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Abstract 
One of the crucial actions any reasoning system must 
undertake is the updating of its Knowledge Base (KB). This 
problem is usually referred to as the problem of belief 
change. The AGM approach, introduced in (Alchourron, 
Gärdenfors, and Makinson 1985), is the dominating 
paradigm in the area but it makes some non-elementary 
assumptions about the logic at hand which disallow its 
direct application in some classes of logics. In this paper, 
we drop all such assumptions and determine the necessary 
and sufficient conditions for a logic to support AGM-
compliant operators. Our approach is directly applicable to 
a much broader class of logics. We apply our results to 
establish connections between the problem of updating in 
Description Logics (DLs) and the AGM postulates. Finally, 
we investigate why belief base operators cannot satisfy the 
AGM postulates in standard logics. 

Introduction 
The problem of belief change is concerned with the 
updating of an agent’s beliefs in the face of new 
information that is possibly contradictory with the agent’s 
current beliefs. Being able to dynamically change the 
stored data is very important in any Knowledge 
Representation (KR) system. Mistakes may have occurred 
during the input; or some new information may have 
become available; or the world represented by the KB may 
have changed. In all such cases, the agent’s beliefs should 
change to reflect this fact. 

The most influential work on belief change is 
(Alchourron, Gärdenfors, and Makinson 1985). Instead of 
trying to find a specific method for dealing with the 
problem of belief change, the authors of (Alchourron, 
Gärdenfors, and Makinson 1985) chose to investigate the 
properties that such a method should have in order to be 
intuitively appealing. The result was a set of postulates 
(named AGM postulates after the initials of the authors) 
that every belief change operator should satisfy. That paper 
had a major influence in most subsequent works on belief 
change, being the dominating paradigm in the area ever 
since. The publication of the AGM postulates was 

followed by a series of works, by several authors, studying 
the postulates’ effects or providing equivalent 
formulations. A list of relevant works, which is far from 
being exhaustive, includes (Alchourron and Makinson 
1985), (Gärdenfors 1992), (Gärdenfors and Makinson 
1988), (Grove 1988), (Katsuno and Mendelzon 1990), 
(Katsuno and Mendelzon 1992). 

Given the (almost) universal acceptance of the AGM 
postulates in the belief change community as the defining 
paradigm for belief change operations, it would be 
desirable to be able to directly apply them in any type of 
logic. Unfortunately, this is not possible due to the 
assumptions made by the authors in the original 
formulation of the postulates.  

One important example of application of belief change 
that cannot be directly accommodated by the AGM model 
is the problem of updating in DLs. DL is one of the leading 
formalisms for storing and manipulating knowledge in the 
Semantic Web. DLs allow the representation of 
sophisticated relations between concepts and roles; the 
sophistication of these relations varies, depending on the 
DL at hand and determines the expressive power as well as 
the (algorithmic) complexity of reasoning in this DL. 

DL bases consist of concepts, roles and their instances. 
The part of the KB that deals with the concept/role 
instances is called the Abox, while the part that deals with 
the concepts/roles themselves is called the Tbox. Roughly, 
the Tbox corresponds to the “schema” of the KB and the 
Abox to the “data” of the KB. For a detailed description of 
DLs see (Baader et al. 2002). 

One problem that has been generally disregarded in the 
DL literature is the updating of the Tbox. As outlined 
before, updating a KB is important for several reasons; 
updating the Tbox of a DL is even more desirable because 
it allows the simultaneous building of an ontology by 
different work teams, followed by the merging of the 
resulting Tboxes. We would like to apply the AGM theory 
directly to this problem. Unfortunately we cannot do that, 
due to the assumptions made in the postulates’ original 
formulation, which overrule logics such as DLs. 

 



 
In the present paper, we drop most assumptions of the 

AGM theory and study a much broader class of logics. We 
determine the necessary and sufficient conditions required 
for an operator that complies with the AGM postulates to 
exist in a given logic and apply the results to the problem 
of updating a DL Tbox. The results of our research can be 
further applied to shed light on our inability (Hansson 
1996) to develop base contraction operators that satisfy the 
AGM postulates. Only informal sketches of proofs will be 
presented; detailed proofs can be found in the full version 
of this paper (Flouris, Plexousakis, and Antoniou 2004). 

Setting and Terminology 
When dealing with logics we often assume the existence of 
operators such as negation, conjunction, disjunction etc, as 
well as the existence of an implication operator that allows 
us to conclude facts from other facts. The implication 
operator is usually assumed to include classical 
tautological implication. Such an approach overrules some 
important types of logics, such as equational logic (see 
(Burris 1998) for details on equational logic). 

