BackJumping Techniques
for Rules Instantiation in the DLV System

Nicola Leone and Simona Perri
Dept. of Mathematics,
Univ. of Calabria
87030 Rende (CS), Italy,
{leone,perff@unical.it

Abstract

The computation of the answer sets in Answer Set Pro-
gramming (ASP) ASP systems is performed on simple
ground (i.e., variable free) programs, first computed by
a pre-processing phase, called instantiation. This phase
may be computationally expensive, and in fact it has
been recognized to be a key issue for solving real-world
problems by using Answer Set Programming. Given a
programpP, a good instantiation foP is a ground pro-
gram P’ having precisely the same answer setsPas
and such that: (i)’ can be computed efficiently from
P, and (ii) P’ does not contain “useless” rules)'(is as
small as possible) and can be thus evaluated efficiently.
In this paper, we present a structure-based backjumping
algorithm for the instantiation of logic programs, that
meets the above requirements. In particular, given a
rule r to be grounded, our algorithm exploits both the
semantical and the structural information abeufor
computing efficiently the ground instancesrofavoid-

ing the generation of “useless” rules. That is, from each
general ruler, we are able to compute only a relevant
subset of all its possible ground instances.

We have implemented this algorithm in the ASP system
DLV, and we have carried out an experimentation activ-
ity on a collection of benchmark problems. The results
are very positive, as the new technique improves sensi-
bly the efficiency of theDLV system on many kind of
programs.

Introduction

Francesco Scarcello
DEIS,
Univ. of Calabria
87030 Rende (CS), Italy
scarcello@unical.it

that does not contain any variables, but is (semantically)
equivalent to the original input (Eitest al. 1997). Indeed,

any given progranP first undergoes the so called instanti-
ation process, that computes frdfha semantically equiva-
lent ground progran®’. Since this preprocessing phase may
be computationally very expensive, having a good instanti-
ation procedure (also called instantiator) is a key feattdire
ASP systems. The instantiator, should be able to produce a
ground progranP’ having the same answer setsRasuch

that: (i) P’ can be computed efficiently from, and (ii) P’ is

as small as possible, and thus can be evaluated efficiently by
an ASP solvet. Some emerging application areas of ASP,
like knowledge management and information integrafion,
where large amount of data are to be processed, make the
need of improving ASP instantiators very evident.

This paper is aimed at improving the instantiation mod-
ule of DLV, one of the two most popular ASP instantia-
tors (the other being Lparse (NierdeB Simons 1997,
Syrjanen 2002)). DLV instantiator is widely recognized
to be a very strong point of thBLv system, it incorpo-
rates a number of database-optimization techniques, which
make it more effective than Lparse on some relevant prob-
lems, as confirmed also by recent comparison and bench-
marks (Leoneet al. 2004; Dix, Kuter, & Nau 2002;
Arieli et al. 2004).

In particular, in this paper we present a new kind of
structure-based backjumping algorithm for rule instantia
tion, which reduces the size of the generated ground instan-
tiation and optimizes the execution time which is needed to

Answer set programming (ASP) — a declarative approach 9enerate it. o _ _
to programming proposed in the area of logic programming The main contribution of the paper is the following:
and nonmonotonic reasoning — has gained popularity in the e We propose the idea to exploit backjumping techniques in
last years also thanks to the availability of a number of the rule instantiation process of ASP.
effective implementations. Indeed, there are nowadays a
number of systems that support Answer Set Programming
and its variants, including (Anger, Konczak, & Linke 2001;
Aravindan, Dix, & Nieme& 1997; Babovich since 2002;
Chen & Warren 1996; East & Truszdzski 2000; 2001;
Egly et al. 2000; Eiteret al. 1998; Lin & Zhao 2002; Mc-
Cain & Turner 1998; Raet al. 1997; Seipel & Tihne 1994;
Simons, Niemd, & Soininen 2002; Janhunet al. 2000; may thus give an exponential gain in the computational time.
2003; Lierler & Maratea 2004; Sarsakeval. 2004). The application of ASP in these areas is investigated also in the
The kernel modules of most ASP systems operate on a EU projects INFOMIX 1ST-2001-33570, and ICONS 1ST-2001-
ground instantiation of the input program, i.e., a program 32429.

e We design a new backjumping-based instantiation method
for DLV. The method can replace the classical chronolog-
ical backtracking currently used in the instantiation pro-
cedure oDLV. The new instantiation procedure computes

!Note that, in the worst case, an ASP solver takes exponential
time in the size ofP’ — a polynomial reduction in the size &',

only a relevant subset of all the possible ground instances
of arule, avoiding the generation of many “useless” rules.

We implement the proposed algorithm the ASP system
DLV.

We perform an experimental activity to evaluate the im-
pact of our method. In particular, we experimentally com-
pare the performance of the previous backtracking-based
rule instantiator obLV against the new method proposed
in this paper. We evaluate both the instantiation time and
the size of the generated instantiation.

The results of the experiments are very positive, the new
method outperforms the previous one, improving sensibly
the efficiency ofDLV instantiator, in both computational
time and instantiation size. The benchmark programs, as
well as the binaries used for our experiments, are avaitgble
the Web pagéttp://wwwinfo.deis.unical.it/
“frank/Backjumping

It is worthwhile noting that the results presented in this
paper are relevant and can be profitably exploited also by
other ASP systems, which do not have their own instan-
tiators like, e.g., ASSAT (Lin & Zhao 2002) and Cmodels
(Lierler & Maratea 2004; Babovich since 2002). Indeed,
these systems can uggVv to obtain the ground program
(by runningDLV with option “-instantiate”) and then apply
their advanced procedures for the evaluation of the ground
program?

Disjunctive Logic Programming

In this section, we provide a formal definition of the syntax
and semantics of disjunctive logic programs.

Syntax

A variable or a constant ist@rm An atomis a(t1, ..., tn),
wherea is apredicateof arity n andty, ..., t, are terms. A
literal is either apositive literalp or anegative literahot p,
wherep is an atont A (disjunctive) ruler has the following
form:
a1V ---Vap:—bi, -, bg,not byy1, -+, n0t by,
n>1,m>k>0

where a1, -, an,b1,--+,b,, are atoms. The disjunc-
tion a1 Vv --- V a, is the headof r, while the conjunction
b1, ..., bi,not bi11, ..., not by, IS thebodyof r.

