
On Csásźar’s condition in nonmonotonic reasoning

Angelo Gilio
Dipartimento di Metodi e Modelli Matematici

Via A. Scarpa, 16 - 00161 Roma (Italy).
e-mail: gilio@dmmm.uniroma1.it

Abstract

Cśasźar’s condition is a well-known property intro-
duced about 50 years ago in the axiomatic theory of
conditional probability. In recent years such condition
has been reconsidered by some authors, who have stud-
ied its role in the coherence-based approach to condi-
tional probability. In this paper we consider the proba-
bilistic entailment of a conditional knowledge base by
another one. We represent Loop rule in a generalized
way and, using Cśasźar’s condition, we give a sim-
ple probabilistic interpretation of it. Then, exploiting
the rules Cautious Monotonicity and Cut, we obtain
some related results on p-entailment by the knowledge
base associated with Loop rule. We also determine the
best probability bounds for the quasi-conjunction of two
conditional events and we give a probabilistic semantics
for theQANDrule. Finally, we reconsider our results in
the setting of conditional objects.

1 Introduction
In nonmonotonic reasoning the inferential process is devel-
oped by applying to a given set ofconditional assertions
a suitable set of rules, deriving in this way other conditional
assertions. A survey on nonmonotonic logics has been given
given in (Benferhatet al. 1997). In such field a widely ac-
cepted formalism is System P (Krauset al. 1990), which has
a probabilistic semantics based on infinitesimal probabilities
(Adams 1975, Pearl 1988). Based onbig-stepped proba-
bilities, i.e. atomic bound systemsstudied in (Snow 1996,
1999), in (Benferhatet al. 1999) a probabilistic semantics
has been given for SystemP , without referring toinfinitesi-
mals. An approach, based on lower probability bounds, has
been proposed in (Bourne and Parsons 1998; Parsons and
Bourne 2000). Uncertain reasoning based on conditional
constraints has been considered in many papers (see, e.g.,
Amarger et al. 1991; Duboiset al. 1993, Lukasiewicz
2002). In (Gilio 2000, 2002a) this approach has been de-
veloped in the framework of coherent conditional probabili-
ties. The relationship between model-theoretic probabilistic
logic and coherence-based probabilistic logic has been ex-
amined in (Biazzoet al. 2002), where it has been shown that
probabilistic entailment under coherence is a generalization
of classical default entailment in System P. We recall that a
coherent conditional probability satisfies all the axioms of

conditional probability; on the contrary a functionP which
satisfies such axioms may be not coherent. Sufficient condi-
tions for the coherence of a functionP defined onA × X ,
whereA is an algebra of events andX is a subfamily ofA
not containing∅, have been considered in many papers. In
particular, in (Rigo 1988) it has been shown thatP is coher-
ent if and only if it satisfies a suitable condition introduced in
(Cśasźar 1955). Such condition has been also considered in
(Gilio and Spezzaferri 1992, 1995) and appears in (Amarger
et al. 1991) under the name ofgeneralized Bayes theorem.
Interestingly, such theoretical condition is related toLoop
rule, examined in (Krauset al. 1990) within theCL logic
system. In fact, using Csásźar’s condition, we can provide a
probabilistic semantics for Loop rule. Then, exploiting CM
and Cut rules, we can obtain related results which concern
the probabilistic entailment of some conditional knowledge
bases from the conditional knowledge base associated with
Loop rule. We also determine the best bounds for the prob-
ability of the quasi-conjunction of two conditional events.
Then, we obtain a probabilistic semantics for theQANDrule
and we reconsider our results in the setting of conditional
objects studied in (Dubois and Prade 1994).
The paper is organized as follows:

• in Section 2 we recall the notions of conditional proba-
bility and coherence; moreover, we illustrate the role of
Cśasźar’s condition in the setting of coherence;

• in Section 3 we give, in the setting of coherence, the no-
tions of p-consistency and p-entailment.

• in Section 4, using Cśasźar’s condition, we give a proba-
bilistic semantics for a generalized version of Loop rule;

• in Section 5 exploiting Cautious Monotonicity and Cut
rules, we obtain related results on p-entailment of some
knowledge bases by the knowledge base associated with
Loop rule;

• in Section 6 we obtain the best bounds for the probabil-
ity of the quasi-conjunction of two conditional events and
then we give a probabilistic semantics for theQANDrule;

• in Section 7 we reconsider our results in the setting of
conditional objects;

• in Section 8 we examine a simple example;

• in Section 9 we give some conclusions.



2 Some preliminary notions and results
Given two eventsA,B, we denote their conjunction byAB
and their disjunction byA ∨ B. We recall that, given an
algebra of eventsA and a non empty subfamilyX ⊆ A,
with ∅ /∈ X , a (finitely additive) conditional probabilityP
onA×X is (usually looked at as) a real function defined on
A×X satisfying the following properties:
(i) P (·|H) is a finitely additive probability onA, for every
H ∈ X ;
(ii) P (H|H) = 1, for everyH ∈ X ;
(iii) P (AB|H) = P (B|AH)P (A|H), for everyA,B,H,
with A ∈ A, B ∈ A, H ∈ X , AH ∈ X .
Given a real functionP defined on an arbitrary family of
conditional eventsF , letFn = {E1|H1, . . . , En|Hn} be a
finite subfamily ofF andPn the vector(p1, . . . , pn), where
pi = P (Ei|Hi). We use the same symbol to denote an event
and its indicator. Moreover, considering the random gain

Gn =
n∑

i=1

siHi(Ei − pi),

with s1, . . . , sn arbitrary real numbers, we denote byGn|Hn

the restriction ofGn toHn = H1 ∨ · · · ∨Hn. Then, based
on thebetting scheme, we have

Definition 1 The functionP is said coherent if and only if

MaxGn|Hn ≥ 0 , ∀n ≥ 1, ∀Fn ⊆ F , ∀ s1, . . . , sn ∈ IR.