In this paper, to preserve generality, we will make fewer 
assumptions. A logic is just a set (denoted by L), equipped 
with a consequence (implication) operator (denoted by 
Cn). The set L contains all the available propositions of the 
logic. In Propositional Calculus (PC) for example a, a∧b, 
a∨(¬b)∈L. The consequence operator is a function 
mapping sets of propositions to sets of propositions. We 
assume that the Cn operator satisfies the Tarskian axioms, 
namely iteration  (Cn(Cn(A))=Cn(A)), inclusion 
(A⊆Cn(A)) and monotony (A⊆B implies Cn(A)⊆Cn(B)). 
For A, B⊆L, we will say that A implies B (denoted by 
A⊧B) iff B⊆Cn(A). In the rest of this paper, the term logic 
will refer to a pair <L, Cn> that satisfies the Tarskian 
axioms. 

Notice that, unlike the assumptions made in the AGM 
theory, we do not assume the existence of any operators; 
this means that we can only “connect” propositions by 
grouping them in a set. Moreover, the consequence 
operator is not required to include classical tautological 
implication, is not necessarily compact and could violate 
the “rule of introduction of disjunctions in the premises”. 
The above assumptions are general enough to include most 
interesting classes of logics. 

Previous Work − AGM Postulates 
In their attempt to formalize the field of belief change, 
Alchourron, Gärdenfors and Makinson in (Alchourron, 
Gärdenfors, and Makinson 1985) defined three different 
types of belief change, namely expansion, revision and 
contraction. Expansion is the addition of a sentence to a 

KB, without taking any special provisions for maintaining 
consistency; revision is similar, with the important 
difference that the result should be a consistent set of 
beliefs; contraction is required when one wishes to 
consistently remove a sentence from their beliefs instead of 
adding one. The authors introduced a set of postulates for 
revision and contraction that formally describe the 
properties that such an operator should satisfy. Our work 
deals with the operation of contraction only. Dealing with 
revision, as well as with other non-trivial belief change 
operators such as update and erasure (Katsuno and 
Mendelzon 1992) is an interesting topic of future work.  

Under the AGM approach, a KB is a set of propositions 
K closed under logical consequence (K=Cn(K)), also 
called a theory. Any expression x∈L can be contracted 
from the KB. The operation of contraction can be 
formalized as a function mapping the pair (K, x) to a new 
KB K′ (denoted by K′=K−x). Of course, not all functions 
can be used for contraction. First of all, the new KB (K′) 
should be a theory itself. As already stated, contraction is 
an operation that is used to remove knowledge from a KB; 
thus the result should not contain any new, previously 
unknown, information. Moreover, contraction is supposed 
to return a new KB such that the expression x is no longer 
believed; hence x should not be among the consequences 
of K−x. Finally, the result should be syntax-independent 
and should remove as little information from the KB as 
possible, in accordance with the Principle of Minimal 
Change.  

The above intuitions were formalized in a set of six 
postulates, the basic AGM postulates for contraction. 
Here, we will present a slightly generalized version of the 
postulates, in which the contracted belief can be any set of 
propositions A⊆L (instead of any proposition x∈L): 
(K−1) Closure: Cn(K−A)=K−A 
(K−2) Inclusion: K−A⊆K 
(K−3) Vacuity: If A⊈Cn(K), then K−A=K 
(K−4) Success: If A⊈Cn(∅), then A⊈Cn(K−A) 
(K−5) Preservation: If Cn(A)=Cn(B), then K−A=K−B 
(K−6) Recovery: K⊆Cn((K−A)∪A) 

 
In general, these postulates express common intuition 

regarding the operation of contraction and were accepted 
by most researchers. The only postulate that has been 
seriously debated is the postulate of recovery (K−6). Some 
works (Fuhrmann 1991), (Hansson 1996) state that (K−6) 
is counter-intuitive. Others (Hansson 1999) state that it 
forces a contraction operator to remove too little 
information from the KB. However, it is generally 
acceptable that the recovery postulate cannot be dropped 
unless replaced by some other constraint that would 
somehow express the Principle of Minimal Change. 
Another common criticism has to do with the problematic 
connection of belief base contraction with recovery; we 

 



 
Definition 1 Consider a logic <L, Cn> and a set A⊆L: will deal with this problem at a later point. In any case, it is 

not the aim of this work to settle this debate; our attempt is 
to find which logics support the AGM postulates and use 
these results in real-world applications. 

• The logic <L, Cn> is called AGM-compliant with 
respect to the basic postulates of contraction (or 
simply AGM-compliant) iff there exists an operator 
that satisfies the basic AGM postulates for contraction 
(K−1)-(K−6). 

Logics and AGM Postulates • The set A is called decomposable iff for all B⊆L such 
that Cn(∅)⊂Cn(B)⊂Cn(A) there exists a C⊆L such 
that Cn(C)⊂Cn(A) and Cn(A)=Cn(B∪C). 