We denote byH (r) the set{as, ...,a,} Of the head atoms,
and by B(r) the set{b1, ..., bx, not by+1,...,not by, } of the
body literals.B* (r) (resp.,B~ (r)) denotes the set of atoms
occurring positively (resp., negatively) i(r). For a literal
L, var(L) denotes the set of variables occurringzin For
a conjunction (or a set) of literals, var(C) denotes the set
of variables occurring in the literals i@, and, for a ruler,
var(r) = var(H(r)) Uvar(B(r)). A Ruler is safeif each
variable appearing in appears also in some positive body
literal of r, i.e.,var(r) = var(B*(r)).

3Recall thaDLV instantiator can deal also with normal nondis-
junctive programs.

“Without loss of generality, in this paper we do not consider
strong negation, which is irrelevant for the instantiation process;
the symbol hot' denotes default negation here.

An ASP program (or disjunctive database, DDB)is a
finite set of safe rules. Aot -free (resp.y-free) program is
calledpositive(resp.,normal). A term, an atom, a literal, a
rule, or a program igroundif no variables appear in it.

A predicate occurring only ifacts(rules of the formy :

—), is referred to as aikDB predicate, all others aB
predicates. The set of facts in whi&tDB predicates occur,
is called Extensional Database (EDBdhe set of all other
rules is thdntensional Database (IDB)

Please note that we make frequent use of rules without
a head: —1,,...,1,, calledconstraints which are a short-
hand forfalse :—11,...,1,, and it is also assumed that a rule
bad : —false,not bad is in the DDB, wherefalse and bad
are special symbols appearing nowhere else in the DDB. So,
intuitively, the body of a constraint must not be true in any
answer set.

Semantics

Let P be a program. Thélerbrand Universeand theHer-
brand Basef P are defined in the standard way and denoted
by Ur and Bp, respectively.

Given a ruler occurring in a DDB, ayround instancef r
is a rule obtained from by replacing every variablg in r
by o(X), whereo : var(r) — Up is a substitution mapping
the variables occurring in to constants irp. We denote
by ground(P) the set of all the ground instances of the rules
occurring inP.

An interpretationfor P is a set of ground atoms, that is, an
interpretation is a subsébf B». A ground positive literalt
istrue (resp.falsg w.r.t. I'if A € I (resp.,A € I). A ground
negative literalot A is true w.r.t. I if A is false w.r.t. I;
otherwisenot A is false w.r.t.1.

Letr be a ground rule iground(P). The head of istrue
w.rt. Iif H(r)n I # 0. The body ofr is true w.r.t. I if
all body literals ofr are true w.r.t.7 (i.e., B*(r) C I and
B~ (r)nI = @) and isfalsew.r.t. I otherwise. The rule is
satisfiedor true) w.r.t. I if its head is true w.r.tI or its body
is false w.r.t.1.

A modelfor P is an interpretations for P such that every
ruler € ground(P) is true w.rt. M. A model M for P is
minimalif no model N for P exists such thaw is a proper
subset ofi/. The set of all minimal models fap is denoted
by MM(P).

Given a progran® and an interpretation, the Gelfond-
Lifschitz (GL) transformatiorf P w.r.t. 7, denotedp’, is
the set of positive rules

Pl ={a1V---Van:i—bi, -, by |
a1 V---Vay:—bi,- -, bg,not bgs1,---,not by,
isin groundP) andb; ¢ I,forallk < ¢ < m}
Definition 1 (Przymusinski 1991; Gelfond & Lifschitz
1991) LetI be an interpretation for a program I is an
answer sefor P if 1 € MM(P?) (i.e., I is a minimal model
for the positive prograr®’). O

Instantiation of Disjunctive Logic Programs:
DLV’s Strategy

In this section, we provide a short description of the overal
instantiation module of th®LV system, and focus on the

“heart” procedure of this module which produces the ground Rule Instantiation

instances of a given rule. In this section, we describe the process of rule instantiati

An input progran' is first analyzed by the parser, which _ the “heart” of the instantiation module — as it is currently
also builds the extensional database from the facts inthe pr jmplemented irbLv .

gram, and encodes the rules in the intensional database in @algorithm Instantiate

suitable way. Then, a rewriting procedure (see (Falei. Input R: Rule,I: Set of instances for the predicates occurring
1999)), optimizes the rules in order to get an equivalent pro in B(R);

gramP’ that can be instantiated more efficiently and that can Output S: Set of Total Substitutions;

lead to a smaller ground progrdmAt this point, another var L: Literal, B: List of Atoms,6: SubstitutionMatchFound
module of the instantiator computes the dependency graph Boolean;

of P, its connected components, and a topological ordering begin

of these components. Finallf/ is instantiated one compo- 9*: '))

nent at a time, starting from the lowest components in the retulrlnsithe Oferled t"si of the body literals
topological ordering, i.e., those components that depend o B _g"éc;dle’(’)i_’iﬁg)_as))

no other component, according to the dependency graph. L= L. S:=0 '

General Instantiation Algorithm Wh"&;gfg%{ MatchFound:

The aim of the instantiator is mainly twofold: (i) to if MatchFound

evaluate(-free) stratified program components, and (i) to if (L # lasf) then

generate the instantiation of disjunctive or unstratifiethe L:=NextLitera(L); _
ponents (if the input program is disjunctive or unstratified e'se(;f%i)a total substitution for the variables

In order to evaluate efficiently stratified programs (com-
ponents)DLV uses an improved version of the generalized
semi-naive technique (Ullman 1989) implemented for the

