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Abstract

In this paper, a novel technique called bi-default theory is pro-
posed for handling inconsistent knowledge simultaneously in
the context of default logic without leading to triviality of
the extension. To this end, the positive and negative transfor-
mations of propositional formulas are defined such that the
semantic link between a literal and its negation is split. It is
proven that the bi-default theory preserves many nice proper-
ties of Reiter’s original theory and guarantees the existence of
consistent modified bi-extensions. Thus, the bi-default logic
is a generalization of default logic in the presence of incon-
sistency. Furthermore, a method is provided as an alternative
approach for making the reasoning ability of paraconsistent
logic as powerful as classical one.

Introduction
The reasoning systems based on classical logic suppose to
reasoning with consistent information; otherwise, a single
contradiction may destroy the vast amount of meaningful
information. Even if the pursuit of consistency, nonmono-
tonic reasoning has also the problem when faced with in-
consistency. Default logic (Reiter 1980) is a widely inves-
tigated formalism of nonmonotonic reasoning. In the con-
text of default logic, it is well-known that once the set of
axioms of a default theory is inconsistent, the default exten-
sion will collapse into triviality immediately. Theoretically,
nonmonotonic logic in general and default logic in particu-
lar may lead to inconsistency (Hanks and McDermott 1987).
On the other hand, it is advisable to introduce paraconsis-
tency to conquer the trivial problem of reasoning in the pres-
ence of inconsistency. Some formalizations of paraconsis-
tent and nonmonotonic reasoning have been proposed, in
which a common technique is by appeal to multiple-valued
logics, in particular a four-valued logic ((Belnap 1977a;
1977b; Priest 1991; Kifer and Lozinskii 1992; Lin 1995;
Arieli and Avron 1998), among others). However, it will
take much effort to use a multiple-valued logic directly as
the underlying logic of the default theory.

In this paper, we investigate the issue of simultaneously
handling inconsistent information and consistently revising
beliefs in the context of default logic. A novel technique
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called bi-default theory is developed to reason with inconsis-
tent knowledge which allows the set of axioms of a default
theory to be inconsistent . Comparing with Reiter’s original
formalism, the bi-default theory does not lead to triviality
of the extension. Technically, we transform a default theory
T into a pair T

B

= (T+, T−). Though T may be incon-
sistent, both T+ and T− are consistent. Consequently, the
truth value of a formula ϕ comes from two parts: one is the
positive part ϕ+; the other is the negative part ¬ϕ−. Indeed,
we have a classical two-valued semantics for the formula of
the default theory in the viewpoint of the four-valued set-
ting. Thus, the bi-default logic is both paraconsistent and
nonmonotonic. In other words, the bi-default logic can be
regarded as a formalization of commonsense reasoning with
inconsistent and incomplete knowledge.

A similar technique appeared in (Arieli and Denecker
2003), where the authors showed how multiple-valued the-
ories can be shifted back to two-valued classical theories
through a polynomial transformation. Their transformation
of a formula ϕ is really the same as the positive part ϕ+ in
our setting and based on a mapping from four-valued val-
uation to two-valued one. We use a new transformation for
getting the negative part¬ϕ− as well. In fact, the original in-
spiration comes from Ginsberg’s bilattices (Ginsberg 1988)
that naturally generalize Belnap’s FOUR (Belnap 1977a;
1977b), where a pair of truth values, representing the degree
of belief for or against an assertion, composes a whole judg-
ment of the assertion.

In (Besnard and Schaub 1998), the signed systems were
introduced by transforming an inconsistent theory into a
consistent one, in the same way as the positive transforma-
tion in our setting. While the semantic link between an atom
and its denial was restored by appeal to default logic which
at last resulted in a family of paraconsistent consequence re-
lations. Roughly speaking, the signed systems don’t aim at
dealing with inconsistent default theories especially, since
the defaults in signed systems are used to reestablish the
context between renamed atoms and the atoms from the
original theory. Nevertheless, it may be readily verified that
the signed systems have the same results as that of the bi-
default theory when the latter is applied to improve the rea-
soning ability of four-valued logics. In this sense, the bi-
default theory would be regarded as an alternative formal-
ization of signed systems.