The version of the postulates presented in the previous 
section can be directly applied in our more general 
framework. While, as shown in (Alchourron, Gärdenfors, 
and Makinson 1985), in the more restrictive AGM 
framework there always exist several functions that satisfy 
the AGM postulates, it turns out that in some logics in the 
class we consider there is no such contraction function. As 
the following theorem shows, it is the recovery postulate 
that causes this problem: 

• The logic <L, Cn> is called decomposable iff all A⊆L 
are decomposable. Equivalently, the logic <L, Cn> is 
called decomposable iff for all A, B⊆L such that 
Cn(∅)⊂Cn(B)⊂Cn(A) there exists a C⊆L such that 
Cn(C)⊂Cn(A) and Cn(A)=Cn(B∪C). 

 
Theorem 2 A logic <L, Cn> is AGM-compliant iff it is 
decomposable. Theorem 1 In every logic there exists a contraction 

operator satisfying (K−1)-(K−5).  
In the general case, for every set A⊆L there exist several 

sets B⊆L with the property that Cn(∅)⊂Cn(B)⊂Cn(A). In 
order to check L for decomposability we have to check, for 
each A⊆L, whether all these sets (B) have a “relative 
complement” (C) in the sense described above 
(Cn(C)⊂Cn(A) and Cn(A)=Cn(B∪C)). But there is an 
alternative option: imagine a family of subsets of Cn(A) 
with the property that every other subset of Cn(A) either 
implies or is implied by one of them. Such a set actually 
“cuts” the beliefs implied by A in two. It also has a very 
special place in our theory, so we give it a special name: 

 
If the recovery postulate is added to our list of desirable 

postulates, then the above proposition fails. Take for 
example L={a,b}, Cn(∅)=∅, Cn({a})=Cn({a,b})={a,b}, 
Cn({b})={b}. It can be easily proven that <L, Cn> is 
indeed a logic. Notice that all theories (except Cn(∅)) 
contain b. So, if we attempt to contract b (or better: {b}) 
from {a,b} the result can be no other than ∅, or else the 
postulate of success would be violated. But then, the 
recovery postulate is not satisfied, as can be easily verified. 

It would be interesting to search for the distinctive 
property that does not allow us to define a contraction 
operator that satisfies the AGM postulates in the above 
logic. The answer is quite easy once we examine the 
situation a bit closer. Take the two sets A={a,b} and 
B={b}. It holds that Cn(B)⊂Cn(A), which implies that B 
carries “less information” than A. Suppose that we contract 
B from A and get a set C (C=A−B). By the postulates of 
inclusion and success, we conclude that: Cn(C)⊂Cn(A). 
Furthermore, by the postulate of recovery we get: 
Cn(A)⊆Cn(C∪B), which implies that we must select a set 
C that “fills the gap” between A and B. In other words, it 
must be the case that A can be “decomposed”, with respect 
to B, in two sets B and C, such that both sets contain 
strictly less knowledge than A when taken separately, but 
they have the same “informational strength” as A when 
combined. So, the result C=A−B could be viewed as a kind 
of “complement” of B with respect to A. In the example 
presented, the problem lies in the fact that there is no such 
expression (or set of expressions) in the given L for the 
pair of sets A, B; thus no operator can satisfy all the basic 
AGM postulates for contraction. Once we deal with some 
technicalities and limit cases, it turns out that the situation 
presented is typical in all logics that do not support the 
AGM postulates for contraction: 

Definition 2 Consider a logic <L, Cn>, a set A⊆L and a 
family S of sets such that: 
• For all X∈S, Cn(X)⊂Cn(A) 
• For all Y⊆L such that Cn(Y)⊂Cn(A), there is a X∈S 

such that Cn(Y)⊆Cn(X) or Cn(X)⊆Cn(Y) 
Then S is called a cut of A. 

 
Assume now a set A⊆L, a cut S of A and a set B that is 

implied by all the sets in a cut. Take C=A−B. Since S is a 
cut and Cn(C)⊂Cn(A) by (K−2) and (K−4), C will either 
imply or be implied by a set in S. If it implies a set in S, 
then it also implies B, so it does not satisfy success. If it is 
implied by a set in S (say X∈S), then Cn(B)⊆Cn(X) and 
Cn(C)⊆Cn(X), so it is necessarily the case that 
Cn(B∪C)⊆Cn(X)⊂Cn(A), so recovery is not satisfied. 
Once again, after we deal with some technicalities, it turns 
out that this is another equivalent characterization of 
AGM-compliant logics: 
Theorem 3 A logic <L, Cn> is AGM-compliant iff for 
every A⊆L and every cut S of A it holds that 
Cn(∩X∈SCn(X))=Cn(∅). 

 
Consider a family of (proper) subsets of Cn(A) with the 

property that it contains all the maximal (proper) subsets of 
Cn(A). This family is obviously a cut, called a max-cut: 

 



 
Definition 3 Consider a logic <L, Cn>, a set A⊆L and a 
family S of sets such that: 

The constants and the elements of the namespace 
combine with the operators in the usual way to form terms 
(such as (A⊓B)⊔(¬C)⊔⊥). An axiom of a DL is an 
expression of the form XRY where X, Y are terms and R is 
a connective (such as A≅B⊔C, where X=“A”, Y=“B⊔C” 
and R=“≅”). A Tbox is a set of axioms. Each DL allows 
different constants, operators and connectives and has its 
own conventions and rules for forming axioms; all these 
limitations define a set L of available axioms in the given 
DL. The semantics of the given DL determine which 
axioms are implied by any given set of axioms; in effect, 
they determine the consequence operator (Cn) of the logic. 
It is trivial to see that all DLs satisfy the Tarskian axioms. 
Thus the pair <L, Cn> defined as above identifies the 
given DL and is a logic in our sense. 

