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Abstract

Csasar's condition is a well-known property intro-
duced about 50 years ago in the axiomatic theory of
conditional probability. In recent years such condition
has been reconsidered by some authors, who have stud-
ied its role in the coherence-based approach to condi-
tional probability. In this paper we consider the proba-
bilistic entailment of a conditional knowledge base by
another one. We represent Loop rule in a generalized
way and, using Gssar’'s condition, we give a sim-
ple probabilistic interpretation of it. Then, exploiting
the rules Cautious Monotonicity and Cut, we obtain
some related results on p-entailment by the knowledge
base associated with Loop rule. We also determine the
best probability bounds for the quasi-conjunction of two
conditional events and we give a probabilistic semantics
for the QANDrule. Finally, we reconsider our results in
the setting of conditional objects.

1 Introduction

In nonmonotonic reasoning the inferential process is devel-
oped by applying to a given set gbnditional assertions
a suitable set of rules, deriving in this way other conditional

conditional probability; on the contrary a functidghwhich
satisfies such axioms may be not coherent. Sufficient condi-
tions for the coherence of a functidh defined on4 x X,
where A is an algebra of events arid is a subfamily ofA

not containingd, have been considered in many papers. In
particular, in (Rigo 1988) it has been shown tlfais coher-
entif and only if it satisfies a suitable condition introduced in
(Csasar 1955). Such condition has been also considered in
(Gilio and Spezzaferri 1992, 1995) and appears in (Amarger
et al. 1991) under the name generalized Bayes theorem
Interestingly, such theoretical condition is relatedLmop
rule, examined in (Kraust al. 1990) within theCL logic
system. In fact, using @szr’s condition, we can provide a
probabilistic semantics for Loop rule. Then, exploiting CM
and Cut rules, we can obtain related results which concern
the probabilistic entailment of some conditional knowledge
bases from the conditional knowledge base associated with
Loop rule. We also determine the best bounds for the prob-
ability of the quasi-conjunction of two conditional events.
Then, we obtain a probabilistic semantics for @&NDrule

and we reconsider our results in the setting of conditional
objects studied in (Dubois and Prade 1994).

The paper is organized as follows:

assertions. A survey on nonmonotonic logics has been given e in Section 2 we recall the notions of conditional proba-

given in (Benferhatet al. 1997). In such field a widely ac-
cepted formalism is System P (Kragisal. 1990), which has

a probabilistic semantics based on infinitesimal probabilities
(Adams 1975, Pearl 1988). Based big-stepped proba-
bilities, i.e. atomic bound systenstudied in (Snow 1996,
1999), in (Benferhaet al. 1999) a probabilistic semantics
has been given for System, without referring tanfinitesi-
mals An approach, based on lower probability bounds, has

been proposed in (Bourne and Parsons 1998; Parsons and

Bourne 2000). Uncertain reasoning based on conditional

constraints has been considered in many papers (see, e.g.,

Amargeret al. 1991; Duboiset al. 1993, Lukasiewicz
2002). In (Gilio 2000, 2002a) this approach has been de-
veloped in the framework of coherent conditional probabili-
ties. The relationship between model-theoretic probabilistic

logic and coherence-based probabilistic logic has been ex- e

amined in (Biazzet al. 2002), where it has been shown that
probabilistic entailment under coherence is a generalization
of classical default entailment in System P. We recall that a
coherent conditional probability satisfies all the axioms of

bility and coherence; moreover, we illustrate the role of
Csasar’s condition in the setting of coherence;

e in Section 3 we give, in the setting of coherence, the no-
tions of p-consistency and p-entailment.

e in Section 4, using Gssar's condition, we give a proba-
bilistic semantics for a generalized version of Loop rule;

e in Section 5 exploiting Cautious Monotonicity and Cut
rules, we obtain related results on p-entailment of some
knowledge bases by the knowledge base associated with
Loop rule;

e in Section 6 we obtain the best bounds for the probabil-
ity of the quasi-conjunction of two conditional events and
then we give a probabilistic semantics for QANDrule;

in Section 7 we reconsider our results in the setting of
conditional objects;

e in Section 8 we examine a simple example;
e in Section 9 we give some conclusions.



2  Some preliminary notions and results

Given two eventsd, B, we denote their conjunction by B
and their disjunction byd v B. We recall that, given an
algebra of eventsA and a non empty subfamilyt C A,
with @ ¢ X, a (finitely additive) conditional probability

on A x X is (usually looked at as) a real function defined on

A x X satisfying the following properties:

(i) P(-|H) is a finitely additive probability omd, for every
He X,

(i) P(H|H) =1, for everyH € X;

(i) P(AB|H) = P(B|AH)P(A|H), for everyA, B, H,
withdAe A, Be A He X, AH € X.

