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Abstract

The computation of the answer sets in Answer Set Pro-
gramming (ASP) ASP systems is performed on simple
ground (i.e., variable free) programs, first computed by
a pre-processing phase, called instantiation. This phase
may be computationally expensive, and in fact it has
been recognized to be a key issue for solving real-world
problems by using Answer Set Programming. Given a
programP , a good instantiation forP is a ground pro-
gram P ′ having precisely the same answer sets asP
and such that: (i)P ′ can be computed efficiently from
P , and (ii)P ′ does not contain “useless” rules, (P ′ is as
small as possible) and can be thus evaluated efficiently.
In this paper, we present a structure-based backjumping
algorithm for the instantiation of logic programs, that
meets the above requirements. In particular, given a
rule r to be grounded, our algorithm exploits both the
semantical and the structural information aboutr for
computing efficiently the ground instances ofr, avoid-
ing the generation of “useless” rules. That is, from each
general ruler, we are able to compute only a relevant
subset of all its possible ground instances.
We have implemented this algorithm in the ASP system
DLV , and we have carried out an experimentation activ-
ity on a collection of benchmark problems. The results
are very positive, as the new technique improves sensi-
bly the efficiency of theDLV system on many kind of
programs.

Introduction
Answer set programming (ASP) – a declarative approach
to programming proposed in the area of logic programming
and nonmonotonic reasoning – has gained popularity in the
last years also thanks to the availability of a number of
effective implementations. Indeed, there are nowadays a
number of systems that support Answer Set Programming
and its variants, including (Anger, Konczak, & Linke 2001;
Aravindan, Dix, & Niemel̈a 1997; Babovich since 2002;
Chen & Warren 1996; East & Truszczyński 2000; 2001;
Egly et al. 2000; Eiteret al. 1998; Lin & Zhao 2002; Mc-
Cain & Turner 1998; Raoet al. 1997; Seipel & Tḧone 1994;
Simons, Niemel̈a, & Soininen 2002; Janhunenet al. 2000;
2003; Lierler & Maratea 2004; Sarsakovet al. 2004).

The kernel modules of most ASP systems operate on a
ground instantiation of the input program, i.e., a program

that does not contain any variables, but is (semantically)
equivalent to the original input (Eiteret al. 1997). Indeed,
any given programP first undergoes the so called instanti-
ation process, that computes fromP a semantically equiva-
lent ground programP ′. Since this preprocessing phase may
be computationally very expensive, having a good instanti-
ation procedure (also called instantiator) is a key featureof
ASP systems. The instantiator, should be able to produce a
ground programP ′ having the same answer sets asP such
that: (i)P ′ can be computed efficiently fromP , and (ii)P ′ is
as small as possible, and thus can be evaluated efficiently by
an ASP solver.1 Some emerging application areas of ASP,
like knowledge management and information integration,2

where large amount of data are to be processed, make the
need of improving ASP instantiators very evident.

This paper is aimed at improving the instantiation mod-
ule of DLV , one of the two most popular ASP instantia-
tors (the other being Lparse (Niemelä & Simons 1997;
Syrjänen 2002)). DLV instantiator is widely recognized
to be a very strong point of theDLV system, it incorpo-
rates a number of database-optimization techniques, which
make it more effective than Lparse on some relevant prob-
lems, as confirmed also by recent comparison and bench-
marks (Leoneet al. 2004; Dix, Kuter, & Nau 2002;
Arieli et al. 2004).

In particular, in this paper we present a new kind of
structure-based backjumping algorithm for rule instantia-
tion, which reduces the size of the generated ground instan-
tiation and optimizes the execution time which is needed to
generate it.

The main contribution of the paper is the following:

• We propose the idea to exploit backjumping techniques in
the rule instantiation process of ASP.

• We design a new backjumping-based instantiation method
for DLV . The method can replace the classical chronolog-
ical backtracking currently used in the instantiation pro-
cedure ofDLV . The new instantiation procedure computes

1Note that, in the worst case, an ASP solver takes exponential
time in the size ofP ′ – a polynomial reduction in the size ofP ′,
may thus give an exponential gain in the computational time.

2The application of ASP in these areas is investigated also in the
EU projects INFOMIX IST-2001-33570, and ICONS IST-2001-
32429.



only a relevant subset of all the possible ground instances
of a rule, avoiding the generation of many “useless” rules.

• We implement the proposed algorithm the ASP system
DLV .

• We perform an experimental activity to evaluate the im-
pact of our method. In particular, we experimentally com-
pare the performance of the previous backtracking-based
rule instantiator ofDLV against the new method proposed
in this paper. We evaluate both the instantiation time and
the size of the generated instantiation.

The results of the experiments are very positive, the new
method outperforms the previous one, improving sensibly
the efficiency ofDLV instantiator, in both computational
time and instantiation size. The benchmark programs, as
well as the binaries used for our experiments, are availableat
the Web pagehttp://wwwinfo.deis.unical.it/
˜frank/Backjumping .

