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Abstract

We address the problem of what a good domain description
for reasoning about actions should look like. We state some
metatheoretic postulates concerning this sore spot, which es-
tablishes the notion of a modular domain description. We
point out the problems that arise when modularity is violated
and propose algorithms to overcome them.

Introduction

In logic-based approaches to reasoning about actions a do-
main is described by a set of logical formulas X. At first
glance satisfiability is the only criterion logic provides to
check the quality of such a description. In this paper we go
beyond that, and argue that we should require more than the
mere existence of a model for 3.

Our starting point is that in reasoning about actions
one usually distinguishes several kinds of logical formulas.
Among these are effect axioms, precondition axioms, and
domain constraints. In order to distinguish them from logi-
cal axioms, we prefer to speak of effect laws, executability
laws, and static laws, respectively. Moreover we single out
those effect laws whose effect is L, and call them inexe-
cutability laws.

Given these ingredients, suppose the language is power-
ful enough to state that action « is inexecutable in contexts
where A holds, and executable in contexts where B holds.
It follows that there can be no context where A A B holds.
Now —(AA B) is a static law that is independent of «, and it
is natural to expect that it follows from the static laws alone.
By means of examples we show that if this is not the case,
then unexpected conclusions might follow from .

This motivates postulates requiring that the different in-
gredients of domain descriptions should be arranged in a
modular way, such that interactions between them are lim-
ited and controlled. It will turn out that in all existing ac-
counts which allow for these four kinds of laws (Lin 1995;
McCain & Turner 1995; Thielscher 1995; Castilho, Gas-
quet, & Herzig 1999; Zhang & Foo 2001), consistent do-
main descriptions can be written that violate some of these
postulates. We here give algorithms that allow one to check
whether a domain description satisfies the postulates. With
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such algorithms, the task of correcting flawed domain de-
scriptions can be made easier.

Domain descriptions

In this section we establish the ontology of domain descrip-
tions.

Static laws Frameworks which allow for indirect effects
make use of logical formulas that link invariant propositions
about the world. Such formulas characterize the set of possi-
ble states. They do not refer to actions, and we suppose they
are expressed as formulas of classical propositional logic.
We here use the syntax of propositional logic, but all we
shall say applies as well to first-order frameworks, in par-
ticular to the Situation Calculus (McCarthy & Hayes 1969).
PFOR = {4, B,...} is the set of all classical formulas.

A static law! is a formula A € PFOR that is consistent.
An example is Walking — Alive, saying that if a turkey is
walking, then it must be alive (Thielscher 1995).

Effect laws Let ACT = {a, 0, ...} be the set of all actions
of a given domain. To speak about action effects we use the
syntax of propositional dynamic logic (PDL) (Harel 1984).
The formula [«] A expresses that A is true after every pos-
sible execution of a. [«][3]A should be interpreted in the
usual way as [a; O] A.

An effect law? for « is of the form A — [a]C, where
A, C € PFOR, with A and C both classically consistent.
(‘Classically consistent” is a shorthand for ‘consistent in
classical propositional logic’.) The consequent C' is the ef-
fect which obtains when « is executed in a state where the
antecedent A holds. An example is

Loaded — [shoot]—-Alive,

saying that whenever the gun is loaded, after shooting the
turkey is dead. Another one is [tease]Walking: in every cir-
cumstance, the result of teasing the turkey is that it starts
walking.

1Static laws are often called domain constraints, but the differ-
ent laws for actions that we shall introduce in the sequel could in
principle also be called like that.

2Effect laws are often called action laws, but we prefer not to
use that term here because it would also apply to executability laws
that are to be introduced in the sequel.



Note that the consistency requirements for A and C make
sense: if A is inconsistent then the effect law is superfluous;
if C is inconsistent then we have an inexecutability law, that
we consider to be a separate entity.

All our postulates can be stated as well for other
frameworks, in particular for action languages such as
A, AR and others, and for Situation Calculus based
approaches. In action languages one would write
shoot causes —Alive if Loaded, and in the Situation Cal-
culus formalism it would be

Vs(Holds(Loaded, s) — —Holds(Alive, do(shoot, s)))

I nexecutability laws We suppose that effect laws with in-
consistent consequents are a particular kind of law. This al-
lows us to avoid mixing things that are conceptually differ-
ent: for an action «, an effect law mainly associates it with a
consequent C, while an inexecutability law only associates
it with an antecedent A.