In (Pequeno and Buchsbaum 1991), a formalization of in-
consistent default reasoning was proposed based on a partic-
ular paraconsistent logic LEI . The main difference between
that approach and the bi-default theory is that the latter’s un-
derlying logic is still classical two-valued logic and thus en-
joys nice properties of classical logic naturally.

Another advantage of the technique behind the bi-default
theory is that it improves the reasoning ability of Belnap’s
four-valued logic. As well known, Belnap’s four-valued
logic is strictly weaker than classical logic even in the case
of consistent theories. For instance, the disjunctive syllo-
gism: ϕ, ¬ϕ ∨ φ implying φ, does not hold in the four-
valued logic. To resolve this weakness, Priest (Priest 1989;
1991) first proposed the solution by introducing nonmono-
tonicity into a paraconsistent logic. In our setting, the dis-
junctive syllogism works well in the consistent premises but
is effectively blocked in the case of inconsistent theories
without appealing to nonmonotonicity. This method gives
a novel syntactic approach for reasoning from inconsistent
theories as well.

The rest of this paper is organized as follows. Firstly,
we briefly review Reiter’s default logic. Secondly, we de-
fines two forms of transforming a propositional formula ϕ
to its counterparts ϕ+ and ϕ−. Thirdly, we introduce the
bi-default theory. Finally, we make conclusion in the con-
cluding section.

Default Logic
Through out of this paper, let L be a propositional language.
A theory is a set of formulas in L. We write Th for the
consequence operator and ` for the provability relation, re-
spectively.

In Reiter’s default logic, a default is an expression of the
form

α : β1, . . . , βk

γ

where α, β1, . . . , βk and γ are formulas in L. α is said the
prerequisite, β1, . . . , βk the justifications and γ the conse-
quent of a default. A default theory is defined as a pair
T = (W,D), where W is a set of formulas and D is a
set of defaults. A default is said normal if it is of the
form α:γ

γ , prerequisite-free if it is of the form :β1,...,βk

γ and
prerequisite-free normal if it is of the form :γ

γ . T = (W,D)
is said a normal default theory (resp. prerequisite-free nor-
mal default theory) if every default d ∈ D is normal (resp.
prerequisite-free normal).

A set E of formulas in L is an extension of T = (W,D)
if it is a fixed point of the operator Γ, i.e. E = Γ(E), where
the operator Γ is defined as follows: Given a set of formulas
S, Γ(S) is the smallest set of formulas such that
(D1) Γ(S) = Th(Γ(S))
(D2) W ⊆ Γ(S)
(D3) If (α : β1, . . . , βk/γ) ∈ D, α ∈ Γ(S) and ¬β1 6∈
S,. . . ,¬βk 6∈ S, then γ ∈ Γ(S).

A default theory may have none, one or multiple exten-
sions in general. By ext(W,D) we denote the family of all
extensions of a default theory T = (W,D). The set of gen-
erating defaults for E w.r.t. T, written GD(E, T ), is defined

by GD(E, T ) = {(α:β1,...,βk

γ ) ∈ D | α ∈ E and ¬β1 6∈
E, . . . ,¬βk 6∈ E}. CONS(GD(E, T )) denotes the set of
consequents of the defaults from GD(E, T ).

Proposition 1 (Reiter 1980) A default theory T = (W,D)
has an inconsistent extension iff W is inconsistent.

Proposition 2 (Reiter 1980) If E is an extension of a default
theory T = (W,D), then

E = Th(W ∪ CONS(GD(E, T ))).

Let T = (W,D) be a default theory. Dw denotes the
set { :ϕ

ϕ | ϕ ∈ W}, i.e. the set of prerequisite-free normal
default form of the axioms of the default theory T .

Marek, Treur and Truszczyński in (Marek, Treur, and
Truszczyński 1997) described the family of extensions of an
arbitrary prerequisite-free normal default theory.

Proposition 3 (Marek, Treur, and Truszczyński 1997) Let
W,Ψ ⊆ L. Let D = { :ϕ

ϕ | ϕ ∈ Ψ}. If W is inconsistent
then ext(W,D) = {L}. Otherwise, ext(W,D) is exactly
the family of all theories of the form Th(W ∪ Φ), where Φ
is a maximal subset of Ψ such that W ∪ Φ is consistent.