It is worthwhile noting that the results presented in this
paper are relevant and can be profitably exploited also by
other ASP systems, which do not have their own instan-
tiators like, e.g., ASSAT (Lin & Zhao 2002) and Cmodels
(Lierler & Maratea 2004; Babovich since 2002). Indeed,
these systems can useDLV to obtain the ground program
(by runningDLV with option “-instantiate”) and then apply
their advanced procedures for the evaluation of the ground
program.3

Disjunctive Logic Programming
In this section, we provide a formal definition of the syntax
and semantics of disjunctive logic programs.

Syntax
A variable or a constant is aterm. An atom is a(t1, ..., tn),
wherea is a predicateof arity n andt1, ..., tn are terms. A
literal is either apositive literalp or anegative literalnot p,
wherep is an atom.4 A (disjunctive) ruler has the following
form:

a1 ∨ · · · ∨ an :−b1, · · · , bk, not bk+1, · · · , not bm,
n ≥ 1, m ≥ k ≥ 0

where a1, · · · , an, b1, · · · , bm are atoms. The disjunc-
tion a1 ∨ · · · ∨ an is the headof r, while the conjunction
b1, ..., bk, not bk+1, ..., not bm is thebodyof r.

We denote byH(r) the set{a1, ..., an} of the head atoms,
and byB(r) the set{b1, ..., bk, not bk+1, . . . , not bm} of the
body literals.B+(r) (resp.,B−(r)) denotes the set of atoms
occurring positively (resp., negatively) inB(r). For a literal
L, var(L) denotes the set of variables occurring inL. For
a conjunction (or a set) of literalsC, var(C) denotes the set
of variables occurring in the literals inC, and, for a ruler,
var(r) = var(H(r)) ∪ var(B(r)). A Rule r is safeif each
variable appearing inr appears also in some positive body
literal of r, i.e.,var(r) = var(B+(r)).

3Recall thatDLV instantiator can deal also with normal nondis-
junctive programs.

4Without loss of generality, in this paper we do not consider
strong negation, which is irrelevant for the instantiation process;
the symbol ‘not’ denotes default negation here.

An ASP program (or disjunctive database, DDB)P is a
finite set of safe rules. Anot -free (resp.,∨-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a
rule, or a program isgroundif no variables appear in it.

A predicate occurring only infacts(rules of the forma :
−), is referred to as anEDB predicate, all others asIDB
predicates. The set of facts in whichEDB predicates occur,
is calledExtensional Database (EDB), the set of all other
rules is theIntensional Database (IDB).

Please note that we make frequent use of rules without
a head:−l1, . . . , ln, calledconstraints, which are a short-
hand forfalse :−l1, . . . , ln, and it is also assumed that a rule
bad :−false, not bad is in the DDB, wherefalse and bad
are special symbols appearing nowhere else in the DDB. So,
intuitively, the body of a constraint must not be true in any
answer set.

Semantics
Let P be a program. TheHerbrand Universeand theHer-
brand Baseof P are defined in the standard way and denoted
by UP andBP , respectively.

Given a ruler occurring in a DDB, aground instanceof r
is a rule obtained fromr by replacing every variableX in r
by σ(X), whereσ : var(r) 7→ UP is a substitution mapping
the variables occurring inr to constants inUP . We denote
by ground(P) the set of all the ground instances of the rules
occurring inP.

An interpretationfor P is a set of ground atoms, that is, an
interpretation is a subsetI of BP . A ground positive literalA
is true (resp.,false) w.r.t. I if A ∈ I (resp.,A 6∈ I). A ground
negative literalnot A is true w.r.t. I if A is false w.r.t. I;
otherwisenot A is false w.r.t.I.

Let r be a ground rule inground(P). The head ofr is true
w.r.t. I if H(r) ∩ I 6= ∅. The body ofr is true w.r.t. I if
all body literals ofr are true w.r.t.I (i.e., B+(r) ⊆ I and
B−(r) ∩ I = ∅) and isfalsew.r.t. I otherwise. The ruler is
satisfied(or true) w.r.t. I if its head is true w.r.t.I or its body
is false w.r.t.I.

A modelfor P is an interpretationM for P such that every
rule r ∈ ground(P) is true w.r.t. M . A modelM for P is
minimal if no modelN for P exists such thatN is a proper
subset ofM . The set of all minimal models forP is denoted
by MM(P).

Given a programP and an interpretationI, theGelfond-
Lifschitz (GL) transformationof P w.r.t. I, denotedPI , is
the set of positive rules

PI = {a1 ∨ · · · ∨ an :−b1, · · · , bk |
a1 ∨ · · · ∨ an :−b1, · · · , bk, not bk+1, · · · , not bm

is in ground(P) andbi /∈ I, for all k < i ≤ m}

Definition 1 (Przymusinski 1991; Gelfond & Lifschitz
1991) LetI be an interpretation for a programP. I is an
answer setfor P if I ∈ MM(PI) (i.e., I is a minimal model
for the positive programPI). 2

Instantiation of Disjunctive Logic Programs:
DLV ’s Strategy

In this section, we provide a short description of the overall
instantiation module of theDLV system, and focus on the



“heart” procedure of this module which produces the ground
instances of a given rule.