Given a real functionP defined on an arbitrary family of
conditional eventsF, let 7,, = {E1|H1,...,E,|H,} be a
finite subfamily of 7 andP,, the vector(p, ..., p,), where

p; = P(E;|H;). We use the same symbol to denote an event

and its indicator. Moreover, considering the random gain

n

Gn =Y siHi(E; —pi),

i=1

with s1, . .., s,, arbitrary real numbers, we denote Gy |H,,
the restriction of¢,, to H,, = H, vV --- VvV H,. Then, based
on thebetting schemeve have

Definition 1 The functionP is said coherent if and only if
MaxGn|H, >0,Vn>1, VF, CF, Vs1,...,5, € R.

Remark 1 We recall that, ifP is coherent, the® satisfies

all the axioms of a conditional probability; the converse is
not true; for some counterexamples, see (Gilio and Spezza-
ferri 1992, Sec. 4.1; Gilio 1995, Example 8; Coletti and
Scozzafava 2002, Example 13). To remark that a function

P defined on4 x X and satisfying the axiom&) — (i)
may be not coherent, in (Coletti and Scozzafava, 2008
called aweak conditional probability

We recall that a family of event’ is said aradditiveclass
if, forevery Hy, Ho in X, itis Hy V Hy € X.

Given a (weak) conditional probability® on A x X, the
family X is said aP—quasi additiveclass (Casar 1955) if,
foreveryH,, Hs in X, there existd{ € X such that:

(1) HHV Hy C K; (i1) P(H{|K)+ P(H3|K) > 0.
We observe that, for evertf,, Ho, it is
P(H,V Hy|HVHy)=1,
and
P(H,VH, | HVH,) < P(H, | H\VHy)+P(H, | HiVH>).
Therefore
P(H,|H\V Hy)+ P(Hy | H,V Hy) > 1,V Hy, Hy. (1)

Then, given a conditional probabilit# on A x X', with X
additive, for everyH,, Hs in X' itis Hy V Hy € X, so that
from (1) it follows thatX’ is P—quasi additive. In particu-
lar, if X U {0} is a sub-algebra ofi, then’ is, of course,
additive and hence it i®—quasi additive.

Remark 2 Given a conditional probability? defined on
A x X, in (Csasar 1955, Theorem 8.5) the equivalence of
the following propositions has been proved:

e the following condition is satisfied:

I P(E;|H;) = 12y P(Es|Hita) )
whereE; € A H; € X, E; C H,H; 1, and H, =
Hy,

e there exists an extension #fto P* defined on4 x X'*,
whereX'* is an additive class containind;

e there exists an extension #fto P* defined on4d x X'*,
whereX* is a P—quasi additive class containirj.

As discussed in (Coletti and Scozzafava 2002), the valid-

ity of Csasar’s condition(2) is necessary and sufficient for

the existence of dimensionally orderedlass of measures

e, defined onA, apt torepresentP, i.e., such that, for any

E|H € Ax X, itis P(E|H) = “=LZ1) for a suitablen.

We remark that, when the involved probabilities are positive,

(2) reduces to thgeneralized Bayes’ theoreconsidered in

(Amargeret al. 1991).

Csasar's condition plays a relevant role for what concerns

coherence of°. In fact, we have (Rigo 1988; see also Gilio

and Spezzaferri 1995)

Theorem 1 A conditional probabilityP defined on4 x X,

whereA is an algebra of events ard is a non empty sub-

family of A, with § ¢ X, is coherent if and only if, for each
n, condition (2) is satisfied.
As it follows by Remark 2 and Theorem 1,Af is P—quasi
additive (or additive; or, in particulatt U {0} is a sub-
algebra ofA), thenP is coherent.
In (Rigo 1988) it is proved that a (weak) conditional prob-
ability P defined on4 x X can be extended asfall con-
ditional probability P* defined on4 x A°, where A° =
AN {0} _ .
A direct proof of the coherence d? when X’ is P—quasi
additive is given in (Gilio 1989).
A result related with Theorem 1 is the following
Corollary1 Let P = (a;,b;,4 = 1,...,n) a prob-
ability assessment on the family of conditional events
F = {.EZH’L7 Ei|Hi+1, T = 1,2...,n}, with E;, C
HiHi+17 Vi, Hn+1 = Hy, and Withai = ,P(El‘Hl), b, =
P(E;|H;+1). If Pis coherent, thedl? ;a;, = II"_,b;, i.e.
the condition (2) is satisfied.
Remark 3 We look at a conditional everi?|A (A # 0) as
a three-valued logical entity, with valuésiue, or falsg or
undeterminegdaccording to whethed and B are true, otd
is true andB is false, orA is false. Then, for every pair
of eventsA, B, with A # 0, itis BJA = BA|A, so that
P(BA|A) = P(B|A). Then, given three events, F, H
and applying Corollary 1, with = 2 and with

E,=FEFH, HH=Hs=H, Es = Hy, = FH,
the conditiona;as = b1be, Which is necessary for the
coherence of the assessméit= (a;,b;,7 = 1,2) on
F ={FE;|H;, E;|H;11, i = 1,2}, becomes

P(EF|H) = P(E|FH)P(F|H);

that is, the third axiom of conditional probabilities is a par-
ticular case of Casar's condition.