S=50U80,
L := PreviousLitera{L);
(* look for another solution *)

evaluation of linear and non-linear recursive rules. MatchFound= false:
If the input program is normal (i.e\-free) and stratified, 0 := 0 |previousvars(L);

the instantiator evaluates the program completely andmo fu else

ther module is employed after the grounding; the program L := PreviousLitera{L);

has a single answer set, namely the set of the facts and the 0 := 0 |Previousvars(L):

atoms derived by the instantiation procedure. If the input output S;

program is disjunctive or unstratified, the instantiatioa-p end, Figure 1: Computing the instantiations of a rule
cedure cannot evaluate the program completely. However, '

the optimization techniques mentioned above are useful to _ o

generate eﬁlClently the instantiation of the non-monatoni Procedure Match (L:L|teral, VaFQZSubStltutlon, vaMatchFound

part of the program. Two aspects are crucial for the instanti Eggi'r?a”)
(;;tl?f?e: number of generated ground rules if MatchFoundthen (* this is the first try on a new literal *)
.) Lo FirstMatch(L, 8, MatchFound);
(b) the time needed to generate such an instantiation. else(* the Iastr(match failed, Ioolg)for another match on a
The size of the generated instantiation is important becaus previous literal *)
it strongly influences the computation time of the other mod- NextMatcliL, §, MatchFound;

ules of the system. A slower instantiation procedure gener- end,

ating a smaller grounding may be preferable to a faster one Procedure FirstMatch (L: Literal, var #: Substitution, var
generating a large grounding. However, the time needed by MatchFound Boolean)

the former can not be ignored otherwise we could notreally (+ | ook in the extensiori;, for the first tuple of values match-

have a computation time gain. ing 6, and possibly updaté accordingly. The boolean variable
The main reason of large groundings even for small input ~ MatchFounds assigned True if such a matching tuple has been
programs is that each atom of a rule7thmay be instan- found; otherwise, it is assigned False. *)

tiated to many atoms ifp, which leads to combinatorial procedure NextMatch (L: Literal, var 6: Substitution, var

explosion. However, most of these atoms may not be deriv- MatchFound Boolean)

able whatsoever, and hence such instantiations do notrende

applicable rules. The instantiator module generates groun))

instances of rules containing only atoms which can possibly Figure 2: The matching procedures

be derived fronP. The algorithminstantiate shown in Figure 1, generates
>Note that the rewriting technique in (Faber al. 1999) is all the pQSS'ble mstan.tlatlons for a ruteof a prpgramP.

much advanced, anDLV actually implements a simplified ver- V_Vhe_n this procedure is CaIIe_d, fo_r each pr_edlqam:cur-

sion. However, we are not currently aware of any system exploiting "Ng in the body ofr we are given its extension, as a gpt

such “clever” techniques. Furthermore, these kind of optimizations containing all its ground instances. We say that the mapping

could require a very high computational overhead, hence loosing 6 : var(r) — Up is a valid substitution for if it is valid for
their positive effects. every literal occurring in its body, i.e., if for every pdsé

(* Similar to FirstMatch, but finds the next matching tuple. *)

literal p (resp., negative literalot p) in B(r), 0p € I, (resp.
Op ¢ I,,) holds. Instantiateoutputs all such valid substitu-
tions forr, which are in a one-to-one correspondence with
the ground instances ofwe are interested in.

Note that, since the rule is safe, each variable occurring ei
ther in a negative literal or in the head of the rule appeas al
in some positive body literal. For the sake of presentation,

backtrack directly to atom. (X, Z), where this variable has
been instantiated. Thus, jumping over beiliZ, H, T) and
p+(T, W) can allow us to save a very large amount of time,
especially if the extensions @f andp, contains many tu-
ples.

In order to overcome such troubles, a number of exten-
sions of the backtracking technique have been described in

we assume that the body is ordered in a way such that any ihe Jiterature — see Section on related work. However, for

negative literal always follows the positive atoms contain
ing its variables. ActuallyDLV has a specialized module

different reasons, none of these proposals perfectly fits ou
needs. E.g., some of them are designed only for binary con-

that computes a clever ordering of the body (Leone, Perri, giaint satisfaction problems, and for computing any $aiut

& Scarcello 2001) (e.qg., exploiting the quantitative infa-
tion on the size of any predicate extension) that satisfies th
assumption.

Instantiatefirst stores the body literalg, ..., L, into
an ordered lisB = (null, L1, - - -, Ly, last). Then, it starts
the computation of the substitutions fer To this end, it
maintains a variablé, initially set tof}, representing, at each
step, a partial substitution fewr(r).

Now, the computation proceeds as follows: For each lit-
eral L;, we denote byPreviousVars(L;) the set of vari-
ables occurring in any literal that precedés in the list
B, and by FreeVars(L;) the set of variables that occurs
for the first time inL;, i.e., FreeVars(L;) = var(L;) —
PreviousVars(L;).

At each iteration of thewhile loop, we try to find a
match for a literalL; with respect tod. More precisely, if
FreeVars(L;) # 0, we look for an extension @fto the vari-
ables inFree Vars(L;); otherwise, we simply check whether
f is a valid substitution fof;. This is accomplished by the
proceduréMatch(figure 2) that, in turns, callBirstMatchif
this is the first attempt to find a match fag, or NextMatch
if we already have a valid substitution fér and we have to
look for a further one.

for a given problem instance. Rather, we need a specialized
algorithm that should be able to compute efficiently all in-
stantiations of a rule with predicates of arbitrary arithigh
corresponds to finding all solutions of general (non-bihary
constraint satisfaction problems.

A Backjumping Technique for ASP Programs
Instantiation
Some Motivations

As observed in a previous section, the rule instances of a
program’P may contain many atoms that are not derivable
whatsoever, and hence such instantiations do not render ap-
plicable rules. A good instantiator should generate ground
instances of rules containing only atoms which can possibly
be derived froniP.

To this end, e.g., th®LV instantiator exploits the de-
pendencies among predicates. The instantiation starts by
evaluating first the rules defining predicat@sthat depend
on no other predicates (that is, only defined by facts), then
the predicate$’ that only depend on predicates iy, and
so on. It is worthwhile noting that, if the input program is
normal (i.e.,v-free) and stratified, this instantiator evaluates

If there is no such a substitution, then we backtrack to the the program completely and no further module is employed

previous literal in the list, or else we consider two casés: i

after the grounding; the program has a single answer set,

there are further literals to be evaluated, then we continue namely the set of the facts and the atoms derived by the in-

with the next literal in the list; otherwisé,encodes a (total)
valid substitution and is thus added to the outputSsdEven
in this case, we backtrack for finding another solution,&inc
we want to computell instantiations of-.