Remark 1 We recall that, ifP is coherent, thenP satisfies
all the axioms of a conditional probability; the converse is
not true; for some counterexamples, see (Gilio and Spezza-
ferri 1992, Sec. 4.1; Gilio 1995, Example 8; Coletti and
Scozzafava 2002, Example 13). To remark that a function
P defined onA × X and satisfying the axioms(i) − (iii)
may be not coherent, in (Coletti and Scozzafava, 2002)P is
called aweak conditional probability.

We recall that a family of eventsX is said anadditiveclass
if, for everyH1,H2 in X , it is H1 ∨H2 ∈ X .
Given a (weak) conditional probabilityP on A × X , the
family X is said aP−quasi additiveclass (Cśasźar 1955) if,
for everyH1,H2 in X , there existsK ∈ X such that:

(i) H1 ∨H2 ⊆ K ; (ii) P (H1|K) + P (H2|K) > 0 .

We observe that, for everyH1,H2, it is

P (H1 ∨H2 |H1 ∨H2) = 1 ,

and

P (H1∨H2 |H1∨H2) ≤ P (H1 |H1∨H2)+P (H2 |H1∨H2) .

Therefore

P (H1 |H1 ∨H2) + P (H2 |H1 ∨H2) ≥ 1, ∀H1,H2 . (1)

Then, given a conditional probabilityP onA × X , with X
additive, for everyH1,H2 in X it is H1 ∨H2 ∈ X , so that
from (1) it follows thatX is P−quasi additive. In particu-
lar, if X ∪ {∅} is a sub-algebra ofA, thenX is, of course,
additive and hence it isP−quasi additive.

Remark 2 Given a conditional probabilityP defined on
A × X , in (Cśasźar 1955, Theorem 8.5) the equivalence of
the following propositions has been proved:
• the following condition is satisfied:

Πn
i=1P (Ei|Hi) = Πn

i=1P (Ei|Hi+1) , (2)
whereEi ∈ A,Hi ∈ X , Ei ⊆ HiHi+1, andHn+1 =
H1;

• there exists an extension ofP to P ∗ defined onA × X ∗,
whereX ∗ is an additive class containingX ;

• there exists an extension ofP to P ∗ defined onA × X ∗,
whereX ∗ is aP−quasi additive class containingX .

As discussed in (Coletti and Scozzafava 2002), the valid-
ity of Cśasźar’s condition(2) is necessary and sufficient for
the existence of adimensionally orderedclass of measures
µα, defined onA, apt torepresentP , i.e., such that, for any
E|H ∈ A× X , it is P (E|H) = µα(EH)

µα(H) for a suitableα.
We remark that, when the involved probabilities are positive,
(2) reduces to thegeneralized Bayes’ theoremconsidered in
(Amargeret al. 1991).
Cśasźar’s condition plays a relevant role for what concerns
coherence ofP . In fact, we have (Rigo 1988; see also Gilio
and Spezzaferri 1995)
Theorem 1 A conditional probabilityP defined onA×X ,
whereA is an algebra of events andX is a non empty sub-
family of A, with ∅ /∈ X , is coherent if and only if, for each
n, condition (2) is satisfied.
As it follows by Remark 2 and Theorem 1, ifX is P−quasi
additive (or additive; or, in particular,X ∪ {∅} is a sub-
algebra ofA), thenP is coherent.
In (Rigo 1988) it is proved that a (weak) conditional prob-
ability P defined onA × X can be extended as afull con-
ditional probabilityP ∗ defined onA × A0, whereA0 =
A \ {∅}.
A direct proof of the coherence ofP whenX is P−quasi
additive is given in (Gilio 1989).
A result related with Theorem 1 is the following
Corollary 1 Let P = (ai, bi, i = 1, . . . , n) a prob-
ability assessment on the family of conditional events
F = {Ei|Hi, Ei|Hi+1, i = 1, 2 . . . , n}, with Ei ⊆
HiHi+1, ∀ i, Hn+1 = H1, and withai = P(Ei|Hi), bi =
P(Ei|Hi+1). If P is coherent, thenΠn

i=1ai = Πn
i=1bi, i.e.

the condition (2) is satisfied.
Remark 3 We look at a conditional eventB|A (A 6= ∅) as
a three-valued logical entity, with valuestrue, or false, or
undetermined, according to whetherA andB are true, orA
is true andB is false, orA is false. Then, for every pair
of eventsA,B, with A 6= ∅, it is B|A = BA|A, so that
P (BA|A) = P (B|A). Then, given three eventsE,F,H
and applying Corollary 1, withn = 2 and with

E1 = EFH, H1 = H3 = H, E2 = H2 = FH,

the conditiona1a2 = b1b2, which is necessary for the
coherence of the assessmentP = (ai, bi, i = 1, 2) on
F = {Ei|Hi, Ei|Hi+1, i = 1, 2}, becomes

P (EF |H) = P (E|FH)P (F |H) ;
that is, the third axiom of conditional probabilities is a par-
ticular case of Cśasźar’s condition.



3 Probabilistic entailment of conditional
knowledge bases

In this section we give the notions of probabilistic consis-
tency and probabilistic entailment, introduced in (Adams
1975) and adapted to the coherence-based setting in (Gilio
2002a). We recall that in the framework of default reasoning
a conditional knowledge base is a set of defaults, or condi-
tional assertions,H |∼ E, which may be read as ”gener-
ally, if H thenE”. In (Adams 1975)A |∼ B, is looked
at asP (B|A) ≥ 1 − ε (∀ε > 0). Given a set of in-
tegersJ and a conditional knowledge baseK = {Hj |∼
Ej , j ∈ J}, associated with a family of conditional events
F = {Ej |Hj , j ∈ J}, we give below the definition of
p-consistency forK.