An input programP is first analyzed by the parser, which
also builds the extensional database from the facts in the pro-
gram, and encodes the rules in the intensional database in a
suitable way. Then, a rewriting procedure (see (Faberet al.
1999)), optimizes the rules in order to get an equivalent pro-
gramP ′ that can be instantiated more efficiently and that can
lead to a smaller ground program5. At this point, another
module of the instantiator computes the dependency graph
of P ′, its connected components, and a topological ordering
of these components. Finally,P ′ is instantiated one compo-
nent at a time, starting from the lowest components in the
topological ordering, i.e., those components that depend on
no other component, according to the dependency graph.

General Instantiation Algorithm
The aim of the instantiator is mainly twofold: (i) to
evaluate(∨-free) stratified program components, and (ii) to
generate the instantiation of disjunctive or unstratified com-
ponents (if the input program is disjunctive or unstratified).

In order to evaluate efficiently stratified programs (com-
ponents),DLV uses an improved version of the generalized
semi-naive technique (Ullman 1989) implemented for the
evaluation of linear and non-linear recursive rules.

If the input program is normal (i.e.,∨-free) and stratified,
the instantiator evaluates the program completely and no fur-
ther module is employed after the grounding; the program
has a single answer set, namely the set of the facts and the
atoms derived by the instantiation procedure. If the input
program is disjunctive or unstratified, the instantiation pro-
cedure cannot evaluate the program completely. However,
the optimization techniques mentioned above are useful to
generate efficiently the instantiation of the non-monotonic
part of the program. Two aspects are crucial for the instanti-
ation:

(a) the number of generated ground rules,
(b) the time needed to generate such an instantiation.

The size of the generated instantiation is important because
it strongly influences the computation time of the other mod-
ules of the system. A slower instantiation procedure gener-
ating a smaller grounding may be preferable to a faster one
generating a large grounding. However, the time needed by
the former can not be ignored otherwise we could not really
have a computation time gain.

The main reason of large groundings even for small input
programs is that each atom of a rule inP may be instan-
tiated to many atoms inBP , which leads to combinatorial
explosion. However, most of these atoms may not be deriv-
able whatsoever, and hence such instantiations do not render
applicable rules. The instantiator module generates ground
instances of rules containing only atoms which can possibly
be derived fromP.

5Note that the rewriting technique in (Faberet al. 1999) is
much advanced, andDLV actually implements a simplified ver-
sion. However, we are not currently aware of any system exploiting
such “clever” techniques. Furthermore, these kind of optimizations
could require a very high computational overhead, hence loosing
their positive effects.

Rule Instantiation
In this section, we describe the process of rule instantiation
– the “heart” of the instantiation module – as it is currently
implemented inDLV .
Algorithm Instantiate
Input R: Rule,I: Set of instances for the predicates occurring
in B(R);
Output S: Set of Total Substitutions;
var L: Literal, B: List of Atoms,θ: Substitution,MatchFound:
Boolean;
begin

θ = ∅;
(* returns the ordered list of the body literals

(null, L1,· · ·,Ln, last) *)
B := BodyToList(R);
L := L1; S := ∅;
while L 6= null

Match(L, θ, MatchFound);
if MatchFound

if (L 6= last) then
L := NextLiteral(L);

else(* θ is a total substitution for the variables
of R *)
S := S ∪ θ;
L := PreviousLiteral(L);
(* look for another solution *)
MatchFound:= false;
θ := θ |PreviousVars(L);

else
L := PreviousLiteral(L);
θ := θ |PreviousVars(L);

output S;
end;

Figure 1: Computing the instantiations of a rule

ProcedureMatch(L:Literal, varθ:Substitution, varMatchFound:
Boolean)
begin

if MatchFoundthen (* this is the first try on a new literal *)
FirstMatch(L, θ, MatchFound);

else(* the last match failed, look for another match on a
previous literal *)
NextMatch(L, θ, MatchFound);

end;
Procedure FirstMatch (L: Literal, var θ: Substitution, var
MatchFound: Boolean)

(* Look in the extensionIL for the first tuple of values match-
ing θ, and possibly updateθ accordingly. The boolean variable
MatchFoundis assigned True if such a matching tuple has been
found; otherwise, it is assigned False. *)

Procedure NextMatch (L: Literal, var θ: Substitution, var
MatchFound: Boolean)

(* Similar to FirstMatch, but finds the next matching tuple. *)

Figure 2: The matching procedures
The algorithmInstantiate, shown in Figure 1, generates

all the possible instantiations for a ruler of a programP.
When this procedure is called, for each predicatep occur-
ring in the body ofr we are given its extension, as a setIp

containing all its ground instances. We say that the mapping
θ : var(r) → UP is a valid substitution forr if it is valid for
every literal occurring in its body, i.e., if for every positive



literal p (resp., negative literalnot p) in B(r), θp ∈ Ip (resp.
θp 6∈ Ip) holds. Instantiateoutputs all such valid substitu-
tions for r, which are in a one-to-one correspondence with
the ground instances ofr we are interested in.

Note that, since the rule is safe, each variable occurring ei-
ther in a negative literal or in the head of the rule appears also
in some positive body literal. For the sake of presentation,
we assume that the body is ordered in a way such that any
negative literal always follows the positive atoms contain-
ing its variables. Actually,DLV has a specialized module
that computes a clever ordering of the body (Leone, Perri,
& Scarcello 2001) (e.g., exploiting the quantitative informa-
tion on the size of any predicate extension) that satisfies this
assumption.