Note that this kind of classical backtracking procedure
works well for rules with a few literals and with a few tu-
ples for each predicate extension. Howewsty has been

stantiation procedure. If the input program is disjunctive
unstratified, the instantiation procedure cannot evaltiste
program completely.

Even in this case, at each step of the instantiation process,
we have a number of predicates, that we salived such
that the truth values of all their ground instances are direa
fully determined by the instantiator (each instance of them

designed to work even for manipulating complex knowledge s already known to be true or to be false, none is undecided
on large databases, and for such applications the simple al- - undefined). For instance, all predicatesipare solved, as

gorithm described above is not satisfactory.

Example 2 Suppose we want to compute all ground instan-
tiations of the rule

r2: a(X7 Y) :_pl(X7 Y),pz(X7 Z)7p3(Z7 H, T),p4(T, W)7

ps(X,V, Z),ps(X,Y,V).

and that we have already computed a partial substitétion
for the variableg X, Y, Z, H,T,W}, but we are not able to
find a consistent value fdr in the extension ofs, in order
to extendd. In this case, according to the algorithm in Fig-
ure 1, we should backtrack to the previous literal How-
ever, the failure on atoms (X, V, Z) is independent of vari-
ables{H, T, W}, and thus we should just find another possi-
ble value forZ. It follows that, intuitively, we could safely

well as all predicates that only depend on solved predicates
It follows that none of these predicates should occur in the
rules (but the facts) of the ground progrdi produced by
the instantiator. All the predicates occurring in the rudés

P’ should be unsolved, and will be evaluated by the answer
set solver.

Example 3 Consider the following rule
1 a(X7 Z) :_QI(X, 27 Y)7q2(W7 T7 5)7(13(‘/7 T: H)7
au(Z,H),q5(T, S, V).
Suppose we know that predicatgs ¢4, andg; are solved,
and consider the following ground instancesifor
(l(l‘l, Zl) Z*Ql(fl?l, 21, y1)7 (Jz(w1, t17 81)7 q3(vl7 tla h1)7
qa(z1, h1),gs5(t1, 51,v1).

a(z1,21) :—qi(x1, 21, 91), @2(wa, t1, s1), g3 (ve, ta, h1),
qa(z1,h1), gs(t1, s1,v2).

a(z1,21) —qi(z1, 21, 91), g2(w1, t1, $1), g3 (v100, t1, R100),
qa(z1, h100), gs(t1, s1, v100)-

Now, assume that all these instances are applicable, that is
all instances of the atoms over the solved predicaieg,
andgs are true, and all instances of the atoms over unsolved
predicates (i.e. atomg (x1, 21, 1), g2 (w1, t1, s1)) could be
true (i.e., they are not provably false, at this point). Then
it is easy to see that all these 10000 rules are semantically
equivalent to the single instance

a(z1,21) =—q1(x1, 21,91), g2 (w1, t1, 51).

Thus, we only need all the (applicable) instantiations of
unsolved predicates, while the solved ones are just used to
validate such instances. More precisely, we are not inter-
ested in finding all the "consistent” substitutions for altiv
ables, but rather their restrictions to the only variablext t
occur in literals over unsolved predicates. We call such var
ables theelevant variablef a ruler, and any applicable
ground instance projected onto the unsolved predicates (as
the one shown in the above examplegkevant instancéor
r. These ground rules should be included in any sound in-
stantiation ofP.

The BJ_Instantiate algorithm

In this section, we describe the AlgorithBu_Instantiate

that given a rule- and a set of relevant variabl€aitputVars
returns a set of substitutions for these variables whictehas
one-to-one correspondence with the set of all and only the
ground instances of we are interested in.

That is, we do not generate all those ground instances
of r that differ only on non-relevant variables. Formally,
BJ_Instantiatereturns the projections o®utputVarsof all
the valid substitutions for. We call these substitutions the
relevant solution®f our problem.

The basic schema of this algorithm is no more the clas-
sical backtracking paradigm, but rather a structure-based
backjumping paradigm, well studied in the constraint sat-
isfaction area (see., e.g., (Dechter 1990; Tsang 1993)). In
these kind of algorithms, when some backtrack step is nec-
essary, it is possible to jump more than one element, rather
than just one, as in the standard chronological algorithin. O
course, such jumps should be designed carefully, in order to
avoid that some solution is missed, especially in our case,
where we have to compute all solutions.

Let » be a rule andB the ordered list of its body liter-
als (wull, Ly, -, Ly,,last). We say thatL; (1 < i < n)
is a binder for a variableX if there is no literalL;, with
1 < j < isuchthatX € var(L;). Moreover, for a set of
variablesl” and a literalL, let ClosestBindgL,V") denote
the greatest literal; among the binders of the variables in
V. A crucial notion in our algorithm is th€losest Success-
ful Binder (CSB), which represents, intuitively, the greatest
literal that is a binder of some variahlé whose current as-
signed value belongs to the last computed solution. The CSB
acts as a barrier for some kind of jumps, as described later
in this section.