An inexecutability law for « is of the form A — [a]L,
where A € PFOR is classically consistent. For example
—HasGun — [shoot] L expresses that shoot cannot be exe-
cuted if the agent has no gun.

Executability laws With only static and effect laws one
cannot guarantee that shoot is executable if the agent has
agun.

In dynamic logic the dual (o)A, defined as —[«]—A, can
be used to express executability. (o) T thus reads “the exe-
cution of action « is possible”.

An executability law? for « is of the form A — (a)T,
where A € PFOR is classically consistent. For instance
HasGun — (shoot)T says that shooting can be executed
whenever the agent has a gun, and (tease) T establishes that
the turkey can always be teased.

Whereas all the extant approaches in the literature that
allow for indirect effects of actions contain static and ef-
fect laws, the status of executability laws is less consen-
sual. Some authors (Schubert 1990; Doherty, + ukaszewicz,
& Szalas 1996; McCain & Turner 1995; Thielscher 1995)
more or less tacitly consider that executability laws should
not be made explicit but rather inferred by the reasoning
mechanism. Others (Lin 1995; Zhang & Foo 2001) have
executability laws as first class objects one can reason about.

It seems strange to us to just state information about nec-
essary conditions for execution of an action (inexecutabili-
ties) without saying anything about the sufficient ones. This
is the reason why we think we need executability laws. In-
deed, in several domains one wants to explicitly state un-
der which conditions a given action is guaranteed to be ex-
ecutable, e.g. that a robot should never get stuck and should
always be able to execute a move action. And if we have a
plan such as load; shoot of which we know that it achieves
the goal —Alive then we would like to be sure that it is

3Some approaches (most prominently Reiter’s) use bicondition-
als A « (a)T, called precondition axioms. This is equivalent to
- A < [a]L, which illustrates that they thus merge information
about inexecutability with information about executability.

executable in the first place! In any case, allowing for
executability laws gives us more flexibility and expressive
power.

Domain descriptions S C PFOR denotes the set of all
static laws of a given domain. For a given action o« € ACT,
&, is the set of its effect laws, X, is the set of its ex-
ecutability laws, and Z, is the set of its inexecutability
laws. We define £ = (J,cact€ar & = Uqenact Xa, and
T = UyeactZa- A domain description is a tuple of the
form (S,&, X, 7).

Dynamic logic and the frame problem

Given a domain description (S, &, X', Z), we need a conse-
guence relation solving the frame problem. To this end we
now give the semantics of PDL, and extend it with depen-
dence relations.

Py, P, ... denote propositional constants, L1, Lo, . .. lit-
erals, and ®, W, ... formulas. (We recall that A, B, ... de-
note classical formulas.) If L = —P then we identify —L
with P.

A PDL-model is a triple M = (W, R, I) where W is a
set of possible worlds, R maps action constants « to acces-
sibility relations R, C W x W, and I maps propositional
constants to subsets of .

Given a PDL-model M = (W, R, I),

e wky Pifw e I(P);
o Ey Qifforallw e W, w Ep 9;
o wy [a]® ifw =) © forevery w’ such that wR,w'.

A formula ® is a consequence of the set of global ax-
ioms {®4,...,®,} in the class of all PDL-models (noted
®q,...,P, EppoL ®) if and only if for every PDL-model
M, if =1 @, for every @, then =5, ©.

PDL alone does not solve the frame problem. For in-
stance, if (S, &, X, Z) describes our shooting domain, then

S,E,X,T FppL HasGun — [load]HasGun

(We write S, &, X, T insteadof SUEUX UZ))

The deductive power of PDL has to be augmented in or-
der to ensure that the relevant frame axioms follow. The
presence of static constraints makes that this is a delicate
task, and starting with (Lin 1995; McCain & Turner 1995),
several authors have argued that some notion of causality is
needed. We here opt for the dependence based approach pre-
sented in (Castilho, Gasquet, & Herzig 1999), where depen-
dence information has been added to PDL. In (Demolombe,
Herzig, & Varzinczak 2003) it has been shown how Reiter’s
solution to the frame problem can be recast in PDL.