• For all X∈S, Cn(X)⊂Cn(A) 
• For all Y⊆L with Cn(Y)⊂Cn(A), there exists a X∈S 

such that Cn(Y)⊆Cn(X) 
• For all X∈S, X=Cn(X) 
• For all X, Y∈S, Cn(X)⊆Cn(Y) implies X=Y 
Then S is called a max-cut of A. 

 
Notice that every set A has at most one max-cut. 

Moreover, if there exists a cut S with the property that 
Cn(∩X∈SCn(X))≠Cn(∅), then the same property will hold 
for the max-cut as well (if it exists). So, max-cuts give us 
the option to check only one cut S of a set A for whether 
Cn(∩X∈SCn(X))≠Cn(∅), instead of checking all possible 
cuts of A. This fact might allow the development of an 
algorithm for checking decomposability of a logic; 
evaluating this possibility is part of our future work.  

Notice that an expression of the form A(x), denoting 
that x is an instance of the concept A, is also an expression 
of a DL; yet it is part of the Abox (not the Tbox). Since in 
this paper we are only interested in updating the Tbox, we 
will ignore such expressions.  

The downside with max-cuts is that they do not always 
exist; a max-cut of a set A always exists if there is a finite 
number of equivalence classes implied by A, but in infinite 
logics there could be A⊆L for which no max-cut exists. In 
any case the following theorem holds:  

Before dealing with the general case of retracting an 
axiom from a Tbox, we must deal with a special type of 
contraction that could appear in a Tbox: contracting all that 
is known about a given concept or role. In the DL context, 
it is usually desirable to make contractions of the form: 
“remove all references of the concept/role A from the 
Tbox T”. In the basic framework described above, such a 
contraction cannot be expressed. For this reason, we will 
add to our DL definition the existence assertion operator, 
a modal operator denoted by %. This operator can only be 
applied to elements of the namespace (e.g. %A) and 
denotes the fact that the concept (or role) A exists in the 
KB, without giving any further information about A. With 
this operator, the previously impossible contraction can be 
expressed using %A (T−{%A}). So, the set of our 
allowable axioms (L) is enriched with all expressions of 
the form %A for A element of the namespace. 

Theorem 4 Consider a logic <L, Cn> and a set A⊆L 
which has a max-cut S. Then A is decomposable iff for the 
max-cut S it holds that Cn(∩X∈SCn(X))=Cn(∅). 

A Definition of Description Logics 
The theorems of the previous section constitute our arsenal 
for checking whether any logic is AGM-compliant or not. 
We will try to apply these results in a real case study, 
namely the problem of updating a Tbox in a DL. As 
already noted, a Tbox consists of a set of facts (axioms) 
about concepts and roles of a DL. The general intuition 
behind the contraction of a DL Tbox is the same as in the 
AGM case. When contracting a Tbox T with an expression 
(axiom) x -or with a set of axioms A- one should check 
whether x (or A) is a consequence of T and, if so, remove 
some of the axioms of T so as to prevent x (or A) from 
being a consequence of the new Tbox T′=T−x (or 
T′=T−A). Moreover, this removal must be done minimally, 
in the sense of the Principle of Minimal Change, which is 
expressed by the vacuity and recovery postulates. It turns 
out that, for several DLs, this is not possible.  

The introduction of this operator affects the 
consequence operator as well: every axiom “uses” at least 
some elements of the namespace, so it should imply their 
existence. The formal definition of the elements “used” by 
an axiom (or a set of axioms) is presented in (Flouris, 
Plexousakis, and Antoniou 2004). Informally, an element 
is used by an axiom iff it appears in the axiom. The set 
formed by the elements used by an axiom x (or by a set of 
axioms K) is denoted by U(x) (or U(K)). For example, the 
axiom x=“A≅B⊓C” uses the namespace elements A, B, C, 
so U(x)={A, B, C}. Thus, x implies (among other things) 
%A, %B, %C. Formally, for an element A of the 
namespace and a KB K, if A∈U(K) then %A∈Cn(K). 

To address the problem formally, we must first decide 
on a formal definition of a DL. To our knowledge, there is 
no such definition. We will assume that a DL consists of a 
namespace, i.e. a set containing concept names and role 
names (such as “Mother”, “has_child”, “A”, “B”, “C” etc), 
a set of constants (such as ⊤, ⊥), a set of operators (such 
as ⊔, ⊓, ¬ etc) and a set of connectives (such as ⊑, ⊒, ≅ 
etc), often called relations. 

