
A possibilistic approach to restore consistency in Answer Set Programming

Pascal Nicolasand Laurent Garcia and Igor Stéphan
LERIA, University of Angers, France

email: {pascal.nicolas, laurent.garcia, igor.stephan}@univ-angers.fr

Abstract

In Answer Set Programming it is not possible to deduce
any conclusion from an inconsistent program (ie: a pro-
gram that has no model). The same issue occurs in clas-
sical logic where there exist some techniques to handle
this inconsistency. In this work, we propose to manage
inconsistent logic programs in a similar way as possi-
bilistic logic does for classical logic. We compute a con-
sistent subprogram keeping the most important rules of
the original program. This importance is described by a
necessity degree assigned to each rule.

Introduction
Answer set programming(ASP) is an appropriate formal-
ism to represent various problems issued from Artificial In-
telligence and arising when available information is incom-
plete (non monotonic reasoning, planning, diagnosis...). It
is also a very convenient framework to encode and solve
NP−complete combinatorial problems. From a global
view, ASP is a general paradigm covering different declara-
tive semantics for different kinds of logic programs. One is
the stable modelsemantics (Gelfond & Lifschitz 1988) for
definite logic programs augmented with default negation. If
strong negations are allowed in a program, then this one is
called anextended logic programand theanswer setseman-
tics (Gelfond & Lifschitz 1991) can be used. Another ex-
tension is possible by introducing disjunctions in rule heads
to write a disjunctive logic programfor which answer set
semantics is again appropriate (see (Baral & Gelfond 1994;
Brewka & Dix 1998) for additional material about these top-
ics). Whatever the used framework, a "model" of a program
P is characterized as a literal setS that is called ananswer
setof P . But, it may happen thatP has no answer set and
in this case we say thatP is inconsistent. This is done by
analogy with classical logic in which we say that a formula
setΣ is inconsistent when it has no (classical) model.

Possibilistic logic is issued from Zadeh’s possibility the-
ory (Zadeh 1978), which offers a framework for the repre-
sentation of states of partial ignorance owing to the use of a
dual pair of possibility and necessity measures. Possibility
theory may be quantitative or qualitative (Dubois & Prade
1988; Dubois & Prade 1998) according to the range of these
measures which may be the real interval[0, 1], or a finite
linearly ordered scale as well. Possibilistic logic (Dubois,

Lang, & Prade 1995) has been developed for more than ten
years. It provides a sound and complete machinery for han-
dling qualitative uncertainty with respect to a semantics ex-
pressed by means of possibility distributions which rank-
order the possible interpretations. Let us mention that in
possibilistic logic we deal with uncertainty by means of clas-
sical 2-valued (true or false) interpretations that can be more
or less certain, more or less possible. We are not concerned
by vagueness representation in a multi-valued framework.

One feature of possibilistic logic is its ability to manage
inconsistency of a formula set. It proposes a way to restore
the consistency of a formula set by deleting some less pre-
ferred formulas. In this work, we propose to import in ASP
the fundamental principles of possibilistic logic about incon-
sistency management. Handling inconsistency in ASP using
possibilistic logic takes place in a framework calledPossi-
bilistic Answer Set Programming(PASP) that we have de-
fined and investigated more deeply in another very recent
work (Nicolas, Garcia, & Stéphan 2004a). PASP is briefly
presented in Appendix at the end of this work.

In the following section, we recall the useful notions to
understand our work. Next, we explain how to iteratively
restore the consistency of a logic program by a possibilistic
approach. We characterize a particular class of programs for
which only one iteration of the process is always sufficient.
After a conclusion, we show in an appendix how our con-
tribution takes place in a new paradigm ofPossibilistic An-
swer Set Programming(Nicolas, Garcia, & Stéphan 2004a;
Nicolas, Garcia, & Stéphan 2004b).

Theoretical backgrounds
Answer Set Programming
Since an extended logic program (without head disjunc-
tion) under answer set semantics is reducible to a pro-
gram (without strong negation) under stable model seman-
tics (see (Gelfond & Lifschitz 1991)), we present our work
in the stable model paradigm that deals withgeneral logic
programs(Baral & Gelfond 1994) (also callednormal logic
programsor simplyprogramsin the sequel). But all results
remain valid if we deal with consistent answer sets of pro-
grams with strong negations.

A program is a set of rules of the form:

c← a1, . . . , an, not b1, . . . , not bm. n ≥ 0, m ≥ 0

wherea1, . . . , an, b1, . . . , bm andc are atoms. A term
like not b is called adefault negation. The intuitive meaning
of such a rule is: "if you have all theai’s and nobj ’s then
you can concludec". For such a ruler we use the following
notations1:

• the positive prerequisites ofr :
body+(r) = {a1, . . . , an}

• the negative prerequisites ofr :
body−(r) = {b1, . . . , bm}

• the conclusion ofr :
head(r) = c

• the positive projection ofr :
r+ = head(r)← body+(r).