Definition 2 The conditional knowledge baseK = {Hj |∼
Ej , j ∈ J} is p-consistentiff, for every set of lower bounds
L = {αj , j ∈ J}, there exists a coherent conditional prob-
ability assessmentP = {pj , j ∈ J} defined onF , with
pj = P (Ej |Hj), such thatpj ≥ αj for everyj ∈ J .

Given two families of conditional eventsF1 =
{Ej |Hj , j ∈ J1} andF2 = {Aj |Kj , j ∈ J2}, and
the associated conditional knowledge basesK1 = {Hj |∼
Ej , j ∈ J1} andK2 = {Kj |∼ Aj , j ∈ J2}, we define
below the p-entailment ofK2 byK1.

Definition 3 Given two p-consistent knowledge bases

K1 = {Hj |∼ Ej , j ∈ J1} , K2 = {Kj |∼ Aj , j ∈ J2} ,

we say thatK1 p-entailsK2, denotedK1 ⇒ K2, iff there
existsΓ = {Hj |∼ Ej , j ∈ I} ⊆ K1 such that, for
every set of lower boundsL2 = {βj , j ∈ J2} onF2, with
βj ≤ 1 ∀ j, there exists a set of lower boundsL1 = {αj , j ∈
I} on Γ such that, for all coherent conditional probability
assessmentsP = {pj , j ∈ I ∪ J2} defined onΓ ∪ F2, with
pj = P (Ej |Hj), ∀ j ∈ I, andpj = P (Aj |Kj), ∀ j ∈ J2, if
pj ≥ αj for everyj ∈ I, thenpj ≥ βj for everyj ∈ J2.

Remark 4 By Definition 3 one trivially has

K1 ⇒ Γ , ∀Γ ⊆ K1 ;

in particular,

K1 ⇒ Hj |∼ Ej , ∀Hj |∼ Ej ∈ K1. (3)

Moreover, given three knowledge basesK1,Γ1,Γ2, one has

K1 ⇒ Γ1 ∪ Γ2 iff K1 ⇒ Γ1 , K1 ⇒ Γ2 . (4)

Therefore,

K1 ⇒ K2 iff K1 ⇒ K′ , ∀K′ ⊆ K2 .

In particular,

K1 ⇒ K2 iff K1 ⇒ Kj |∼ Aj , ∀Kj |∼ Aj ∈ K2. (5)

4 Probabilistic semantics of Loop rule
In this section, using Csásźar’s condition, we give a proba-
bilistic interpretation ofLooprule (Krauset al. 1990). Then,
exploiting theCautious MonotonicityandCut rules, we ob-
tain related results on p-entailment by the knowledge base

associated with Loop rule. Givenk+1 logically independent
eventsA0, A1, . . . , Ak, Loop rule is the following one:

A0 |∼ A1 , A1 |∼ A2 , · · · , Ak |∼ A0 =⇒ A0 |∼ Ak .

As remarked in (Krauset al. 1990), it seems that this rule
has never been considered in the literature. In Lemma 4.3 of
the same paper it is proved that, for everyi, j = 0, 1, . . . , k,
the following is a derived rule ofCL system:

A0 |∼ A1 , A1 |∼ A2 , · · · , Ak |∼ A0 =⇒ Ai |∼ Aj .

A probabilistic interpretation of Loop rule has been already
given in (Gilio 2002b), where the following result has been
proved.

Theorem 2 Given k + 1 logically independent events
A0, A1, . . . , Ak, let us consider the conditional probabil-
ity assessmentP = (1, 1, . . . , 1) on the family F =
{A1|A0, A2|A1, . . . , A0|Ak}. Moreover, given the fur-
ther conditional eventAk|A0, let P ′ = (P, p) a condi-
tional probability assessment onF ∪ {Ak|A0}, with p =
P (Ak|A0). Then, we have
1. the assessmentP is coherent;
2. the assessmentP ′ = (P, p) is coherent iffp = 1.

The proof of Theorem 2 given in (Gilio 2002b) is based on
the following formula

A0A1 · · ·An ∨ A0A
c
1 ∨ A1A

c
2 ∨ · · · ∨ AnAc

0 =

= A0 ∨A1 ∨ · · · ∨An ,

which gives an alternative representation for the disjunction
of the eventsA0, A1, . . . , An.
We represent Loop rule in the following generalized way

A0 |∼ A1 , A1 |∼ A2 , · · · , Ak |∼ A0 ,

⇓ ⇑

A1 |∼ A0 , A2 |∼ A1 , · · · , A0 |∼ Ak .

Given a vector of lower bounds

L1 = (α0, α1, . . . , αk),

we denote byP1,L1 the set of coherent assessments

P1 = (p′0, p
′
1, . . . , p

′
k)

on the family

F1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak},
where

p′i = P (Ai+1|Ai), i = 0, 1, . . . , k, Ak+1 = A0,

such that

p′0 ≥ α0 , p′1 ≥ α1 , · · · , p′k ≥ αk .

Analogously, given a vector of lower bounds

L2 = (β0, β1, . . . , βk),

we denote byP2,L2 the set of coherent assessments

P2 = (p′′0 , p′′1 , . . . , p′′k)



on the family

F2 = {A0|A1, A1|A2, . . . , Ak−1|Ak, Ak|A0},

where

p′′i = P (Ai|Ai+1), i = 0, 1, . . . , k, Ak+1 = A0,

such that

p′′0 ≥ β0 , p′′1 ≥ β1 , · · · , p′′k ≥ βk .

