for the 
probabilistic nature of the equilibrium selection procedure. 
Nature first makes its choice and then players learn it 
without any uncertainty before they reach their own move 
in the game. If Nature did not select unforeseen states of 
the world, players P1 and P2 would learn with no 
ambiguity whether they were going to play G1 or G2, and 
they would solve each game according to its accepted 
solution theory. Consequently, we need only investigate 
what happens when any ω∈Ω is chosen by Nature. 

4.  Solution domains as fuzzy sets 

Let us start by assuming that Nature has two consecutive 
moves at the beginning of the game. First it chooses among 
w1, w2 or Ω. Under w1 and w2 it is true that games G1 or G2 
are played respectively. We disregard these branches of the 
game tree because there is a completely obvious solution 
for each of them. Next, Nature has its second move among 
states in Ω.   
Take Ω to be the set of all the possible, alternative, 
complete descriptions of the interaction situations between 
players P1 and P2, which can be worked out by affirmation 
or negation of any concrete property that may influence the 
structure of their interaction - expressible by predicates in 
the language that will evolve in order to describe the 
unexpected features of Ω. Assume that any ω∈Ω typically 
specifies the characteristics of the players, the principles of 
ethics that they follow, the set of options open to them, the 
environment that surrounds them, and every other property 
that makes it possible to say whether the norm pacta sunt 
servanda holds or does not. Thus, Ω is the “ universe of 
discourse”  containing all the possible concrete game 
situations that the players may be involved in once Nature 
has made its second choice. Remember, however, that 
some of these concrete characteristics are genuinely 
“ unexpected”  and are not univocally expressible by means 
of terms belonging to the ex ante language which was in 
use when the description of the two games G1 and G2 was 
under consideration. This means in fact that, within the ex 
ante in use language, some predicates cannot be exactly 

affirmed or denied when the states of the world ω∈Ω are 
considered. In particular, under each state ω∈Ω, some of 
their describable characteristics cannot be traced back 
unambiguously to the conditions established as necessary to 
state whether the game form G2 or the game form G1 is the 
appropriate abstraction from the concrete game situations 
under consideration. Thus, it is not clear whether 
possession of such characteristics or their negation implies 
that game G1 or game G2 will be played.  
Then, let  Ω be the set of ex ante unforeseen states that 
Nature may select at its second move. Hence define two 
fuzzy events  

G1={ω, µG1(ω)∀ω∈Ω} and G2= {ω, µG2(ω)∀ω∈Ω}. 
The fuzzy membership functions µG1 and µG2 represent the 
vagueness associated with the occurrence of each state 
concerning whether the game to be played is G1 or G2. As 
G1 and G2 are sets of states defined by associating each 
unforeseen state ωi with its membership function in the 
relevant set, they may be understood as fuzzy events that 
occur when unforeseen states are selected. These sets may 
also be understood as the vague domains of application of 
the two solution theories σ1 and σ2 respectively (for 
example σ1 applies to ω1 at degree 0.9).  
A usual, we can consider any fuzzy event as a flexible 
constraint on the possibility of states, according to the 
expression 

πXisGj(ω)= µGj(ω),   ∀ω∈Ω, ∀j=1,2 
Let X be a variable ranging over the set of states Ω 
constrained by the fuzzy information that “ X is Gj” : that is, 
the game played in the state selected out of Ω is Gj, j=1,2, 
according to the relevant membership function. Saying that 
X is a variable ranging over the universe of discourse Ω 
means that X takes its values from the set of concrete 
descriptions of the possible interaction situations between 
P1 and P2, which is in fact what any state in the set Ω 
describes. The players’  information constrains the 
possibility that X takes any value in Ω: that is, the admitted 
values of X are restricted to those that are compatible with 
the information that any given ω∈Ω belongs to G1 or G2. 
Given the unexpected nature of these states, however, 
variable X is constrained by fuzzy information about the 
identification of any interaction situation with the game 
form G1 (G2 respectively). Thus the possibility of any state 
ω∈Ω- given the fuzzy information about whether the game 
played under ω belongs to Gj - sums to the degree of the 
state’ s belonging to Gj.  

5.  A possibilistic account of the equilibrium selection 
default reasoning 

Items of incomplete knowledge may be described by 
possibilistic logic formulas, i.e. first-order logic formulas 
with a numerical weight between 0 and 1, which is a lower 
bound on a possibility measure Π (Dubois&Prade 1996). 