3 Probabilistic entailment of conditional
knowledge bases

In this section we give the notions of probabilistic consis-
tency and probabilistic entailment, introduced in (Adams
1975) and adapted to the coherence-based setting in (Gilio
2002a). We recall that in the framework of default reasoning
a conditional knowledge base is a set of defaults, or condi-

associated with Loop rule. Givént1 logically independent
eventsdy, Ai, ..., A, Loop rule is the following one:

Ao Ay, Ay Ay, - A Ay = Ag b Ay

As remarked in (Kraugt al. 1990), it seems that this rule
has never been considered in the literature. In Lemma 4.3 of
the same paper it is proved that, for evéry = 0,1,...  k,

tional assertionsH |~ FE, which may be read as "gener-
ally, if H thenE”. In (Adams 1975)A |~ B, is looked
atasP(B|A) > 1 —¢ (Ve > 0). Given a set of in-
tegersJ and a conditional knowledge bage = {H; |~
E;, j € J}, associated with a family of conditional events
F = {E;|H;, j € J}, we give below the definition of
p-consistency foiC.

Definition 2 The conditional knowledge base = {H; |~
E;, j € J}isp-consisteniff, for every set of lower bounds
L = {a;,j € J}, there exists a coherent conditional prob-
ability assessmenP = {p;,j € J} defined onF, with

p; = P(E;|Hj), such thap; > o; for everyj € J.

Given two families of conditional eventsF; =
{Ej|Hj, j € Jh}andF, = {Aj|K;, j € Jo}, and
the associated conditional knowledge bakgs= {H; |~
E;, je JiandKy = {K; |~ Aj, j € Jo}, we define
below the p-entailment o€, by ;.

Definition 3 Given two p-consistent knowledge bases

we say thatC; p-entails/Co, denotedlC; = o, iff there
existsT' = {H; |~ E;, j € I} C K; such that, for
every set of lower bound§, = {3;,j € J2} on F;, with
B; <1V j,there exists a set of lower bounds = {«;,j €
I} onT such that, for all coherent conditional probability
assessment8 = {p;,j € I U J,} defined orT" U F», with
pj = P(EJ|HJ), Vjel, andpj = P(AJ‘KJ), Vje Jo, if
p; > «j for everyj € I, thenp; > 3; for everyj € Js.
Remark 4 By Definition 3 one trivially has
Ki = ' VI C Ky )

in particular,

]C1:>ijij,VHj|'\‘Ej€K:1. (3)

Moreover, given three knowledge bagés I'y, I's, one has

Ki=Tuls iff K1 =11, = I'y. (4)
Therefore,
K= Ky iff K1 = K, VK CKs.
In particular,

’Cl = /CQ iff ’Cl = KJ}V Aj,VKjI’VAjé/CQ. (5)

4  Probabilistic semantics of Loop rule

In this section, using Gsar's condition, we give a proba-
bilistic interpretation of_ooprule (Krauset al. 1990). Then,
exploiting theCautious MonotonicitandCut rules, we ob-

tain related results on p-entailment by the knowledge base

the following is a derived rule oL system:
A0|'VA1,A1}\/A2, "',Ak|’VA0 =54 A1|’VAJ

A probabilistic interpretation of Loop rule has been already
given in (Gilio 2002b), where the following result has been
proved.

Theorem 2 Given k + 1 logically independent events

Ag, A1, ..., Ag, let us consider the conditional probabil-
ity assessmenP = (1,1,...,1) on the family 7 =
{A1]Ap, A2]A1, ..., Ao|Ar}. Moreover, given the fur-

ther conditional eventd;|Ag, let P = (P,p) a condi-
tional probability assessment o U {A|Ao}, with p =
P(Ag|Ap). Then, we have

1. the assessmeftis coherent;

2. the assessmeR = (P, p) is coherent iffp = 1.

The proof of Theorem 2 given in (Gilio 2002b) is based on
the following formula

AgAr -+ Ap V AgA§ vV AJAS V-V A A =

= AgVA V-V A,,

which gives an alternative representation for the disjunction
of the eventsdg, Ay, ..., A,.
We represent Loop rule in the following generalized way

Ao Ay, A Ag, o) A b Ao,
4
Al b Ao, Aa b Ay, oo, Ao b Ak
Given a vector of lower bounds
L1 = (ag, a1, ..., q),

we denote byP; ., the set of coherent assessments

P1 = (o, P1s- -+ P)

on the family
F1 = {A1|Ag, As|Ax, ..., Ag|Ax_1, Ao| Ak},
where
pi = P(Aipa|Ai), i=0,1,....k, App1 = Ao,
such that
Po = a0, Py > an, o, py > ag.