According to Proposition 3, T = (W,D) and T =
(W,Dw ∪ D) have the same extensions. Without loss of
generality, we can assume all default theories have the form
T = (W,Dw ∪D), and abbreviate it to T = (W,D).

Transformations
We firstly give a brief review of the transforming technique
proposed by Arieli in (Arieli and Denecker 2003). Let ϕ be
a formula in L. Define the scope of a negation operator ¬
in the formula ¬ϕ as the set of all occurrences of proposi-
tional symbols in ϕ. An occurrence of atomic formula p in
ϕ is positive, if it appears in the scope of an even number of
negation operators in ϕ; otherwise, it is negative. For exam-
ple, let ϕ = ¬(p ∨ ¬q) ∨ ¬q, then the first occurrence of q
in ϕ is positive, and the second occurrence of q in ϕ is neg-
ative. Note that Arieli’s transformation needs all formulas
to be written in their logically equivalent negation normal
form. In (Besnard and Schaub 1998), Besnard and Schaub
gave a more general definition by the notion of polarity.

Arieli’s transformation is defined as follows: Let ϕ be a
formula inL. Substitute every positive occurrence in ϕ of an
atomic formula p by a new symbol p+, and every negative
occurrence in ϕ of an atomic formula p by ¬p−, then the
resulting formula is denoted by ϕ. The language obtained
from L by Arieli’s transformation is denoted by L.

We use the similar notations of Arieli’s transformation
and define two transformations as follows.

Definition 1 Let ϕ be a formula in L. The positive trans-
formation (p-trans, for short) is to substitute every positive
occurrence in ϕ of an atomic formula p by a new symbol p+,
and every negative occurrence in ϕ of an atomic formula p
by ¬p−. The resulting formula is denoted by ϕ+. The nega-
tive transformation (n-trans, for short) is to substitute every
positive occurrence in ϕ of an atomic formula p by ¬p−,
and every negative occurrence in ϕ of an atomic formula p
by p+. The resulting formula is denoted by ϕ−.



The language obtained from L by the transformations de-
fined in Definition 1 is still denoted by L.

Example 1 Let ϕ = ¬(p ∨ ¬q) ∨ ¬q. Then

ϕ+ = ¬(¬p− ∨ ¬q+) ∨ ¬¬q− = (p− ∧ q+) ∨ q−

and

ϕ− = ¬(p+ ∨ ¬¬q−) ∨ ¬q+ = (¬p+ ∧ ¬q−) ∨ ¬q+.

Given a propositional theory ∆, ∆+ represents the set
{ϕ+ | ϕ ∈ ∆}, and ∆− the set {ϕ− | ϕ ∈ ∆}. ∆± de-
notes ∆+ ∪∆−.

It is clear that p-trans makes ∆+ be classically equiva-
lent to a formula in which negation does not occur, and n-
trans makes ∆− be classically equivalent to a formula in
which there is a single occurrence of negation in front of
each atomic formula p+ (or p−). Therefore, if we view p+

and p− as two independent atomic formulas, both ∆+ and
∆− will be always consistent.

Here are some properties of p/n-trans.

Proposition 4 ¬ϕ+ = ¬ϕ− and ¬ϕ− = ¬ϕ+.

Theorem 5 Let ∆ be a propositional theory. ∆ is consistent
iff ∆± is consistent.

Theorem 6 Let ∆ be a consistent propositional theory and
ϕ is a formula in L. If ∆± ` ϕ+ or ∆± ` ϕ−, then ∆ ` ϕ.

Theorem 7 Let ∆ be a consistent propositional theory and
ϕ is a formula that is not a tautology in L. If ∆ ` ϕ, then
∆± ` ϕ+ and ∆± ` ϕ−.

Regarding p+ and p− as two independent atomic formu-
las, the reasoning ability of a single ∆+ (or ∆−) trans-
formed from a given propositional theory ∆ is very weak.
For instance, let ∆ = {p,¬p∨q}, then ∆+ = {p+, p−∨q+}
and ∆− = {¬p−,¬p+ ∨ ¬q−}, and hence ∆± = ∆+ ∪
∆− = {p+, p− ∨ q+,¬p−,¬p+ ∨ ¬q−}. It is clear that
the disjunctive syllogism works on ∆± but not on ∆+ and
∆− separately. The same issue will be further discussed in
the next section as the application of a special family of the
bi-default theories.