Thus, in the following our model is developed in terms of a 
possibilistic modelling of default reasoning.  Main 
reference for that are (Benfherat et al. 1992; Benfherat et 
al. 1997; Dubois&Prade 1995a; Dubois&Prade 1996). 
We here use this possibility approach to the study of the 
default equilibrium selection reasoning in a game situation 
where nature selects unforeseen states of the world, so that 
it is vague which of two games G1 and G2 has to be 
played. We confine our analysis to only two unforeseen 
states ω2 and ω3. In order to keep thing as simplest as 
possible, we also simplify the representation of the two 
games, skipping all the strategies but those coinciding with 
solution concepts. Thus consider the two simplified games, 
where G1 is (in the following games, players’  utility 
functions are taken to be identical to linear transformations 
of the monetary payoffs mapping money onto the real 
interval [0,1]) 
 

P1 \ P2 50 D 
50 0.5   0.5 0   0 
D 0    0 0   0 

 
In such a game there is shared knowledge that σ1 is the 
appropriate solution theory which requires to play the pure 
strategy 50, whereas game G2 is 
 

P1 \ P2 50 D 
50 0.5   0.5    0        1 
D 1    0 0.21   0.21 

 
where  there is shared knowledge that σ2 is the accepted 
solution concept which requires  to play the pure strategy 
D. Hence the relevant events, meant as domains of the two 
solution concepts σ1 and σ2, are the two fuzzy sets 
G1={(ω2, 0.5), (ω3, 0.2)} and G2={(ω2, 0.4), (ω3, 0.4)}.  
Next, we will describe the players’  reasoning in four steps: 
- Step 1: we start by considering the possibilistic 

expected utility calculation that each player performs 
given his information on the two prototypal game G1 
and G2 and the fuzzy knowledge on states ω2 and ω3, in 
order to derive his first conjecture on the solution 
strategy to be used;  

- Step 2: the second step in player’ s reasoning process is 
his attempt to guess the first step in the reasoning 
process just executed by the counterpart; 

- Step3: each player may now check whether the 
conclusions that he reached in the first step, relative to 
the strategy to be used in each unforeseen state ω2 and 
ω3, are stable against the new beliefs that he has gained 
by default about the other player’ s action in each state; 

- Step 4: players iterate the previous steps. It turns out 
that if by analogous default rules player P1’ s reasoning 
at step 3 is assigned to player P2, in order to 
recalculate his strategy choice at the third step of his 

reasoning process, player P2 can only be predicted to 
reach the same conclusions as player P1. 

5.1. First step in the equilibrium selection process: 
calculating the first hypothetical best response of 
a player 
To begin with, comment is required about the form of the 
players’  utility functions. These take the form of fuzzy 
utility functions understood as measures of the degree to 
which a decision satisfies a flexible constraint in terms of 
intermediary levels of capability (Yager 1979). Let the 
constraint be expressed by the following requirement: “ take 
the largest part of 100 dollars under the feasibility condition 
that shares gained by the two players must sum to no more 
than 100” . Utility functions express the rank of capability 
associated with any decision, conditionally on the other 
player’ s decision, to satisfy the given constraint. This is 
expressed by means of a membership function which maps 
the decision set on the real line [0,1] representing levels of 
satisfaction. Hence, utility values coincide with 
membership degrees of a fuzzy set defined over the 
strategy set of each player taken as the typical reference 
set. These utility functions have the form appropriate to 
enable us carrying out the exercise in possibilistic decision-
making that shall follow (they have essentially the same 
form as the possibility distribution but are defined on the 
strategy set).  
Possibilistic expected utility here takes the form of the 
max-min operation, given that the operation min is the one 
appropriate to representing the intersection or conjunction 
(logical multiplication) of fuzzy sets, and the max operation 
is the one appropriate to representing the set theoretic union 
or disjunction (the logical sum) of fuzzy sets. In fact 
possibility and utility are here coincident with fuzzy sets 
(or fuzzy distributions), the first defined over the set of 
unforeseen states of the world and the second over the 
strategy set of each player. Multiplying the possibility of 
any event by the utility of a decision when that event occurs 
means, in this context, operating the set-intersection 
between two fuzzy sets. Summing the expected utility of a 
decision over different possible events means calculating 
the set union operation among fuzzy sets. Consider one 
state of the world at a time, starting from ω3 according to 
the point of view of player P1. Thus player P1’ s expected 
utility from strategy D, given the possibility that in state ω3 
game G1 or game G2 is played, is as follows 