If a programP does not contain any default negation (ie:
body−(P) = ∅), thenP is adefinite program. In this case,
it has one minimal Herbrand model equal to itsdeductive
closureCn(P) that is the smallest atom setclosedunderP .
Recall that an atom setX is closed under a definite program
P if:

∀r ∈ P, body+(r) ⊆ X ⇒ head(r) ∈ X
ThereductPX of a programP wrt. an atom setX is the

definite program defined by:
PX = {r+ | r ∈ P, body−(r) ∩X = ∅}

Now, we are able to recall the formal definition of astable
model.

Definition 1 (Gelfond & Lifschitz 1988) LetP be a normal
logic program andS an atom set.S is a stable model ofP
if S = Cn(PS).

Note that a program may have one or many stable models
and also not at all. In this last case we say that the program
is inconsistent, otherwise it isconsistent.

A rule setR is groundedif there exists an enumeration
〈ri〉i∈I of R such that

∀i ∈ I, body+(ri) ⊆ head({r1, . . . , ri−1})
The set ofgenerating rulesof a programP wrt. an atom

setA is:

GR(P,A) =

r ∈ P
∣∣∣∣∣∣
body+(r) ⊆ A
and
body−(r) ∩A = ∅


These two last points are central in the alternative charac-

terization of a stable model given by the next result.

Proposition 1 (Linke 2001) LetP be a normal logic pro-
gram andS an atom set.S is a stable model ofP if and
only ifGR(P, S) is grounded andS = Cn(GR(P, S)+)

Example 1 LetP be the following program

P =
{
a← not a, not b., d← c, not d.,
e← not b., b← c., c.

}
P has no answer set because of the rulesc. and d ←
c, not d. It is the same forP \ {c.} because ofa ←
not a, not b. andP \ {a ← not a, not b.} because of the
rulesc. andd← c, not d. ButP \ {d← c, not d.} has one
answer set{b, c}.

1These functions are extended to a rule set as usual.

Obviously, when a program is inconsistent it is very easy
to extract a consistent subprogram by discarding all rules
with a non empty negative prerequisite. Formally∀P, {r ∈
P | body−(r) = ∅} is a definite program, so it is consistent.
But it is a drastic simplification of the given program. It is
natural to try to restore the consistency of the program by a
way allowing us to keep as many rules as possible. Several
solutions can be considered but the one we are interested
in is to be able to compare the rules for choosing the ones
that will be discarded. So, it seems interesting to provide
the expert with a framework in which he will be able to in-
dicate which rules he considers the most important to keep
in the subprogram. In fact, this is the approach applied in
possibilistic logic for finding a consistent subbase of an in-
consistent classical formula set as it is described in the next
subsection.

Possibilistic logic
At the syntactic level, possibilistic logic handles pairs of the
form (p, α) wherep is a classical logic formula andα is an
element of a totally ordered set. The pair(p, α) expresses
that the formulap is certain at least to the levelα, or more
formally N(p) ≥ α, whereN is the necessity measure as-
sociated to the possibility distribution expressing the under-
lying semantics.

Given a formula setΣ, the basic element of possibility
theory is the possibility distributionπΣ which is a mapping
from Ω, the interpretation set, to the interval[0, 1]. πΣ(ω)
represents the degree of compatibility of the interpretationω
with Σ that represents the available information (or beliefs)
about the real world. By convention,πΣ(ω) = 0 means
that ω is impossible, andπΣ(ω) = 1 means that nothing
preventsω from being the real world (ω is a model ofΣ).
WhenπΣ(ω) > πΣ(ω′), ω is a preferred candidate toω′ for
being the real state of the world.

Formally, possibilistic knowledge base is a finite set of
weighted formulas

Σ = {(pi, αi), i = 1, . . . , n}
whereαi is understood as a lower bound on the degree of ne-
cessityN(pi). Formulas with degree zero are not explicitly
represented in the knowledge base (only beliefs which are
somewhat accepted are explicitly represented). The higher
is the weight, the more certain is the formula. We call the
α-cut (resp. strictα-cut) of Σ, denoted byΣ≥α (resp. by
Σ>α), the set of classical formulas inΣ having a certainty
degree at least equal to (resp. strictly greater than)α.

Σ is said to beconsistentif its classical support, obtained
by forgetting the weights, is classically consistent. We de-
note the inconsistency degree ofΣ by: Inc(Σ) = max{αi :
Σ≥αi is inconsistent}. Inc(Σ) = 0 means thatΣ≥αi is con-
sistent for allαi. Furthermore, the inconsistency degree can
be computed by :
Inc(Σ) = 1−max{πΣ(ω) | ω ∈ Ω} where

if ω is a model ofΣ
then πΣ(ω) = 1
else πΣ(ω) = min{1− αi | ω 6|= pi, (pi, αi) ∈ Σ}

Such aπΣ is the least specific possibility distribution in-
duced by the necessity values attributed to the formulas in
Σ. If Σ has no model, then, by discarding formulas which

necessity degree is lower than the inconsistency degree, it
defines anα-cut Σ>Inc(Σ) that is consistent. It is clear that
this cut may eliminate some formulas that are not involved
in the inconsistency. Nevertheless,Inc(Σ) defines a plau-
sibility level under which information is no more pertinent.
So, it is justified to eliminate all the formulas representing
this piece of knowledge.

