Answer Set Programming with Default Logic

Victor W. Marek
Department of Computer Science
University of Kentucky
Lexington, KY 40506, USA,
marek@cs.uky.edu

Abstract

We develop an Answer Set Programming formalism based
on Default Logic. We show that computing generating sets of
extensions in this formalism captures8f search problems.

|. Introduction

The main motivation for this paper comes from recent de-
velopments in knowledge representation theory. In partic-
ular, a new generation of general solvers have been de-
veloped, (Niemel and Simons 1996; Eiter et. al. 1998;
Cholewiski et.al. 1999; Syrjanen 2001; Simons et. al.
2002), based on the so-called Answer Set Programming
(ASP) paradigm (Niemé&l 1998; Marek and Truszcagki
1999; Lifschitz 1999). The most popular ASP formalism is
based on the the stable semantics for logic programs (SLP)
(Gelfond and Lifschitz 1988). However, one can easily ex-
tend the ideas of answer set programming to other nonmono-
tonic logic formalisms such as default logic (Reiter 1980).
In each case, the first question one should ask is what ex-
actly can these systems theoretically compute. In (Marek
and Remmel 2001), the authors answered this question for
ASP systems built on SLP. Namely, answer set programs un-

der SLP can solve the class of NP-search problems and no

more. The main result of this paper is to prove a similar re-
sult for ASP systems built on Default Logic (DL). That is,
we shall show that ASP systems built on DL can solve the
class of©f’ search problems and no more.

Default Logic has been introduced by Raymond Reiter in
his seminal paper (Reiter 1980). The formalism of De-
fault Logic has been, subsequently, extensively studied by
the Knowledge Representation community. In addition to
the original semantics axtensionsmany additional struc-
tures associated with a given default the¢y, W) have

been introduced. Those include weak extensions (Marek and

Truszczyski 1989), Lukaszewicz extensions (Lukaszewicz
1984), rational extensions (Mikitiuk and Truszéski 1993)
and other structures. For a detailed discussion of De-
fault Logic with extensions see (Marek and TruszZtki
1993). Default Logic with extensions forms a direct gen-
eralization of stable semantics of logic program (the latter
has been introduced by Gelfond and Lifschitz in (Gelfond
and Lifschitz 1988)), see (Marek and Trusziogki 1989a;
Bidoit and Froidevaux 1991). Weak extensions turned out

Jeffrey B. Remmel
Department of Mathematics
University of California
La Jolla, CA 92093, USA
jremmel@ucsd.edu

to be equivalent to Autoepistemic Logic of Moore (Moore
1985). See (Marek and Truszeémki 1993) for details. The
basic complexity result for Default Logic was established by
Gottlob (Gottlob 1992) (see also Stillman (Stillman 1992).
Gottlob found that the decision problems associated with the
Default Logic are complete for the second level of polyno-
mial hierarchy. Specifically, the existence problem for ex-
tensions i3’ complete, the membership problem for exten-
sions (membershipn_some membershipn_all) are com-
plete, respectively, foEL andIIf.

A search problem ((Garey and Johnson 197®has two
components. FirstS specifies a set of finite instances
(Garey and Johnson 1979). For example, the search prob-
lem may be to find Hamiltonian paths in a graph so that the
set of instances of the problem is the set of all finite graphs.
Second, for any given instandec S, S specifies a se$;

of solutions to the search problerdsfor instancel. For
example, in our Hamiltonian path problem, given a finite
graphl, Sy is the set of all Hamiltonian paths éf An al-
gorithm solves the search problehif, given any instancé

of S, the algorithm returns a solutione Sy, wheneversS;

is non-empty, and returns the string “empty” otherwise.

We say that a search problestis in X if and only if there

is a polynomial time coding procedure which maps each in-
stancein/ € Stoastringe; and there is a non-deterministic
polynomial time oracle Turing machin® with an oracle

X € NP such that given a coding; of an instancd € S,

the output of any terminating computation bf X with in-
putx; codes a solution € S; and there are no terminating
computations o/ X on inputz; if S; = (.

The goal of this paper is first to investigate the ASP for-
malism based on Default Logic (DL) which has the same
basic properties as SLP Answer Set Programming formal-
ism. This formalism is closely related to both to (Niegnel
and Simons 1996) and (East and Trusztsky 2001), but al-
lows for more complex entities. By definition, extensions
of default theories are always infinite since they are closed
under logical consequence. This is in contrast with stable
models of logic programs which are finite. Thus to have an
appropriate analogue for the result that ASP logic programs
capture NP search problems, we shall consider generating
sets of extensions of default theories as opposed to exten-
sions themselves. Then we will show that @iy search
problem can be reduced to the problem of finding generat-

ing sets for extensions of DL programs and, vice versa, the
problem of finding generating sets of extensions of DL pro-
grams is itself &% search problem. That is, we shall show
that for eachn and each polynomial run time boumpdz),
there is a single ASP default theof’;, , Wi,”) that is ca-
pable of simulating any polynomial time nondeterministic
Turing oracle machine with an oracle for 3-SAT on inputs
of sizen in the sense that given any polynomial time non-
deterministic oracle Turing machin® with an oracle for
3-SAT and any inputr of sizen, there is a set of formu-
lasedbyr p.» Such that a certain class of generating sets of

the extensions of D%, W0 Uedbay,, ») cOdes accepting

computations ofvr3-SAT started with inputr that termi-
nates inp(|o|) or fewer steps and any such accepting com-

putation of M 3-SAT is coded by the generating set of some
extension of Db, Wiyt U edbas p,o)-

Our results here are closely related to the work of Cadoli,
Eiter and Gottlob (Cadoli et. al. 1994; Cadoli et. al. 1997)
who studied the use of Default Logic as a query language.
Recall that Reiter, from the very beginning, recognized that
one can treat defaults with variables. Reiter called such de-
faultsopenand realized that they can be viewed as reasoning
patterns. That is, instantiating an open default rule creates
a new propositional default rule. In (Cadoli et. al. 1994;
Cadoli et. al. 1997), a DQL Input/Output quefl/consists

of a pair(B, D) whereB is a set of first-order formulas and

D is a set of open default rules, where the first order lan-
guage is function-free and quantifier-free, plus a set of out-
put relation schematé = {51, ..., S,,}. One assumes that
the set of predicate symbols occurring in the default§ of
contain all the names of the relation schem{ata, .. ., R,, }

query@ = ((B, D), {51, ...