U1(Dω3) = 
=max{min[πXisG1(ω3),u1(D|G1)], min[πXisG2(ω3),u1(D|G2)}= 

= max {min (0.2, 0), min (0.5, 0.21)} = 0.21 
where u1(D|G1) is player P1’ s utility from playing the 
solution strategy D under the hypothesis that the game 
played is G1, πXisG1(ω3) is the possibility of state ω3 under 
the fuzzy information that the game Gj (i.e. the variable X 
ranging over the set Ω of possible descriptions of 
interaction situations) played in ω3 is G1, and U1(Dω3) is 



 

player P1’ s possibilistic expected fuzzy utility from playing 
D given that ω3 has occurred. 
In analogous manner we obtain player P1’ s expected utility 
from strategy 50 given the possibility that in state ω3 game 
G1 or game G2 is played, which yields U1(50|ω3)=0.2, and 
the player P1’ s expected utility from strategy 50 and 
strategy D given the possibility that in state ω2 game G1 or 
game G2 is played, which yields U1(50|ω2)=0.5 and 
U1(Dω2) = 0.21, respectively.  
In order to maximize his expected utility function 
contingent on ω2, player P1 has to select the pure strategy 
50.  
Thus, we know that if Nature selects state ω2 or ω3, then 
player P1 at the first step of his reasoning process - having 
at his disposal only the information concerning the 
possibility that states display certain games - must select 50 
or D respectively. This is only his “ first glance reasoning” , 
however. It does not account for the fact that if a solution 
strategy has to be rationally chosen, it must be a best 
response against the simultaneous choice made by the other 
party, who faces a similar problem.  

5.2. Second step in the equilibrium selection 
process: inferring by default the second player’s 
reasoning and generating an overall conjecture of 
his choice  
Being reflective and rational, even if boundedly so, player 
P1 endeavours to simulate player P2’ s reasoning process by 
introspection. Here default reasoning again enters the 
scene. Player P1 has at his disposal his own model of 
reasoning at the first step, but there is no evidence that this 
is also the first step in player’ s P2 reasoning process. He 
only knows that in two states of the world ω2 and ω3 a 
typical player (himself) has reasoned according to the 
maximisation rule just mentioned and derived the solution 
theories to be rationally used in these two cases. No proof 
exists that any other similarly bounded rational players 
would not employ similar calculations. Of course such 
information may be forthcoming later, but as long as the 
information available to the player is that just described in 
his model of reasoning, player P1 (at the moment) does not 
obtain such contrary evidence. Thus, player P1 introduces a 
default rule of inference by assuming that it is coherent 
with his knowledge base that player P2 in states like ω2 and 
ω3 will perform exactly the same calculations that he 
performed in his first step in the reasoning process.  
Let us define a propositional language by encoding the 
statements of our theory in the following formulas: 
•  Φ := the first-order knowledge base, which encodes 
statements concerning�

a) the objective description of the states ω2 and ω3, 
including their membership functions to the two fuzzy 
events G1 and G2;  

b) the algebraic method to calculate fuzzy expected 
utility; 
c) the description of the two solution theory σ1 and σ2. 

x  s := “ the strategy D is chosen when the state ω3 occurs 
and the strategy 50 is chosen when the state ω2 occurs” . 
This is player P1’ s first step scheme of behaviour, and it 
may be formally written as [(ω2∧ 50)∧(ω3 ∧ D)]. 
Moreover, we encode in our prepositional language the 
characteristic description of the player i, for i∈{1,2}, as 
follows: 

• Ψ(i), whose interpretation is “ player i owns Φ” ; 
• Σ(i), whose interpretation is “ player i acts 

according to s” ; 
• Γ(i), whose interpretation is “ player i is rational” . 