Furthermore, a syntactic possibilistic entailment has been
defined as follows. LetΣ be a possibilistic knowledge base
and (p, α) a possibilistic formula,p is entailed fromΣ to
degreeα denoted byΣ ` (p, α) if and only if Σ>α entails
p. In other words,(p, α) is a possibilistic consequence ofΣ
if and only if Inc(Σ ∪ {(¬p, 1)}) > Inc(Σ) andInc(Σ ∪
{(¬p, 1)}) ≥ α.

Example 2 LetΣ be the possibilistic base

Σ =
{

(a, 0.5), (¬d, 0.6), (¬e, 0.9), (¬a ∨ b, 0.7),
(b ∨ c, 0.8), (¬b ∨ d, 0.3), (¬b ∨ e, 0.7)

}
By applying the resolution principle

(a ∨B,α) (¬a ∨ C, β)
(B ∨ C,min{α, β})

that is still valid in possibilistic logic, we obtain

Σ ` (⊥, 0.3) andΣ ` (⊥, 0.5)
but ¬∃α, α > 0.5,Σ ` (⊥, α). ThusInc(Σ) = 0.5 and
then

Σ>0.5 =
{

(¬d, 0.6), (¬e, 0.9), (¬a ∨ b, 0.7),
(b ∨ c, 0.8), (¬b ∨ e, 0.7)}

}
is a consistent subbase ofΣ. Σ>0.5 has a unique model
{¬a,¬b, c,¬d,¬e} which is the preferred interpretation of
Σ sinceπΣ({¬a,¬b, c,¬d,¬e}) = min{1 − 0.5} = 0.5
that is the greatest value ofπΣ overΩ.

Inconsistency in ASP
Inconsistency degree of a program
First of all we have to assign a certainty degree to every
rule of a program. For this, we consider given a finite set
of atomsX and a finite set of decimal necessity values
N ⊂]0, 1] and we define apossibilistic normal logic
program(p.n.l.p.) as a set ofpossibilistic rulesof the form:

(c← a1, . . . , an, not b1, . . . , not bm. , α) n ≥ 0,m ≥ 0
where{c, a1, . . . , an, b1, . . . , bm} ⊆ X andα ∈ N .
By this way the expert is able to state that certain rules are
more necessary (or sure, suitable, plausible, . . .) than some
others. Ifr is such a possibilistic rule, we denote
• the classical projection ofr:

r∗ = c← a1, . . . , an, not b1, . . . , not bm.

• the necessity degree ofr:
n(r) = α

For a p.n.l.p.P we noteP ∗ = {r∗ | r ∈ P} the set of
possibilistic rules without their necessity degree.

As in possibilistic logic, the necessity values affected to
the rules of a p.n.l.p.P induce a possibility distributionπP
on the set2X that evaluates at which level an atom setX ∈
2X can be a stable model ofP . This point is formalized in
the next two definitions.

Definition 2 Let X ∈ 2X be an atom set andr a rule
(not a possibilistic one).X satisfiesr, denotedX |= r,
if body+(r) ⊆ X ∧ body−(r) ∩X = ∅ ⇒ head(r) ∈ X.

Definition 3 LetP be a p.n.l.p.πP is a possibility distribu-
tion if πP : 2X 7−→ [0, 1] such that

if GR(P ∗, X) is not grounded, thenπP (X) = 0, i)
else ifX 6⊆ head(GR(P ∗, X)), thenπP (X) = 0, ii)

else if∀r ∈ P,X |= r∗, thenπP (X) = 1, iii)
else0 ≤ πP (X) < 1 and
πP (X) = min

r∈P
{1− n(r) | X 6|= r∗} iv)

This definition relies on the characterization of a stable
model given by proposition 1 and captures the notion of min-
imum specificity. In cases i) and ii), the setX is not possible
at all since it is impossible to find a correct set of generating
rules for it. In case iii), the setX is a stable model so its
possibility is total. In case iv), the possibility ofX is de-
termined by the degree of the most certain rule that is not
satisfied byX. The moreX does not satisfy sure rules, the
lessX is possible. Furthermore, in this last caseπP (X) can
not be equal to 1 sinceP is not supposed to contain a rule
with a necessity equal to 0.