Analogously, given a vector of lower bounds

Lo = (Bo, B1s - Bk)s

we denote byP, ., the set of coherent assessments

PQ - (p6/7p/1/a cee 7p;g/)



on the family
Fo = {Ag|A1, A1|Aa, ..., Ak_1]Ag, Akl Ao},
where
pi = P(AilAit1), i=0,1,... .k, App1 = Ao,
such that
Po > Po, PY =B, Pk > B

We denote byP; 5 the set of coherent probability assess-
ment onF; U F,. Then, Theorem 2 can be generalized by

the following

Theorem 3 Given k£ + 1 logically independent events
., Ag, let us consider the families of conditional

Ao, Ay,
events

fl = {A1|A0a A2|A17 e 7A1€|Ak‘—1a AO|A1€} )
(6)

Fo={Ao|A1, A1|Ag, ... Ap_1| Ak, Ak|Ao},

and the associated conditional knowledge bases

Ki={Aoph A1, At Ag, -, Ap b Ao},
Ko ={A1p Ao, Ao Ay, oo, Ao Ar}.
Then, we have:(i) K1 = Ks; (i1) Ko = K.

Proof. We have to prove that:
(i) for every vectorLy = (5o, O1, - - -, Bk), With 3; < 1V4,
there exists a vecta?; = (ag, a, - . ., ) such that

PrePi, = PPy, V(P1,P2) € Pio;

(ii) for every vectorl; = (g, aq,...,ak), With a; <
1V, there exists a vectaty = (5o, 51, - - -, Bx) such that

Py € P27£2 — P e P17£1 s V('Ph'Pz) c PLQ .
Recalling Remark 37; andF, can be written as
.7:1 = {AlA()|A0, AQAl‘Al g eeey A()Ak|Ak},

Fo={A1A40|A1, A2A1|As, ..., AgAk|Ao}.

We observe thatd;A;,; C A; andA;A;4; C Ay, for
everyi; so that, given any probability assessmght, P-)
on F; U F, from Theorem 2, applying @sar’s condition
with H;, = Ai, E;, = Ai+1Aiai = 0, ]., ceey k, Hk+1 = Ao,
it follows that in order(P;, P») be coherent it must be

I} P(Ais1|A;) = 7o P(Ai]Ai).

() given a vector of lower bound8, = (5o, 51, - -, Ok),

with

max{ﬁ07ﬂl7‘ .. 761@} = 6]7
let £; = Qpy, Xy nny,
such thatll?_,o;
oy = 1, VZ)
For each given assessmént on F;, we denote by¢; the
set of coherent extensions ¢f, of P;. Then, for every
probability assessmem;, = (pg,pi, ..., p)) on Fi, with
p; = P(Al+1Al|A2) = P(AH,1|A1), and withP; € Pl-,ﬁl’
itis I¥_,p, > T* a4, and hence, denoting by, =

ayi) be a vector of lower bounds
> (3; (for example, we could choose

(po,pY,...,p}) a coherent assessment on the faniy,
with p;/ = P(Az+1Az|Az+1) = P(Ai|Ai+1), from Corol-
lary 1 it follows

H?:Op;/ = Hfzop; > Hfzoai > ﬁj, VPye&.
Then, one has

Pl > O g > B > B, Vi.

Hence, for every vectaof,, there exists a vectat; such that

P € P17£1 = Py € 1)2752 , V('Pl,'PQ) € PLQ.

(it) by the same reasoning, for every vecfr, there exists
a vectorL, such that:

Ps € P27£2 = P € Pl,Ll , V('Pl,'PQ) € PLQ;
hence the theorem is proved.
Recalling (5), by Theorem 3 in particular it follows:
Ki = Aipib A, VA b A €Ky
Ky = AZ}\' Ai+1, VAil’VAi+1 er.

5 Some related inference rules

We recall below the inference rul€autious Monotonicity
andCut

CM: ApC,ANMB = ABK C, @)
Cut: ABNMC, A B = ApC. (8)

The exact propagation of probability bounds in such rules,

from antecedents to consequents, has been examined in

(Gilio 2002a). Exploiting CM and Cut rules we can extend
Theorem 3 by the following

Theorem 4 Given k£ + 1 logically independent events
Ag, A1, ..., Ay, let F; be the family defined in (6) ankl

the associated knowledge base. Moreover, let us consider
the family 75 = £5 U £, where

& = {AolAidipr, i=1,... k—1},

g ={AoAj,j=2,....k—1},
and the associated knowledge b&ge=I'; U T, where
'y ={A;Aip iAo, i=1,... k—1},

'y ={A;p Ay, j=2,....,k—1}.
Then, one has; = Ks.