«a ~ L denotes that the execution of action o may change
the truth value of the literal L. In our example we have

| (shoot, —Loaded), {shoot, —Alive),
™71 (shoot, ~Walking), (tease, Walking)

Because (load, -HasGun) ¢ ~», we have load -
—HasGun, i.e., —HasGun is never caused by load. We
also have tease ~» Alive and tease -4 -—Alive. The



meaning of these independences is that the frame axioms
HasGun — [load]HasGun, —Alive — [tease]—-Alive and
Alive — [tease]Alive hold.

We assume ~ is finite. A dependence relation ~» defines
a class of possible worlds models M..: every M € M.,
must satisfy that whenever wR,w’ then

e a~v Pandw ¢ I(P) impliesw’ & I(P);
o a» -Pandw € I(P) implies w’ € I(P).

The associated consequence relation is noted ... In our
example we obtain

S,&,X,7 =, HasGun — [load]HasGun

Our dependence relation based approach thus solves the
frame problem. However, it does not entirely solve the ram-
ification problem: while indirect effects such as Loaded —
[shoot]~Walking can be deduced with =..., we still have to
state indirect dependences such as shoot ~» —Walking. Nev-
ertheless, and as it has been argued in (Castilho, Herzig, &
Varzinczak 2002; Herzig & Varzinczak 2004), our approach
complies with the state of the art because none of the exist-
ing approaches can handle actions with both indeterminate
and indirect effects.

Postulates

Our central hypothesis is that the different types of laws
should be neatly separated and only interfere in one sense:
static laws together with action laws for o may have conse-
quences that do not follow from the action laws for « alone.

The other way round, action laws should not allow to infer
new static laws, effect laws should not allow to infer inexe-
cutability laws, etc.

Here are the postulates for that:

PO. Logical consistency: S,E, X, T A L
A domain description should be logically consistent.
P1. Noimplicit executability laws:

if S,S,X,I ):M A— <OZ>T, then S,X ):PDL A — <Oz>T

If an executability can be inferred from the domain descrip-
tion, then it should already “be” in X, in the sense that it
should also be inferable in PDL from the set of executabil-
ity and static laws alone.

P2. Noimplicit inexecutability laws:
if 8757X7I li,\/, A— [OZ]J_, then S,I |:PDL A— [Oz]J_

If an inexecutability law can be inferred from the domain de-
scription, then it should be inferable in PDL from the static
and inexecutability laws alone.

P3. Noimplicit static laws:
if S,E,X,T ):,\,, A, then S ':PDL A

If a classical formula can be inferred from the domain de-
scription, then it should be inferable in PDL (and even clas-
sically) from the set of static laws alone.

Postulate PO is obvious. P1 can be ensured by maximiz-
ing X'. This suggests a stronger version of P1:

P4. Maximal executability laws:
if S,S,X,I l;éM A— [OZ]J_, then S,X ):PDL A — <Oz>T

It expresses that if in context A no inexecutability for « can
be inferred, then the respective executability follows in PDL
from the executability and static laws. P4 generally holds in
nonmonotonic frameworks, and can be enforced in mono-
tonic approaches such as ours by maximizing x.4

Things are less obvious for Postulates P2 and P3. They
are violated by domain descriptions designed in all ap-
proaches in the literature that allow to express the four kinds
of laws. We therefore discuss each of them in the subse-
quent sections by means of examples, and give algorithms
to decide whether they are satisfied.

No implicit inexecutability laws

Consider the following domain description, where ~» is as
above:

S; = {Walking — Alive}

£ — [tease]Walking,
1™ ) Loaded — [shoot]—-Alive

Xlil-li(b

(For the time being, executability does not matter.) From
[tease]Walking it follows with S; that [tease]Alive, i.e., in
every situation, after teasing the turkey is alive: S1, &1 EppL
[tease]Alive. Now as tease &> Alive, the status of Alive is
not modified by tease, and we have S, & =, —Alive —
[tease] ~Alive. From the above, it follows

81, &1, X1, Eo —Alive — [tease] L,
i.e., a dead turkey cannot be teased. But
81,1-1 l?éPDL -Alive — [tease]J_,

hence Postulate P2 is violated. The formula —-Alive —
[tease] L is an example of what we call an implicit inexe-
cutability law.