Proposition 2 LetP be a p.n.l.p. andX ∈ 2X , then
X is a stable model ofP ∗ ⇐⇒ πP (X) = 1

Proof 2 1) If X is a stable model ofP ∗, then by
proposition 1 GR(P ∗, X) is grounded andX =
Cn(GR(P ∗, X)+). It givesX ⊆ head(GR(P ∗, X)) and
∀r ∈ P,X |= r∗, thusπP (X) = 1.
2) If πP (X) = 1 thenGR(P ∗, X) is grounded andX ⊆
head(GR(P ∗, X)). Furthermore,∀r ∈ P,X |= r∗, that is
∀r ∈ P ∗, body+(r) ⊆ X∧body−(r)∩X = ∅ ⇒ head(r) ∈
X. So, by definition ofGR, we havehead(GR(P ∗, X)) ⊆
X and thenX = head(GR(P ∗, X)).
By groundedness ofGR(P ∗, X), X = GR(P ∗, X) =
Cn(GR(P ∗, X)) and then by proposition 1X is a stable
model ofP ∗. 2

This possibility distribution allows us to define theincon-
sistency degreeof a p.n.l.p.

Definition 4 LetP be a p.n.l.p., its inconsistency degree is
InconsDeg(P) = 1− max

X∈2X
{πP (X)}

Proposition 3 LetP be a p.n.l.p., then
P ∗ is consistent⇐⇒ InconsDeg(P) = 0

Proof 3 1) P ∗ is consistent=⇒ ∃X ∈ 2X such thatX
is a stable model ofP ∗ =⇒ ∃X ∈ 2X , πP (X) = 1 by
proposition 2, and thenInconsDeg(P) = 0.
2) InconsDeg(P) = 0 =⇒ ∃X ∈ 2X such thatπP (X) =
1 =⇒ ∃X ∈ 2X such thatX is a stable model ofP ∗ by
proposition 2, and thenP ∗ is consistent.2

Given a p.n.l.p.P and a valueα ∈ N , the strictα-cut
of P is the subprogramP>α = {r ∈ P | n(r) > α}.
Theα-cut is used to determine a subprogram that allows to
reason from the initial information. This subprogram may
be a consistent subprogram as illustrated by the programP1

in example 3. Unfortunately, unlike possibilistic logic, if
InconsDeg(P) > 0, thenP>InconsDeg(P) is not necessary
consistent as it is illustrated by programP2 in example 3.

Example 3 Let P1 andP2 be two possibilistic versions of
the program in example 1.

P1 =

{ (a← not a, not b., 0.5), (e← not b., 0.8),
(d← c, not d., 0.6), (b← c., 0.5),
(c., 1)

}
Its inconsistency degree isInconsDeg(P1) = 0.6 and

P1>0.6 = { (e← not b., 0.8), (c., 1) }
Then,P ∗1>0.6

is consistent, it has one stable model{c, e}. We
can observe that the rule(b ← c., 0.5) has been discarded
even if this was not necessary to restore the consistency. But
the necessity degree of this rule was too low to be pertinent
with respect to the program and should not be kept in the
program.

Let us change the certainty degree of the first rule, we
have.

P2 =

{ (a← not a, not b., 0.7), (e← not b., 0.8),
(d← c, not d., 0.6), (b← c., 0.5),
(c., 1)

}
Its inconsistency degree isInconsDeg(P2) = 0.6 and

P2>0.6 =
{

(a← not a, not b., 0.7), (c., 1),
(e← not b., 0.8)

}
ThenInconsDeg(P2>0.6) = 0.7 andP ∗2>0.6

is still incon-
sistent.

The result observed forP2 in example 3 is not surpris-
ing because it is inherent to the non monotonic nature of
ASP. In fact, the non existence of a stable model is a con-
sequence of a circularity between some rules (as it is es-
tablished for default logic (Linke & Schaub 2000)). Then,
in whole generality, only a global study taking into account
the whole program, can solve the problem. But, our incon-
sistency degree computation and our program reduction are
only local processes, since they take rules one by one. So,
P ∗>InconsDeg(P) is not necessary a consistent program. Nev-
ertheless the following iterative process is always possible to
restore the consistency of a program.

Proposition 4 LetP be a p.n.l.p., andcut the function de-
fined by

cut(P){
if InconsDeg(P) = 0 returnP
else returncut(P>InconsDeg(P)) }

Then,cut(P)∗ is a consistent subprogram ofP ∗.

Proof 4 The correction of the functioncut is ensured by
proposition 3. Furthermore, it is obvious thatcut always
ends after a finite number of calls since

• we consider only finite programs,
• cut(P>InconsDeg(P)) ⊂ P because of the strictα-cut

• the empty program is consistent because∅ is a stable
model for it.

2

For instancecut(P2)∗ = {e ← not b., c.} is the consis-
tent subprogram of programP2 given in example 3.

Characterization for possibilistic bases
In this section, we focus our attention to programs that en-
code classical possibilistic bases.

Let A be an atom set from which we build a classical
propositional base. Recall that every propositional baseΣ
can be encoded in a clause set. So, without loss of generality,
we consider here only clause sets. On its turn, such a clause
setΣ can be translated in a normal logic programP (Σ) as
following (a similar process is exposed in (Simons 2000)).