Thus, in order to express the fact that there is a 
concept/role A in a KB, we must either form an axiom that 
contains it (implicit existence) or denote this by %A 

 



 
(explicit existence). Without the operator %, such a fact 
can only be denoted implicitly. 

Description Logics and AGM Postulates 
The application (or not) of % and the CNA greatly changes 
the semantics of a DL; so we have to split our analysis in 
DLs with these features and DLs without them. It is 
obvious that these features enhance the expressiveness of a 
DL; unfortunately, they can be proven incompatible with 
the AGM postulates. 

The existence assertion operator leads us to the 
introduction of the concept of Closed Namespace 
Assumption (CNA for short). It is usually desirable to 
assume that concepts or roles that are not used by a DL KB 
(i.e. they appear nowhere in the KB) do not exist, as far as 
the KB is concerned. This assumption is usually made 
implicitly in the literature. It can be formally expressed 
using operator %: for an element A of the namespace and a 
KB K, if A∉U(K) then %A∉Cn(K). Notice that the 
converse of this implication is forced by the % definition. 
Thus, the CNA implies that %A∈Cn(K) iff A∈U(K). 

To verify this, notice that the mere existence of some 
namespace elements is insufficient to imply any non-trivial 
expression (or set of expressions) that contains them. For 
example, the set {A≅B} (for A, B concepts of the 
namespace) is not implied by {%A,%B}. If we attempt to 
contract {%A} from Cn({A≅B}), the result must use no 
element of the namespace other than B, or else the 
postulates of success and/or inclusion would be violated. 
The only expressions that can be formed using B alone are 
trivial expressions such as B≅B, B⊑B etc, which are all 
implied by %B. Thus, the result should be Cn({%B}). But 
then the postulate of recovery is violated because 
Cn({%A,%B})⊂Cn({A≅B}). The situation presented is 
typical in all DLs that contain non-trivial expressions (i.e. 
expressions not implied by the mere existence of their 
namespace elements). It can be generalized as follows: 

The consequences of making this general assumption 
(CNA) should not be underestimated. CNA rules out 
several possible implications of a given Tbox. For 
example, if A is not used in a Tbox K at all (or, more 
formally, if A∉U(K)), then expressions like A≅A, A⊑A 
and A⊑A⊔B are not consequences of the Tbox. This 
might look like an absurdity, but technically it is not. Take 
x=“A≅A” for example. Obviously, A is used by x 
(A∈U(x)), so, by the definition of %, it follows that 
{x}⊧{%A}. If we allow x to be a consequence of the Tbox 
K, then x∈Cn(K) thus %A∈Cn(K). But A∉U(K) by 
hypothesis, so the CNA implies that %A∉Cn(K), a 
contradiction. 

Theorem 5 Consider a DL <L, Cn> with % and the CNA, 
with the property that there is at least one set X⊆L such 
that Cn(X)⊃Cn(∪A∈U(X){%A}), U(X)≠∅ and U(X) is 
finite. Then <L, Cn> is not AGM-compliant. 

This argument additionally shows that allowing the 
existence assertion operator without the CNA does not 
make much sense. Take any A in the namespace, 
x=“A≅A” and any Tbox K. If CNA is not applied then 
x∈Cn(K), thus %A∈Cn(K) for any Tbox K and any A in 
the namespace. Another useful remark is that the 
expressions A≅A and %A are equivalent; thus one could 
view %A as a shortcut for A≅A (in DLs where ≅ is 
allowed, of course). Finally, notice that the logic <L, Cn> 
corresponding to a DL satisfies the Tarskian axioms with 
or without the operator % and the CNA. 

 
This result shows that any non-trivial DL with % and 

the CNA is not AGM-compliant. However, acknowledging 
that the introduction of the existence assertion operator and 
the CNA was mainly due to a technicality, we will not give 
up on our study of DLs; instead we will drop the operator 
% and the CNA from the DL framework and study 
whether such DLs are AGM-compliant. Of course, this 
limits our expressiveness, as we can no longer express 
contractions of the form “remove all references of the 
concept/role A from the Tbox”.  

It is obvious that the AGM theory cannot be used to 
study this problem. Firstly, there are no operators on 
axioms. Axioms in DLs are of equational nature (e.g. 
A≅B⊔C); thus, if x is an axiom then the expression ¬x is 
usually undefined; the same goes for expressions of the 
form x∧y, x∨y etc, for x, y axioms of a DL. Secondly, 
many DLs are not compact. Therefore, the semantics of 
such a logic are too far from the logics considered in 
(Alchourron, Gärdenfors, and Makinson 1985), making 
their framework inapplicable in this context. In the next 
section, we will investigate the relation of DLs as defined 
here with the AGM postulates using our more general 
framework. 