Instantiatefirst stores the body literalsL1, . . . , Ln into
an ordered listB = (null, L1, · · · , Ln, last). Then, it starts
the computation of the substitutions forr. To this end, it
maintains a variableθ, initially set to∅, representing, at each
step, a partial substitution forvar(r).

Now, the computation proceeds as follows: For each lit-
eral Li, we denote byPreviousVars(Li) the set of vari-
ables occurring in any literal that precedesLi in the list
B, and byFreeVars(Li) the set of variables that occurs
for the first time inLi, i.e., FreeVars(Li) = var(Li) −
PreviousVars(Li).

At each iteration of thewhile loop, we try to find a
match for a literalLi with respect toθ. More precisely, if
FreeVars(Li) 6= ∅, we look for an extension ofθ to the vari-
ables inFreeVars(Li); otherwise, we simply check whether
θ is a valid substitution forLi. This is accomplished by the
procedureMatch(figure 2) that, in turns, callsFirstMatch if
this is the first attempt to find a match forLi, or NextMatch
if we already have a valid substitution forLi and we have to
look for a further one.

If there is no such a substitution, then we backtrack to the
previous literal in the list, or else we consider two cases: if
there are further literals to be evaluated, then we continue
with the next literal in the list; otherwise,θ encodes a (total)
valid substitution and is thus added to the output setS. Even
in this case, we backtrack for finding another solution, since
we want to computeall instantiations ofr.

Note that this kind of classical backtracking procedure
works well for rules with a few literals and with a few tu-
ples for each predicate extension. However,DLV has been
designed to work even for manipulating complex knowledge
on large databases, and for such applications the simple al-
gorithm described above is not satisfactory.

Example 2 Suppose we want to compute all ground instan-
tiations of the rule
r2 : a(X, Y ) :−p1(X, Y ), p2(X, Z), p3(Z, H, T ), p4(T, W ),

p5(X, V, Z), p6(X, Y, V ).

and that we have already computed a partial substitutionθ
for the variables{X, Y, Z, H, T, W}, but we are not able to
find a consistent value forV in the extension ofp5, in order
to extendθ. In this case, according to the algorithm in Fig-
ure 1, we should backtrack to the previous literalp4. How-
ever, the failure on atomp5(X, V, Z) is independent of vari-
ables{H, T, W}, and thus we should just find another possi-
ble value forZ. It follows that, intuitively, we could safely

backtrack directly to atomp2(X, Z), where this variable has
been instantiated. Thus, jumping over bothp3(Z, H, T ) and
p4(T, W ) can allow us to save a very large amount of time,
especially if the extensions ofp3 andp4 contains many tu-
ples.

In order to overcome such troubles, a number of exten-
sions of the backtracking technique have been described in
the literature – see Section on related work. However, for
different reasons, none of these proposals perfectly fits our
needs. E.g., some of them are designed only for binary con-
straint satisfaction problems, and for computing any solution
for a given problem instance. Rather, we need a specialized
algorithm that should be able to compute efficiently all in-
stantiations of a rule with predicates of arbitrary arity, which
corresponds to finding all solutions of general (non-binary)
constraint satisfaction problems.

A Backjumping Technique for ASP Programs
Instantiation

Some Motivations
As observed in a previous section, the rule instances of a
programP may contain many atoms that are not derivable
whatsoever, and hence such instantiations do not render ap-
plicable rules. A good instantiator should generate ground
instances of rules containing only atoms which can possibly
be derived fromP.

To this end, e.g., theDLV instantiator exploits the de-
pendencies among predicates. The instantiation starts by
evaluating first the rules defining predicatesP0 that depend
on no other predicates (that is, only defined by facts), then
the predicatesP1 that only depend on predicates inP0, and
so on. It is worthwhile noting that, if the input program is
normal (i.e.,∨-free) and stratified, this instantiator evaluates
the program completely and no further module is employed
after the grounding; the program has a single answer set,
namely the set of the facts and the atoms derived by the in-
stantiation procedure. If the input program is disjunctiveor
unstratified, the instantiation procedure cannot evaluatethe
program completely.

Even in this case, at each step of the instantiation process,
we have a number of predicates, that we callsolved, such
that the truth values of all their ground instances are already
fully determined by the instantiator (each instance of them
is already known to be true or to be false, none is undecided
- undefined). For instance, all predicates inP0 are solved, as
well as all predicates that only depend on solved predicates.
It follows that none of these predicates should occur in the
rules (but the facts) of the ground programP ′ produced by
the instantiator. All the predicates occurring in the rulesof
P ′ should be unsolved, and will be evaluated by the answer
set solver.
Example 3 Consider the following rule

r1 : a(X, Z) :−q1(X, Z, Y ), q2(W, T, S), q3(V, T, H),
q4(Z, H), q5(T, S, V ).

Suppose we know that predicatesq3, q4, andq5 are solved,
and consider the following ground instances forr1:

a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v1, t1, h1),
q4(z1, h1), q5(t1, s1, v1).



a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v2, t1, h1),
q4(z1, h1), q5(t1, s1, v2).

...
a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1), q3(v100, t1, h100),

q4(z1, h100), q5(t1, s1, v100).