Proof. We apply an iterative procedure.
1.i=1,7=2:by(3) and Theorem 3, one has

K = {Al |’\‘ Ao, Ay }V AQ} .
Moreover, applying (7) wittd = A;, B = Ay, C' = Ay,
we have
A b Ao, Al Ay

and hencéC; = A;As v Ap.
Then, adC; = Az v Az, applying (8) withA = Ay, B =
Ay, C = Ay, we have

AAr b Ao, As b Ay

= A A b Ay,

— A2~'\‘A0,



and henc&; = As v Aop.

2.1 = 2,7 =3 :0ne hasC, = {AQ |N Ao, Ay |N Ag},
moreover, applying (7) wittd = Ay, B = Az, C = Ay,
we have

Ay Ag, As A3 = AAsz b A,

and hencdC; = As A3 I'V Ap.
Then, asC; = As b A, applying (8) withA = A3, B =
Ay, C = Ag, we have

AsAy v Ag, Asph Ay = Az A,
and henc&l; = Az Ap.

k-2.i =k —2,7=Fk—1:0nehas
Ki = {Ag—2b Ao, Ap—2b A1}
moreover, applying (7) with
A=Ap o, B=A;_1,C = Ay,
we have
Apo b Ao, Apa b Apr = Ap2Ar 1 b Ao,

and henc&C; = Ap_2A4,_1 b Ap.
Then, asC; = Ax_1 ~ Ax_o, applying (8) with

A=A, B=A_5, C= Ay,
we have
Ap1Aga b Ao, Apai b Apa = Apa b Ao,
and hencéC; = Ai_1 b Ao.

k-1.: = k—1:0ne halel = {Ak,1 }\J Ao, Ap_q |'V Ak};
moreover, applying (7) witth = A;_1, B = Ay, C = Ay,
we have

A b Ao, Api b Ay = Ar1Ar b Ao,
and hencéC; = Ap_1A; b Ap.

Based on the previous result, we have

Theorem 5 Given k£ + 1 logically independent events

Ao, A1, ..., Ay, let F; be the family defined in (6) ank;

the associated knowledge base. Moreover, let us consider

the family 7, = £, U £/, where
&y ={Ai1|AiAp, i=1,... k—1},
El ={Aj|Ag, j=2,....k—1},
and the associated knowledge b&se=TI", UT"/, where
Ty = {A Aok Aipr,i=1,....k—1},
T ={Aoh Aj, j=2,....k—1}.

Then, one haskC; = K4.

Proof. As in Theorem 4, we apply an iterative procedure.
1.i=1,7=2:by(3)and Theorem 3, one has

K = {Al I'\fflg7 Ay |’\‘ Ao}

Moreover, applying (7) wittd = A;, B = Ay, C = As,
we have

Al Ay, Al Ay = AlAg b A,

and hencdC; = A1Ag I'\f As. Then, asC; = Ay |'\‘ Aq,
applying (8) withA = Ay, B = A;, C = A,, we have

AgAi v Ay, Ao A1 = Ag e A,
and hencéC; = Ag v As.

2.i=2,j =3 :by Theorem 4, one has
Ki = {A2 I’V Ag, Ay }\4 Ao} .

Moreover, applying (7) withd = Ay, B = Ay, C = As,
we have

Ag v Az, Aspv Ay = AyAp b Az,

and hencdC; = AsAg |’\‘ As. Then,asC; = Ay |’\‘ Ao,
applying (8) withA = Ay, B = Ay, C = As, we have

AQAQ"\—‘Ag, AO"VA2 — Aoi'\‘Ag,
and hencéC; = Ag v As.

k-2. i = k-2, = k—1 : by Theorem 4, one
has
Ki = {As—ob Ak—1, A2 b Ao}
Moreover, applying (7) with
A=Ag 2, B=A, C= A1,
we have
Apo v A1, Ao Ay = Ap_2Ao b Ap_1,

and hencéC; = Ap_24¢ b Ag—1.
Then, asC; = Ay  Ak—o, applying (8) with

A=Ay, B=Ag 2, C=Ar_1,
we have
AgAp—o b Ap_1, Ao A2 = Aoh Ar1,
and hencéC; = Ag v Ag—_1.

k-1.7 =k — 1 : by Theorem 4, one has
K1 = {Ap—1 b Ag, A1 b Ao}

Moreover, applying (7) wittd = A1, B = Ay, C = Ay,
we have

A1 b Ak, A b Ag = Arido b Ag,
and henc&C; = Ap_140 b Ag.