In the literature, such laws are also known as implicit
qualifications (Ginsberg & Smith 1988), and it has been ar-
gued that it is a positive feature of frameworks to leave them
implicit and provide mechanisms for inferring them (Lin
1995; Thielscher 1997). The other way round, one might
argue as well that implicit qualifications indicate that the
domain has not been described in an adequate manner: the
form of inexecutability laws is simpler than that of effect

“We nevertheless would like to point out that maximizing ex-
ecutability is not always intuitive. Suppose we know that if we
have the ignition key, the tank is full, ..., and the battery tension
is beyond 10V, then the car (necessarily) will start. Suppose we
also know that if the tension is below 8V, then the car will not start.
What should we conclude in situations where we know that the ten-
sion is 9V? Maximizing executabilities makes us infer that it will
start, but such reasoning is not what we want if we would like to be
sure that all possible executions lead to the goal.



laws, and it might be reasonably expected that it is eas-
ier to exhaustively describe them.> Thus, all inexecutabil-
ities should be explicitly stated, and this is what Postu-
late P2 says.

How can we check whether P2 is violated? First we need
a definition. Given classical formulas A and B, the func-
tion NewCons 4(B) computes the set of strongest clauses
that follow from A A B, but do not follow from A alone
(cf. e.g. (Inoue 1992)). It is known that NewCons 4(B)
can be computed by subtracting the prime implicates of A
from those of A A B. For example, the set of prime im-
plicates of P is just {P}, thatof P A (=P VvV Q) A (=P V
RVvT)is{P,Q,RV T} hence NewConsp((—P V Q) A
(-PV RVT)) ={Q,RV T} Andforour example,
NewConswalking—alive(Walking) = {Alive, Walking}.

Algorithm 1 (Finding implicit inexecutability laws)
input: S,&,Z,~
out[}ut: a set of implicit inexecutability laws Z7
=0
for all « € ACT do
for all J C &, do
Ay = /\{AZ A — [OL]CZ € J}
Cy: = /\{OZ A — [06]01 S J}
if SU{A,} is classically consistent then
for all \/ L; € NewConss(Cy) do
if Vi, « 7(/> L; and A l;&pDL (AJ N /\—|Li) —
[a]L then
T =T U{(As A N\-Li) — [a] L}

Example 1 Consider S1,&1,7Z; and ~» as given above.
Then Algorithm 1 returns Z! = {-Alive — [tease] | }.

Note that the algorithm terminates because we have as-
sumed ~ finite.

Theorem 1 (S, &, X, T) satisfies Postulate P2 if and only if
T =.

The proof of this theorem relies on a sort of interpolation
theorem for multimodal logic, which basically says that if
® = ¥ and ® and ¥ have no action symbol in common,
then there is a classical formula A such that ® = A and
AET.

This is the key algorithm of the paper. We are aware that
it comes with considerable computational costs: first, the
number of formulas A ; and C; is exponential in the size of
&, and second, the computation of NewConss(Cjy) might
result in exponential growth. While we might expect &, to
be reasonably small in practice, the size of NewConss(C})
is more difficult to control.

The algorithm not only decides whether the postulate is
satisfied, its output Z” also provides information on how to
“repair” the domain description. Basically there are three
options, that we illustrate with our example:

1. Add —Alive — [tease] L to Zy;

2. Add the (unintuitive) dependence (tease, Alive) to ~»;
°Note that this concerns the necessary conditions for exe-

cutability, and thus it is not related to the qualification problem,

which basically says that it is difficult to state all the sufficient con-
ditions for executability.

3. Weaken the effect law [tease]Walking to Alive —
[tease]Walking.

It is easy to see that whatever we opt for, the new domain
description will satisfy P2.
Now we turn to another type of implicit laws.

No implicit static laws

Executability laws increase expressive power, but might
conflict with inexecutability laws. For instance, let S; = Sy,
E = &, Xy = {{tease)T}, and Zo = {-Alive —
[tease] L}. (Note that Postulate P2 is satisfied.) \We have
the unintuitive X, Z, =pp. Alive: the turkey is immortal!
This is an implicit static law because Alive does not follow
from S, alone: P3 is violated.