Now, assume that all these instances are applicable, that is,
all instances of the atoms over the solved predicatesq3, q4

andq5 are true, and all instances of the atoms over unsolved
predicates (i.e. atomsq1(x1, z1, y1), q2(w1, t1, s1)) could be
true (i.e., they are not provably false, at this point). Then,
it is easy to see that all these 10000 rules are semantically
equivalent to the single instance

a(x1, z1) :−q1(x1, z1, y1), q2(w1, t1, s1).

Thus, we only need all the (applicable) instantiations of
unsolved predicates, while the solved ones are just used to
validate such instances. More precisely, we are not inter-
ested in finding all the ”consistent” substitutions for all vari-
ables, but rather their restrictions to the only variables that
occur in literals over unsolved predicates. We call such vari-
ables therelevant variablesof a ruler, and any applicable
ground instance projected onto the unsolved predicates (as
the one shown in the above example) arelevant instancefor
r. These ground rules should be included in any sound in-
stantiation ofP .

The BJ Instantiate algorithm
In this section, we describe the AlgorithmBJ Instantiate,
that given a ruler and a set of relevant variablesOutputVars,
returns a set of substitutions for these variables which hasa
one-to-one correspondence with the set of all and only the
ground instances ofr we are interested in.

That is, we do not generate all those ground instances
of r that differ only on non-relevant variables. Formally,
BJ Instantiatereturns the projections onOutputVarsof all
the valid substitutions forr. We call these substitutions the
relevant solutionsof our problem.

The basic schema of this algorithm is no more the clas-
sical backtracking paradigm, but rather a structure-based
backjumping paradigm, well studied in the constraint sat-
isfaction area (see., e.g., (Dechter 1990; Tsang 1993)). In
these kind of algorithms, when some backtrack step is nec-
essary, it is possible to jump more than one element, rather
than just one, as in the standard chronological algorithm. Of
course, such jumps should be designed carefully, in order to
avoid that some solution is missed, especially in our case,
where we have to compute all solutions.

Let r be a rule andB the ordered list of its body liter-
als (null, L1, · · · , Ln, last). We say thatLi (1 ≤ i ≤ n)
is a binder for a variableX if there is no literalLj , with
1 ≤ j < i such thatX ∈ var(Lj). Moreover, for a set of
variablesV and a literalLk, letClosestBinder(Lk,V ) denote
the greatest literalLi among the binders of the variables in
V . A crucial notion in our algorithm is theClosest Success-
ful Binder (CSB), which represents, intuitively, the greatest
literal that is a binder of some variableX whose current as-
signed value belongs to the last computed solution. The CSB
acts as a barrier for some kind of jumps, as described later
in this section.

Algorithm BJ Instantiate
Input R: Rule,I: Set of instances for the predicates occurring
in B(R), OutputVars: Set of Variables;
Output S: Set of Substitutions;
var L: Literal, B: List of Atoms,θ: Substitution,CSB: Literal,

Status: MATCH STATUS;
begin

θ = ∅;
(* returns the ordered list of the body literals (null, L1, · · · ,

Ln, last) *)
B := BodyToList(R);
L := L1; Status:= SuccessfulMatch;
CSB := null; S := ∅;
while L 6= null

Match(L, θ, Status);
switch (Status)

caseSuccessfulMatch
if (L 6= last) then

L := NextLiteral(L);
else(* θ is a total substitution for the variables

of R *)
S := S ∪ θ |OutputVars ;
L := BackFromSolutionFound(L, CSB, Status);
θ := θ |PreviousVars(L);

break;
caseFailureOnFirstMatch

L := BackFromFailureOnFirstMatch(L, CSB);
θ := θ |PreviousVars(L);
break;

caseFailureOnNextMatch
L := BackFromFailureOnNextMatch(L, CSB);
θ := θ |PreviousVars(L);
break;

output S;
end;

Figure 3: The BJInstantiate algorithm

Another important point is the structure of the relation-
ships among the literals in the body. We say that, for
any pair of literalsLi, Lj in B, Li ≺d Lj if i ≤ j and
var(Li) ∩ var(Lj) 6= ∅. Let ≺ denote the transitive clo-
sure of the≺d relationship and, for any literalL in B, let
dep(L) =

⋃
{L′|L≺L′} var(L′). Intuitively, this is the set of

variables that depends on the instantiation of the literalL,
and we refer to it as thedependency setof L.

Example 4 As a running example in this section, consider
the following rule

r3 : a(X, Y, Z) :−q1(X, T, W ), q2(X, Y ), q3(Z, S), q4(Z, V ),
q5(T, H), q6(H, T, V ).

It is easy to check that the dependency set of literal
q5(T, H) is {T, H, V }, while the dependency set ofq3(Z, S)
is {Z, S, V, H, T}.