We denote byP1,2 the set of coherent probability assess-
ment onF1 ∪ F2. Then, Theorem 2 can be generalized by
the following

Theorem 3 Given k + 1 logically independent events
A0, A1, . . . , Ak, let us consider the families of conditional
events

F1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak} ,

F2 = {A0|A1, A1|A2, . . . , Ak−1|Ak, Ak|A0} ,
(6)

and the associated conditional knowledge bases

K1 = {A0 |∼ A1 , A1 |∼ A2 , · · · , Ak |∼ A0} ,

K2 = {A1 |∼ A0 , A2 |∼ A1 , · · · , A0 |∼ Ak} .

Then, we have:(i) K1 ⇒ K2; (ii) K2 ⇒ K1.

Proof. We have to prove that:
(i) for every vectorL2 = (β0, β1, . . . , βk), with βi ≤ 1∀ i,
there exists a vectorL1 = (α0, α1, . . . , αk) such that

P1 ∈ P1,L1 =⇒ P2 ∈ P2,L2 , ∀ (P1,P2) ∈ P1,2 ;

(ii) for every vectorL1 = (α0, α1, . . . , αk), with αi ≤
1∀ i, there exists a vectorL2 = (β0, β1, . . . , βk) such that

P2 ∈ P2,L2 =⇒ P1 ∈ P1,L1 , ∀ (P1,P2) ∈ P1,2 .

Recalling Remark 3,F1 andF2 can be written as

F1 = {A1A0|A0 , A2A1|A1 , . . . , A0Ak|Ak} ,

F2 = {A1A0|A1 , A2A1|A2 , . . . , A0Ak|A0} .

We observe thatAiAi+1 ⊆ Ai and AiAi+1 ⊆ Ai+1 for
everyi; so that, given any probability assessment(P1,P2)
onF1 ∪ F2, from Theorem 2, applying Csásźar’s condition
with Hi = Ai, Ei = Ai+1Ai, i = 0, 1, . . . , k, Hk+1 = A0,
it follows that in order(P1,P2) be coherent it must be

Πk
i=0P (Ai+1|Ai) = Πk

i=0P (Ai|Ai+1) .

(i) given a vector of lower boundsL2 = (β0, β1, . . . , βk),
with

max {β0, β1, . . . , βk} = βj ,

let L1 = (α0, α1, . . . , αk) be a vector of lower bounds
such thatΠk

i=0αi ≥ βj (for example, we could choose
αi = 1, ∀ i).
For each given assessmentP1 onF1, we denote byE1 the
set of coherent extensions onF2 of P1. Then, for every
probability assessmentP1 = (p′0, p

′
1, . . . , p

′
k) on F1, with

p′i = P (Ai+1Ai|Ai) = P (Ai+1|Ai), and withP1 ∈ P1,L1 ,
it is Πk

i=0p
′
i ≥ Πk

i=0αi, and hence, denoting byP2 =

(p′′0 , p′′1 , . . . , p′′k) a coherent assessment on the familyF2,
with p′′i = P (Ai+1Ai|Ai+1) = P (Ai|Ai+1), from Corol-
lary 1 it follows

Πk
i=0p

′′
i = Πk

i=0p
′
i ≥ Πk

i=0αi ≥ βj , ∀P2 ∈ E1 .

Then, one has

p′′i ≥ Πk
i=0αi ≥ βj ≥ βi , ∀ i .

Hence, for every vectorL2, there exists a vectorL1 such that

P1 ∈ P1,L1 =⇒ P2 ∈ P2,L2 , ∀ (P1,P2) ∈ P1,2 .

(ii) by the same reasoning, for every vectorL1, there exists
a vectorL2 such that:

P2 ∈ P2,L2 =⇒ P1 ∈ P1,L1 , ∀ (P1,P2) ∈ P1,2 ;

hence the theorem is proved.
Recalling (5), by Theorem 3 in particular it follows:

K1 ⇒ Ai+1 |∼ Ai , ∀Ai+1 |∼ Ai ∈ K2 ;

K2 ⇒ Ai |∼ Ai+1 , ∀Ai |∼ Ai+1 ∈ K1 .

5 Some related inference rules
We recall below the inference rulesCautious Monotonicity
andCut.

CM : A |∼ C , A |∼ B =⇒ AB |∼ C , (7)

Cut : AB |∼ C , A |∼ B =⇒ A |∼ C . (8)

The exact propagation of probability bounds in such rules,
from antecedents to consequents, has been examined in
(Gilio 2002a). Exploiting CM and Cut rules we can extend
Theorem 3 by the following

Theorem 4 Given k + 1 logically independent events
A0, A1, . . . , Ak, letF1 be the family defined in (6) andK1

the associated knowledge base. Moreover, let us consider
the familyF3 = E ′3 ∪ E ′′3 , where

E ′3 = {A0|AiAi+1, i = 1, . . . , k − 1} ,

E ′′3 = {A0|Aj , j = 2, . . . , k − 1} ,

and the associated knowledge baseK3 = Γ′3 ∪ Γ′′3 , where

Γ′3 = {AiAi+1 |∼ A0, i = 1, . . . , k − 1} ,

Γ′′3 = {Aj |∼ A0, j = 2, . . . , k − 1} .

Then, one has:K1 ⇒ K3.

Proof. We apply an iterative procedure.
1. i = 1, j = 2 : by (3) and Theorem 3, one has

K1 ⇒ {A1 |∼ A0, A1 |∼ A2} .

Moreover, applying (7) withA = A1, B = A2, C = A0,
we have

A1 |∼ A0 , A1 |∼ A2 =⇒ A1A2 |∼ A0 ,

and henceK1 ⇒ A1A2 |∼ A0.
Then, asK1 ⇒ A2 |∼ A1, applying (8) withA = A2, B =
A1, C = A0, we have

A2A1 |∼ A0 , A2 |∼ A1 =⇒ A2 |∼ A0 ,



and henceK1 ⇒ A2 |∼ A0.