How can we find out whether there are implicit static
laws? We assume that Postulate P2 is satisfied, i.e., all in-
executabilities are captured by Z, which can be obtained by
running Algorithm 1 in a first stage.

Algorithm 2 (Finding implicit static laws)

input: S, X, 7
output: a set of implicit static laws S’
S'i=0

for all « € ACT do
foral A — [a]L €Zand A’ — ()T € X do
if S |7£PDL —\(A AN A/) then
Sti=8TUu{=(AnA)}
Example 2 For (S,, &2, X, Io), Algorithm 2 returns ST =
{Alive}.

The existence of implicit static laws may thus indicate too
strong executability laws: in our example, we wrongly as-
sumed that tease is always executable. It may also indicate
that the inexecutability laws are too strong, or that the static
laws are too weak:

Example 3 Suppose a computer representation of the line
of integers, in which we can be at a strictly positive number,
Positive, or at a negative one or zero, —Positive. Let MaxInt
and Minlnt, respectively, be the largest and the smallest rep-
resentable integer number. goleft is the action of moving
to the biggest integer smaller than the one at which we are.
Consider the following domain description for this scenario
(At; means we are at number ¢):

Ss = {At; — Positive : ¢ > 0} U {At; — —Positive : ¢ < 0}

_ {Atyinint — [goleftjUnderflow}u
37 {At; — [goleft]At;_; : i > Minint}
Xy = {(goleft) T}, Z5 = 0
with the dependence relation (MinInt < ¢ < MaxlInt):

&

_ (goleft, At;), (goleft, Positive),
71 (goleft, —Positive), (goleft, Underflow)

In order to satisfy P2, we run Algorithm 1 and get Zs =
{(At; A Aty) — [goleft]L}. Now applying Algorithm 2
to this domain description gives us the implicit static law
—(At; A Atp), i.e., we cannot be at 1 and 2 at the same time.

Theorem 2 Suppose (S, £, X, ) satisfies P2. Then Postu-
late P3 is satisfied if and only if ST = 0.



What shall we do with an implicit static law? Again, there
are several options: whereas in the latter example the im-
plicit static law should be added to S, (and more generally
—(At; A At;) for i # j7) in the former the implicit static law
is due to an executability law that is too strong and should
be weakened.

So, in order to satisfy Postulate P3, a domain description
should contain a complete set of static laws or, alternatively,
should not make so strong assumptions about executability.
This means that eliminating implicit static laws may require
revision of S or completion of X. In the next section we
approach the latter option.

Maximal executability laws

Implicit static laws only show up when there are executabil-
ity laws. Which executability laws can be consistently added
to a given domain description?

Algorithm 3 (Finding implicit executability laws)

input: S, X,7
outp}Jt: a set of implicit executability laws X'/
X'i=0

for all « € ACT do
Ao = V{Ai: A — (o)L €T}
if S %PDL A, and S,X %PDL —A, — <Oc>T then
X =xTu{-40 — ()T}

Example4 Suppose S, = {Walking — Alive}, Xy = 0
and 7, = {—-Alive — [tease] L}. Then Algorithm 3 yields
XT = {Alive — (tease) T }.

Theorem 3 Suppose (S, &, X, T) satisfies P2 and P3. Pos-
tulate P4 is satisfied if and only if X7 = (.

What Theorem 3 says is that it suffices to take the ‘com-
plement’ of Z to obtain all the executability laws of the do-
main. Note that this counts as a solution to the qualification
problem under the hypothesis of complete knowledge of the
preconditions for executability of actions.

For our running example, letting X;: = Xy U X7 estab-
lishes maximal executability for such a domain description.

Discussion
In this section we discuss other properties related to consis-
tency and modularity of domain descriptions. Some will fol-

low from ours, while some others look natural at first glance,
but turn out to be too strong.

Theorem 4 If (S,€,X,7) satisfies Postulate P3, then
S$,E,X, T LiffSEppL L.

This means that if there are no implicit static laws, then con-
sistency of a domain description (P0) can be checked by just
checking consistency of S.