In order to instantiater3, our algorithm needs the addi-
tional information on the relevant variables and the already
known instances for the predicates occurring in the body.
Then, assume thatOutputVars = {X, Y, Z, T, W}, and that
we are given the following extensions for the predicates oc-
curring inB(r3):

{q1(x1, t1, w1), q1(x1, t2, w1)}, {q2(x1, y1), q2(x1, y2)},

{q3(z1, s1)}, {q4(z1, v1), q4(z1, v2)},

{q5(t2, h1), q5(t2, h2)}, {q6(h2, t2, v1), q6(h2, t2, v2)}



enum MATCH STATUS = { SuccessfulMatch, FailureOnFirst-
Match, FailureOnNextMatch};

ProcedureMatch(L:Literal, varθ:Substitution, varStatus:
MATCH STATUS)
begin

if Status= SuccessfulMatchthen
(* the last match was successful, this is the first try
on a new literal *)
FirstMatch(L, θ, Status);

else(* the last match failed, look for another match on a
previous literal *)
NextMatch(L, θ, Status);

end;

ProcedureFirstMatch (L: Literal, varθ: Substitution, varStatus:
MATCH STATUS)

(* Look in the extensionIL for the first tuple of values matching
θ, and possibly updateθ accordingly. Statusis assigned Suc-
cessfulMatch if such a matching tuple exists; otherwise, it is
assigned FailureOnFirstMatch *)

ProcedureNextMatch(L: Literal, varθ: Substitution, varStatus:
MATCH STATUS)

(* Similar to FirstMatch, but finds the next matching tuple. In
case of failure,Statusis set to FailureOnNextMatch *)

Figure 4: Matching procedures forBJ Instantiate

Figure 3 shows the algorithmBJ Instantiate. As for Algo-
rithm Instantiate, at each iteration of thewhile loop, the
procedureMatch tries to find a match for a literalLi with
respect to the current partial substitutionθ. If it succeeds
andLi is not the last literal, then we can proceed with the
next literalLi+1. Otherwise, we have to backtrack, and thus
we have to decide where to jump and, possibly, update the
current CSB. Now, we have a number of different cases to be
handled, depending on the outcomeStatusof the procedure
Match.

1. Success, andθ encodes a total substitution. Since also
the match on the last literal is successful,θ encodes a
valid substitution for the variables inr, and its restriction
to OutputVarsis therefore added to the set of solutions.
Then, in order to look for further solutions, we have to
backtrack. However, in this algorithm, we are not forced
to go back to the previous literal. Rather, we can jump
to the closest literalLj binding a variable of interest, that
is, jump toClosestBinder(last,OutputVars). Moreover, in
this case the CSB is set toLj .

Example 5 In our running example, the algorithm is able
to find the total substitutionθ(X) = x1, θ(Y ) = y1,
θ(Z) = z1, θ(T ) = t2, θ(W ) = w1, θ(S) = s1, θ(V ) =
v1, andθ(H) = h2. That is, we have a match for all the
literals inB and we are atlast. Then, the restriction ofθ
to the set of relevant variables is added toS. In our case,
this solution corresponds to the following instance ofr3:

a(x1, y1, z1) :−q1(x1, t2, w1), q2(x1, y1), q3(z1, s1).

Now, according to the algorithm, we jump back to
q3(Z, S) for finding other solutions. Note that we do not
look for further consistent tuples in the extensions ofq4,
q5, andq6, because they do not bind any relevant variable.
Indeed, possible solutions coming from other instances

Function BackFromFailureOnFirstMatch(L: literal, varCSB:
Literal): Literal;
begin (* the first match on a new literal failed *)

L′ := ClosestBinder(L, Vars(L));
if L′ ≺ CSB then

CSB := L′;
returnL′;

end;

Function BackFromFailureOnNextMatch(L: Literal, varCSB:
Literal): Literal;
begin (* failure looking for another match forL *)

if L = CSB then
CSB := ClosestBinder(L,OutputVars);

L′ := ClosestBinder(L,DepVars(L))
return max≺{L′, CSB};

end;

Function BackFromSolutionFound(L: Literal, varCSB: Literal,
varStatus: MATCH STATUS) : Literal;
begin

Status:= FailureOnNextMatch; (* look for another solution *)
CSB := ClosestBinder(L,OutputVars);
returnCSB;

end;

Figure 5: Backjumping procedures forBJ Instantiate

of these predicates (e.g., the solution withθ(V ) = v2)
would just lead to useless rules in the instantiation of the
program at hand. Finally, the CSB is set toq3.

2. Failure at the first attempt to find a match for a
literal Li. We jump back to the closest literalLj

binding any of the variables inLi, that is, jump to
ClosestBinder(Li,var(Li)). Indeed, in this case, the only
way for finding a match forLi is to change the assignment
for some of its bound variables. Moreover, ifLj precedes
CSB, then we can push back CSB toLj . This will make
the next type of jumps less restrictive, see case 3 below.

Example 6 In our running example, the first time that we
try to find a match forq5, we have computed the partial
substitutionθ(X) = x1, θ(Y ) = y1, θ(Z) = z1, θ(T ) =
t1, θ(W ) = w1, andθ(S) = s1. In this case, we are
not able to find any matching instance in the extension
of q5. Indeed, none of its instances has a valuet1 for
variableT . Then, we have to change the value assigned
to one of the variables occurring inq5, and thus we can
safely jump overq4, q3, andq2, and try to match again
q1(X,T,W ). Indeed,q1 is the closest binder forvar(q5),
as it determines the value for variableT .