2. i = 2, j = 3 : one hasK1 ⇒ {A2 |∼ A0, A2 |∼ A3};
moreover, applying (7) withA = A2, B = A3, C = A0,
we have

A2 |∼ A0 , A2 |∼ A3 =⇒ A2A3 |∼ A0 ,

and henceK1 ⇒ A2A3 |∼ A0.
Then, asK1 ⇒ A3 |∼ A2, applying (8) withA = A3, B =
A2, C = A0, we have

A3A2 |∼ A0 , A3 |∼ A2 =⇒ A3 |∼ A0 ,

and henceK1 ⇒ A3 |∼ A0.

.............................................................................................

k-2. i = k − 2, j = k − 1 : one has

K1 ⇒ {Ak−2 |∼ A0, Ak−2 |∼ Ak−1} ;

moreover, applying (7) with

A = Ak−2, B = Ak−1, C = A0 ,

we have

Ak−2 |∼ A0 , Ak−2 |∼ Ak−1 =⇒ Ak−2Ak−1 |∼ A0 ,

and henceK1 ⇒ Ak−2Ak−1 |∼ A0.
Then, asK1 ⇒ Ak−1 |∼ Ak−2, applying (8) with

A = Ak−1, B = Ak−2, C = A0 ,

we have

Ak−1Ak−2 |∼ A0 , Ak−1 |∼ Ak−2 =⇒ Ak−1 |∼ A0 ,

and henceK1 ⇒ Ak−1 |∼ A0.

k-1. i = k−1 : one hasK1 ⇒ {Ak−1 |∼ A0, Ak−1 |∼ Ak};
moreover, applying (7) withA = Ak−1, B = Ak, C = A0,
we have

Ak−1 |∼ A0 , Ak−1 |∼ Ak =⇒ Ak−1Ak |∼ A0 ,

and henceK1 ⇒ Ak−1Ak |∼ A0.

Based on the previous result, we have

Theorem 5 Given k + 1 logically independent events
A0, A1, . . . , Ak, letF1 be the family defined in (6) andK1

the associated knowledge base. Moreover, let us consider
the familyF4 = E ′4 ∪ E ′′4 , where

E ′4 = {Ai+1|AiA0, i = 1, . . . , k − 1} ,

E ′′4 = {Aj |A0, j = 2, . . . , k − 1} ,

and the associated knowledge baseK4 = Γ′4 ∪ Γ′′4 , where

Γ′4 = {AiA0 |∼ Ai+1, i = 1, . . . , k − 1} ,

Γ′′4 = {A0 |∼ Aj , j = 2, . . . , k − 1} .

Then, one has:K1 ⇒ K4.

Proof. As in Theorem 4, we apply an iterative procedure.
1. i = 1, j = 2 : by (3) and Theorem 3, one has

K1 ⇒ {A1 |∼ A2, A1 |∼ A0} .

Moreover, applying (7) withA = A1, B = A0, C = A2,
we have

A1 |∼ A2 , A1 |∼ A0 =⇒ A1A0 |∼ A2 ,

and henceK1 ⇒ A1A0 |∼ A2. Then, asK1 ⇒ A0 |∼ A1,
applying (8) withA = A0, B = A1, C = A2, we have

A0A1 |∼ A2 , A0 |∼ A1 =⇒ A0 |∼ A2 ,

and henceK1 ⇒ A0 |∼ A2.

2. i = 2, j = 3 : by Theorem 4, one has

K1 ⇒ {A2 |∼ A3, A2 |∼ A0} .

Moreover, applying (7) withA = A2, B = A0, C = A3,
we have

A2 |∼ A3 , A2 |∼ A0 =⇒ A2A0 |∼ A3 ,

and henceK1 ⇒ A2A0 |∼ A3. Then, asK1 ⇒ A0 |∼ A2,
applying (8) withA = A0, B = A2, C = A3, we have

A0A2 |∼ A3 , A0 |∼ A2 =⇒ A0 |∼ A3 ,

and henceK1 ⇒ A0 |∼ A3.

.............................................................................................

k-2. i = k − 2, j = k − 1 : by Theorem 4, one
has

K1 ⇒ {Ak−2 |∼ Ak−1, Ak−2 |∼ A0} .

Moreover, applying (7) with

A = Ak−2, B = A0, C = Ak−1 ,

we have

Ak−2 |∼ Ak−1 , Ak−2 |∼ A0 =⇒ Ak−2A0 |∼ Ak−1 ,

and henceK1 ⇒ Ak−2A0 |∼ Ak−1.
Then, asK1 ⇒ A0 |∼ Ak−2, applying (8) with

A = A0, B = Ak−2, C = Ak−1 ,

we have

A0Ak−2 |∼ Ak−1 , A0 |∼ Ak−2 =⇒ A0 |∼ Ak−1 ,

and henceK1 ⇒ A0 |∼ Ak−1.

k-1. i = k − 1 : by Theorem 4, one has

K1 ⇒ {Ak−1 |∼ Ak, Ak−1 |∼ A0} .

Moreover, applying (7) withA = Ak−1, B = A0, C = Ak,
we have

Ak−1 |∼ Ak , Ak−1 |∼ A0 =⇒ Ak−1A0 |∼ Ak ,

and henceK1 ⇒ Ak−1A0 |∼ Ak.

Based on Theorem 5, we have



Theorem 6 Given k + 1 logically independent events
A0, A1, . . . , Ak, let F1 be the family defined in (6) and
K1 the associated knowledge base. Moreover, for each
j ∈ {1, 2, . . . , k − 2}, let us define the knowledge bases

Υ′
j = {A0Aj |∼ Ai , A0Ai |∼ Aj ; i = j + 2, . . . , k} ,

Υ′′
j = {Aj |∼ Ai , Ai |∼ Aj ; i = j + 2, . . . , k} .