Bi-default Theory
In this section, the so-called bi-default theory is defined by
the application of the p/n-trans in a default theory, which
can be well interpreted by a four-valued semantics. We will
prove that the bi-default theory has nice properties in several
respects.

Definition 2 Let d be a default of the form α:β1,...,βk

γ , then
α+:β

+
1 ,...,β

+
k

γ+ is the p-trans result of d, denoted by d
+

, and
α−:β

−
1 ,...,β

−
k

γ−
is the n-trans result of d, denoted by d

−
, d

+

and d
−

are called bi-defaults. D+ represents the set {d+ |
d ∈ D}, and D− the set {d− | d ∈ D}.

Definition 3 A bi-default theory w.r.t. the default theory
T = (W,D) is a pair T

B

= (T+, T−), where T+ =
(W+, D+) and T− = (W−, D−).

Definition 4 Let T
B

= (T+, T−) be a bi-default theory
over a propositional language L. For any pair of sets of for-
mulas S+, S− ⊆ L, let Γ(S+, S−) be the pair of smallest
sets of propositional formulas S′+, S′− from L such that
(D1’) S′+ = Th(S′+) and S′− = Th(S′−)
(D2’) W+ ⊆ S′+ and W− ⊆ S′−

(D3’) If (α+ : β
+

1 , . . . , β
+

k /γ+) ∈ D+, α+ ∈ S′+ and
¬β

+

1 6∈ S−,. . . ,¬β
+

k 6∈ S−, then γ+ ∈ S′+ and γ+ ∈ S′−;
If (α− : β

−
1 , . . . , β

−
k /γ−) ∈ D−, α− ∈ S′− and ¬β

−
1 6∈

S+,. . . ,¬β
−
k 6∈ S+, then γ− ∈ S′− and γ− ∈ S′+.

A pair of sets of propositional formulas E
B

= (E+, E−),
where E+, E− ⊆ L, is a bi-extension of T

B

iff (E+, E−) =
Γ(E+, E−), i.e. iff (E+, E−) is a fixed point of the operator
Γ.

By Proposition 4, ¬βi
+

= ¬βi
−

and ¬βi
−

= ¬βi
+

(1 ≤ i ≤ k), so in (D3’) of Definition 4, ¬βi
+

(resp. ¬βi
−

)
is compared with S− (resp. S+) for consistency check-
ing. As we have pointed out in the last Section, γ+ and
γ− are added to both S′+ and S′− in order to strengthen
the reasoning ability of a single transform S′+ (or S′−).
This also explains why we presuppose the set of defaults
has the form Dw ∪ D. By this assumption, when apply-
ing the bi-defaults, consistent formulas of W+ and W−

will be mixed up, but the inconsistent ones will be kept
splitting. To illustrate it, considering a simple default the-
ory T = (W,D) where W = {p} and D = ∅ and thus
Dw ∪ D = { :p

p }, one may check that E
B

= (E+, E−),
where E+ = E− = Th({p+,¬p−}), is a bi-extension of
T

B

. The bi-default d
+

= :p+

p+ is an applicable bi-default
since W− doesn’t include ¬p+, then p+ is added into both
E+ and E−, the same is d

−
. But if W = {p,¬p}, d

+
is

not an applicable bi-default again since W− contains ¬p+,
and so E

B

= (E+, E−), where E+ = Th({p+, p−}) and
E− = Th({¬p−,¬p+}), is a bi-extension of T

B

. On the
other hand, if {p+, p−} ⊆ W+, then W must be inconsis-
tent since at this time we have {p,¬p} ⊆ W . By these con-
siderations, Definition 4 is reasonable and gives us a hint on
how to define a paraconsistent semantics for the bi-default
logic as we shall see later.

The next example further explains how the bi-default the-
ory works.