First, we give a translation of a clause in a rule:

∀cl = (¬a1 ∨ · · · ∨ ¬an ∨ b1 ∨ · · · ∨ bm),
P (cl) = f ← a1, . . . , an, b

′
1, . . . , b

′
m.

and P (Σ) = {P (cl) | cl ∈ Σ}
∪{x← not x′., x′ ← not x. | x ∈ A}
∪ {bug ← f, not bug.}

The intuition behind this translation stands on the follow-
ing remarks.
• x′ is a new atom encoding the negative literal¬x
• Rulesx← not x′. andx′ ← not x. allow to generate all

possible classical propositional interpretations by doing
an exclusive choice betweenx and¬x for each atomx in
A.

• The goal of each ruleP (cl) is to concludef (a new sym-
bol for false) if the choice of atoms (x and¬x) corre-
sponds to an interpretation that does not satisfy the clause
cl. By this way, if there exists a stable model not contain-
ing f , then it corresponds to an interpretation ofΣ (since
every clause is satisfied).

• The goal of special rulebug ← f, not bug., where bug is
a new symbol, is to discard every stable model containing
f . Sincebug appears in the head and in the negative body
of this rule and nowhere else, if a stable model exists then
it may not containf .
By this way there is a one to one correspondence be-

tween the propositional models ofΣ and the stable models
of P (Σ). But, as stated in (Niemelä 1999) there is no modu-
lar mapping from program to set of clauses, only a modular
transformation from set of clauses to program exists. So, in
a way, ASP has better knowledge representation capabilities
than propositional logic and it is interesting to study how it
can be extended to the possibilistic case in particular when
there is an inconsistency.

The interesting point is that in this case we are able to
restore the consistency of a program in only one step as it
can be summarized in the figure 1.

To reach our goal, we first extend the transformation of
a clause set to the possibilistic case in a natural way. If
(p, α) ∈ Σ, then all clauses encodingp keep the same ne-
cessity degreeα and it is the same for each corresponding
rule inP (Σ). A necessity value equal to 1 is assigned to all
the other rules (the "technical" ones).

Definition 5 Let Σ = {(cli, αi), i = 1, . . . , n} be a possi-
bilistic base (in CNF), its encoding in a p.n.l.p. is given by
P (Σ) = {(P (cli), αi) | (cli, αi) ∈ Σ}

∪{(x← not x′., 1), (x′ ← not x., 1) | x ∈ A}
∪ {(bug ← f, not bug., 1)}

possibilistic logic
base

possibilistic normal
logic program

inconsistent base =⇒ inconsistent program

Σ P (Σ)

⇓ ⇓

consistent subbase ⇐⇒ consistent subprogram

Σ>α P (Σ)>α

⇓ ⇓

propositional model ⇐⇒ stable model

α is the inconsistency degree ofΣ andP (Σ)

Figure 1: Inconsistency handling

In the sequel we useX = ∪a∈A{a, a′} ∪ {f, bug} in
order to make the correspondence between the language of
the propositional base and the language of its translation.

Definition 6 X ⊆ X is apseudo interpretationif
∀a ∈ A, (a ∈ X ∨ a′ ∈ X) ∧ (a 6∈ X ∨ a′ 6∈ X)

∧ bug 6∈ X ∧ f 6∈ X
In the following, we will say that a pseudo interpretation

X correspondsto a classical interpretationω if by translat-
ing each atoma′ ∈ X in literal ¬a, we obtain the inter-
pretation2 ω. By this way, every stable model ofP (Σ) is a
pseudo interpretation that corresponds to a classical model
for Σ (and conversely).

Proposition 5 Let Σ be a possibilistic base andP = P (Σ)
its encoding in a p.n.l.p.∀X ⊆ X we have
X is not a pseudo interpretation andπP (X) = 0
or
X is a pseudo interpretation andπP (X) = πΣ(ω)
whereω is the interpretation that corresponds toX

Proof 5 We note:
rbug = bug ← f, not bug.

• if X is not a pseudo interpretation, we have the following
cases
– bug ∈ X =⇒ rbug 6∈ GR(P ∗, X) =⇒ X 6⊆
head(GR(P ∗, X)), and thenπP (X) = 0.

– bug 6∈ X ∧f ∈ X =⇒ X 6|= rbug and sincen(rbug) =
1 thenπP (X) = 0.

– bug 6∈ X ∧ f 6∈ X ∧ ∃x ∈ A, x ∈ X ∧ x′ ∈ X
=⇒ x ← not x′ 6∈ GR(P ∗, X) ∧ x′ ← not x 6∈
GR(P ∗, X)
=⇒ X 6⊆ head(GR(P ∗, X)) and thenπP (X) = 0.

2A pseudo interpretation leads necessary to an interpretation
since it contains one occurrence of each atom (iea or its negation)
and no occurrence off nor bug.