Uisiwy

,Sm}) equals

where S;|W is the set of all ground;-tuplest over U
such thatS;(t) is in at least one extension ¢f + W. It

is clear that this is analogous to the way thedATALOG

and DATALOG™ (see (Ullman 1988)) treats queries to
databases. Then the main result of (Cadoli et. al. 1994;
Cadoli et. al. 1997) is that a database queryxi&
recognizable if and only if it is definable as DQL 1/0 query.
The outline of this paper is as follows. In section I, we shall
describe specifying our formulation of an Answer Set Pro-
gramming based on default logic. We shall also formally
describe our conventions for how a non-deterministic oracle
machine relative to an oracle for 3-SAT operates. Then in
section Ill, we shall describe a uniform coding our uniform
coding of nondeterministic Turing machines with an oracle
for 3-SAT via our ASP default theories which is used to de-
rive our main result that our ASP default theories capture all
¥.¥-search problems.

[I. Technical preliminaries

In this section, we formally introduce several notions that
will be needed for the proof of our main results. First, we
shall make a typographical departure from the original con-
vention of Reiter for writing defaults. Recall, that in Reiter’s
original paper and most of the literature on Default Logic, a
default is written aw This is convenient for theo-
retical considerations, but it is not typographically suitable

of the database (the extensional relations) and possibly someWhen either and/or some of thg's are long. Gelfond and
other symbols (the intensional relations). One assumes that Lifschitz (Gelfond and Lifschitz 1991) suggested that de-

the output relations are intensional. The intuitive meaning
of query is the following. We want to compute all tuples
in the S; relations which can be inferred under the credulous
semantics. More formally, suppoBé is a database instance
over the set of relation schemdt®&;, ..., R, } over a finite
universe/. If R; is anl;-ary relation, letR;|W be the set of
l;-tuples inW belonging toR;. Let the completion oV,
COMP(W) be

U{R(al,...7ali) c(ay,...,a;) € Rj|(WHU
i=1

U{_'R(alﬂ"'vali) : (a17"’7a’li) euli \RZ|W}
i=1

COMP (W) completely describes the finite relational sys-
tem(U,Ry,...,R,).

Let INST(B) denote the set of ground formulas that result
by uniformly substituting constants frobnfor the free vari-
ables in formulas oB and, similarly, let/NST' (D) denote
the set of ground default rules that result by uniformly sub-
stituting constants fror/ for the free variables in formu-
las of the open defaults iw. Let @ + W denote the de-
fault theory with defaultd NST (D) and first-order formu-
las COMP(W) + INST(B). Then the answer to the DLQ

fault logic should be treated as a natural extension of Logic
Programming. We will follow this suggestion and write a
default as a rule:

yea:f,... B

First, we introduce the set of propositional default logic
programs that we will study. LeForm(L) be the set
of formulas for a propositional language GivenT C
Form(L), we let the theory ofl’, Th(T), denote the set
of all logical consequences df. We say thatl" is the-
ory if T = Th(T'). We letP(Form(L)) denote the set
of all subsets ofFform(L). A propositional default the-
ory (D,W) is a pair whereD is a collection of default
rules andlV is a subset of'orm(L). To each such de-
fault theory (D, W), we associate an operatdtp v :
P(Form(L)) — P(Form(L)), called Reiter's operator,
by definingl’ p w(S) = T if T is the least theory con-
tained in Form(L) such that ()W C T and (i) T
satisfies the following condition: Whenever «— o« :
Biy..osBm €D, a €T, =1 &S,...,0m ¢S, theny €
T. A theory S C Form(L) is called adefault exten-
sion of (D, W) if T''pwy(S) = S. We say thatG is
a generating set fotD, W) if W C G C W U {¢ :
¢ is the head of some rulee D} and Th(G) is an exten-
sion of (D, W).

In the spirit of answer set programming, we shall extend the the form

notion of propositional default theories to predicate logic de-
fault theories where there ar® function symbols in the
underlying predicate logic. These predicate logic default
theories are the analogue BIAT ALOG™ program used in

M = (Q727F7D76780a58q7f)'
Here (@ is a finite set of states arid is a finite alphabet of
input symbols. We assum@ always contains three special
states s, the start states,, the query state, anf, the final

(Marek and Remmel 2001) or PS+ theories used in (East and state. We also assume that there is a special syditfor

Truszczyski 2001). Thatis, we consider a predicate logjic

where we allow predicate symbols of any arity but no func-
tion symbols. In particular, we allow predicate symbols of
arity 0 which are propositional letters. The only terms of the

“blank” such thatB ¢ ¥ andl’ = X U {B} is the set of tape
symbols. The seb is the set of move directions consisting
of the elements, », and\ wherel is the “move left” symbol,
r is the “move right” symbol and is the “stay put” symbol.

language are either constant symbols or individual variables. The functions is the nondeterministic transition function of
In particular both Herbrand universe and Herbrand base of the machinels.

L are finite, since we will deal with finite default theories.
We let Form(L) denote the set all formulas dfand we let
Sent(L) denote the set of sentencestfi.e. the set of all
formulas of£ with no free variables. We &) F Form(L)
denote the set all quantifier free formulasfdrm(£) and
QFSent(L) denote the set of all quantifier free sentences
of Sent(L). If X = (xy,...,x,) is a sequence of individ-
ual variables, then for any given formufac Form(L), we
shall writeo(X) to indicate that the free variables pfare
among the variables i .

An ASP default theoris a pair(D, W) whereD is a finite
collection of default rules, that is, rules of form

(X)) =9(X) —a(X): B1(X),...,.B.(X), (@)

wherea(X), 31(X),. .., Bn(X), andy(X) are quantifier
free formulas inC andW a finite subset 08 F Form/(L).
Let cq,...,c, be the set of all constants that occur in
(D,W). Suppose thak = (X4,...,X,). Thenground in-
stance of default rule(X) as in (1) is the result of a simul-
taneous substitution of constants= (dy, ..., d,), where
d; € {ec1,...,cx} for all 4, for the variablesX occurring in
r(X). Similarly a ground instance of a formufg X') € W

is the result of a simultaneous substitution of constarits
the variablesX occurring ing. Given a ASP default theory
(D,W), (Dg4,W,) is apropositionaldefault theory where
D, is the set of all ground instances of rulesfinand W,

of all ground instances of formulas #W. If no constant
symbol occurs i D, W), then we fix some new constant
symbole; and let(Dy, W) be the result of substituting
for every variable that occurs ifD, W) so that once again
(Dg, W) can be considered a propositional default theory.
We then say thak is an extension of D, W) if and only if
E'is an extension ofD,, W,,).