Unfortunately, even without the CNA, our study (up to 
now) has not revealed any important type of DL that is 
AGM-compliant. On the contrary, we proved some logics 
of the AL family (see (Baader et al. 2002) for details) to be 
non-AGM-compliant, as this theorem shows: 
Theorem 6 Assume a DL <L, Cn> with the following 
properties: 
• There are at least two role names and at least one 

concept name in the namespace 
• The DL contains any (or all) of  the constants {⊤, ⊥} 
• Any (or all) of the operators {¬ (full or atomic), ⊓, 

⊔} are allowed, as well as at least one of the operators 
{∃ (full or limited), ∀, ≥n, ≤n} 

• Only the connective {≅} is allowed 
Then <L, Cn> is not AGM-compliant.  

 



 
 
The problem here lies in the lack of operators for 

connecting roles with each other. Because of this absence, 
for two roles R, S, the expression R≅S can only be implied 
by itself and its symmetric (S≅R). Indeed, it can be easily 
verified that {R≅S} implies all propositions of the form: 
∀R.X≅∀S.X, ∃R.X≅∃S.X, (≥nR)≅(≥nS), (≤nR)≅(≤nS), for 
any concept term X and any number n≥0. If we group all 
the above implications in a set, say A, then it can be 
proved that Cn({R≅S})={R≅S}∪{S≅R}∪Cn(A) and 
Cn(A)⊂Cn({R≅S}). These facts combined imply that the 
family Scut={A} is a cut of {R≅S}, whose intersection is, 
obviously, equal to Cn(A)≠Cn(∅). 

Theorem 6 implies that FL0, FL−, AL and all DLs of the 
family AL[U][E][N][C] (see (Baader et al. 2002) for the 
definition of these DLs) are not AGM-compliant, provided 
that they only allow for equality axioms. It would be an 
interesting topic of future work to study the effect of 
allowing inclusion axioms in any of the above DLs. Notice 
that the result presented does not imply anything as far as 
more expressive DLs are concerned; it is possible that a 
more expressive DL is AGM-compliant. If this is the case, 
it would be interesting to find the connective(s) and/or 
operator(s) that would guarantee AGM-compliance.  

Belief Base Contraction 
One of the criticisms that the AGM model had to face was 
the fact that theories are (in general) infinite structures, 
thus no reasonable algorithm based entirely on the AGM 
model could be developed (Hansson 1996), (Hansson 
1999). Furthermore, some authors (Fuhrmann 1991), 
(Nebel 1989) state that our beliefs regarding a domain 
stem from a small, finite number of observations, facts, 
rules, measurements, laws etc regarding the given domain; 
the rest of our beliefs are simply derived from such facts 
and should be removed once their logical support is lost. 

The above problems are due to the fact that the AGM 
model performs belief change operations on the whole set 
of beliefs; this model does not distinguish between explicit 
facts (acquired directly from observations) and implicit 
facts (implied by the observations). Alternatively, one 
could perform belief change operations on a small subset 
of his beliefs, a base, which contains only the explicit 
facts. Belief change operations on belief bases appeared as 
a reasonable alternative to the AGM model due to their 
nice computational properties and intuitive appeal.  

Regarding contraction, the main difference between 
belief base contraction and belief set contraction is the fact 
that in belief set contraction the result should be a subset of 
the theory, while in belief base contraction the result 
should be a subset of the base. In this context, the AGM 
requirement that contraction should be performed upon a 

theory and result in a theory is dropped. This seemingly 
small difference has some severe effects on the operators 
considered. An initial effect is the fact that the AGM 
postulates should be slightly modified to deal with belief 
base contraction. This is relatively easy to do. The new, 
modified postulates are: 
(B−1) Base closure: K−A⊆L 
(B−2) Base inclusion: K−A⊆K 
(B−3) Base vacuity: If A⊈Cn(K), then K−A=K 
(B−4) Base success: If A⊈Cn(∅), then A⊈Cn(K−A) 
(B−5) Base preservation: If Cn(A)=Cn(B), then 
K−A=K−B 
(B−6) Base recovery: K⊆Cn((K−A)∪A) 

 
Notice that K does not necessarily refer to a theory now; 

any set would do in this context. Similarly, the result K−A 
could be any set. The other postulates are the same as in 
belief set contraction. Despite this fact, (B−2) is stronger 
than (K−2) because it forces the contraction function to 
remove elements from the base K only (instead of the 
theory of K, Cn(K)). These postulates can also be found in 
(Fuhrmann 1991). Unfortunately, for most logics and 
belief bases, these postulates do not make much sense due 
to the base recovery postulate. Take for example the 
operation {a∧b}−{a} in PC. Due to the postulates (B−2) 
and (B−4) it should be the case that {a∧b}−{a}=∅; but 
this violates the base recovery postulate, as can be easily 
verified. Thus, there can be no AGM-compliant base 
contraction operator that can handle this case. 