Theorem 5 If (S,&,X,7) satisfies Postulate P3, then
S8, X T A—[aCiffS§,84,Ta Eu A— [a]C.

This means that under P3 we have modularity inside £, too:
when deducing the effects of « we need not consider the
action laws for other actions. Versions for executability and
inexecutability can be stated as well:

Theorem 6 If (S,&,X,7) satisfies Postulate P3, then
S, EX,TELA—=(TIffS, X, v A— ()T.

Theorem 7 If (S,&, X, 7) satisfies Postulates P2 and P3,
then S, &, X, T =, A— [o] LiffS, T, =, A — [o] L.

Although in the present paper concurrency is not taken
into account, we conjecture that Theorems 5, 6 and 7 hold
when we have concurrent action execution.

Theorem 8 There exist domain descriptions (S,&,X,7)
not satisfying P3 such that S, &£, X, 7 =, A — [a]C and
8,80, Lo s A— [a]C.

For example, we have that Sz, &, X2, T ., —Alive —
[shoot]Alive, but Sz, Ergmoots Loshoot [~ —Alive —
[shoot]Alive.

Now we turn to postulates that are too strong. First, it
seems to be in line with the other postulates to require do-
main descriptions not to allow for the deduction of new ef-
fect laws: if an effect law can be inferred from a domain
description, and no inexecutability law for the same action
in the same context can be derived, then it should be infer-
able from the set of static and effect laws alone. This means
we should have:

P5. Noimplicit effect laws:

ifS,E, X, Tk, A—[a)CandS,E, X, T -, A — [a]l,
then S, € = A — [o]C

But consider the following intuitively correct domain de-

scription:
S5 =10

£ — Loaded — [shoot]—-Alive,
>~ 1 (-Loaded A Alive) — [shoot]Alive

X5 = {HasGun — (shoot) T}
Zs = {—HasGun — [shoot] L}

together with the dependence relation ~» of Example 1. It
satisfies Postulates P1, P2, P3, and P4, but does not sat-
isfy P5. Indeed:

Ss,E5, X5, Is =, “HasGun v Loaded — [shoot]—-Alive
and
Ss, &5, X5, s -, ~HasGun Vv Loaded — [shoot] L,
but
Ss, &5 . ~HasGun Vv Loaded — [shoot]—Alive

So, Postulate P5 would not help us to deliver the goods.
Another though obvious possibility of amending our mod-
ularity criteria could be by stating the following postulate:

P6. No unattainable effects:
ifA—[a]C el thenS,E, X, T KL A— oL

This expresses that if we have explicitly stated an effect law
for « in some context, then there should be no inexecutabil-
ity law for the same action in the same context. We do not
investigate this further here, but just observe that the slightly
stronger version below leads to unintuitive consequences:



P6’. No unattainable effects (strong version):
ifS,. & =w A—[a]C, thenS,E, X, T - A— [a]L
Indeed, for the above domain description we have
&s =, (—HasGun A Loaded) — [shoot]-Alive,
but
Ss5,E5, X5, Is =~ (—HasGun A Loaded) — [shoot] L.

This is certainly too strong. Our example also illustrates that
it is sometimes natural to have ‘redundancies’ or ‘overlaps’
between 7 and &.

Related work

Pirri and Reiter have investigated the metatheory of the sit-
uation calculus (Pirri & Reiter 1999). In a spirit similar to
ours, they simplify the entailment problem for this calculus,
and show for several problems such as consistency or regres-
sion that only some of the modules of a domain description
are necessary. Note that in their domain descriptions S = 0.
This allows them to show that such theories are always con-
sistent.

Zhang et al. (Zhang, Chopra, & Foo 2002) have also pro-
posed an assessment of what a good domain description
should look like. They develop the ideas in the frame-
work of EPDL (Zhang & Foo 2001), an extended version
of PDL which allows for propositions as modalities to rep-
resent causal connection between literals. We do not present
the details of that, but concentrate on the main metatheoret-
ical results.

Zhang et al. propose a normal form for describing ac-
tion theories, © and investigate three levels of consistency.
Roughly speaking, a domain description X is uniformly
consistent if it is globally consistent (i.e., ¥ (egppL L);
a formula ® is X-consistent if ¥ [gpp. —®, for ¥ a
uniformly consistent theory; X is universally consistent if
(in our terms) every logically possible world is accessible.
¥ =epoL A implies =eppL A.