Ouir first result is that the problem of computing generating
sets an ASP default theory i3 -search problem. That is,
fix some set of variable& = {X;,..., X} }. Then we con-
sider the seD F'(X) of all finite ASP predicate logic default
theories(D, W) whose underlying set of variables is con-
tained inX'. Then we can define a search problsf’) by
saying that an instandeof S(X') is a default theoryD, W)

in DF(X') and the set of solutions dfis the set of generat-
ing sets of{ D,, W,). Itis then easy to prove the following.

Theorem 1 For any set of variablest = {X1,..., Xy},
S(X)is axf search problem.

A nondeterministic Oracle Turing Machine is a 8-tuple of

We assumel/ operates ortwo one-way infinite tapes, a
computation tape and a query tape, where the cells of the
tapes are labeled from left to right loy1,2, To visual-

ize the behavior of the machindg, we shall talk about the
two read-write heads of the machine, ttveead-writehead

on the computation tape and thyeread-writehead on the
query tape. At any given time in a computation, the read-
write heads of\/ are always in some statee @ and the
c-read-write head is reading some sympgl € I' which

is in some cella on the computation tape and the g-read-
write head is reading some symbg) € T which is in
some cellb on the query tape. I§ # s, then M picks

an instruction(s1, p1, d1, p2,d2) € 6(s, pq, py) and then re-
places the symbagb, on the computation tape byl, re-
places the symbab, on the query tape by2, changes its
state to states1, and moves on the computation tape ac-
cording tod; and on the query tape according dg. If

s = sq, then M takes one of two actions depending on
the current state of the query tape and the orétleThat

is, if the string of symbols consisting of all cells that are
weakly to the left of the right-most non-blank symbol on the
query tape is ir©® (not in ©O), then M picks an instruction
(s1,pl,dl, p2,d2) such thafyes} x (s1,pl,dl,p2,d2) €
(8¢5 Pa,pb) ({no} x (s1,pl,d1,p2,d2) € 5(sq,pa, b))

and then replaces the symhgl on the computation tape by
pl, replaces the symbe}, on the query tape by2, changes

its state to statel, and moves on the computation tape ac-
cording tod; and on the query tape accordingdg

We assume that at the start of the computatiom/adn input

o of lengthn, the cells), . .., n — 1 of the computation tape
contain the symbols(0), ..., o(n — 1) respectively and all
cells to the right of cellh — 1 are blank. We also assume
that all the symbols on the query tape are blank. We do not
impose (as it is often done) any special restrictions on the
state of the tape and the position of the read-write heads at
the end of computation. However, we assume that at the start
of any computation, the read-write heads are in sigi@nd

the c-read-write head is reading the symbol in cell O on the
computation tape and the g-read-write head is reading the
symbol in cell O of the query tape.

Suppose we are given a oracle Turing machinevith ora-

cle © whose runtimes are bounded by a polynomial) =

ag + a1z + - - - + axz® where each; € N = {0,1,2,...}
anday # 0. That is, on any input of size, an accepting
computation terminates in at mqsin) steps. Then any ac-
cepting computation on input can affect at most the first
p(n) cells of the both the computation and the query tapes.

Thus in such a situation, there is no loss in only consider-
ing tapes of lengtlp(n). Hence in what follows, one shall
implicitly assume that the both the computation tape and the
query tapes are finite. Moreover, it will be convenient to
modify the standard operation 8f in the following ways.

1. We shall assumé(f,a,b) = {(f,a,\,b,\)} for all
a,bel.

2. Given an input: of lengthn, instead of immediately halt-
ing when we first get to the final stafereading a symbol

a on the computation tape and symiabn the query tape,
we just keep executing the instructiofi a, A, b, A) until we
have completegd(n) steps. Thatis, we remain in statewe

I1l. Uniform coding of Nondeterministic
Oracel Turing Machines with a 3-SAT Oracle
by a Default Logic Program

In this section, we shall prove our main result that computing
generating sets of extensions of DL programs captures all
¥ search programs.

We define for eaclh and run time polynomiap, a de-
fault theory (D7, Wr.”), and for each input of length

n and nondeterministic polynomial time oracle Turing ma-
chine M with an oracle for 3-SAT, an extensional database

edbysp. Which can be computed in polynomial time from

never move, and we never change any symbols on the tapes)/, p, ando such that (a) for each accepting computation

after we get to stat¢. The main effect of these modifica-
tions is that all accepting computations will run for exactly
p(n) steps on an input of size.

Finally, we end this section by describing our conventions
for the operation of Turing machines with an oracle for 3-
SAT. First we need to discuss the coding of clauses with
three literals (3-clauses, for short). AcBuseis an ex-
pression of the forme; A;, V e24;, V e34;, where each

¢; is either empty string or, and 4;,, j = 1,2,3 are
propositional atoms. If we have propositional atoms,
Ay, ..., A, then there is precisely - (;) 3-clauses based
onAi,...,A,. We order the 3-clauses so that the 3-clauses
based onA,,..., A, form an initial segment of the 3-
clauses based oy, ..., A, 1. Thus when we writeo;, we
mean the** 3-clause in this fixed ordering. With this con-
vention, the index such thatq A;, V e2A;, Vesdi, = @i

does not depend on the numbeof atoms. There arg® (5)
propositional formulas of the formp;, A --- A ¢;, where

1 <4 < ... < ip < 8-(3). These are the pos-
sible elements of 3-SAT based on the propositional atoms
Ay, ..., A,. Our convention thab;, A --- A ¢, will be
coded on the query tape by a sequencéegf. . ., 68_(3711))

wheree; = 1if i+ 1 € {i1,...,in} ande; = B otherwise.