Example 2 Let T
B

= (T+, T−) be a bi-default theory
w.r.t. the default theory T = (W,D), where W =
{z,¬z, r ∧ q} and

D = { : z

z
,
: ¬z

¬z
,
: r ∧ q

r ∧ q
,
r : ¬p

¬p
,
q : p

p
}.

One interpretation of this theory reads r as “republican”,
q as “quaker”, p as “pacifist” and z is any inconsistent in-
formation. It is easy to see that T+ = (W+, D+) and
T− = (W−, D−), where

W+ = {z+, z−, r+ ∧ q+},
W− = {¬z−,¬z+,¬r− ∧ ¬q−}



and

D+ = { : z+

z+
,
: z−

z−
,
: r+ ∧ q+

r+ ∧ q+
,
r+ : p−

p−
,
q+ : p+

p+
}

D− = { : ¬z−

¬z−
,
: ¬z+

¬z+
,
: ¬r− ∧ ¬q−

¬r− ∧ ¬q−
,
¬r− : ¬p+

¬p+
,

¬q− : ¬p−

¬p−
}.

Since W is inconsistent, according to Reiter’s default the-
ory, T has only one extension L. It is a trivial theory. But
according to the bi-default theory, T

B

has four bi-extensions
which are given by E

B

i = (E+
i , E−

i ) (i=1,2,3,4), where

E+
1 = Th(W+ ∪ {¬r− ∧ ¬q−, p−,¬p+}),

E+
2 = Th(W+ ∪ {¬r− ∧ ¬q−, p+,¬p−}),

E+
3 = Th(W+ ∪ {¬r− ∧ ¬q−, p−, p+}),

E+
4 = Th(W+ ∪ {¬r− ∧ ¬q−,¬p+,¬p−})

and

E−
1 = Th(W− ∪ {r+ ∧ q+, p−,¬p+}),

E−
2 = Th(W− ∪ {r+ ∧ q+, p+,¬p−}),

E−
3 = Th(W− ∪ {r+ ∧ q+, p−, p+}),

E−
4 = Th(W− ∪ {r+ ∧ q+,¬p+,¬p−}).

Note that both E+
i and E−

i (i=1,2,3,4) are consistent over
the language L.

Belnap’s structure FOUR(Belnap 1977a; 1977b) con-
tains four truth values: the classical truth values t and f ,
the inconsistent truth value > and the incomplete truth value
⊥. By means of the bi-default theory, any formula ϕ in the
language L could be given a four-valued interpretation w.r.t.
a bi-extension E

B

.

Definition 5 Given a default theory T = (W,D), E
B

=
(E+, E−) is a bi-extension of T

B

w.r.t. T , the mapping
vEB associates a propositional formula ϕ with a truth value
from FOUR as follows:

vEB (ϕ) =



t if ϕ+ ∈ E+, ϕ− ∈ E−

and ¬ϕ + /∈ E+,¬ϕ − /∈ E−;
> if {ϕ+,¬ϕ+} ⊆ E+

or {ϕ−,¬ϕ−} ⊆ E−;
f if ¬ϕ + ∈ E+,¬ϕ − ∈ E−

and ϕ+ /∈ E+, ϕ− /∈ E−;
⊥ otherwise.

On the one hand, it should be noted that the mapping vEB

is really a single-value function; on the other hand, Defini-
tion 5 requires the existence of bi-extensions, but as we will
see later, in general case, bi-default extensions may not exist.
Hence a syntactically restricted form of the bi-default theory
and a definition of modified bi-extension will be developed
to overcome this problem.

Example 2 (continued)
vEB

1
(z) = >, vEB

1
(¬z) = >, vEB

1
(r∧ q) = t, vEB

1
(p) =

f and vEB
1

(¬p) = t.
vEB

2
(z) = >, vEB

2
(¬z) = >, vEB

2
(r∧ q) = t, vEB

2
(p) =

t and vEB
2

(¬p) = f .
vEB

3
(z) = >, vEB

3
(¬z) = >, vEB

3
(r∧ q) = t, vEB

3
(p) =

> and vEB
3

(¬p) = >.
vEB

4
(z) = >, vEB

4
(¬z) = >, vEB

4
(r∧ q) = t, vEB

4
(p) =

> and vEB
4

(¬p) = >.