Algorithm BJ_Instantiate
Input R: Rule,I: Set of instances for the predicates occurring
in B(R), OutputVars Set of Variables;
Output S: Set of Substitutions;
var L: Literal, B: List of Atoms,§: SubstitutionC'S B: Literal,
Status MATCH _STATUS;
begin
0=40;
(* returns the ordered list of the body literalsu(l, L+, - - -,
L., last) *)
B := BodyToListR);
L = L,; Status= SuccessfulMatch;
CSB :=null; S:=0;
while L # null
Match(L, 0, Statu$;
switch (Statu$
caseSuccessfulMatch
if (L # last) then
L = NextLitera(L);
else(* 0 is a total substitution for the variables
of R*)
S=5uUd ‘OutputVa'rs;
L := BackFromSolutionFour(d,, C'S B, Status;
0:=0 |Previ0usVars(L);
break;
caseFailureOnFirstMatch
L := BackFromFailureOnFirstMatcfl, C'SB);
0:=0 ‘PreviousVars(L);
break;
caseFailureOnNextMatch
L := BackFromFailureOnNextMat¢f., C'S B);
0:=0 ‘PreviousVars(L);
break;
output S;
end;
Figure 3: The BJnstantiate algorithm

Another important point is the structure of the relation-
ships among the literals in the body. We say that, for
any pair of literalsL;, L; in B, L; <4 L; if i < j and
var(L;) Nwvar(L;) # 0. Let < denote the transitive clo-
sure of the<, relationship and, for any literal in B, let
dep(L) = U1/ p <1y var(L'). Intuitively, this is the set of
variables that depends on the instantiation of the litéral
and we refer to it as théependency seff L.

Example 4 As a running example in this section, consider
the following rule
rs:a(X,Y,Z) i —q1 (X, T,W),q2(X,Y),q3(Z,5),q1(Z,V),

q5(Ta H)7 q6(H7 T, V)

It is easy to check that the dependency set of literal
qs(T, H) is {T, H, V}, while the dependency set gf(Z, S)
is{Z,S,V,H,T}.

In order to instantiates, our algorithm needs the addi-
tional information on the relevant variables and the alyead
known instances for the predicates occurring in the body.
Then, assume th@utputVars = {X,Y, Z, T, W}, and that
we are given the following extensions for the predicates oc-
curring in B(rs):

{1 (%1, t1,w1), q1 (21, b2, w1) }, {q2 (21, y1), g2 (21, y2) },

{g3(21,51)},{qa(21,v1), qa(21,v2)},
{a5(t2, h1), g5 (t2, ha)}, {g6(h2, t2,v1), g6 (h2, t2, v2) }

enum MATCH_STATUS = { SuccessfulMatch, FailureOnFirst-
Match, FailureOnNextMatch

Procedure Match(L:Literal, varf:Substitution, vaStatus
MATCH _STATUS)
begin
if Status= SuccessfulMatcthen
(* the last match was successful, this is the first try
on a new literal *)
FirstMatch(L, 6, Statu3;
else(* the last match failed, look for another match on a
previous literal *)
NextMatcliL, 6, Statu3;
end;

Procedure FirstMatch (L: Literal, vard: Substitution, vaStatus
MATCH _STATUS)

(* Look in the extensionf, for the first tuple of values matching
0, and possibly updaté accordingly. Statusis assigned Suc-
cessfulMatch if such a matching tuple exists; otherwise, it is
assigned FailureOnFirstMatch *)

Procedure NextMatch(L: Literal, var@: Substitution, vaiStatus
MATCH _STATUS)

(* Similar to FirstMatch, but finds the next matching tuple. In
case of failureStatuss set to FailureOnNextMatch *)

Figure 4: Matching procedures f8J_Instantiate

Figure 3 shows the algorithBJ_Instantiate As for Algo-
rithm Instantiate at each iteration of thevhile loop, the
procedureMatch tries to find a match for a literal; with
respect to the current partial substitutién If it succeeds
and L; is not the last literal, then we can proceed with the
next literal L, ;. Otherwise, we have to backtrack, and thus

we have to decide where to jump and, possibly, update the
current CSB. Now, we have a number of different cases to be

handled, depending on the outco®tusof the procedure
Match

1. Success, and encodes a total substitution Since also
the match on the last literal is successffilencodes a
valid substitution for the variables in and its restriction
to OutputVarsis therefore added to the set of solutions.
Then, in order to look for further solutions, we have to
backtrack. However, in this algorithm, we are not forced
to go back to the previous literal. Rather, we can jump
to the closest literal.; binding a variable of interest, that
is, jump toClosestBindgast,OutputVary. Moreover, in
this case the CSB is set Io;.

Example 5 In our running example, the algorithm is able
to find the total substitutiod(X) = z1, 0(Y) = w1,
H(Z) = 21, G(T) = tg, Q(W) = W1y, Q(S) = 51, H(V) =
vy, andf(H) = hy. That is, we have a match for all the
literals in B and we are alast. Then, the restriction of

to the set of relevant variables is addedstoln our case,
this solution corresponds to the following instance f

a(zi,y1,21) —qi(z1, t2,w1), g2(x1, 1), q3(21, 51).

Now, according to the algorithm, we jump back to
q3(Z, S) for finding other solutions. Note that we do not
look for further consistent tuples in the extensiong.of
g5, andgg, because they do not bind any relevant variable.

Indeed, possible solutions coming from other instances

Function BackFromFailureOnFirstMatcl¢L: literal, varC'S B:
Literal): Literal;
begin (* the first match on a new literal failed *)

L’ := ClosestBind€g(Z, Varg(L));

if L' < CSB then

CSB:=L";

returnL’;

end;

Function BackFromFailureOnNextMat¢l.: Literal, varC'S B:
Literal): Literal;
begin (* failure looking for another match faok *)

if L =CSB then

C'SB := ClosestBindgL,OutputVars);

L’ := ClosestBindgiL,DepVargL))
return max {L’, CSB};
end;

Function BackFromSolutionFour(d.: Literal, varC'S B: Literal,
var Status MATCH _STATUS) : Literal;
begin
Status = FailureOnNextMatch; (* look for another solution *)
C'S B := ClosestBindg{L,OutputVars;
returnCSB;
end;

Figure 5: Backjumping procedures fBd_Instantiate
of these predicates (e.g., the solution witfl”) = wv5)

would just lead to useless rules in the instantiation of the
program at hand. Finally, the CSB is sefjto

2. Failure at the first attempt to find a match for a

literal L;. We jump back to the closest literdl;
binding any of the variables ir;, that is, jump to
ClosestBindgd;,var(L;)). Indeed, in this case, the only
way for finding a match fof; is to change the assignment
for some of its bound variables. Moreover/if precedes
CSB, then we can push back CSBZg. This will make
the next type of jumps less restrictive, see case 3 below.