In our coding of Turing machine via ASP default theories,
we will be given a non-deterministic polynomial time oracle
Turing machine with a 3-SAT oracle and we will be given
a run timep(n). Thus on an input of size, the oracle ma-
chine can visit at mosp(n) cells on the both the compu-
tation and the query tape. By our coding of 3-clauses, any
clause that contain the propositional lett&yr has index at
most8 - (%). Thus any query that we make of 3-SAT cer-
tainly cannot contain anl, wheret > p(n). Thus, since
there ares - (p(S")) 3-clauses based on the propositional let-
tersAy, ..., Apn), we will assume that on an input of size
n, the input tape has exacth(n) cells and the query tape

has exactly - (") cells. In that case, we are coding the
98:(5) propositional formulas of the formp,, A -+ A 5,
wherel < iy < ... < ip < 8- (3) by strings of 0's

and 1's of lengtt8 - (3). There are many such codings that
are possible, but any such coding of such conjunctions of

three clauses with strings of 0's and 1's still must 0&és)

strings and hence cannot produce a significantly shorter set

of codes.

of M oninputo, there is a generating sét. of a unique ex-
tensionE,. of (Dyf, WP U edbarp,») Which codes the
computatione in such a way that can be recovered in
linear time fromG,. and (b) for each extensioR' of the
(D) Wi U edba p,0), there is an accepting computa-
tion ¢z of M on inputo such thatl'h(G.,,) = E.

First, we need to define the underlying language of the
theory (D7), Wr,n). We also explain the use for each
symbol. The set of predicates that will occur in our ex-
tensional database are the followingime(X) for “X is

a time step”,c-cell(X) for “X is a cell number on the
computation tape”g-cell(X) for “X is a cell number on
the query tape”symb(X) for “X is a symbol”, state(S)

for “S is a state”, ci_position(P) for “P is the initial
position of the read-write head on the computation tape”,
qi_position(P) for “P is the initial position of the read-
write head on the computation tape-data(P, Q) for “Ini-
tially, the computation tape stores the symhbét the cell

P, ¢g-data(P,Q) for “Initially, the query tape stores the
symbol@ at the cellP”, tape.(X,Y,T) for“ X is symbol in

cell Y on the computation tape at time’, tape,(X,Y,T)

for “X is symbol in cellY on the query tape at time
77, delta(X,Y,Z,X1,Y1, M1,Y2 M2) for “the 5-tuple
X1,Y1,M1,Y2,M2) is an executable instruction when
the read-write head is in stafé € @ — {s,} and is reading
the symbolY” on the computation tape and the symb&obn

the query tape”deltayes(sq,Y, Z, X1,Y1, M1,Y2, M2)

for “the 5-tuple(X1,Y1, M1,Y2, M2) is an executable in-
struction when the read-write head is in stgjend is read-
ing the symbolY” on the computation tape and the sym-
bol Z on the query tape and the oracle gives the answer
yes”, deltano(sq, Y, Z, X1,Y1, M1,Y2 M2) for “the 5-
tuple (X1,Y1,M1,Y2, M2) is an executable instruction
when the read-write head is in statg and is reading
the symbolY on the computation tape and the symbol

on the query tape” and the oracle gives the answer
neq(X,Y) for “ X is different fromY™ , eq(X,Y) for “ X

is equal toY”, succ(X,Y) for “Y is equal toX + 1%
content(A, X, T) for the the predicate thad is the sym-

bol in cell X of the query tape at timé..

Now fix a polynomial time Turing machinelM
(Q,%,T,D, 4, so, 34, f) With a 3-SAT oracle, an input

—~

For the clarity of presentation we will use equality symbgl
inequality symbol;£ and relation described by the successor func-
tion +1, instead ofeq, neq, andsucc.

(6(0),...,0(n—1)) of lengthn, and a run-time polynomial
p(x). This given, we now define the extensional database
exty p,o. First,exty p o Will contain the foIIowing the fol-

lowing set of constant symbols: (§)1,....,8 - (*0V), (2)

s, for eachs € S (Note three constants, (for initial state),

sq (for query state) and (for final state) will be present in
every extensional database), (3)blank symbol) and: for
eachx € X, and (4)r, [, \.

Our extensional databaselbys ., will consist of two
groups. The first group of facts consists of the following
set of facts that describe the maching, i.e. the basic
declarations for the predicatasate, symb, anddelta, the
segment of integers, . .., 8 - (3), i.e. the basic declarations
for the predicatesime, c-cell, q-cell, and predicates that
describe the initial configuration the computation tape on
inputo.

(1) For eachs € @, the clause state(s)
ext M po-

(2) For eachz € T, the clause symb(x)
6.73t]y[7p70.

(3) For every triplg(s, z,y) € @ — {sq} x I x I and every
5-tuple(sl, z1,dl,22,d2) € 6(s,z,y),

the clause delta(s,z,y,sl,x1,dl,x2,d2)
ext M po-

(4) For every pair(z,y) € I' x I" and every 5-tuple
(s1,21,d1,22,d2) such that(yes, (s1,z1,d1,22,d2)) €
d(sq, z,y), the clause

deltayes(sq, T, y, 1,21, d1, 22, d2) belongs toextas,p, o

(5) For every pair(z,y) € T x I" and every 5-tuple
(s1,z1,d1,x2,d2) such that(no, (s1,z1,d1,22,d2)) €
d(sq; z,y), the clause

deltano(sq, z,y, sl,x1,d1, 22, d2) belongs toeztps,p. o

(6) For0 < i < 8- (*{"), the clausesucc(i,i+1) belongs
to ezt p,o-

(7) For0 < i < p(n), the clause time(i) belongs to
extyrp.o-

(8) For0 < i < p(n) — 1, the clausec-cell(i) belongs to
&Tt]u’p’g.

(9) For0 < i < 8- (*{") — 1, the clauseg-cell(i) belongs
to extpr,p,

(10) ForO < m < |o| — 1, the clausec-data(m,o(m))
belongs tac-extps,p, o -

(11) For|o| < m < p(n) — 1, the clause c-data(m, B)
belongs toext as p,o-

(12) For0 < m < 8- (*4V)
belongs toext as p,o-

(13) The clauses dir(l), dir(r) and dir(X)
ETt M po-

(14) The clauses ci_position(0)
belong toext rs p.o-

(15) For alla,b € SUT U{O0,...,8- (P(gn)
the clauseneq(a,b) belongs toezt s p -

(16) For alla € SUT U{0,...,8 - (P1)}, the clause
eq(a,a) belongs toextas,p, -

belongs to

belongs to

belongs to

— 1, the clauseg-data(m, B)
belong to
and qi_position(0)

)} with a # b,

The second group of facts in our extensional database

exty p,o 1S designed to help us deal with the operation of
the Turing machinel/ when it is in the query stats,.