Based on Theorem 5, we have



Theorem 6 Given k£ + 1 logically independent events
Ag, A1, ..., A, let F; be the family defined in (6) and
K1 the associated knowledge base.
j€{1,2,...,k— 2}, letus define the knowledge bases

T;Z{AQAJ"VAZ7 A()AZ"VAJ, Z=j+2,,]€},

T;’Z{AJ.NAl, AZ.'VAJ, Z:j+2,,k‘}
Then, one has:
k—2
K= Jaur)).
j=1
Proof. (i) by Theorem 5, one has
’C1 = {A(ﬂ\'Aj, Ao}\/Al},

Vie{2,....,k=2},Vie{j+2,...,k}.
Moreover, applying (7), respectively, with = Ay, B =

Aj,C:Ai, andWithA:AO,B:Ai,C:AJ’,We
have

Ao}w Ai, A()}\J Aj :>AOAj|’v Ai;

Ao Aj, Ao Ap = AgAi b Ay
hence

K1 = {AcA;  Ai, AgA; v Aj},

Vied{2,....k=2}Vie{j+2,...,k},
and, by (4), it follows
k—2
K= |5 (9)
j=1
Then, askC; = {A; |~ Ao, A; |~ Ao}, applying (8),
respectively, with
A=A;, B=4,,C=A4;,
and with
A=A4;,, B=A4,,C=A4,,
we have
AjAofV A;, Aﬂ” Ay = Aj|'\’ A;,

A Ao Aj, Al Ay = A Ay
hence

Vied{2,....k—=2}Vie{j+2,...,k},

and, by (4), it follows

k—2

K= |y (10)

j=1

Then, by (4), (9) and (10), we obtain
k—2
ko= Jaur)).

Jj=1

Moreover, for each

Theorem 7 Let be given the following set ofonjunctive
conditional events

C*:{Ail"'Aih|Aj1'”Ajt}7 (11)

where
{i1, .- in b U{j1,..., ¢ € {0,1,..

Then, denoting byC* the knowledge base associated with
C*,one has; = K*.

The class of conjunctive conditional events has been studied
in (Lukasiewicz 1997); see also (Biazebal. 2001).

kY, h>1,t>1.

6  Best bounds for quasi-conjunction

In this section we consider a probability assessment on a pair
of conditional events and we determine the precise probabil-
ity bounds for their quasi-conjunction. Then, we obtain a
probabilistic semantics for th@AND rule given in (Dubois
and Prade 1994). Let, H, B, K be logically independent
events, withH # (), K # (. We recall that the quasi-
conjunction of two conditional event$| H andB|K, as de-
fined in (Adams 1975), is given by

A|H&B|K = (AHV H)AN(BKVK°)|(HVK).

It can be easily verified that, for every pdit,y), with

x € [0,1],y € [0,1], the probability assessmeft,y)
on{A|H, B|K} is coherent. Moreover, for each given as-
sessmenfx, y) on{A|H, B|K}, the probability assessment
P = (x,y,2z)0on

F ={A|H,B|K, A|\H&B|K},

with z = P(A|H&B|K), is a coherent extension ¢f, y)
if and only if 2/ < z < 2, where

0, r+y<l1,
Z/ — Z// —_ zty—2zy .

l—zy
z+y—1, z4+y>1,

To obtain the values’, z”” we can study the coherence of
P = (p1,p2,p3) = (2,9, 2) by a geometrical approach pro-
posed in (Gilio 1995). We denote Wy, ..., C,, the con-
stituents generated by the family

F = {E;|Hy, Ey|Hy, Es|Hs} = {A|H, B|K, A|H&B|K}

and contained i V K. Then, with eact{’;, we associate a
point@Qy = (qn1, qne, qn3), Where, for eachh = 1,2, 3, itis

17 Ifcth7sz
qhi = Oa
bi,s

if C, CESH,; ,
if Cr, C HY .
The pointsQ;,’s are
Ql = (17171)ﬂ QQ = (17y71)7 QS = (170a0)7
Q4 = (I,l,l), Q5 = (I’,0,0), QG = (0,1,0),

Q'T: (O7y’0)a Q8: (0,0,0),

We give now a general result, which includes the previous
ones as corollaries; it can be obtained, in a simple way, in and, in our case, the coherencefotimply amounts to the
the setting of conditional objects (see Proposition 6). geometrical conditiorP € Z, whereZ is the convex hull of



the points@4, . .., Qs.
As we can verify, ift +y < 1, thenP = (z, y, 0) belongs to
the triangle))3 Qs Qs, so that the conditio® € 7 is verified
and hence’ = 0.
If z +y > 1, denoting byr; the plane containing the tri-
angleT; = Q1QsQs and considering the poiritc, y, z*)
belonging tdl, in order the conditiorP € 7 be satisfied, it
must bez > z*. Then, observing that the equationmfis
Z=X+Y -1,
it follows: 2/ = 2* =z +y — 1.
Concerningz”, denoting byr, the plane containing the tri-
angleT, = Q2Q4Qs and considering the poirft, y, 2**)
belonging tdls, in order the conditiofP € 7 be satisfied, it
must bez < z** for every(z, y) € [0, 1]2. Then, observing
that the equation of; is
1—y l1—x

Z = - X ‘Y
1—2ay +1—xy

)

it follows: 2" = z** = 2Hy=22u.