Then, one has:

K1 ⇒
k−2⋃
j=1

(Υ′
j ∪Υ′′

j ) .

Proof. (i) by Theorem 5, one has

K1 ⇒ {A0 |∼ Aj , A0 |∼ Ai} ,

∀ j ∈ {2, . . . , k − 2}, ∀ i ∈ {j + 2, . . . , k}.
Moreover, applying (7), respectively, withA = A0 , B =
Aj , C = Ai, and withA = A0 , B = Ai , C = Aj , we
have

A0 |∼ Ai , A0 |∼ Aj =⇒ A0Aj |∼ Ai ;

A0 |∼ Aj , A0 |∼ Ai =⇒ A0Ai |∼ Aj ;
hence

K1 ⇒ {A0Aj |∼ Ai , A0Ai |∼ Aj} ,

∀ j ∈ {2, . . . , k − 2}, ∀ i ∈ {j + 2, . . . , k} ,

and, by (4), it follows

K1 ⇒
k−2⋃
j=1

Υ′
j . (9)

Then, asK1 ⇒ {Aj |∼ A0, Ai |∼ A0}, applying (8),
respectively, with

A = Aj , B = A0 , C = Ai ,

and with
A = Ai , B = A0 , C = Aj ,

we have
AjA0 |∼ Ai , Aj |∼ A0 =⇒ Aj |∼ Ai ,

AiA0 |∼ Aj , Ai |∼ A0 =⇒ Ai |∼ Aj ;
hence

K1 ⇒ {Aj |∼ Ai , Ai |∼ Aj} ,

∀ j ∈ {2, . . . , k − 2}, ∀ i ∈ {j + 2, . . . , k} ,

and, by (4), it follows

K1 ⇒
k−2⋃
j=1

Υ′′
j . (10)

Then, by (4), (9) and (10), we obtain

K1 ⇒
k−2⋃
j=1

(Υ′
j ∪Υ′′

j ) .

We give now a general result, which includes the previous
ones as corollaries; it can be obtained, in a simple way, in
the setting of conditional objects (see Proposition 6).

Theorem 7 Let be given the following set ofconjunctive
conditional events

C∗ = {Ai1 · · ·Aih
|Aj1 · · ·Ajt

} , (11)

where

{i1, . . . , ih}∪ {j1, . . . , jt} ⊆ {0, 1, . . . , k} , h ≥ 1, t ≥ 1.

Then, denoting byK∗ the knowledge base associated with
C∗, one has:K1 ⇒ K∗ .

The class of conjunctive conditional events has been studied
in (Lukasiewicz 1997); see also (Biazzoet al. 2001).

6 Best bounds for quasi-conjunction
In this section we consider a probability assessment on a pair
of conditional events and we determine the precise probabil-
ity bounds for their quasi-conjunction. Then, we obtain a
probabilistic semantics for theQAND rule given in (Dubois
and Prade 1994). LetA,H, B, K be logically independent
events, withH 6= ∅,K 6= ∅. We recall that the quasi-
conjunction of two conditional eventsA|H andB|K, as de-
fined in (Adams 1975), is given by

A|H&B|K = (AH ∨Hc) ∧ (BK ∨Kc)|(H ∨K) .

It can be easily verified that, for every pair(x, y), with
x ∈ [0, 1], y ∈ [0, 1], the probability assessment(x, y)
on {A|H,B|K} is coherent. Moreover, for each given as-
sessment(x, y) on{A|H,B|K}, the probability assessment
P = (x, y, z) on

F = {A|H,B|K, A|H&B|K} ,

with z = P (A|H&B|K), is a coherent extension of(x, y)
if and only if z′ ≤ z ≤ z′′, where

z′ =

{ 0, x + y ≤ 1,

x + y − 1, x + y > 1,
z′′ = x+y−2xy

1−xy ·

To obtain the valuesz′, z′′ we can study the coherence of
P = (p1, p2, p3) = (x, y, z) by a geometrical approach pro-
posed in (Gilio 1995). We denote byC1, . . . , Cm the con-
stituents generated by the family

F = {E1|H1, E2|H2, E3|H3} = {A|H,B|K, A|H&B|K}

and contained inH ∨K. Then, with eachCh we associate a
pointQh = (qh1, qh2, qh3), where, for eachi = 1, 2, 3, it is

qhi =

{ 1 , if Ch ⊆ EiHi ,
0 , if Ch ⊆ Ec

i Hi ,
pi , if Ch ⊆ Hc

i .

The pointsQh’s are

Q1 = (1, 1, 1) , Q2 = (1, y, 1) , Q3 = (1, 0, 0) ,

Q4 = (x, 1, 1) , Q5 = (x, 0, 0) , Q6 = (0, 1, 0) ,

Q7 = (0, y, 0) , Q8 = (0, 0, 0) ,

and, in our case, the coherence ofP simply amounts to the
geometrical conditionP ∈ I, whereI is the convex hull of



the pointsQ1, . . . , Q8.
As we can verify, ifx+y ≤ 1, thenP = (x, y, 0) belongs to
the triangleQ3Q6Q8, so that the conditionP ∈ I is verified
and hencez′ = 0.
If x + y > 1, denoting byπ1 the plane containing the tri-
angleT1 = Q1Q3Q6 and considering the point(x, y, z∗)
belonging toT1, in order the conditionP ∈ I be satisfied, it
must bez ≥ z∗. Then, observing that the equation ofπ1 is