Our idea is to use that fact that extensions are closed under
logical consequences to help us give correct answers for the
oracle 3-SAT. Our idea is that we will employ a setpdf)
propositional lettersd,,..., A,). Recall our coding of
3—c|auses<p1,g02,...,go&(p(gn)) based on the propositional

lettersAy, ..., A,¢,). Inaddition, we will employ one other
propositional letteiD.

Our second group of formulas #xt s,y - are :

(17) content(1,i,t) < —p; forall 1 <i < 8- (p(?:’)) and
0<t<pn).

(18) content(B, i) <+ D&-Dforall 1 < i < 8- (*{") and
0<t<pn).

To understand to role of the these sentences, we will
briefly describe several of the predicates that will occur
in ASP default theory D'5?, W%}Z) First we will have

a predicatefape,(X,Y,T) which is to mean that at time

T, symbol X is in cell Y of the query tape and a predicate
state(S,T) which is to mean that/ is in stateS at timeT'.

We will also have two predicateso(T) and yes(T'). The
main properties that we shall prove about these predicates is
thatyes(T") will hold if at time T if the read-write heads are

in states, and the 3-SAT oracle gives the answer “yes” to
our query ancho(T") will hold if at time T, if the read-write
heads are in staté = s, and the 3-SAT oracle gives the
answer “no” to our query.

The key to our proof that atomgs(7") andno(T) correctly
simulate the oracle is the fact that it will be the case that
none of the atomsontent nor the atoms4; occur in any
conclusion of the rules of our default theo® 7., Wr,g).

They only occur mWTr U extarpo. Thatis, we can prove

the following proposmon

Proposition 1 Let v be any formula of the propositional
language based on atomsntent(a,i,t), a € {0,1},i <
8-(3),0<t<p(n)andA;, 1 <i<p(n). LetT be any
consistent theory generated EWT P U ezt p,, and any set

of conclusions of rules fromv’;”. Themp € Th(T) if and
only ify € Th(W§ U extarp, ,,)

Once we spemf;WTT U extar,p,0, We Will be able to prove
via induction on the’ length the sequence of configurations

that specify a partial computation air3-SAT on inputo
that the following proposition holds.

Proposition 2 Let <¢Z>8_(1n) be a binary sequence of length
8-(%). Then if M started on inputs has an accept-
ing computation, then for ald < t < n, the formula

\/iS (1 2) content (x;,1,t) belongs tal h(Wih U ext ar p, o) if

and only if the set of formulad = {—; : i < 8- (}),z;
1} is unsatisfiable.

Note that Proposition 2 completely characterizes formulas of

the form\/, (1) content(z;,14,t) that belong tal'h(W7;,, U
6It1&[,p,g)

Next we specify the description ofD7;2 , WPy The

remaining predicates QD’};’;, W%:Z) are tf{é fongi,mg; Group 1. Defaults describing how the position of the read-
tape.(P,Q,T) for “the computation tape stores symhgl write head evolves.

at cell P at timeT”, (1.1) (Initial position of the c-read-write head)

tape, (P, Q,T) for “the query tape stores symb@! at cell position.(P,T) « time(T), c-cell(P), T = 0,

P attimeT”, ci_position(P) :

position.(P, T) for “the c-read-write head reads the conten{1.2) (Initial position of the g-read-write head)

cell P at time7™, positiong (P, T) «— time(T), g-cell(P), T =0,
positiong(P,T) for “the g-read-write head reads the qi_position(P) :

content cellP at timeT”,

state(S,T) for “the read-write heads are in stateat time
T” (notice that we have both a unary predicatete /1 with
the content consisting of states, astdte /2 to describe the

We have 6 rules that describe how read write heads move
depending of the values dP; and D,. For example, we
would have the following two clauses whén equals.

evolution of the machine), (1.3) position(P1,T1) « time(T;T1), c-cell(P; P1),
yes(T) for the oracle gives the answer “yes” at tirfig state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
no(T) for the oracle gives the answer “yes” at tinfé T1=T+1, P1+1= P, position.(P,T),
instr(S,Q, R,S1,Q1,D1,Q2,D2,T) for ‘“instruction state(S,T), tape.(P,Q,T),

(S1,Q1,D1,Q2, D2) has been selected for execution at instr(S,Q, R, S1,Q1,D1,Q2,D2,T), D1 =1, P #0:
time 7", (1.4) positiong(P1,T1) « time(T;T1), g-cell(P; P1),
otherInstr(S,Q,,R,S1,Q1,D1,Q2,D2,T) for “in- state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),
struction other than(S1,Q1,D1,Q2,D2) has been T1=T+1, P1+ 1= P, positiong(P,T),

selected for execution at tin¥#’, state(S,T), tape, (P, R, T),

instr_def (T') for “there is an instruction to be executed at instr(S,Q, R,S1,Q1,D1,Q2,D2,T),D2=1,P #0:

timeT”,) “ . , Then we would include four more such clauses (1.5)-(1.8)
completion for “computation successfully completed”, and to cover the cases whe; equals- or A

A, a propositional lettef. '

Group 2. Defaults describing how the contents of the

i n,p n,p i
The defaults in our theory(D%;,, Wry,) consists of 30 change as instructions get executed.