1—x1
QAND rule can be derived yby applying the inference rules
1990) and says that, given

of System P (Kraus et al.
any knowledge basé&’, the quasi-conjunctio®'(K) can

be deduced byK using the inference rules of System

P. To obtain the probabilistic interpretation f@AND

rule, let(z, y, z) be any coherent probability assessment on

{A|H,B|K,A|H&B|K}. Then, given any numbef <

Proposition 1 Given the set of conditional objects
K = {A1|Ag, Az|Ay, ... ApAr_1},
one has
C’(K) = (EO VAR \/Ek)‘(Ao v"'\/Ak—l),
where
Eo=AgAy-- Ay, By = ASA; - Ay, -+,

Eyp_1=A§- - Af_gAr1Ax, By = AGAT--- Af_, .

Proof. We proceed by induction.
a) as it can be verified, K = {A4;|Ao, A2]|A; }, then

C(K) = (AgA1A3 V AGA1 As V AGAS) (Ao V A1) ;
then, the quasi-conjunction & U { A3| A2}, given by
(Ao A1 AoVAGAL AV AGATIN(A2 A3V AS) (Ao VALV A,),
can be written as

(B3 V Ef vV E3 V E;)|(AgV ALV Ag),
where
Ef = AgA1A2As, EY = A§A1 A A,

Ej = ASASAsAs, B = AGASAS.
b) assume that the quasi-conjunction of the set
{A1]Ag, A| Ay, ... Ap 1| Ag o}
is

[0,1], for every pair(ai,a2) € [8,1] x [8,1] such that
a1 +ag > B+ 1, 0ne has
T>m,y>a = z>2Z=a1+a—-12> 3.

Quasi-conjunction plays a key role in the logic of condi-
tional objects (Dubois and Prade 1994), which will be con-
sidered in the next section.

(EgV--VE_ (A V-V Ap_2),
where
Ey =A0A1 - Ap_1, Ef = A§A - Ay, -+,

Ep o =A5- Ay _sAr—2Ap_1, B = AGAT--- A} _,.
Then, the quasi-conjunction of the set

7  Relationship with conditional objects {A1[Ao, Az| Ay, .., Ag[Aj—1}

We recall that, based on the three-valued calculus of con- 1S

ditional objects, in (Dubois and Prade 1994) a very simple (Eiv .-V Ef_ ;) A (Ax_ 1AV AS_)|(AgV -V A1),
semantics has been provided for the preferential entailment
studied in (Krauset al. 1990). Conditional objects can be
seen as the counterpart of the conditional assertions consid-
ered in (Krauset al. 1990) and, for what concerns logi-
cal operations, we can look at them as conditional events.
Given a set of conditional objects, we denote byC'(K)

the quasi-conjunction of the conditional objects/nhand Ep1 = AGAS - AS_ Ap 1Ay, By = AGAS - AS_
by = the logical entailment among conditional objects, i.e. o B
the logical inclusion among conditional events as defined in Nence the Proposition is proved. .
(Goodman and Nguyen 1988). In the paper of Dubois and By (12) it follows that the quasi-conjunction of the family
Prade the following definition is given Ky = {A1|Ao, A2|A1, ..., Ak|Ak—1, Ao| Ak}
Definition 4 K entailsq|p, denotedK = ¢|p, if and only is

if either there exists a non-empty subgebf K such that (EoV EL V-V Ep) A (AgAr V AS)|(Ag V -~V Ay) =
C(S)  glp, orp = q.

We recall that the relationship between probabilistic reason- = --- = (AgA1--- A V AGAS - Af)|(Ag V- -V Ag) =
ing under coherence and default reasoning with conditional

objects has been examined in (Biaztal. 2002). = AgA1 - A | (Ao V-V Ayg).

Based on Definition 4, the results given in a probabilistic By a similar reasoning, for the family

framework in the Sections 4 and 5 can also be obtained in

the setting of conditional objects. We first give a preliminary Ko = {AofA1, Ai]Ag, .., A1 [Ap, Agl Ao}

result on the quasi-conjunction df; | Ao, ..., Ax|Ak_1. one has’(K3) = C(K). Then, we have

which can be written as
(E‘O\/E‘l\/'~-\/E‘k)|<140\/~--\/A;C,l)7 (12)
where
Eo=AgA; - Ay, By = ASA, - Ay, -+,



Proposition 2 Let be given the sets
Ky = {A1|Ao, A2|Ax, ..., AglAk—1, Aol Ak},
Ko = {Ap|A1, A1]Ag, ..., Ap_1| A, Ak| Ao} -
Foreveryi =0,1,...,k, one has
(a) C(K1) F AilAiv1, (b) C(K2) F Aia]Ai,
whereA; 1 = Ap.
Proof. We recall that
C(Ky)=C(K3) = AgAy - Ag | (Ag V-V Ap) .