Let us consider the following set of default clauses: “ if 
player i owns Φ then normally player i acts according to s” , 
“ if player i is rational then normally he owns Φ” , 
symbolically written as the set of default ∆ = {Ψ(i)→Σ(i), 
Γ(i)→Ψ(i) }, where ∆ is the default knowledge base of 
player P1. Together with the set of formulas constituting 
the first-order knowledge base of our theory Φ, this allows 
us to define a default theory of the game Θ = 〈∆, Φ〉 
In order to infer, as a logical consequence of his default 
theory Θ = 〈∆, Φ〉, the decision that will be made by player 
P2 in each state and his own consequent best response, 
player P1 needs to combine the calculation of the expected 
fuzzy utility with his default knowledge base or conditional 
knowledge. In particular, player P1 needs to deduce the 
measure of possibility Π2(50|ω2) on player P2’ s choice 50 
(i.e. the plausibility of the statement “ player P2 acts 
according to s”  when the state is ω2) and, similarly, the 
measure of possibility Π2(D|ω3) on player P2’ s choice is D. 
It is in accomplishing this task that the possibilistic logic 
machinery and its connections with default logic come in.   
The basic idea is to encode each default like “ if A then 
normally B” , denoted by (A→B), into a constraint 
expressing that the situation where (A∧B) is true has 
greater plausibility than the one where (A∧¬B) is true 
(Benferat et al. 1992, Dubois&Prade 1995a-b, 1996). We 
follow this approach by encoding  the defaults denoted by 
(Ψ(i)→Σ(i)) and (Γ(i)→Ψ(i)) into constraints expressing 
that the situation where (Ψ(i)∧Σ(i)) and (Γ(i)∧Ψ(i)) are 
true has greater plausibility than the one where 
(Ψ(i)∧¬Σ(i)) and (Γ(i)∧¬Ψ(i)) are true. Then we need a 
qualitative plausibility relation >Π for comparing 
plausibility levels and generating a possibility ranking of 
situations (Dubois 1986). Following the same line of 
Dubois&Prade (1995a) and considering the two defaults in 
player P1’ s default knowledge base, the set of defaults 
∆={Ψ(i) →Σ(i), Γ(i) →Ψ(i)} will be represented by the 
following set of qualitative constraints C: 
c1: Ψ(i) ∧ Σ(i) >Π Ψ(i) ∧ ¬Σ(i) 
c2: Γ(i) ∧Ψ(i) >Π Γ(i) ∧ ¬Ψ(i). 



As numerical counterparts to plausibility relations are 
possibility measures, the qualitative constraints translate 
into the following set of ordinal constraints on possibility 
C’  
c’ 1: Π(Ψ(i)∧ Σ(i)) > Π(Ψ(i)∧ ¬Σ(i)) 
c’ 2: Π(Γ(i)∧ Ψ(i)) > Π(Γ(i) ∧ ¬Ψ(i)). 
Let U be the finite set of interpretations of our 
propositional language Ψ(i), Γ(i), Σ(i), Φ, s, x. These 
interpretations are to artificial possible worlds that 
correspond to formulas formulated in the artificial 
propositional language just defined, in which the 
conjunctions *Ψ(i)∧*Γ(i)∧*Σ(i) are true, where ∗ stands 
for the presence of the negation sign ¬ or its absence. 
Hence the models of our formal language are   
U   =  { u0: ¬Ψ(i)∧ ¬Σ(i)∧ ¬Γ(i); u1: ¬Ψ(i)∧ ¬Σ(i)∧Γ(i);  
 u2: ¬Ψ(i)∧Σ(i)∧ ¬Γ(i); u3: ¬Ψ(i)∧ Σ(i)∧Γ(i); 
 u4: Ψ( i)∧¬Σ(i)∧ ¬Γ( i x); u5: Ψ( i)∧ ¬Σ( i)∧ Γ( i);  
 u6: Ψ(i)∧ Σ(i)∧¬p;  u7: Ψ(i)∧ Σ( i)∧ Γ( i) }.  
Then the set of ordinal constraints C’  on possibility 
measures translates into the following set of constraints C”  
on the possibility order of models: 
 c” 1 : max(π(u6 ), π(u7 )) > max(π(u4 ), π(u5 )) 
 c” 2 : max(π(u5 ), π(u7 )) > max(π(u1 ), π(u3 )).Now let >π be 
a ranking of U, such that u >π u' iff π(u) > π(u') for each u, 
u’ ∈U. Any finite consistent set of constraints like (a ∧ b) 
>∏  (a ∧¬ b) thus induces a partially defined ranking >π on 
U that can be completed according to the principle of 
minimum specificity. The idea is to try to assign to each 
world u∈U the highest possibility level (in forming a well-
ordered partition of U) without violating the constraints. 
From the ordered partition of U associated with >π using 
the minimum specificity principle together with the axioms 
governing the possibility measures (Dubois&Prade 1995a) 
we obtain that Πi(50| ω2)=1 and that Πi(D | ω3)=1 (for more 
technical details see Sacconi&Moretti (2002)). 
It may be concluded that if player P1 uses the default rules 
represented by the constraints on the possibility ranking of 
interpretations (artificial worlds) given at the beginning of 
this section, then the possibility that he assigns to the 
choices of player P2 reproduces the behaviour that player 
P1 would have adopted at step 1 in his reasoning. However, 
in order to produce a reasonable overall guess of players 
P2’ s choices, player P1 has to combine two items of vague 
knowledge, i.e. the first-step fuzzy knowledge about each 
state being an exemplar of any given possible game, and 
the second-step default conclusions concerning player P2’ s 
first step choice. A reasonable way to do this is by first 
considering the conjunction of any pair of events like 
“ player P2 chooses strategy 50”  and “ the game played in 
the current state is Gj,”  i.e.(Gj |ωh), for j=1,2 and h=2,3; and 
second by taking the possibility of the resulting conjoint 
conditioned events, i.e. (50∧(Gj|ωh)) - where it happens that 
when the state ωh is the case, the game played is Gj and 
player P2 chooses strategy 50. Given the Bayes-like 