Trg? Trg
rules which describe how the Turing machiné operates ,
with an oracle for 3-SAT. That is, we have to describe hol?-1) tapec(P, Q,T) — time(T), c-cell(P), symb(Q),

the state and the contents of the computation and que(rzy) T =0, datac(P,Q) :
2

tapes evolve in the course of a computatiod&? SAT (). tapeq(P, Q,T) — time(T), g-cell(P), symb(Q),

As we shall see, each individual rule is relatively simple, but £ = 0> dataq(P, Q) :

there has to be a large number of rules due to the inherd@t3) tapec(P, Q1, T1) «— time(T;T1), c-cell(P),

complexity of describing the way a nondeterministic Turing ~ state(S; S1), dir(D1; D2), symb(Q; B; Q1; Q2),
machine evolves. The only subtle rules are the rules in 71 =T + 1, positionc(P,T), state(S,T), tape.(P,Q,T),
Group 6 below which rely on the interaction between the instr(S,Q, R,51,Q1,D1,Q2,D2,T) :
predicatesontent(X;,:, T) described above. In the default(2.4) tape, (P, Q2,T1) «— time(T;T1), g-cell(P),

theory (D', Wi*), there should be no constants. That state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),

is, all constants should appear in the extensional database 71 =T + 1, positione(P,T), state(S,T), tape, (P, R, T),
only. For notational convenience, we will not be strict in instr(S,Q, R, S1,Q1,D1,Q2,D2,T) :

this respect. That is, to simplify our presentation, we wil{2.5) tape.(P,Q,T1) « time(T;T1), c-cell(P; P1), symb(Q),

use the constants (f, and sq in <D7};’;, W%’};). These T1 =T +1, tape.(P,Q,T), position (P1,T), P # P1:
can easily be eliminated by introducing appropriate unag.6) tape,(P,Q,T1) «— time(T;T1), g-cell(P; P1), symb(Q),
predicates. Finally to simplify the clauses, we will follow T1 =T + 1, tapeq(P,Q,T), position,(P1,T), P # P1:
here the notation used in tlenodelssyntax. That is, we

shall write

O(X) — a1 (X) A A an(X) : B (X) 8,,(X) as Group 3. Defaults describing how the state of the read-write
1 n - Ml sy Mm

QX)) —a1(X),...,an(X) : 1(X), ..., Bm(X).)

Also, we will usep(X;;...;Xx) as an abbreviation for (3:1) state(S,T) — time(T), state(S), T =0, S = so :

p(X1),...,p(X4). (3.2) state(S1,T1) « time(T;T1), c-cell(P1), g-cell(P2),

state(S; S1), dir(D1; D2), symb(Q; R; Q1; Q2),

— . .) T1 =T + 1, position.(P1,T), positiong(P2,T),
The propositional letterd will be used whenever we write state(S, T), tape,(P1,Q,T), tape, (P2, R, T),

clauses acting as constraints. That is, the symbalill occur in instr(S,Q, R, S1,Q1, D1,Q2, D2,T) :

the following syntactical configuratiom will be the head of some

clause, and4 will also occur in the restraints of that same clause.

In such situation an extensi@annotsatisfy the remaining atoms Group 4. Defaults describing the unique instruction to be

in the body of that clause. executed at timé&".

head evolves over time.

(4.1) Selecting instruction at step 0. (6.1) no(T) < symbol(X1;...: Xg,(,,m)),

nstr(S,Q, R, S1,Q1, D1,Q2, D2, T) « state(S; S1), i . e (p(n) .
symb(Q; R; Q1; Q2), dir(D1; D2), time(T), T = 0, 1 Cj?(l,f};; 38 (77)). time(T), state(sq, T),

c-cell(P1), g-cell(P2), S = so, tape.(P1,Q,T) (V24 (3 : (content(X;,i,T)) & (X; =1V X; = B),
ci_position(P1), tapeq(P2, R, T, qi_position(P2), 8-(P4M) o o o)
delta(S,Q, R, S1,Q1, D1,Q2, D2) : (Aizi * “(tapeg (X3,0,T) & (Xi =1V Xi = B)) :
otherInstr((S,Q, R, S1,Q1,D1,Q2,D2,T) (6.2) yes(T) — symbol(X1;... : XS»(I’%”)))’
(4.2) Defaults describing the selection the instruction to be im- g-cell(1;...;8 - (*()), time(T), state(sq,T),
plemented at non-query steps. &(*5”) : X iT X =1V X — B : nolT
instr(S,Q, R, S1,Q1, D1,Q2, D2,T) « state(S; S1), (Aizi ™ “(tapeg(Xi,6,T) & (X i=B) o)
symb(Q; R; Q1; Q2), dir(D1; D2), time(T), T # 0, The idea of these clauses is as follows. For any given
c-cell(P1), g-cell(P2), position.(P1,T), positiong(P2,T), time ¢t with 0 < ¢ < p(n), celli with 0 < i < 8-
S # 54, tape.(P1,Q, T), tape, (P2, R, T), (”(3”)) and symbols;; € {1, B}, the only way that we
delta(S,Q, R, S1,Q1,D1,Q2,D2) : can derivetape,(si ¢, i,T) is if there is partial computa-
otherInstr(S,Q, R, $1,Q1,D1,Q2, D2,T) tion of M3-SAT(¢) such thats,, is in cell i at of the
(4.3) Selecting instruction at query steps where the oracle an- query tape at time. This means that to deriveo(t), we
swers yes.) 8- (P _
instr(S,Q, R, S1,Q1, D1,Q2, D2,T) — state(S; S1), must be able to deriv®), = (Ve)(con}fent(si,t,z,t));
S = sq, dir(D1; D2), symb(Q; R; Q1; Q2), time(T) But by Proposition 1 and the clauses in our extensional
T # 0, c-cell(P1), g-cell(P2), position.(P1,T), database described in (17) and (18) can be derived from
positiong(P2,T), tape.(P1,Q,T), tapeq(P2, R, T), (Drg, Wrrg U edbprp,o) only if \/smzl —¢; is a tautol-
yes(T), deltayes(S, @, R, S1,Q1,D1,Q2, D2) ., ogy where the disjunction runs for all cellson the query
otherInstr(S,Q, R,S1,Q1,D1,Q2,D2,T) tape. BUt\/Si7t:1 i _iS equivalent to—‘(_/\s,,yt:l #i) which
(4.4) Selecting instruction at query steps where the oracle an- 'epresents the negation of the query given to the 3-SAT ora-
SWers no. cle at timet. Since—(A,, ,_, ¢:) is a tautology, it must be
instr(S,Q, R, S1,Q1,D1,Q2, D2, T) « state(S; S1), that/\sl,_t:1 ¢; is not satisfiable. Thus clause 6.1 can hold
S = sq, dir(D1; D2), symb(Q; R; Q1; Q2), time(T), if and only if our 3-SAT oracle gives the answes at time
T # 0, c-cell(P1), g-cell(P2), position.(P1,T), t. Clause 6.2 then says that if we do not get the answer
positiong(P2,T), tapec(P1,Q,T), tapeq(P2, R, T), from the 3-SAT oracle at time then we must get the answer
no(T), deltano(S,Q, R, S1,Q1, D1,Q2, D2) : yes from the 3-SAT oracle at time
otherInstr(S,Q, R,51,Q1, D1,Q2,D2,T) Group 7. Defaults that ensure that extensions only corre-

spond to accepting computations.