Intuitively, without the consideration of {z,¬z}, E
B

1

(resp. E
B

2 ) is the corresponding bi-extension of Reiter’s
original extension of the default theory T which includes
p (resp. ¬p); E

B

3 and E
B

4 are new bi-extensions which mean
that both p and ¬p hold in the same extension of T , there-
fore they are the corresponding bi-extensions of Reiter’s in-
consistent but non-trivial extensions (although they don’t re-
ally exist in Reiter’s default theory).

Here are some properties of the bi-default theory. In
fact, many results of Reiter’s default logic could be repro-
duced in the setting of the bi-default logic, for instance, the
next theorem provides a recursive characterization of the bi-
extensions.

Theorem 8 If T
B

= (T+, T−) is a bi-default theory w.r.t.
to the default theory T = (W,D), then a pair of sets of
propositional formulas E

B

= (E+, E−) is a bi-extension

of T
B

iff E+ =
∞⋃

i=0

E+
i and E− =

∞⋃
i=0

E−
i , where

E+
0 = W+, E−

0 = W−

and for i ≥ 0

E+
i+1 = Th(E+

i ) ∪ Γ±i , E−
i+1 = Th(E−

i ) ∪ Γ±i

where

Γ±i = {γ+ | (α+ : β
+

1 , . . . , β
+

k /γ+) ∈ D+, where

E+
i ` α+ and ¬β

+

1 6∈ E−, . . . ,¬β
+

k 6∈ E−}

∪ {γ− | (α− : β
−
1 , . . . , β

−
k /γ−) ∈ D−, where

E−
i ` α− and ¬β

−
1 6∈ E+, . . . ,¬β

−
k 6∈ E+}.

Definition 6 Let T
B

be a bi-default theory and suppose that
E

B

is a bi-extension of T
B

. The set of generating bi-
defaults for E

B

w.r.t. T
B

, written GD(E
B

, T
B

), is defined
by

GD(E
B

, T
B

) = {(α+ : β
+

1 , . . . , β
+

k /γ+) ∈ D+ | α+ ∈

E+ and ¬β
+

1 6∈ E−, . . . ,¬β
+

k 6∈ E−}

∪ {(α− : β
−
1 , . . . , β

−
k /γ−) ∈ D− | α− ∈

E− and ¬β
−
1 6∈ E+, . . . ,¬β

−
k 6∈ E+}.



Theorem 9 If E
B

= (E+, E−) is a bi-extension of a bi-
default theory T

B

w.r.t. T = (W,D), then

E+ = Th(W+ ∪ CONS(GD(E
B

, T
B

)))

and

E− = Th(W− ∪ CONS(GD(E
B

, T
B

))).

Corollary 10 Given a bi-default theory T
B

w.r.t. T =
(W,D), if E

B

= (E+, E−) is a bi-extension of T
B

, then
both E+ and E− are consistent.

Definition 7 Given bi-extensions E
B

= (E+, E−) and
F

B

= (F+, F−),

E
B

= F
B

iff E+ = F+ and E− = F−

E
B

⊆ F
B

iff E+ ⊆ F+ and E− ⊆ F−.

The next theorem is the maximality of the bi-extensions.

Theorem 11 If E
B

= (E+, E−) and F
B

= (F+, F−) are
bi-extensions of a bi-default theory T

B

and E
B ⊆ F

B

, then
E

B

= F
B

.

Similar to the default theory, a bi-default theory may
have none, one or multiple bi-extensions. Example 2 is
an illustration for multiple bi-extensions. T

B

w.r.t. T =
(∅, { :p

q , :p
¬q}) has no bi-extension. T

B

w.r.t. T = ({p}, ∅)
has only one bi-extension. But for a normal bi-default the-
ory, the bi-extension can be proven to exist.

Definition 8 Let T
B

be a bi-default theory w.r.t. the default
theory T = (W,D). If T is a normal default theory, then
T

B

is called a normal bi-default theory.

Theorem 12 Every normal bi-default theory has a consis-
tent bi-extension.

A normal bi-default theory also satisfies orthogonality and
semi-monotonicity.