The effects of this observation were immediate in the 
literature and led to the rejection of the base recovery 
postulate. As already explained in previous sections, the 
base recovery postulate cannot be dropped unless replaced 
by other postulates, which would capture the intuition 
behind the Principle of Minimal Change. Some authors did 
that, by replacing the base recovery postulate with other 
constraints, such as filtering (Fuhrmann 1991). Others 
dropped the AGM postulates altogether, and developed a 
new set of postulates from scratch (Hansson 1996); this 
approach is reasonable, as the AGM postulates were 
developed with belief set contraction operators in mind. 

In either case, the AGM postulates were characterized as 
unsuitable to handle belief base contraction operators, even 
by their developers (Alchourron, Gärdenfors, and 
Makinson 1985). Some authors made some brief informal 
analysis on the reasons behind this failure. In (Fuhrmann 
1991) for example, it was claimed that, since a base A does 
not (in general) contain all the propositions that it implies 
(Cn(A)), it does not satisfy the prerequisites of the AGM 
theory (disjunctive syllogism, tautological implication etc). 
Thus, only superredundant bases (i.e. theories) can have 
enough logical power to satisfy base recovery and the 
other postulates. With this result at hand, it seemed 
reasonable to neglect the AGM postulates when dealing 

 



 
with belief bases. But there was a problem with 
Fuhrmann’s approach: he assumed that the prerequisites 
originally set by AGM were necessary for AGM-compliant 
operators to exist, which is not the case, as our analysis 
showed. 

Despite this problem, Fuhrmann’s analysis paved the 
way to find the conditions necessary for AGM-compliant 
operators for belief bases to exist. His syllogism can be 
repeated as follows: assume a condition P that is necessary 
and sufficient for an AGM-compliant operator to exist in a 
logic (in the standard case where belief sets are 
considered). Assume also two sets A, B and the operation 
C=A−B. When dealing with belief sets, we require that 
there exists a set C satisfying condition P. Because of the 
inclusion postulate (K−2), this set can be formed using 
expressions from the set Cn(A), thus C⊆Cn(A).  

In the belief base case, we again require that there exists 
a set C that satisfies condition P. In this case however, the 
base inclusion postulate (B−2) restricts this set to be 
formed using elements from A only (instead of Cn(A)), 
thus C⊆A. As shown in previous sections, the condition P 
of our analysis is decomposability. More formally, we get: 
Definition 4 Consider a logic <L, Cn> and a set A⊆L: 
• The logic <L, Cn> is called AGM-compliant with 

respect to the basic postulates of belief base 
contraction (or simply base-AGM-compliant) iff there 
exists an operator that satisfies the basic AGM-
postulates for belief base contraction (B−1)-(B−6). 

• The set A is called base-decomposable iff for all B⊆L 
such that Cn(∅)⊂Cn(B)⊂Cn(A) there exists a C⊆L 
such that C⊆A, Cn(C)⊂Cn(A) and Cn(A)=Cn(B∪C). 

• The logic <L, Cn> is called base-decomposable iff all 
A⊆L are base-decomposable. Equivalently, the logic 
<L, Cn> is called base-decomposable iff for all A, 
B⊆L such that Cn(∅)⊂Cn(B)⊂Cn(A) there exists a 
C⊆L such that C⊆A, Cn(C)⊂Cn(A) and 
Cn(A)=Cn(B∪C). 

 
Theorem 7 A logic <L, Cn> is base-AGM-compliant iff it 
is base-decomposable.  

 
Notice that the only difference between decomposability 

and base-decomposability has to do with the selection of 
the set C: in decomposability, C must be implied by A 
(Cn(C)⊂Cn(A)); in base-decomposability, C must 
additionally be a subset of A (C⊆A). It is obvious that 
base-decomposability is a stronger condition than 
decomposability. This should be expected, as (B−2) is 
stronger than (K−2). A set A is base-decomposable if each 
of its proper implications has a “complement” relative to A 
that can be expressed using propositions in A (and not 
Cn(A) as was the case with simple decomposability). 

The close connection between decomposability and 
base-decomposability could imply a similar connection 

between cuts and a similar structure for bases, the base-
cuts. Indeed, such a connection exists:  
Definition 5 Consider a logic <L, Cn>, a set A⊆L and a 
family S of sets such that: 
• For all X∈S, Cn(X)⊂Cn(A) 
• For all Y⊆L such that Cn(Y)⊂Cn(A) and Y⊂A, there 

is a X∈S such that Cn(Y)⊆Cn(X) or Cn(X)⊆Cn(Y) 
Then S is called a base-cut of A. 

 
Theorem 8 A logic <L, Cn> is base-AGM-compliant iff 
for every A⊆L and every base-cut S of A it holds that 
Cn(∩X∈SCn(X))=Cn(∅). 

 
The above analysis resolves the question of why the 

logics of the AGM framework do not support base AGM 
contraction operators in the general case: such logics are 
not base-decomposable. The compactness property of such 
logics and the semantics of the conjunction operator allows 
the replacement of any set A with an equivalent expression 
x, such that Cn({x})=Cn(A). By (B−2), the only 
acceptable results of the contraction of {x} by any belief 
would be {x} and ∅, which are (generally) both overruled 
by the other postulates. Thus, there are several sets of the 
form {x} which are not base-decomposable. The 
contraction example {a∧b}−{a} presented earlier in this 
section was an application of this general example. 