definition of the possibility of conjoint events in sec.5.1, we 
may write 

Πi[50∧(Gj|ωh)] = min[Πi(50|ωh), πXisGj(ωh)] 
where i=1,2; h=2,3; j=1,2. 
Then we may calculate  

Πi[50 ∧ (G1|ω2)]= min[Πi(50|ω2), πXisG1(ω2)]= 
= min(1, 0.5)= 0.5, 

as a possibility measure that player i plays 50 in the game 
G1 given the state is ω2, and for the remaining Joint events 
Πi[(D ∧( G1| ω3)] = 0.2, Πi[(50 ∧ (G2| ω2)] = 0.4 , Πi[(D 
∧( G2| ω3)] = 0.5. These possibility measures conclude 
player P1’ s attempt to guess the reasoning performed by 
player P2 at the first step in his reasoning process.  

5.3. Third step in the selection process: calculating 
a second hypothetical best response 
A reasonable way to calculate expected utility for player P1 
is  

U1(D|ω2)=max{min{Π2[(50∧G1)| ω2],u1[D|(G1∧50)]}, 
min{Π2[(50∧G2)| ω2],u1[D|(G2∧50)]}}= 
= max{min(0.5 , 0), min(0.4 , 1)}= 0.4 

where u1[D|(G1∧50)] is the utility value of player P1 when 
player P2 plays 50 in the game G1. Similarly, it is possible 
to calculate U1(50|ω2) =0.5, U1(D|ω3) =0.21, U1(50|ω3)= 0. 
The expected fuzzy utility of playing 50 when the state ω2 
occurs is greater than the expected fuzzy utility of playing 
D when the same state occurs, whereas the fuzzy utility of 
playing D when the state is ω3 occurs is greater than that of 
playing 50 when ω3 occurs. Remember that at step two, 
player P1 stated a set of default rules (the conditional 
knowledge base ∆) in order - as far as his understanding of 
the matter was concerned - to account for the reasoning of a 
“ normal”  rational player. He must now check whether the 
conclusions that he reached at step three (by calculating his 
“ second guess”  about his highest fuzzy expected utility 
strategy given his prediction of player P2’ s choices) are not 
inconsistent with the default model of “ normal”  reasoning. 
Note that a default theory is not monotonic.  
To begin with, we can argue that the conditional measure 
of possibility that player P1 plays 50 given that the state ω2 

occurs is higher than the conditional measure of possibility 
that player P1 plays D given that the same state occurs. 
This is a natural consequence of the reasoning performed 
by player P1 in his third step. Hence we can say in 
formulas 

Π1(50 | ω2) > Π1(D | ω2). 
Note that, for Π1(ω2)>0, the conditional possibility measure 
Π1(50|ω2) is defined (Benfherat et al. 1997) as the greatest 
solution to the equation Π1(ω2∧50)=min(Π1(50|ω2),Π1(ω2)) 
in accordance with the minimum specificity principle. 
Therefore (see again Sacconi&Moretti (2002) for more 
technical details) we conclude that  

Π1(ω2∧50)≥Π1(ω2∧¬50),    (1) 
and 



 

Π1(ω2∧50)≥Π1(ω2∧¬D),     (2) 
and similarly   

Π1(ω3∧D)≥Π1(ω3∧¬D)     (3) 
and   

Π1(ω3∧D)≥Π1(ω3∧¬50).     (4) 
 