Z = X + Y − 1 ,

it follows: z′ = z∗ = x + y − 1.
Concerningz′′, denoting byπ2 the plane containing the tri-
angleT2 = Q2Q4Q8 and considering the point(x, y, z∗∗)
belonging toT2, in order the conditionP ∈ I be satisfied, it
must bez ≤ z∗∗ for every(x, y) ∈ [0, 1]2. Then, observing
that the equation ofπ2 is

Z =
1− y

1− xy
·X +

1− x

1− xy
· Y ,

it follows: z′′ = z∗∗ = x+y−2xy
1−xy ·

QAND rule can be derived by applying the inference rules
of SystemP (Kraus et al. 1990) and says that, given
any knowledge baseK, the quasi-conjunctionC(K) can
be deduced byK using the inference rules of System
P . To obtain the probabilistic interpretation forQAND
rule, let(x, y, z) be any coherent probability assessment on
{A|H,B|K, A|H&B|K}. Then, given any numberβ ∈
[0, 1], for every pair(α1, α2) ∈ [β, 1] × [β, 1] such that
α1 + α2 ≥ β + 1, one has

x ≥ α1 , y ≥ α2 =⇒ z ≥ z′ = α1 + α2 − 1 ≥ β .

Quasi-conjunction plays a key role in the logic of condi-
tional objects (Dubois and Prade 1994), which will be con-
sidered in the next section.

7 Relationship with conditional objects
We recall that, based on the three-valued calculus of con-
ditional objects, in (Dubois and Prade 1994) a very simple
semantics has been provided for the preferential entailment
studied in (Krauset al. 1990). Conditional objects can be
seen as the counterpart of the conditional assertions consid-
ered in (Krauset al. 1990) and, for what concerns logi-
cal operations, we can look at them as conditional events.
Given a set of conditional objectsK, we denote byC(K)
the quasi-conjunction of the conditional objects inK and
by |= the logical entailment among conditional objects, i.e.
the logical inclusion among conditional events as defined in
(Goodman and Nguyen 1988). In the paper of Dubois and
Prade the following definition is given
Definition 4 K entailsq|p, denotedK |= q|p, if and only
if either there exists a non-empty subsetS of K such that
C(S) |= q|p, or p |= q.
We recall that the relationship between probabilistic reason-
ing under coherence and default reasoning with conditional
objects has been examined in (Biazzoet al. 2002).
Based on Definition 4, the results given in a probabilistic
framework in the Sections 4 and 5 can also be obtained in
the setting of conditional objects. We first give a preliminary
result on the quasi-conjunction ofA1|A0, . . . , Ak|Ak−1.

Proposition 1 Given the set of conditional objects

K = {A1|A0, A2|A1, . . . , Ak|Ak−1} ,

one has

C(K) = (E0 ∨ · · · ∨ Ek)|(A0 ∨ · · · ∨Ak−1) ,

where
E0 = A0A1 · · ·Ak , E1 = Ac

0A1 · · ·Ak , · · · ,

Ek−1 = Ac
0 · · ·Ac

k−2Ak−1Ak , Ek = Ac
0A

c
1 · · ·Ac

k−1 .

Proof. We proceed by induction.
a) as it can be verified, ifK = {A1|A0, A2|A1}, then

C(K) = (A0A1A2 ∨Ac
0A1A2 ∨Ac

0A
c
1)|(A0 ∨A1) ;

then, the quasi-conjunction ofK ∪ {A3|A2}, given by

(A0A1A2∨Ac
0A1A2∨Ac

0A
c
1)∧(A2A3∨Ac

2)|(A0∨A1∨A2) ,

can be written as

(E∗
0 ∨ E∗

1 ∨ E∗
2 ∨ E∗

3 )|(A0 ∨A1 ∨A2) ,

where
E∗

0 = A0A1A2A3 , E∗
1 = Ac

0A1A2A3 ,

E∗
2 = Ac

0A
c
1A2A3 , E∗

3 = Ac
0A

c
1A

c
2 .

b) assume that the quasi-conjunction of the set

{A1|A0, A2|A1, . . . , Ak−1|Ak−2}
is

(E∗
0 ∨ · · · ∨ E∗

k−1)|(A0 ∨ · · · ∨Ak−2) ,

where
E∗

0 = A0A1 · · ·Ak−1 , E∗
1 = Ac

0A1 · · ·Ak−1 , · · · ,

E∗
k−2 = Ac

0 · · ·Ac
k−3Ak−2Ak−1 , E∗

k−1 = Ac
0A

c
1 · · ·Ac

k−2 .

Then, the quasi-conjunction of the set

{A1|A0, A2|A1, . . . , Ak|Ak−1}
is

(E∗
0 ∨ · · · ∨E∗

k−1)∧ (Ak−1Ak ∨Ac
k−1)|(A0 ∨ · · · ∨Ak−1) ,

which can be written as

(E0 ∨ E1 ∨ · · · ∨ Ek)|(A0 ∨ · · · ∨Ak−1) , (12)

where
E0 = A0A1 · · ·Ak , E1 = Ac

0A1 · · ·Ak , · · · ,

Ek−1 = Ac
0A

c
1 · · ·Ac

k−2Ak−1Ak , Ek = Ac
0A

c
1 · · ·Ac

k−1 ;
hence the Proposition is proved.
By (12) it follows that the quasi-conjunction of the family

K1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak}
is
(E0 ∨ E1 ∨ · · · ∨ Ek) ∧ (A0Ak ∨Ac

k)|(A0 ∨ · · · ∨Ak) =

= · · · = (A0A1 · · ·Ak ∨Ac
0A

c
1 · · ·Ac

k)|(A0 ∨ · · · ∨Ak) =

= A0A1 · · ·Ak | (A0 ∨ · · · ∨Ak) .

By a similar reasoning, for the family

K2 = {A0|A1, A1|A2, . . . , Ak−1|Ak, Ak|A0}
one hasC(K2) = C(K1). Then, we have



Proposition 2 Let be given the sets

K1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak} ,

K2 = {A0|A1, A1|A2, . . . , Ak−1|Ak, Ak|A0} .