Group 5. Defaults that define thevtherInstr pred- (7.1) completion — symb(Q),instr(f,Q, f,Q,\,p(n)) :.
icate. Rules (5.1)-(5.8) are designed to say th?f’.Z)AHﬁcomplem‘on A
a 9tuple (S,Q,R,S1,Q1,D1,Q2,D2,T) t- ’

isfies otherInstr if it differs from the 9-tuple Proposition 3 There is a polynomial; so that for every
(8',Q',R',S2,Q3,D3,,Q4,D4,T) that satisfiesinstr. machine M, polynomialp, and an inputo, the size of
Thus a typical rule would be the extensional databaselb,, , » is less than or equal to

M .
(5.1) otherInstr(S,Q, R, S1,Q1, D1,Q2, D2,T) — a(1M, o], p(lel))

state(S; S'; 51; 52), symb(Q; Q'; R; R'; Q1; Q2, Q3, Q4), We can prove that for any nondeterministic oracle Turing
time(T), dir(D1; D2, D3, D4), Machine M with oracle 3-SAT, runtime polynomial(z),
instr(S',Q', R',52,Q3,D3,,Q4,D4,T), S # S’ : and inputc of lengthn, the generating sets of extensions

. . of (D, Wy, Uedbys, o) €ncode the sequences of tapes
Rules (5.2)-(5.8) are identical to rule (5.1) except that they ¥ I ;
endinQ £ Q'+ R £R - S1+82.QL%03: of length p(n) which occur in the steps of an accepting

D1 +# D3: Q2+ Q4:, D2 # D4 : instead ofS # S’ . computation ofpr3-SAT starting ono and that any such
' ’ sequence of steps can be used to produce an extension of

Our next two clauses are designed to ensure that ex- (Drg, Wrprg U edbpt p,o)- _ .
actly one instruction is selected for execution at any given The key idea is to consider valid runs of the oracle machine

timeT. M 3'SAT_started oninput. A configurationrelative to state
(5.9) instr_def (T) « state(S; S1), symb(Q; Q1), dir(D), S |s.a qUI_ntUp|e<Z_’ U, V,u,v) where
time(T), instr(S,Q,S1,Q1,D,T) : 1. iis aninstruction(S, Q, R, S1,Q1, D1, Q2, D2),

2. U is a state of the computation tape,
3. V is the state of the query tape,
Group 6. Defaults that ensure that the predicaes(T’) 4. uwis an integer< p(n) such that/(u) = @ € ¥ U {B},

andno(T') behave properly whefd is in the query state, and
attimeT. 5. visaninteger< 8- (*{”) suchthat/ (v) = R € SU{B}

(5.10) A — time(T), ~instr_def (T) : =A

Informally, « is the index of the cell on which the read-write

Since the problem of finding accepting computations for or-

head on the computation tape is pointing at the time the con- acle Turing machines with a 3-SAT oracle capturesiHll

figuration is observed an@ = U(u) is the content of that
cell. Similarly,v is the index of the cell on which the read-

write head on the query tape is pointing at the time the con-

figuration is observed an? = V' (v) is the content of that

cell. Conditions (4) and (5) are coherence conditions which

say that the instruction is applicable in the configuration.
Avalid runC = (Cy, ..., Cy(,) of the machineV/, where
form, 0 <m < p(n),

Cn = <ima UM7 Vm7unuvm>

such that each transitiaf); to C;; is allowed by the tran-

sitions of M3-SAT . We define the set of atonTs: which

consists of the union of sets of atoiVs U . . . U N4 where:
N1 =edbmp,o

Ny = {state(S, m) Tl = <S7Q, R, Sl, Ql,Dl,Q27D2>
&0 < m<p(m)}

N3 = {position (um,m) : 0 <m < p(n)}
Ny = {position (vm,m): 0 <m < p(n)}
Ns = {tape(r, Un(r),m) : 0 <m < p(n),

0<7r<pn) -1}

Ne = {tape,(r,Vin(r),m) : 0 <m < p(n),
0<r<8-(°() -1}

N7 = {yes(m) Him = <S¢Z7Q7R7 Sl7Q1’D1’Q27D2> &
the set if formulag —p; : Vi, (i) = 1} is satisfiablé

Ng = {no(m) : im = (54,Q, R, S1,Q1,D1,Q2, D2) &
the set if formulag —p; : Vi, (7) = 1} is unsatisfiablg

Ng = {inStT(S,Q,R7 S17Q1,D1,Q2,D2,m) :

im = <S7Q7R7 517Q17D17Q27D2>70 S m S p(n)}

Nio = {otherInstr(S’',Q', R', S1,Q1, D1, Q%, Dy, m) :
S/#Sq&(SLQID llle27D/2)€6(S/7QI7R/)v
i’m # <S/7Q,7R/7SLQ,17D/17Q/27Dé>7
0<m<p(n)}

Ni1 = {otherInstr(S',Q', R', S1,Q1, D1, Q%, Dy, m) :
S/ = Sq &yeé X (Si7QllaDinl27Dl2) G 6(Sl7Q/7R/)7
i’m # <SI7QI7R/7S{7 Q,17D/17Q/27Dé>70 S m S p(n)}

Ni2 = {otherInstr(S’,Q', R, S1,Q1, D1, Q5, Dy, m) :
S, ;ﬁ Sq &TLO X (SLQIMDLQ&?DQ) 6 5(S/7Q,7R/)>
Z”m#<SI7Q/7RI7Si7Q/17 i,Qé,Dé),OSmSP(n)}

Nig = {instr_def(m) : 0 <m < p(n)}

Ni4 = {completion}

We can then show by induction that thatifs valid run of

M3-SAT thenTh(N¢) is an extension of D, Wb U

edbarp,s) and for any extensiont of (Dfi Wiw U

edbypo), there is a valid rurC of M3-SAT such that
Th(N¢) = E. Thus we have the following.