Moreover, we observe thatgA; -+ Ag | (Ao V -+ V Ag)
is true (resp., is false) if and only iflg A, --- Ay is true
(resp., there exist (at least) a pair of subscriptg) such
that 4; is true and4, is false). Then, the assertign) fol-
lows by observing thaC' (k) true impliesA;|A;4+1 true,
while A;| A, false impliesC(K) false. The assertiofb)
follows by observing that’(K) true impliesA;,1|A; true,
while 4;11]A; false impliesC(K>) false.

Recalling Definition 4, by Proposition 2 one has

K1 'Z AilAi+17 VZ'ZO,I,...,]{J,

KQ ': Ai+1|Aiv Vizovla"'vka
that is

(i) K1 | Ka; (i) Ko | Ki;
hence we get the same conclusion of Theorem 3.
By a similar reasoning we obtain

Proposition 3 Let be given the set
K1 = {A1|Ag, As|A1, ..., Al Ag_1, Ao|Ax}.
Foreveryi=1,...,k—1andj =2,...,k— 1, 0ne has
(a) C(K1) E AolAiAirs (b) C(K1) E AolA; .

By Definition 4 and Proposition 3, considering the Bgt=
K3 U KY, where

Kb = {Ao|AiAiyr, i=1,...,k—1},

K{ ={AolA;,j=2,....,k—1},
it follows
Kl |: A0|AiAi+1, Vi:l,...,k‘—l,
K1 ': A()|Aj, Vj:27...7]€—1,

that is K; E Kjs; hence we get the same conclusion of
Theorem 4.

Proposition 4 Let be given the set
Ky = {A1|Ao, As|A1, ..., Ak|Ak_1, Ao Ar} -
Foreveryi=1,...,k—1andj =2,...,k —1,0ne has
(a) C(K1) | Aiqa]|Aido; (b) C(K1) | AjlAo.
Then, considering the sé&f, = K U K}, where
Ky ={Ai1|AAo,i=1,...,k—1},

Kl ={A;|Ay,j=2,....,k—1},

by Proposition 4 it followsk; = K4, which is the counter-
part of Theorem 5.

Proposition 5 Let be given the set
Ky = {A1]|Ao, Aa]Ay, ... Ag|Ag 1, Aol Ar} -
Foreveryj € {1,...,k—2}andi=j+2,...,kone has
(a) C(K1) | AilAoA;, (b) C(K1) | AjlAod;,
(c) C(Ky) | Ail4;,  (d) C(Ky) = AjlAi.
Then, considering, for eaghe {1,...,k — 2}, the sets
(I); = {Ai‘AoAJ‘7 Aj|A0AZ‘; i=j+2,...,/€},
(I)S/:{A1|A]7 AJ|AZ, Z:]+2,7]€}7
one has:

k—2
K = |J@ue),
j=1

which is the counterpart of Theorem 6.
By the same reasoning as in Proposition 2, denoting’by
the set of conditional objects defined as in (11), we have

Proposition 6 for every pair of subsets
{i1, - yin}, {d1s---,0¢}
of the sef{0,1,...,k},withh > 1, ¢ > 1, one has
C(K1) | Aiy A |4 A
Hence:K; = C*.

We remark that Propositions 2, ..., 5 can be simply obtained
as corollaries of Proposition 6, which is the counterpart of
Theorem 7.

Jt *

8 Anexample

Five friends, Linda, Janet, Steve, George, and Peter, have
been invited to a party. We denote Hy, ..., A4 the events
defined respectively d4inda is present at the party;'.. .,
"Janet is present at the party”

We assume the following default knowledge:

- "if Linda goes to the party, then (very probably) Janet will
do the same’

- "if Peter goes to the party, then (very probably) Linda will
do the same’

that is, we start with the knowledge base

Ki={Aoh A1, A1y Az, -, Agb Ao}

Then, by the previous results, we can entail all conjunctive
conditional assertions, like

Ai Ay AiA I Ay, Aj e ApAy, AiAjAL I AgAy, ..

For instance, we can entail the conditional assertions:

"if Peter is present at the party, then (very probably) Janet
is present too?

"if Linda and Janet are present at the party, then (very prob-
ably) Steve, George, and Peter are present t@oid so on.



9 Conclusions

Coletti, D. Dubois, and R. Scozzafava, R., editors), Plenum

In this paper we have considered a generalized version of Press, New York.

Loop rule and, using Gszr's condition, we have given a
probabilistic interpretation of it. Then, exploiting CM and

Gilio, A. 2000. Precise propagation of Upper and Lower
Probability Bounds in System RProc. of The8'" In-

Cut rules, we have obtained related results on p-entailment tern. Workshop on Non-monotonic Reasoning, Special Ses-

by the conditional knowledge base associated with Loop

rule. Moreover, we have considered a probability assess-

ment on a family of two conditional events, determining the

best bounds for the probability of their quasi-conjunction

and providing a probabilistic semantics fQANDrule.

Finally, we have reconsidered our results in the setting of
conditional objects.
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