Theorem 13 If a normal bi-default theory T
B

has two bi-
extensions E

B

= (E+, E−) and F
B

= (F+, F−), then
either E+ ∪ F+ or E− ∪ F− is inconsistent.

Theorem 14 Let D, D′ be two sets of normal defaults such
that D ⊆ D′. If E

B

= (E+, E−) is a bi-extension of T
B

w.r.t. T = (W,D), then there exists a bi-extension E′B for
T ′

B

w.r.t. T ′ = (W,D′) such that E
B ⊆ E′B .

The next two theorems reveal the relation between the de-
fault extension of a default theory and the bi-extension of
a bi-default theory. That is, for any default theory T =
(W,D), under some restrictions, every default extension of
the default theory corresponds to a bi-default extension of
the corresponding bi-default theory and vice versa. In other
words, the bi-default logic is a generalization of Reiter’s de-
fault logic in the presence of inconsistency.

Theorem 15 Let T = (W,D) be a default theory such that
W is consistent and for every default (α : β1, . . . , βk/γ)
from D, α,¬β1, . . . ,¬βk and γ are not tautologies. If E =
Th(W ∪ CONS(GD(E, T ))) is an extension of T , then
E

B

= (Λ,Λ) is a bi-extension of the bi-default theory T
B

w.r.t. T , where Λ = Th(W± ∪ CONS±(GD(E, T ))).
Theorem 16 Let T = (W,D) be a default theory such that
W is consistent and for every default (α : β1, . . . , βk/γ)
from D, α,¬β1, . . . ,¬βk and γ are not tautologies. If
(Λ,Λ) is a bi-extension of the bi-default theory T

B

w.r.t.
T and for every ϕ ∈ L, ϕ+ ∈ Λ iff ϕ− ∈ Λ, then there
exists F ⊆ L such that Th(F±) = Λ and E = Th(F ) is an
extension of T .

Without these restrictions, however, there are circum-
stances in which the bi-default theory T

B

w.r.t. the de-
fault theory T has bi-extensions but T may have no de-
fault extension. For example, one may check that the bi-
default theory T

B

w.r.t. the default theory T = (∅, { :¬p
p })

has two bi-extensions E
B

1 = (Th({p+}), Th({p+})) and
E

B

2 = (Th({¬p−}), Th({¬p−})), but T has no extension.
We point out this coincides with the fact that the law of ex-
cluded middle is not valid in Belnap’s four-valued logic.

As we have mentioned above, in general case, a bi-default
theory may have no bi-extension. A full account of in-
consistency handling in default logic should guarantee the
existence of bi-extensions as well. To this end, the syn-
tactically restricted form of a bi-default theory named nor-
mal bi-default theory has been developed previously. Here
we will modify the definition of bi-extension according to
Łukaszewicz’s method (Łukaszewicz 1988), by which the
modified bi-extension of a bi-default theory is guaranteed to
exist. For the sake of simplicity, we use one-justification
default theories to give the formal definition.

Definition 9 Let T
B

= (T+, T−) be a bi-default theory
over a propositional language L. For any pair of sets of for-
mulas S+, S− ⊆ L and any set of formulas U± ⊆ L, let
Γ[(S+, S−), U±] be the smallest sets of propositional for-
mulas S′+, S′− and U ′± from L such that
(D1”) S′+ = Th(S′+) and S′− = Th(S′−)
(D2”) W+ ⊆ S′+ and W− ⊆ S′−

(D3”) If (α+ : β
+
/γ+) ∈ D+, α+ ∈ S′+ and for all η ∈

U± ∪ {β+
, β
−}, S− ∪ {γ+} 6` ¬η, then γ+ ∈ S′+, γ+ ∈

S′− and β
+
, β
− ∈ U ′±; If (α− : β

−
/γ−) ∈ D−, α− ∈

S′− and for all η ∈ U± ∪{β+
, β
−}, S+ ∪{γ−} 6` ¬η, then

γ− ∈ S′−, γ− ∈ S′+ and β
+
, β
− ∈ U ′±.

A pair of sets of propositional formulas E
B

= (E+, E−),
where E+, E− ⊆ L, is a modified bi-extension of T

B

for a
set of propositional formulas J± ⊆ L iff [(E+, E−), J±] =
Γ[(E+, E−), J±].