Theorem 2 The mapping of Turing machines to DL An-

swer Set programs defined by/, o, p) — (D", Wik U

edby p o) has the property that there is a 1-1 polynomial
time correspondence between the set of generating)\&ets
of extensions ofM, o, p) +— (D?f’g, W}L;’; Uedbys) and
the set of valid rung of M with oracle 3-SAT of the length
p(n), starting on the state of the tape, and ending in the

Statef.

search problems, it follows that computing generating sets
of extensions of DL Answer Set programs capturesglt
search problems. Thus we have the following.

Theorem 3 The class o4 search problems is precisely
captured by the problem of computing generating sets for
extensions of DL Answer Set programs.

IV. Conclusions

In this paper, we gave a formulation of an Answer Set Pro-
gramming language based on Default Logic where the basic
defaults are quantifier free and the underlying language has
no function symbols. We showed that our Default Logic
ASP programs capture precisely thg search problems.
That is, one can reduce a3} search problem to the prob-
lem of finding generating sets for extensions of a Default
Logic ASP program and vice versa, the problem of finding
a generating set for an extension of a Default Logic ASP
program is &% search problem. We proved our result by
showing that one could uniformly code the accepting com-
putations nondeterministic oracle Turing machines with an
oracle for 3-SAT as generating sets of appropriate Default
Logic ASP programs. This proof provides a precise way
of explaining why questions about extensions of Default
Logic theories naturally lie at the second level of polyno-
mial time hierarchy since it shows that there is a natural way
in which Default Logic theories can query an NP-complete
oracle. We note that there is an alternative way to derive the
same result by reducing the problem of finding generating
sets for extensions of Default Logic ASP programs to the
problem of answering queries of Default Logic query lan-
guage of Cardoli, Eiter, and Gottlob (Cadoli et. al. 1994;
Cadoli et. al. 1997).

References

N. Bidoit and Ch. Froidevaux. General Logic Databases
and Programs: Default Semantics and Stratificafiiofor-
mation and Computatioh9:15-54, 1991.

M. Cadoli, T. Eiter and G. Gottlob. Default Logic as a
Query LanguageProceedings of the Fourth International
Conference on the Principles of Knowledge Representation
and ReasoningkR-94), pages 99-108, 1994.

M. Cadoli, T. Eiter and G. Gottlob. Default Logic as a
Query LanguagelEEE Transactions on Knowledge and
Data Engineerin:448-463, 1997.

P. Cholewnski, W. Marek, A. Mikitiuk, and

M. Truszczyiski. Programming with default logic.
Artificial Intelligence Journall12:105-146, 1999.

D. East and M. Truszciyski. Propositional satisfiabil-
ity in answer-set programming, Proceedings of Joint
German/Austrian Conference on Atrtificial Intelligence,
K1'2001, Lecture Notes in Atrtificial Intelligence, Springer
Verlag, 2001.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
A deductive system for non-monotonic reasoningPto-
ceedings of the 4th International Conference on Logic Pro-

gramming and Nonmonotonic Reasonirgpringer LN in
Computer Science 1265, pages 363—-374, 1997.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello.
The KR System dlv: Progress Report, Comparisons, and
Benchmarks. IrProceedings Sixth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR-98)pages 406—-417, 1998.

M.R. Garey and D.S. Johnso@omputers and intractabil-
ity; a guide to the theory of NP-completene¥8.H. Free-
man, 1979.

M. Gelfond and V. Lifschitz. The stable semantics for logic
programs. IrfProceedings of the 5th International Sympo-
sium on Logic Programmingages 1070-1080, 1988.

M. Gelfond and V. Lifschitz. Classical negation in logic
programs and disjunctive databadésw Generation Com-
puting9:365—-385, 1991.

G. Gottlob. Complexity Results for Nonmonotonic Logics.
Journal of Logic and ComputatioZ397-425, 1992.

V. Lifschitz. Answer set planning. Ihogic program-
ming and nonmonotonic reasoningolume 1730 of_ec-
ture Notes in Computer Scienqeages 373-374. Springer-
Verlag, 1999.

W. Lukaszewicz. Considerations on default logic. In R. Re-
iter, (ed.),Proceedings of the International Workshop on
Non-Monotonic Logicpages 165-193, 1984.

On the Foundations of Answer Set Programmirigyo-
ceedings of AAAI Symposium on Answer Set Programming
Stanford, CA. March 26-28, 2001.

V.W. Marek and M. Truszczyski. Relating Autoepistemic
and Default LogicsProceedings of the First International
Conference on Knowledge Representation and Reasoning
pages 276-288, 1989.

V.W. Marek and M. Truszczyski. Stable Semantics for
Logic Programs and Default Theories. IRroceedings of
North American Conference on Logic Programmipgges
243-257, 1989.

V.W. Marek and M. Truszczyski. Nonmonotonic Logic:
Context-Dependent Reasonir@pringer Verlag, 1993.

V.W. Marek and M. Truszczyski. Stable Models and an
Alternative Logic Programming Paradigmhe Logic Pro-
gramming Paradigmpages 375-398. Series Artificial In-
telligence, Springer-Verlag, 1999.

A. Mikitiuk and M. Truszczynski. Rational Default Logic
and Disjunctive Logic Programming. In: A. Nerode and
L. Pereira, (eds.),.ogic Programming and Nonmonotonic
Reasoningpages 283—-299, 1993.

R. Moore. Semantical Considerations on Nonmonotonic
Logic. Artificial Intelligence Journal25:75-94, 1985.

I. Niemek. Logic programs with stable model semantics
as a constraint programming paradigm.Proceedings of
the Workshop on Computational Aspects of Nonmonotonic
Reasoningpages 72-79, 1998.

I. Niemek and P. Simons. Efficient implementation of the
well-founded and stable model semantics Phoceedings
of JICSLP-96MIT Press, 1996.

R. Reiter. A logic for default reasonindrtificial Intelli-
gence 13(1-2):81-132, 1980.

P. Simons, I. Niemél, and T. Soininen. Extending and

implementing the stable model semantiéstificial Intel-
ligence Journal138:181-234, 2002.

J. Stillman. The Complexity of Propositional Default
Logic. Proceedings of the 10th National Conference on Ar-
tificial Intelligence, AAAI-92pages 794-799, 1992.

T. Syrjanen. Manual of Lparse version 1.@ftp://
saturn.tcs.hut.fi/Software/smodels , 2001

J. Ullman. Principles of Database and Knowledge-Base
SystemsComputer Science Press, 1988.