– bug 6∈ X ∧ f 6∈ X ∧ ∃x ∈ A, x 6∈ X ∧ x′ 6∈ X
=⇒ X 6|= x ← not x′and withn(x ← not x′) = 1
thenπP (X) = 0.

thus, in every case wherex is not a pseudo-interpretation,
πP (X) = 0.
• if X is a pseudo interpretation, then∀a ∈ A, one and

only one of the 2 rulesa ← not a′ and a′ ← not a
is in GR(P ∗, X) and thenGR(P ∗, X) is grounded and
X ⊆ head(GR(P ∗, X)).
Letω be the interpretation forΣ that corresponds toX.
∀cl = (¬a1 ∨ · · · ∨ ¬an ∨ b1 ∨ · · · ∨ bm),∈ Σ,
– ω 6|= cl =⇒ ω |= a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm

=⇒ {a1, . . . , an, b
′
1, . . . , b

′
m} ⊆ X. But, f 6∈ X, so

X 6|= P (cl).
– X 6|= P (cl) =⇒ {a1, . . . , an, b

′
1, . . . , b

′
m} ⊆ X ∧ f 6∈

X
=⇒ ω |= a1 ∧ · · · ∧ an ∧¬b1 ∧ · · · ∧ ¬bm =⇒ ω 6|= cl

Thus, we haveω 6|= cl ⇐⇒ X 6|= P (cl) and
since∀(cl, α) ∈ Σ, n(P (cl)) = α, we haveπΣ(ω) =
πP (X),∀X ∈ X and its corresponding interpretationω.
2

Proposition 6 LetΣ be a possibilistic base, then

• Inc(Σ) = InconsDeg(P (Σ)).
• if Inc(Σ) = α, P (Σ>α) = (P (Σ))>α
• InconsDeg(P (Σ)) = 0 ⇒ (P (Σ))∗ has at least one

stable modelS that corresponds to a propositional model
of Σ
• InconsDeg(P (Σ)) = α > 0⇒ (P (Σ)>α)∗ has at least

one stable modelS that corresponds to a propositional
model ofΣ>α.

Proof 6

• InconsDeg(P (Σ)) = 1 − max
X∈2X

{πP (Σ)(X)}. By

proposition 5, we haveπP (Σ)(X) = 0 if X is not a
pseudo-interpretation, so we can restrict the appli-
cation of max to the set of pseudo-interpretations,
and then (again by proposition 5) we have:

InconsDeg(P (Σ)) = 1−max
ω∈Ω
{πΣ(ω)} = Inc(Σ)

• Since the translation is based on a given atom setA,
P (Σ>α) = (P (Σ))>α is obvious.
• If InconsDeg(P (Σ)) = 0, then the proposition 3 ensures

that (P (Σ))∗ has a stable model. This stable model cor-
responds to a model ofΣ because the translation exposed
in the beginning of this subsection establishes a one to
one correspondence between stable models ofP (Σ) and
propositional models ofΣ.
• InconsDeg(P (Σ)) = α =⇒ Inc(Σ) = α by the

first item of this proposition. So,Σ>α is consistent by
a possibilistic logic result soInc(Σ>α) = 0 and then
InconsDeg(P (Σ>α)) = 0 by the first item of this propo-
sition. Thus,(P (Σ)>α)∗ has a stable model that corre-
sponds to a propositional model ofΣ>α by the previous
item.

2

These results establish that our methodology illustrated in
the next example and exposed in figure 1 is valid.

Example 4 LetΣ be a possibilistic base

Σ =

{ (a, 0.5), (¬d, 0.6), (¬e, 0.9),
(¬a ∨ b, 0.7), (b ∨ c, 0.8),
(¬b ∨ d, 0.3), (¬b ∨ e, 0.7)

}
its encoding as a p.n.l.p. is

P (Σ) =


(f ← a′., 0.5), (f ← d., 0.6),
(f ← e., 0.9),
(f ← a, b′., 0.7), (f ← b′, c′., 0.8),
(f ← b, d′., 0.3), (f ← b, e′., 0.7)


∪
{

(x← not x′., 1), (x′ ← not x., 1)
| x ∈ {a, b, c, d, e}

}
∪{(bug ← f, not bug., 1)}

Then, we haveInconsDeg(P (Σ)) = 0.5 that corre-
sponds toInc(Σ) = 0.5 and the preferred consistent sub-
program ofP (Σ) is

P (Σ)>0.5 =

{ (f ← d., 0.6), (f ← e., 0.9),
(f ← a, b′., 0.7), (f ← b′, c′., 0.8),
(f ← b, e′., 0.7),

}
∪
{

(x← not x′., 1), (x′ ← not x., 1)
| x ∈ {a, b, c, d, e}

}
∪{(bug ← f, not bug., 1)}

So, we obtainP (Σ)>0.5 = P (Σ>0.5) andP (Σ)>0.5 has
one stable modelS = {(a′, 1), (b′, 1), (c, 1), (d′, 1), (e′, 1)}
such that{¬a,¬b, c,¬d,¬e} is a propositional model of
Σ>0.5 the consistent subbase obtained in possibilistic logic.