Example 6 In our running example, the first time that we
try to find a match forgs, we have computed the partial
substitutiond(X) = z1, 0(Y) = y1, 0(Z) = z1,0(T) =

t1, 6(W) = wy, andf(S) = s;. In this case, we are
not able to find any matching instance in the extension
of ¢5. Indeed, none of its instances has a valudor
variableT. Then, we have to change the value assigned
to one of the variables occurring i3, and thus we can
safely jump overy,, g3, andgs, and try to match again
¢1(X,T,W). Indeedy is the closest binder farar(gs),

as it determines the value for varialile

3. Failure while looking for another match for a literal

L;. Inthis case[; is a binder of some set of variabl&g

and we fail in finding a different consistent substitution
for these variables. Since we were successful on our first
attempt to deal with_;, this means that, for some reason,
we jumped back td’; from some later item, say;, of

the list B. Now, we have to decide where to jump after
the current failure, and this time the variables occurring
in L; are not the only candidates to be changed. Rather,
we have to look at the dependency setigf as shown
below.

Example 7 Assume that, in our running example, we are all variables occur in the rule head (which is very often the
looking for another match fags;(Z, S) and that the CSB case), we may focus only on some kind of substitutions, and
is set tog; (X, T,W). According to the algorithm, we we can get rid of a large number of solutions, that we do not

have to jump taj;, even if it is not a binder for any vari- generate at all, with a clear computational advantage (wit-
able occurring ing3. The reason is thaf; is a binder nessed by our experiments, see the next section).
for T, which belongs to the dependency setgef and Our algorithm is also strongly related to the various back-

changing its value may lead to some new solution (possi- jumping techniques proposed for solving constraint satisf
bly comprising values already considered for the variables tion problems (CSPs), described in (Tsang 1993). Indeed,
occurring ings). note that the rule instantiation problem can be viewed as a
CSP. However, most of these algorithms focused on prob-
lems with just binary constraints, and looking for just one
solution — typically, anyone. On the contrary, in our con-
text, we have to compute efficiently all instantiations of a
rule with predicates of arbitrary arity, which correspomnals
the problem of finding all solutions of general (non-binary)
constraint satisfaction problems.

Another important issue concerns the management of the
CSB. First, we check whether the current litefalcoin-
cides with the CSB. If this is the case, we push back the
CSB toClosestBindg(L;,OutputVar3. In this case, it acts

as a barrier and cannot be jumped, otherwise we can miss
some relevant solution as the following example shows.

Example 8 Let us continue from the execution step de- In the CSP community, a recent proposals in this direc-
scribed at point 1 above, where we have found our tion is described in (Chen & van Beek 20001). In this pa-
first solution. Recall that we jumped back 4g(Z, S) per, the authors provide a revised version of the conflict-

and the CSB is set to this literal. In this case, the jrected backjumping algorithm, with a variation that alo
CSB is first pushed back tg,(X,Y), which is the the algorithm to compute all solutions of a CSP, without

g(l)?giensél?(i)n?he(e@:a (eZp7 eSn) dgrl:é?/u;\é?r\/%e I:jg’jgr\;]ep? ig V\?ec_ completely degenerating to the chronological backtragkin
are forced to stop our jumping back to liteggl(X, Y), Their approach _also W(_)rks f_or no_n—binary CSPs.
because of the CSB limit. It is worthwhile noting that, if However, their algorithm is quite different from ours for

we go directly tog; (X, T, W), we miss the solution ob- 'the following reasons: (i) The way variables are made bqund
tainable by assigning, to variableY” and corresponding is the same as the usual algorithms proposed for binary
to the following instance ofs: CSPs. That is, they consider a variable at a time, while
a(z1,y2, 21) —q1 (21, t2, w1), g2 (1, Y2), g3 (21, 51). our technique is based on the instantiation of an atom at a
) o time. In fact, we introduced the notion of closest succdssfu
Theorem 9 Algorithm BJ.Instantiateis sound and com- pinder (an atom), and we guarantee the algorithm complete-
plete. That is, given a rule, the ground instances for the npess in a different way. (i) They have no notion of relevant
predicates occurring in its body, and the set of its relevant yariables, and thus their algorithm misses one of the distin

variables OutputVarsBJ Instantiatecomputes the set con- qgyishing features of our proposal, as discussed above.
taining all and only the projections over OutputVars of the

valid substitutions for- Experimental Results and Conclusions
Related Work Benchmark Programs

In order to overcome the troubles of traditional backtrack- In order to check the validity of the proposed method, we
ing, many extensions and improvements of this technique have implemented itin the grounding engine of th& sys-

have been described in the literature, both in the logic pro- tem, and we have run it on a collection of benchmark pro-
gramming and in the constraint satisfaction communities. grams taken from different domains. For space limitation,

For instance, we recall thatelligent backtrackingech- we do not include the code of benchmark programs; how-
nigue developed in (Bruynooghe & Pereira 1984) for evalu- ever they are available, together with the binary codeLef
ating logic programs, and thintelligent backtrackingech- equipped with the new instantiatior, at the Web page
nique developed in (Shen. 1996) for a parallel implementa- //wwwinfo.deis.unical.it/"frank/Backjumping .
tion of Prolog. In particular, in the latter paper, the autho Moreover, we give below a very short description of

defines the notion of groups, which are clusters of atoms that the problems that are encoded in these benchmark pro-

are independent of other clusters of atoms in a rule. Exploit grams:CONSTRAINT-3COL[25,35] A one-rule encoding of

ing groups, itis possible to jump back in a clever way. How- 3-colorability (the classical encoding of 3-colorabilig a

ever, inside groups, his approach works as the sequential constraint satisfaction problem), on a graph with 25 nodes

backtracking, apart for some special features dealing with and 35 edges.

parallelism issues, and completely unrelated to our work. ~ CONSTRAINT-3COL[30,40] Similar to the previous one, but
Note that our algorithm allows a more sophisticated way on a graph with 30 nodes and 40 edges.