Furthermore, two assumptions are made to preclude the
existence of implicit qualifications. Satisfaction of such as-
sumptions means the domain description under considera-
tion is safe, i.e., it is uniformly consistent. Such a normal
form justifies the two assumptions made and on whose va-
lidity relies their notion of good domain descriptions.

Given these definitions, they propose algorithms to test
the different versions of consistency for a domain descrip-
tion X that is in normal form. This test essentially amounts
to checking whether X is safe, i.e., whether ¥ =gppL (o) T,
for every .. Success of this check should mean the domain

®But not as expressive as one might think: For instance, in mod-
eling the nondeterministic action of dropping a coin on a chess-
board, we are not able to state [drop](Black V White). Instead,
we should write something like [dropg,q]Black, [dropyie]White,
[drOPg; ok white] Black and [dropgay el WHite, where dropg g, is
the action of dropping the coin on a black square (analogously for
the others) and drop = dropg,q U dropyice U dropgaac whites With
“U” the nondeterministic composition of actions. ’

description under analysis satisfies the consistency require-
ments.

Nevertheless, this is only a necessary condition: it is not
hard to imagine domain descriptions that are uniformly con-
sistent but in which we can still have implicit inexecutabil-
ities that are not caught by the algorithm. Consider for in-
stance a scenario with a lamp that can be turned on and off
by a toggle action, and its EPDL representation given by:

On — [toggle]—On,
Off — [toggle]On,
[On]ﬁOff,
[-On|]Off

The causal statement [On]—Off means that On causes —Off.
Such a domain description satisfies each of the consistency
requirements (in particular it is uniformly consistent, as
Y FeppL L). Nevertheless, X is not safe for the static law
—(On A Off) cannot be proved.’

Although they are concerned with the same kind of prob-
lems that have been discussed in this paper, they take an
overall view of the subject, in the sense that all problems
are dealt with together. This means that in their approach
no special attention (in our sense) is given to the different
components of the domain description, and then every time
something is wrong with it this is taken as a global prob-
lem inherent to the domain description as a whole. Whereas
such a “systemic” view of action theories is not necessar-
ily a drawback (we have just seen the strong interaction that
exists between the different sets of laws composing a do-
main description), being modular in our sense allows us to
circumscribe the “problematic” laws and take care of them.
Moreover, the advantage of allowing to find the set of laws
which must be modified in order to achieve the desired con-
sistency is made evident by the algorithms we have proposed
(while their results only allow to decide whether a given the-
ory satisfies some consistency requirement).

Lang et al. (Lang, Lin, & Marquis 2003) address consis-
tency in the causal laws approach (McCain & Turner 1995),
focusing on the computational aspects. They suppose an ab-
stract notion of completion of a domain description solving
the frame problem. Given a domain description X, contain-
ing logical information about «’s direct effects as well as
the indirect effects that may follow, the completion of X,
roughly speaking is the original theory ¥, amended of log-
ical axioms stating the persistence of all non-affected (di-
rectly nor indirectly) literals.

Their EXECUTABILITY problem is to check whether « is
executable in all possible initial states (Zhang et al.’s safety
property). This amounts to testing whether every possible
state w has a successor w’ reachable by « such that w and
w’ both satisfy the completion of X,. For instance, still con-
sidering the lamp scenario, the representation of the domain

3=

A possible solution could be considering the set of static con-
straints explicitly in the domain description (viz. in the deductive
system). For the running example, taking into account the con-
straint On «— —Off (derived from the causal statements and the
EPDL global axioms), we can conclude that X is safe. On the
other hand, all the side effects such a modification could have on
the whole theory has yet to be analyzed.



description for toggle is:

On '%%9¢ Off,

Off toogle On,
Off — —0On,
On — —Off

Ztoggle =

where the first two formulas are conditional effect laws
for toggle, and the latter two causal laws in McCain and
Turner’s sense. We will not dive in the technical details,
and just note that the executability check will return “no”
for this example as toggle cannot be executed in a state sat-
isfying On A Off.