Conclusion
In this work, we have described a methodology to restore
the consistency of a logic program by discarding the less
preferred rules. For instance, this can be useful when a pro-
gramP encodes a combinatorial problem. In this case, there
are two kinds of rules inP , the "rules of guess" that describe
the search space of the problem and the "rules of check" that
represent its constraints. By setting a necessity value of 1 to
the first ones and a gradual necessity (between 0 and 1) to the
second ones we are able to specify that some constraints are
more important than others. By this way, ifP has no model
we can computePInconsDeg(P) that corresponds to a relax-
ation of the original problem which is not containing the less
important constraints. If this new program is consistent, we
obtain an approximate solution of the original problem.

Our methodology is based on the computation of an in-
consistency degree of the given program. For this, we have
developed a first implementation in Prolog. But, it is clear
that this calculus has an exponential time complexity, since it
has to compute the possibilityπ of every subset of the atom
setX . So a future work could be to study which heuristics
can be used to improve the computation of this inconsistency
degree. Last, as we have mentioned in example 3, some rules
are discarded even if they have no influence on the inconsis-
tency. Thus, it would be interesting to study how to keep all
rules not directly involved in the consistency.

Appendix :Possibilistic Answer Set
Programming

The aim of this present work is a part of a more general re-
search about an extension of the ASP paradigm that we have
calledPossibilistic Answer Set Programming(PASP)(Nico-
las, Garcia, & Stéphan 2004a; Nicolas, Garcia, & Stéphan
2004b). In this new framework, we propose to integrate the
concept of necessity and possibility coming from possibilis-
tic logic in order to represent the uncertainty that is inherent
to the conclusions obtained by a formalism as ASP that deals
with incomplete information.

To summarize this new concept, we describe now major
points of PASP. Let us note that PASP deals with programs
that are not limited to be a translation of possibilistic bases.

A possibilistic atomis a pair(x, α) ∈ X × N . A pos-
sibilistic atom set(p.a.s.) A is a set of possibilistic atoms
where∀x ∈ X , |{(x, α) ∈ A}| ≤ 1 (ie: every x occurs at
most one time inA).

Let A be a p.a.s., andr a possibilistic ruler = (c ←
a1, . . . , an., α), we say

• r is 1-applicable inA if body+(r∗) = ∅
• r is δ-applicable inA if {(a1, α1), . . . , (an, αn)} ⊆ A
δ = min {α1, . . . , αn} and0 < δ ≤ 1.

• r is 0-applicable otherwise

For a given p.n.l.p. P and an atomx, we define
H(P, x) = {r ∈ P | head(r∗) = x} the set that collects all
rules inP having the same headx.

For all atomx we note:
App(P,A, x) = {r ∈ H(P, x), r is δ-applicable inA, δ > 0}

Thus, the applicability degree of a rule captures the cer-
tainty of its body as in possibilistic logic the certainty of a
conjunction is the minimal value of the necessity values of
subformulae involved in it.

We say that a p.n.l.p. is apossibilistic definite logic pro-
gram (p.d.l.p.) when the classical projection of each of its
rule is definite.

Such a p.d.l.p.P is closedunder a p.a.s.A if and only if

∀r ∈ P, r is δ-applicable inA, δ > 0
⇒ (head(r∗), β) ∈ A with

β = max
r′∈App(P,A,head(r∗))

{
min{n(r′), δ′},
r′ is δ′-applicable inA

}
We notePossCn(P) the possibilistic deductive closure

of P defined as the smallest possibilistic atom set that is
closed underP .

Thepossibilistic reductof a p.n.l.p.P wrt. an atom setS
is the p.d.l.p.

PS = {(r∗+, n(r)) | r ∈ P, body−(r∗) ∩ S = ∅}
An atom setS is apossibilistic stable model(p.s.m.) ofP if
and only ifS = PossCn(PS

∗
).

As in the case where there is no certainty value attached
to the rules, a p.n.l.p. may have no, one or many p.s.m.

To illustrate our new framework, let us take the well
known Nixon’s paradox3 that is classically encoded by
Pnixon = {p← q, not ¬p., ¬p← r, not p., q., r.}

3p:pacifist,q:quaker,r:republican

With our new proposal of PASP we are now able to
represent it in a richer formalism with the following p.n.l.p.

PossPnixon =



(p← q, not p′., 0.6)
(p′ ← r, not p., 0.9)
(q., 1)
(r., 1)
(f ← p, p′, notf., 1)
(f ← q, q′, notf., 1)
(f ← r, r′, notf., 1)


where atomsp′, q′ andr′ stand for the strong negation of
p, q andr respectively. In this program, we have given a
greater necessity value (0.9) to the second rule in order to
represent the greater confidence of the expert in this rule.
Remember that the exact necessity value has no particular
meaning but only the order between the values has an
importance. All the other rules have a necessity value of
1, because we are sure that Nixon is a Republican and
a Quaker, and because the other rules result from strong
negation encoding. Then,PossPnixon has two p.s.m.