For everyi = 0, 1, . . . , k, one has

(a) C(K1) |= Ai|Ai+1 , (b) C(K2) |= Ai+1|Ai ,

whereAk+1 = A0.

Proof. We recall that

C(K1) = C(K2) = A0A1 · · ·Ak | (A0 ∨ · · · ∨Ak) .

Moreover, we observe thatA0A1 · · ·Ak | (A0 ∨ · · · ∨ Ak)
is true (resp., is false) if and only ifA0A1 · · ·Ak is true
(resp., there exist (at least) a pair of subscripts(i, j) such
thatAi is true andAj is false). Then, the assertion(a) fol-
lows by observing thatC(K1) true impliesAi|Ai+1 true,
while Ai|Ai+1 false impliesC(K1) false. The assertion(b)
follows by observing thatC(K2) true impliesAi+1|Ai true,
while Ai+1|Ai false impliesC(K2) false.
Recalling Definition 4, by Proposition 2 one has

K1 |= Ai|Ai+1 , ∀ i = 0, 1, . . . , k ,

K2 |= Ai+1|Ai , ∀ i = 0, 1, . . . , k ,

that is
(i) K1 |= K2 ; (ii) K2 |= K1 ;

hence we get the same conclusion of Theorem 3.
By a similar reasoning we obtain

Proposition 3 Let be given the set

K1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak} .

For everyi = 1, . . . , k − 1 andj = 2, . . . , k − 1, one has

(a) C(K1) |= A0|AiAi+1 ; (b) C(K1) |= A0|Aj .

By Definition 4 and Proposition 3, considering the setK3 =
K ′

3 ∪K ′′
3 , where

K ′
3 = {A0|AiAi+1, i = 1, . . . , k − 1} ,

K ′′
3 = {A0|Aj , j = 2, . . . , k − 1} ,

it follows
K1 |= A0|AiAi+1 , ∀ i = 1, . . . , k − 1 ,

K1 |= A0|Aj , ∀ j = 2, . . . , k − 1 ,

that is K1 |= K3; hence we get the same conclusion of
Theorem 4.

Proposition 4 Let be given the set

K1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak} .

For everyi = 1, . . . , k − 1 andj = 2, . . . , k − 1, one has

(a) C(K1) |= Ai+1|AiA0 ; (b) C(K1) |= Aj |A0 .

Then, considering the setK4 = K ′
4 ∪K ′′

4 , where

K ′
4 = {Ai+1|AiA0, i = 1, . . . , k − 1} ,

K ′′
4 = {Aj |A0, j = 2, . . . , k − 1} ,

by Proposition 4 it followsK1 |= K4, which is the counter-
part of Theorem 5.

Proposition 5 Let be given the set

K1 = {A1|A0, A2|A1, . . . , Ak|Ak−1, A0|Ak} .

For everyj ∈ {1, . . . , k − 2} andi = j + 2, . . . , k one has

(a) C(K1) |= Ai|A0Aj , (b) C(K1) |= Aj |A0Ai ,

(c) C(K1) |= Ai|Aj , (d) C(K1) |= Aj |Ai .

Then, considering, for eachj ∈ {1, . . . , k − 2}, the sets

Φ′
j = {Ai|A0Aj , Aj |A0Ai ; i = j + 2, . . . , k} ,

Φ′′
j = {Ai|Aj , Aj |Ai ; i = j + 2, . . . , k} ,

one has:

K1 |=
k−2⋃
j=1

(Φ′
j ∪ Φ′′

j ) ,

which is the counterpart of Theorem 6.
By the same reasoning as in Proposition 2, denoting byC∗

the set of conditional objects defined as in (11), we have

Proposition 6 for every pair of subsets

{i1, . . . , ih} , {j1, . . . , jt}

of the set{0, 1, . . . , k}, with h ≥ 1, t ≥ 1, one has

C(K1) |= Ai1 · · ·Aih
|Aj1 · · ·Ajt

.

Hence:K1 |= C∗.

We remark that Propositions 2, . . . , 5 can be simply obtained
as corollaries of Proposition 6, which is the counterpart of
Theorem 7.

8 An example
Five friends, Linda, Janet, Steve, George, and Peter, have
been invited to a party. We denote byA0, . . . , A4 the events
defined respectively as”Linda is present at the party”, . . . ,
”Janet is present at the party”.
We assume the following default knowledge:
- ”if Linda goes to the party, then (very probably) Janet will
do the same”;
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
- ”if Peter goes to the party, then (very probably) Linda will
do the same”;
that is, we start with the knowledge base

K1 = {A0 |∼ A1 , A1 |∼ A2 , · · · , A4 |∼ A0} .

Then, by the previous results, we can entail all conjunctive
conditional assertions, like

Ai |∼ Aj , AiAj |∼ Ah, Aj |∼ AhAk, AiAjAh |∼ AkAt, . . . .

For instance, we can entail the conditional assertions:
”if Peter is present at the party, then (very probably) Janet
is present too”;
”if Linda and Janet are present at the party, then (very prob-
ably) Steve, George, and Peter are present too”; and so on.



9 Conclusions
In this paper we have considered a generalized version of
Loop rule and, using Csásźar’s condition, we have given a
probabilistic interpretation of it. Then, exploiting CM and
Cut rules, we have obtained related results on p-entailment
by the conditional knowledge base associated with Loop
rule. Moreover, we have considered a probability assess-
ment on a family of two conditional events, determining the
best bounds for the probability of their quasi-conjunction
and providing a probabilistic semantics forQANDrule.
Finally, we have reconsidered our results in the setting of
conditional objects.
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