In the referred work, the authors are more concerned with
the complexity analysis of the problem of doing such a con-
sistency test and no algorithm for performing it is given,
however. In spite of the fact they have the same motivation
as us, again what is presented is just a kind of “yes-no tool”
which can help in doing a metatheoretical analysis of a given
domain description, and many of the comments concerning
Zhang and Chopra’s approach could be repeated here.

Another criticism that could be made about both these ap-
proaches concerns the assumption of full executability they
rely on. We find it too strong to require all actions to be al-
ways executable, and to reject as bad a domain description
admitting situations where some action cannot be executed
at all. As an example, consider the very simple domain de-
scription given by Sg = S, & = {[tease]Walking}, X =
X1 and Zg = 7, and consider ~»= {{(tease, Walking) }. Ob-
serve that, with our approach, it suffices to derive the im-
plicit inexecutability law —Alive — [tease] L, change Z, and
the system will properly run in situations where —Alive is
the case.

On the other hand, if we consider the equivalent repre-
sentation of such a domain description in the approach of
Lang et al., after computing the completion of Y, if we
test its executability we will get the answer “no”, the reason
being that tease is not executable in the possible state where
—Alive holds. Such an answer is correct, but note that with
only this as guideline we have no idea about where a possi-
ble modification in the action theory should be carried on in
order to achieve full executability for tease. The same holds
for Zhang and Chopra’s proposal.

Just to see how things can be even worse, consider the
domain description (S, £, X¢, ), with S = Sg, £ =
&, X = {Alive — (tease)T} and Zg = {-Alive —
[tease] L}, with the same ~», obtained by the correction of
(Se, &6, Xs, L) above with the algorithms we propose. Ob-
serve that (S, &, X5, Zg) satisfies all our postulates. It is
not hard to see, however, that the representation of such an
domain description in the above frameworks, when checked
by their respective consistency tests, is still considered to
have a problem.

This problem arises because Lang et al. do not allow for
executability laws, thus they cannot make the distinction be-
tween X = {(tease)T}, X = {Alive — (tease)T} and
X = . By their turn, Zhang and Chopra allows for speci-
fying executabilities, but their consistency definitions do not
distinguish the cases Alive — (tease) T and (tease) T.

Conclusion

We have tried to point out some of the problems that arise
if domain descriptions are not modular. In particular we
have argued that the non-dynamic part of domain descrip-
tions should not be influenced by the dynamic one.®

We have put forward some postulates, and in particu-
lar tried to demonstrate that when there are implicit inex-
ecutability and static laws then one has slipped up in design-
ing the domain description in question. As shown, a possible
solution comes into its own with Algorithms 1 and 2, which
can give us some guidelines in correcting a domain descrip-
tion if needed.

Given the difficulty of exhaustively enumerating all the
preconditions under which a given action is executable (and
also those under which such an action cannot be executed),
there is always going to be some executability precondi-
tion A or some inexecutability precondition B that together
lead to a contradiction, forcing, thus, an implicit static law
—(A A B). This is the reason we propose to state some
information about both executabilities and inexecutabilities,
complete the latter and then, after deriving all implicit static
laws, complete the former. As a final result we will have
complete S, X and 7.

In this work we used a weak version of PDL, but our no-
tions and results can be applied to other frameworks as well.
It is worth noting however that for first-order based frame-
works the consistency check of Algorithm 1 is undecidable.
We can get rid of this by assuming that (S, &, X', Z) is finite
and there is no function symbol in the language. In this way,
the result of NewCons is finite and the algorithm terminates.

The present paper is also a step toward the solution of
the problem of indirect dependences: indeed, if the indi-
rect dependence shoot ~» —Walking is not in ~», then af-
ter running Algorithm 1 we get an indirect inexecutability
(Loaded A Walking) — [shoot].L, i.e., shoot cannot be exe-
cuted if Loaded A Walking holds. Such an unintuitive inexe-
cutability is not in Z and thus indicates the missing indirect
dependence.

The general case is nevertheless more complex, and it
seems that such indirect dependences cannot be computed
automatically in the case of indeterminate effects. We are
currently investigating this issue.

Our postulates do not take into account causality state-
ments linking propositions. This could be a topic for further
investigation.
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