of jumping back, based on the dependencies among vari- CONSTRAINT-5COL[20,30]Again, a one-rule encoding of

ables, and that jumping based on groups can be viewed as acolorability, but for 5 colors and on a graph with 20 nodes

special case of our method. Moreover, in Shen’s work there and 30 edges.

is no notion of relevant variables (according to our mean- SCHEDULING A scheduling program for determining shift

ing of "relevance”). This is a crucial feature of our algo- rotation of employees.5

rithm. Indeed, whenever some predicates are solved and notCRISTAL Deductive databases application that involves

Program Backtracking| Backjumping The results confirm the intuition that the new
CONSTRAINT-3COL[25,35] 0.75s 0.01s backjumping-based procedure outperforms the previ-
CONSTRAINT-3COL([30,40] 12.67s 0.01s ous one in many cases, and can be very useful for improving
CONSTRAINT-5COL[20,30] - 0.01s the efficiency ofbLV (and of any other ASP system that
SCHEDULING 3.19s 2.89s could exploit its instantiator).

gglosl_T-éll_MPLEx f.21412 g'%’z Of'course, the speed-up is not that high if we have to in-
3COL-LADDER 8483 s 52 895 stantiate programs where aI_I r_ules_ar_e very sh(_)rt, and where
HP-RANDOM 0.73s 0.74s thus the two procedures exhibit a similar behavior. Notg tha
K-DECOMP 9.36s 9.54s in some cases, the old procedure can be also slightly better
RAMSEY(3,7)# 19 27.53s 18.17s than the new one, since the latter has some overhead due to
RAMSEY(3,7)# 20 38.01s 34.84s the computation of the dependency sets and the management
RAMSEY (3,7)# 20, v-free 37.57s 33.11s of the CSB. This is witnessed, e.g., DECOMP .
TIMETABLING _S 321.82s 182.20s However, we have an impressive speed-up when pro-
TIMETABLING .U 128.55s 71.26s grams contain some rules with many literals in their bod-

ies and/or when such rules have a few relevant variables
Table 1: A comparison between the backtracking and the (i.e., many solved predicates occur in their bodies). Fer in
backjumping techniques stance CONSTRAINT-5COL[20,30] consists of a single long
rule where all predicates are solved. In fact, in this exeem
case, we stopped the old procedure that was still running af-
ter 10 minutes, while the new one instantiated the program
almost instantaneously. In particular, note that, the alckb
tracking technique generates for this problem thousands of
redundant rule instances. For instance, the instantiation
the smaller problen€ONSTRAINT-3COL[30,40], generated
by the old procedure, consists of 512328 rules while the new
procedure generates an instantiation containing justaee r

Moreover, note that we may have a very good speed-
up even if all variables are relevant, as witnessed by
TIMETABLING andRAMSEY(3,7).

Currently, our experimentation activity continues on fur-
ther benchmark problems. Also, we are evaluating the qual-
ity of the ground programs computed by the algorithm, as
well as the impact of such instantiations on the overall sys-
tem performance.

complex knowledge manipulations on databases, developed
at CERN in Switzerland.

3COL-SIMPLEX 3-colorabity on a simplex graph with 1980
edges and 1035 nodes.

3COL-LADDER 3-colorabity on a ladder graph with 8998
edges and 6000 nodes.

HP-RANDOM Hamiltonian Path on a random graph with
700 edges and 85 nodes.

K-DECOMP Decide whether there exists a hypertree
decompositon (Gottlob, Leone, & Scarcello 1999) of a
conjunctive query having widtiK.

RAMSEY(3,7) # 19 Prove that 19 is not the Ramsey number
Ramsey(3,7) (Radziszowski 1999).

RAMSEY(3,7) # 20 Similar to the previous one but proving
that 20 is not the Ramsey numhbRtmsey(3, 7).

RAMSEY(3,7) # 20 Disjunction-free encoding of the Ram-
sey Numbers problem, proving that 20 is not the Ramsey
numberRamsey (3, 7).
TIMETABLING S An
timetabling problem.
TIMETABLING _U An instance of the university timetabling
problem.

Acknowledgments

This work was supported by the European Commission un-
der project INFOMIX, project no. 1IST-2001-33570.

References

Anger, C.; Konczak, K.; and Linke, T. 200INoMoRe

A System for Non-Monotonic Reasoning. Rroc. of the
6th Int. Conference Logic Programming and Nonmono-
tonic Reasoning, LPNMR’'01406-410. Springer Verlag.

Aravindan, C.; Dix, J.; and Niemé&] |. 1997. DisLoP: A
Research Project on Disjunctive Logic Programmir#y.
Communications — The European Journal on Atrtificial In-
telligencel0(3/4):151-165.

Arieli, O.; Denecker, M.; Van Nuffelen, B.; and
Bruynooghe, M. 2004. Database repair by signed formu-
lae. InFoundations of Information and Knowledge Sys-
tems, Third International Symposium (FolKS 2Q049I-
ume 2942 oLNCS 14-30. Springer.

instance of the high-school

Discussion and Conclusion

We implemented AlgorithnBJ_Instantiatein C++ and we
integrated it in the Instantiator module in tbeV system.
Then, we run a number of experiments by using the above
benchmark problems, in order to compare the performance
of the previous backtracking-based rule instantiator with
new method proposed in this paper. All binaries were pro-
duced by the GNU compiler GCC 3.2.2, and the experiments
were performed on a Intel XEON 2.2 GHz with 1 Gbytes of
main memory.

Table 1 shows the results of our tests. For each bench-
mark programP described in column 1, column 2 (respec-
tively, 3) reports the times employed to instantidteby

using DLV, when AlgorithmInstantiate (resp., Algorithm Babovich, . since 2002. Cmodels homepage.
BJ.Instantiatd is used in the rule instantiator module. All http:(/j/m;wmcsl.utexas.edu/users/tag/
cmodels.htm

running times are expressed in seconds. The symbol
means that the instantiator did not terminate within 10 min-
utes.

Bruynooghe, M., and Pereira, L. 1982eduction revision
by intelligent backtrackingEllis Horwood.

Chen, X., and van Beek, P. 20001. Conformant Planning
via Symbolic Model CheckingJournal of Artificial Intel-
ligence Research4:53-81.