This variant of bi-default logic guarantees two fundamen-
tal properties: the existence of modified bi-extensions and
semi-monotonicity, showed as follows.
Theorem 17 Every bi-default theory has a consistent mod-
ified bi-extension.



Theorem 18 Let D, D′ be two sets of defaults such that
D ⊆ D′. If E

B

= (E+, E−) is a modified bi-extension
of T

B

w.r.t. T = (W,D), then there exists a modified bi-
extension E′B for T ′

B

w.r.t. T ′ = (W,D′) such that E
B ⊆

E′B .
In fact, similar to Reiter’s original formalism, we firmly

believe that many other variants could evolve from the bi-
default logic as well, which exhibits its flexibility.

Finally, a special family of bi-default theories T
B

w.r.t.
T = (W,Dw) is very attractive. In Proposition 3, assum-
ing W is consistent and Ψ = W , we immediately get that
the default theory T = (W,D) has an unique extension
E = Th(W ). In view of this, in Belnap’s four-valued logic,
given a theory W , we may consider its corresponding bi-
default theory T

B

w.r.t. T = (W,Dw) and reason under
T

B

. By Theorem 15, if W is consistent, under the four-
valued semantics, we shall get most conclusions excluding
tautologies which could be derived from the classical propo-
sitional theory W . As to inconsistent theory, the bi-default
logic still gives as many conclusions as possible.

Denoted by |=4 the four-valued consequence relation, and
define W |=B

ϕ iff there exists a mapping vEB defined in
Definition 5 such that vEB (ϕ) ∈ {t,>}.

Proposition 19 |=B

is nonmonotonic and paraconsistent.
Theorem 20 Let W be a propositional theory. If W |=4 ϕ

then W |=B

ϕ.
Theorem 21 If W is a consistent propositional theory and
ϕ is not a tautology, then W ` ϕ iff W |=B

ϕ.
By Theorem 20 and Theorem 21, it is clear that the rea-

soning ability of |=B

is far stronger than that of four-valued
consequence relation. The following example illustrates this
statement.
Example 3 Let W = {p,¬p ∨ q}. One may easily check
that bi-default theory T

B

w.r.t. T = (W,Dw) has an unique
bi-extension E

B

= (E+, E−), where
E+ = Th({p+,¬p−, p− ∨ q+,¬p+ ∨ ¬q−})
E− = Th({p+,¬p−, p− ∨ q+,¬p+ ∨ ¬q−}),

and so we have W |=B

p, W |=B ¬p ∨ q and W |=B

q.
When adding ¬p into W , one may readily check that
E+ = Th({p+, p−, p− ∨ q+,¬p+ ∨ ¬q−})
E− = Th({¬p−,¬p+, p− ∨ q+,¬p+ ∨ ¬q−}).

And so, we have W |=B

p, W |=B ¬p, W |=B ¬p ∨ q

but W 6|=B

q.
As well-known, Belnap’s four-valued logic is strictly

weaker than classical logic even in the case of consistent
premises. Interestingly, by the above example we have seen
that, the bi-default theory can be regarded as a novel tech-
nique on how to strengthen the reasoning ability of Belnap’s
four-valued logic. Moreover, due to the syntactic approach
of the bi-default theory, it can be viewed as an alternative
approach to making paraconsistent reasoning as powerful as
classical one.

Conclusion
Our main contribution in this paper is to provide default
logic with the ability for handling inconsistency and non-
monotonicity simultaneously. Thus, the bi-default theory
has potential applications in the practice of commonsense
reasoning in presence of inconsistency and incompleteness.

The bi-default theory can be well interpreted by a four-
valued semantics. We firmly believe that most results of
default logic in the literature could be reproduced in the
setting of the bi-default logic, because the bi-default logic
is a generalization of Reiter’s default logic under the four-
valued semantics. A byproduct is that the bi-default theory
can be applied to strengthen the reasoning ability of Bel-
nap’s four-valued logic, which provides an alternative ap-
proach for making paraconsistent reasoning as powerful as
classical one in the premise of consistency.

The results of this paper is limited on propositional level,
we will extend it to first-order case and make more compre-
hensive investigation on the bi-default theory in the future
work.
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