3. Failure while looking for another match for a literal
Li. In this case,Li is a binder of some set of variables̄X,
and we fail in finding a different consistent substitution
for these variables. Since we were successful on our first
attempt to deal withLi, this means that, for some reason,
we jumped back toLi from some later item, sayLj , of
the list B. Now, we have to decide where to jump after
the current failure, and this time the variables occurring
in Li are not the only candidates to be changed. Rather,
we have to look at the dependency set ofLi, as shown
below.



Example 7 Assume that, in our running example, we are
looking for another match forq3(Z, S) and that the CSB
is set toq1(X,T,W ). According to the algorithm, we
have to jump toq1, even if it is not a binder for any vari-
able occurring inq3. The reason is thatq1 is a binder
for T , which belongs to the dependency set ofq3, and
changing its value may lead to some new solution (possi-
bly comprising values already considered for the variables
occurring inq3).

Another important issue concerns the management of the
CSB. First, we check whether the current literalLi coin-
cides with the CSB. If this is the case, we push back the
CSB toClosestBinder(Li,OutputVars). In this case, it acts
as a barrier and cannot be jumped, otherwise we can miss
some relevant solution as the following example shows.

Example 8 Let us continue from the execution step de-
scribed at point 1 above, where we have found our
first solution. Recall that we jumped back toq3(Z, S)
and the CSB is set to this literal. In this case, the
CSB is first pushed back toq2(X,Y ), which is the
ClosestBinder(q3(Z, S),OutputVars). Then, even if ac-
cording to the dependency set we could jump toq1, we
are forced to stop our jumping back to literalq2(X,Y ),
because of the CSB limit. It is worthwhile noting that, if
we go directly toq1(X,T,W ), we miss the solution ob-
tainable by assigningy2 to variableY and corresponding
to the following instance ofr3:

a(x1, y2, z1) :−q1(x1, t2, w1), q2(x1, y2), q3(z1, s1).

Theorem 9 Algorithm BJ Instantiate is sound and com-
plete. That is, given a ruler, the ground instances for the
predicates occurring in its body, and the set of its relevant
variables OutputVars,BJ Instantiatecomputes the set con-
taining all and only the projections over OutputVars of the
valid substitutions forr.

Related Work
In order to overcome the troubles of traditional backtrack-
ing, many extensions and improvements of this technique
have been described in the literature, both in the logic pro-
gramming and in the constraint satisfaction communities.

For instance, we recall theintelligent backtrackingtech-
nique developed in (Bruynooghe & Pereira 1984) for evalu-
ating logic programs, and theintelligent backtrackingtech-
nique developed in (Shen. 1996) for a parallel implementa-
tion of Prolog. In particular, in the latter paper, the author
defines the notion of groups, which are clusters of atoms that
are independent of other clusters of atoms in a rule. Exploit-
ing groups, it is possible to jump back in a clever way. How-
ever, inside groups, his approach works as the sequential
backtracking, apart for some special features dealing with
parallelism issues, and completely unrelated to our work.

Note that our algorithm allows a more sophisticated way
of jumping back, based on the dependencies among vari-
ables, and that jumping based on groups can be viewed as a
special case of our method. Moreover, in Shen’s work there
is no notion of relevant variables (according to our mean-
ing of ”relevance”). This is a crucial feature of our algo-
rithm. Indeed, whenever some predicates are solved and not

all variables occur in the rule head (which is very often the
case), we may focus only on some kind of substitutions, and
we can get rid of a large number of solutions, that we do not
generate at all, with a clear computational advantage (wit-
nessed by our experiments, see the next section).

Our algorithm is also strongly related to the various back-
jumping techniques proposed for solving constraint satisfac-
tion problems (CSPs), described in (Tsang 1993). Indeed,
note that the rule instantiation problem can be viewed as a
CSP. However, most of these algorithms focused on prob-
lems with just binary constraints, and looking for just one
solution – typically, anyone. On the contrary, in our con-
text, we have to compute efficiently all instantiations of a
rule with predicates of arbitrary arity, which correspondsto
the problem of finding all solutions of general (non-binary)
constraint satisfaction problems.

In the CSP community, a recent proposals in this direc-
tion is described in (Chen & van Beek 20001). In this pa-
per, the authors provide a revised version of the conflict-
directed backjumping algorithm, with a variation that allows
the algorithm to compute all solutions of a CSP, without
completely degenerating to the chronological backtracking.
Their approach also works for non-binary CSPs.

However, their algorithm is quite different from ours for
the following reasons: (i) The way variables are made bound
is the same as the usual algorithms proposed for binary
CSPs. That is, they consider a variable at a time, while
our technique is based on the instantiation of an atom at a
time. In fact, we introduced the notion of closest successful
binder (an atom), and we guarantee the algorithm complete-
ness in a different way. (ii) They have no notion of relevant
variables, and thus their algorithm misses one of the distin-
guishing features of our proposal, as discussed above.

Experimental Results and Conclusions
Benchmark Programs
In order to check the validity of the proposed method, we
have implemented it in the grounding engine of theDLV sys-
tem, and we have run it on a collection of benchmark pro-
grams taken from different domains. For space limitation,
we do not include the code of benchmark programs; how-
ever they are available, together with the binary code ofDLV
equipped with the new instantiatior, at the Web pagehttp:
//wwwinfo.deis.unical.it/˜frank/Backjumping .