A1 = {(q, 1), (r, 1), (p′, 0.9)}
A2 = {(q, 1), (r, 1), (p, 0.6)}

So, we have now an additional information saying that "it
is certain at a level 0.9 that Nixon is not pacifist" and "it is
certain at a level 0.6 that Nixon is pacifist". The two pos-
sible, and incompatible, points of view on the real world
incompletely described can now be compared. Thus, this
can be used to infer a kind of meta conclusion by prefer-
ring the more certain conclusion. So we see here that our
possibilistic framework for ASP has something to do with
the preference handling in ASP for which many works have
been done (see (Schaub & Wang 2003)). But, we have to
mention that in all these works on preference handling, the
goal is to eliminate some less preferred models, whereas in
our framework we keep all the stable models but we have
new complementary informations that can be used to rank
between them the conclusions.

References
[Baral & Gelfond 1994] Baral, C., and Gelfond, M. 1994.
Logic programming and knowledge representation.Jour-
nal of Logic Programming19/20:73–148.

[Brewka & Dix 1998] Brewka, G., and Dix, J. 1998.
Knowledge Representation with Logic Programs. In Dix,
J.; Pereira, L.; and Przymusinski, T., eds.,Logic Program-
ming and Knowledge Representation, volume 1471 ofLec-
ture Notes in Artificial Intelligence, 1–55. Springer Verlag.

[Dubois & Prade 1988] Dubois, D., and Prade, H. 1988.
Possibility Theory - An Approach to Computerized Pro-
cessing of Uncertainty. New-York: Plenum Press.

[Dubois & Prade 1998] Dubois, D., and Prade, H. 1998.
Possibility theory: qualitative and quantitative aspects. In
Smets, P., ed.,Handbook of Defeasible Reasoning and Un-
certainty Management Systems, volume 1. Kluwer Aca-
demic Press. 169–226.

[Dubois, Lang, & Prade 1995] Dubois, D.; Lang, J.; and
Prade, H. 1995. Possibilistic logic. In Gabbay, D.; Hogger,

C.; and Robinson, J., eds.,Handbook of Logic in Artifi-
cial Intelligence and Logic Programming, volume 3. Ox-
ford University Press. 439–513.

[Gelfond & Lifschitz 1988] Gelfond, M., and Lifschitz, V.
1988. The stable model semantics for logic programming.
In Kowalski, R. A., and Bowen, K., eds.,Proceedings
of the International Conference on Logic Programming,
1070–1080. The MIT Press.

[Gelfond & Lifschitz 1991] Gelfond, M., and Lifschitz, V.
1991. Classical negation in logic programs and disjunctive
databases.New Generation Computing9(3-4):363–385.

[Linke & Schaub 2000] Linke, T., and Schaub, T. 2000. Al-
ternative foundations for Reiter’s default logic.Artificial
Intelligence124:31–86.

[Linke 2001] Linke, T. 2001. Graph theoretical character-
ization and computation of answer sets. In Nebel, B., ed.,
Proceedings of the IJCAI, 641–645. Morgan Kaufmann
Publishers.

[Nicolas, Garcia, & Stéphan 2004a] Nicolas, P.; Garcia, L.;
and Stéphan, I. 2004a. Programmation par ensembles
réponses possibilistes. InActes des Journées Franco-
phones de Programmation en Logique et Programmation
par Contraintes. Angers: Hermès.

[Nicolas, Garcia, & Stéphan 2004b] Nicolas, P.; Garcia, L.;
and Stéphan, I. 2004b. Towards possibilistic answer set
programming. submitted.

[Niemelä 1999] Niemelä, I. 1999. Logic programs
with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelli-
gence25((3-4)):241–273.

[Schaub & Wang 2003] Schaub, T., and Wang, K. 2003. A
semantic framework for preference handling in answer set
programming.Theory and Practice of Logic Programming
3(4-5):569–607.

[Simons 2000] Simons, P. 2000. Extending and implement-
ing the stable model semantics. Research Report A58,
Helsinki University of Technology, Department of Com-
puter Science and Engineering, Laboratory for Theoretical
Computer Science, Espoo, Finland. Doctoral dissertation.

[Zadeh 1978] Zadeh, L. 1978. Fuzzy sets as a basis for a
theory of possibility. InFuzzy Sets and Systems, volume 1.
3–28.

	Introduction
	Theoretical backgrounds
	Answer Set Programming
	Possibilistic logic

	Inconsistency in ASP
	Inconsistency degree of a program
	Characterization for possibilistic bases

	Conclusion
	Appendix :Possibilistic Answer Set Programming