Chen, W., and Warren, D. S. 1996. Computation of Stable
Models and Its Integration with Logical Query Processing.
IEEE Transactions on Knowledge and Data Engineering
8(5):742-757.

Dechter, R. 1990. Enhancement schemes fo constraint pro-
cessing:backjumping, learning and cutset decomposition.
Artificial Intelligence41.

Dix, J.; Kuter, U.; and Nau, D. 2002. Planning in An-
swer Set Programming using Ordered Task Decomposi-
tion. Journal of the Theory and Practice of Logic Pro-
gramming Revised version under submission. Short paper
to appear in KI 2003).

East, D., and Truszcagki, M. 2000. dcs: An Implemen-
tation of DATALOG with Constraints. IfProc. of the 8th
International Workshop on Non-Monotonic Reasoning

East, D., and Truszchgki, M. 2001. Propositional
Satisfiability in Answer-set Programming. Rroc. of
Joint German/Austrian Conference on Artificial Intelli-
gence, KI'’2001138-153. Springer Verlag, LNAI 2174.

Egly, U.; Eiter, T.; Tompits, H.; and Woltran, S.
2000. Solving Advanced Reasoning Tasks using Quanti-
fied Boolean Formulas. IRroc. of the 17th National Con-
ference on Atrtificial Intelligence (AAAI'OQA17-422.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scar-
cello, F. 1997. A Deductive System for Nonmonotonic
Reasoning. IrProc.of the 4th Int. Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR'97)
363-374. Springer.

Eiter, T.; Leone, N.; Mateis, C.; Pfeifer, G.; and Scarcello
F. 1998. The KR Systerdlv : Progress Report, Compar-
isons and Benchmarks. Froc. 6th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR'98) 406—417. Morgan Kaufmann Publishers.

Faber, W.; Leone, N.; Mateis, C.; and Pfeifer, G. 1999. Us-
ing Database Optimization Techniques for Nonmonotonic
Reasoning. IrfProc. of the 7th Int. Workshop on Deductive
Databases and Logic Programming (DDLP’9935-139.

Gelfond, M., and Lifschitz, V. 1991. Classical Negation in
Logic Programs and Disjunctive Databaséew Genera-
tion Computing?:365-385.

Gottlob, G.; Leone, N.; and Scarcello, F. 1999. Hyper-
tree Decompositions and Tractable QueriesPioc. of the
18th ACM Symposium on Principles of Database Systems
— PODS'99 21-32. Full paper idCSS

Janhunen, T.; Niem@] |.; Simons, P.; and You, J.-H. 2000.
Partiality and Disjunctions in Stable Model Semantics. In
Proc. of the 7th Int. Conference on Principles of Knowl-
edge Representation and Reasoning (KR 2000)—419.
Janhunen, T.; Niem@] |.; Seipel, D.; Simons, P.; and You,
J.-H. 2003. Unfolding Partiality and Disjunctions in Sta-
ble Model Semantics. Technical Report ¢s.Al/0303009,
arXiv.org.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
Perri, S.; and Scarcello, F. 2004. The DLV System for
Knowledge Representation and Reason®@M Transac-
tions on Computational Logid-orthcoming.

Leone, N.; Perri, S.; and Scarcello, F. 2001. Improving
ASP Instantiators by Join-Ordering Methods. Rroc. of
6th Int. Conference, Logic Programming and Nonmono-
tonic Reasoning, LPNMR’01, Vienn&pringer Verlag.

Lierler, Y., and Maratea, M. 2004. Cmodels-2: SAT-based
Answer Sets Solver Enhanced to Non-tight Programs. In
Proc. of the 7th Int. Conference on Logic Programming and
Non-Monotonic Reasoning331-335.

Lin, F., and Zhao, Y. 2002. ASSAT: Computing Answer
Sets of a Logic Program by SAT Solvers. Pmnoc. of the
18th National Conference on Artificial Intelligence (AAAI-
2002) Alberta, Canada: AAAI Press / MIT Press.

McCain, N., and Turner, H. 1998. Satisfiability Planning
with Causal Theories. IRroc. 6th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’98) 212—-223. Morgan Kaufmann Publishers.

NiemeB, I., and Simons, P. 1997. Smodels — An Im-
plementation of the Stable Model and Well-founded Se-
mantics for Normal Logic Programs. Rroc. of the 4th
Int. Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’97%120-429. Springer Verlag.

Przymusinski, T. C. 1991. Stable Semantics for Disjunctive
ProgramsNew Generation Computir@401-424.

Radziszowski, S. P. 1999. Small Ramsey Numbéiise
Electronic Journal of Combinatorick. Rev. 9: July, 2002.

Rao, P.; Sagonas, K. F.; Swift, T.; Warren, D. S.; and Freire,
J. 1997. XSB: A System for Efficiently Computing Well-
Founded Semantics. Proc. of the 4th Int. Conference on
Logic Programming and Non-Monotonic Reasoning (LP-
NMR’97), 2-17. Springer Verlag.

Sarsakov, V.; Schaub, T.; Tompits, H.; and Woltran, S.
2004. nlp: A Compiler for Nested Logic Programming.
In Proc. of the 7th Int. Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR-351-364.
Seipel, D., and Tone, H. 1994. DisLog — A System for
Reasoning in Disjunctive Deductive Databases.Ptoc.

Int. Workshop on the Deductive Approach to Information
Systems and Databases (DAISD’9325-343. (UPC).
Shen., K. 1996. Overview of DASWAM: Exploitation of
Dependent And-parallelismJournal of Logic Program-
ming 29(1-3):245-293.

Simons, P.; Niemd, |.; and Soininen, T. 2002. Extending
and Implementing the Stable Model Semantigstificial
Intelligencel38:181-234.

Syrjanen, T. 2002. Lparse 1.0 User's Manual.
http://www.tcs.hut.fi/Software/smodels/
Iparse.ps.gz

Tsang, E. 1993.Foundations of Constraint Satisfaction
Academic Press.

Ullman, J. D. 1989Principles of Database and Knowledge
Base System&omputer Science Press.