Moreover, we give below a very short description of
the problems that are encoded in these benchmark pro-
grams:CONSTRAINT-3COL[25,35] A one-rule encoding of
3-colorability (the classical encoding of 3-colorabilityas a
constraint satisfaction problem), on a graph with 25 nodes
and 35 edges.
CONSTRAINT-3COL[30,40] Similar to the previous one, but
on a graph with 30 nodes and 40 edges.
CONSTRAINT-5COL[20,30]Again, a one-rule encoding of
colorability, but for 5 colors and on a graph with 20 nodes
and 30 edges.
SCHEDULING A scheduling program for determining shift
rotation of employees.5
CRISTAL Deductive databases application that involves



Program Backtracking Backjumping
CONSTRAINT-3COL[25,35] 0.75s 0.01s
CONSTRAINT-3COL[30,40] 12.67s 0.01s
CONSTRAINT-5COL[20,30] – 0.01s
SCHEDULING 3.19 s 2.89s
CRISTAL 6.11s 5.94s
3COL-SIMPLEX 4.24 s 2.70s
3COL-LADDER 84.83 s 52.89s
HP-RANDOM 0.73 s 0.74s
K-DECOMP 9.36s 9.54s
RAMSEY(3,7) 6= 19 27.53s 18.17s
RAMSEY(3,7) 6= 20 38.01s 34.84s
RAMSEY(3,7) 6= 20,∨-free 37.57s 33.11s
TIMETABLING S 321.82s 182.20s
TIMETABLING U 128.55s 71.26s

Table 1: A comparison between the backtracking and the
backjumping techniques

complex knowledge manipulations on databases, developed
at CERN in Switzerland.
3COL-SIMPLEX 3-colorabity on a simplex graph with 1980
edges and 1035 nodes.
3COL-LADDER 3-colorabity on a ladder graph with 8998
edges and 6000 nodes.
HP-RANDOM Hamiltonian Path on a random graph with
700 edges and 85 nodes.
K-DECOMP Decide whether there exists a hypertree
decompositon (Gottlob, Leone, & Scarcello 1999) of a
conjunctive query having width≤K.
RAMSEY(3,7) 6= 19 Prove that 19 is not the Ramsey number
Ramsey(3, 7) (Radziszowski 1999).
RAMSEY(3,7) 6= 20 Similar to the previous one but proving
that 20 is not the Ramsey numberRamsey(3, 7).
RAMSEY(3,7) 6= 20 Disjunction-free encoding of the Ram-
sey Numbers problem, proving that 20 is not the Ramsey
numberRamsey(3, 7).
TIMETABLING S An instance of the high-school
timetabling problem.
TIMETABLING U An instance of the university timetabling
problem.

Discussion and Conclusion

We implemented AlgorithmBJ Instantiatein C++ and we
integrated it in the Instantiator module in theDLV system.
Then, we run a number of experiments by using the above
benchmark problems, in order to compare the performance
of the previous backtracking-based rule instantiator withthe
new method proposed in this paper. All binaries were pro-
duced by the GNU compiler GCC 3.2.2, and the experiments
were performed on a Intel XEON 2.2 GHz with 1 Gbytes of
main memory.

Table 1 shows the results of our tests. For each bench-
mark programP described in column 1, column 2 (respec-
tively, 3) reports the times employed to instantiateP by
using DLV , when Algorithm Instantiate(resp., Algorithm
BJ Instantiate) is used in the rule instantiator module. All
running times are expressed in seconds. The symbol ‘−’
means that the instantiator did not terminate within 10 min-
utes.

The results confirm the intuition that the new
backjumping-based procedure outperforms the previ-
ous one in many cases, and can be very useful for improving
the efficiency ofDLV (and of any other ASP system that
could exploit its instantiator).

Of course, the speed-up is not that high if we have to in-
stantiate programs where all rules are very short, and where
thus the two procedures exhibit a similar behavior. Note that,
in some cases, the old procedure can be also slightly better
than the new one, since the latter has some overhead due to
the computation of the dependency sets and the management
of the CSB. This is witnessed, e.g., byK-DECOMP .

However, we have an impressive speed-up when pro-
grams contain some rules with many literals in their bod-
ies and/or when such rules have a few relevant variables
(i.e., many solved predicates occur in their bodies). For in-
stance,CONSTRAINT-5COL[20,30] consists of a single long
rule where all predicates are solved. In fact, in this extreme
case, we stopped the old procedure that was still running af-
ter 10 minutes, while the new one instantiated the program
almost instantaneously. In particular, note that, the old back-
tracking technique generates for this problem thousands of
redundant rule instances. For instance, the instantiationof
the smaller problemCONSTRAINT-3COL[30,40], generated
by the old procedure, consists of 512328 rules while the new
procedure generates an instantiation containing just one rule.

Moreover, note that we may have a very good speed-
up even if all variables are relevant, as witnessed by
TIMETABLING andRAMSEY(3,7).

Currently, our experimentation activity continues on fur-
ther benchmark problems. Also, we are evaluating the qual-
ity of the ground programs computed by the algorithm, as
well as the impact of such instantiations on the overall sys-
tem performance.
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