From inequalities (1),(2),(3),(4), comparing the possibility 
of actions encoded by s with the possibility of actions 
encoded by ¬s, player P1 does not find any inconsistency 
with the defaults contained in the conditional knowledge 
base ∆. Therefore player P1 has no reason to change his 
previous conditional knowledge base. Moreover, in this 
case too, player P1 must continue to use the strategy s that 
he calculated as his best choice at the first step in his 
reasoning process. This means that, for example, insofar as 
player P2 is predicted by default reasoning to use his 
strategy D in the state ω3, player P1’ s possibilistic best 
response is strategy D, because this is player P1’ s best 
response calculated given the first-step fuzzy knowledge on 
states and the second-step default knowledge on player P2 
choices. Of course (D,D) is the equilibrium pair dictated by 
the solution theory σ2 of game G2. However, at this stage 
the players do not have definite knowledge that the game to 
be played in the current state is G2. Nevertheless, this is the 
equilibrium pair which tends to emerge from the reasoning 
process that the players perform in the ongoing game under 
unforeseen contingencies, when they only know that ω3 is 
the case in point. Conversely, the strategy pair (50, 50) is 
the emerging solution when they only know that the state 
ω2  is the case in point.  

5.4. Further steps: equilibrium selection    
Little work is needed to verify that player P2 can be 
predicted by default to be recalculating his fuzzy expected 
utility given similar defaults over player P1 reasoning and 
reaching the symmetrical conclusion that strategy 50 is to 
be played when ω2 is the case and strategy D is to be played 
when ω3 is the case. This would be taken as the fourth step 
in player P1’ s default reasoning process. Moreover, if 
player P1 uses this information in order to recalculate his 
further best response, it is fairly clear that, given that the 
data are unchanged, the results cannot change with respect 
to any states of the world ω2 and ω3. That is to say, on 
applying iterately the same default rules in order to deduce 
new extensions of the players’  theory of the game and new 
reasonable beliefs based on default inferences, the set of 
statements of the theory that the players believe no longer 
changes. Let us state this result as the following  
PROPOSITION I:  Each player, by replicating the other 
player’s reasoning process with iterated applications of the 
same set of defaults belonging to ∆, is induced to believe 
that each of them is going to play the solution strategy-pair 
σ1 (respectively σ2) if the current unforeseen state is ω2 
(respectively ω3) even if he does not have incontrovertible 

proof of the truth of the statement that in the state ω2  
(respectively ω3) the game G1 (respectively G2) is to be 
played.  
This takes us back to an important feature of an extension 
as defined by Reiter (1980) in his pioneering theory of 
default reasoning. An extension E is meant as the consistent 
set of all the formulas derivable from a given first-order 
knowledge base conjoint to a set of defaults (a conditional 
knowledge base) - i.e. a default theory  Θ = 〈∆,Φ〉 - in such 
a way that any set of formulas derived by applying default 
rules to closed formulas belonging to Θ or derived from 
them are already included in E. Let us remind the definition 
of an extension E as (the minimal) fixed point of the default 
inference operator Γ∆ 

E =  Γ∆(E) 
where Γ∆ carries sets of closed formulas to new sets of 
closed formulas by applying the set of defaults ∆ without 
introducing any inconsistency into them. This applies to our 
case because recursive applications of the same defaults to 
the reasoning of the adversary, in order to generate 
simulations of the other player’ s steps in his reasoning 
process, do not produce no new sentences of the theory that 
contradict the old ones. No changes occur in the calculated 
best responses, nor changes intervene in the set of beliefs 
each player holds about the other player’ s behaviour. 

5.  Conclusions 

There is a natural game theoretical interpretation of an 
extension seen as a fixed point of the default operator 
applied in order to deduce any internally consistent set of 
conclusions from the base theory of an agent. Consider that 
defaults are employed to simulate repeatedly the reasoning 
of each player by means of the other’ s models of reasoning, 
each being concerned with a prediction of the other’ s 
behaviour. When the players reach an extension of the 
knowledge base of the game, which is enlarged by the 
applications of a basic set of defaults, their beliefs are at a 
fixed point. Further iterations of the reasoning process, as it 
is driven by these defaults, will reproduce the same set of 
beliefs. What emerges is a system of internally consistent 
expectations for each player, where any order layer of a 
player’ s beliefs confirms the lower one. A system of 
reciprocal expectations that are stable and confirm each 
other at any level, on the other hand, is an appropriate state 
of players’  beliefs in order to say that, contingent on any 
given state of the world ω∈Ω, they reasonably believe that 
one equilibrium point will constitute the unique solution of 
the game. As a consequence, if the hypothesis is accepted 
that both players reason identically by resorting to the same 
set of defaults, they will select the same solution concept 
relative to the given unforeseen state of the world. 
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