On the other hand, theorems 7 and 8 imply that there 
exist non-superredundant bases satisfying the condition of 
base-decomposability. One example proving this is the 
class of logics <LI, CnI> where LI={xi | i∈I} and 
CnI(∅)=∅, CnI({xi})={xi} for all i∈I and CnI({xi, xj})=LI 
for i≠j, i,j∈I. It is easy to show that all logics in this class 
are base-decomposable, thus every set A⊆LI is base-
decomposable, even if it is not superredundant. So, it 
should not be assumed beforehand that an AGM-compliant 
operator for non-superredundant belief bases is impossible. 

Unfortunately, most interesting logics are not base-
AGM-compliant. We can be partly compensated for this 
result by the fact that the theories of an AGM-compliant 
logic are base-decomposable. Moreover, most logics 
contain base-decomposable sets, some of which may not 
be superredundant. For example, if the underlying logic is 
PC with only two atoms a, b, then the set A={a∨b, a∨¬b} 
is base-decomposable, even though the logic itself is not 
base-AGM-compliant and the set A is not a theory 
(a∈Cn(A), but a∉A).  

Such logics have some interest: take a logic <L, Cn> 
and a base-decomposable set A⊆L. It can be proved that 
for any B⊆L there exists a C such that by setting C=A−B, 
the function ‘−’ satisfies the AGM postulates for base 
contraction; thus we can define a “local” base-AGM-
compliant operator, applicable for A only. In some logics 
we may even be able to find an operator that always results 
in another base-decomposable set, thus “jumping” from 

 



 
one base-decomposable set to another base-decomposable 
set. So when we carefully select the bases, we could get 
base-AGM-compliant contraction operators even for some 
of the logics that are not base-AGM-compliant. 
Unfortunately, for logics with an infinite number of 
equivalence classes there is no guarantee that base-
decomposable sets will always be finite. 

Discussion 
The description of the connection of belief base 
contraction with the AGM theory completes the main 
results of our research, which are the following: 
• The original AGM theory restricted the study of belief 

change operators in a special class of logics. AGM 
studied the properties necessary for a rational belief 
change operator in such logics, proposed the AGM 
postulates and showed that they make sense because 
there are always several belief change operators 
satisfying them in each logic of the class they 
considered. We took a different route. We studied a 
much broader class of logics, with minimal 
restrictions as to their properties, and formulated the 
necessary and sufficient conditions for a given logic in 
this wider class to support a rational belief change 
operator. In this context, the word “rational” means 
“satisfying the AGM postulates”. We showed that, in 
our class, there are logics which do not support 
rational belief change operations. On the other hand, 
there are AGM-compliant logics that do not fall into 
the class originally considered by AGM. 

• Our framework allows the study of several logics with 
respect to the AGM postulates, even if these logics do 
not support the original prerequisites of the AGM 
theory. An immediate application of this fact is our 
study regarding DLs. 

• Previous work has completely disregarded the base 
recovery postulate as far as belief base contraction 
operators are concerned. We investigated the reasons 
why the base recovery postulate is so problematic 
when applied in belief base contraction operators. We 
showed that this problem is related not only to the 
base recovery postulate but to the logic under question 
and the selection of the base as well. There are logics 
that are base-AGM-compliant. Furthermore, in some 
non-base-AGM-compliant logics, there exist base-
decomposable sets. Unfortunately, there is no 
guarantee that such sets will always be finite; so some 
of the problems with the postulate still remain.  

 
These results can be further exploited. Take for example 

any set A in an AGM-compliant logic. Decomposability 
implies that, if there exists a set B implied by A (but not 

equivalent to A), then A can be broken down in at least 
two other sets, say B and C. Subsequently, B may be 
further broken down in two smaller sets and so on. This 
procedure may continue indefinitely, or it may ultimately 
stop at a set which has no further implications (except 
Cn(∅) and itself, of course). For finite logics, all such 
decompositions will ultimately reach some point where no 
further decomposition is possible, because finiteness 
guarantees that we will eventually run out of sets; for 
infinite logics, some of the decompositions may stop and 
some may continue indefinitely. In either case, sets which 
cannot be further decomposed are called roots of the logic. 

The roots of a logic represent the smallest pieces of 
information the logic can express (the most vague 
information). In some logics, any set can be broken down 
in its roots (in the sense that it is equivalent to the union of 
the roots it implies) and no root is implied by any 
combination of the other roots. Such logics possess several 
interesting properties, including decomposability. In such 
logics, any set can be uniquely defined in terms of the 
roots it implies and any set that contains its roots is base-
decomposable. We omit the formal phrasing and the proof 
of the above results due to lack of space.  

Another interesting result deals with equivalent logics; a 
rather strong form of equivalence between logics is 
defined in (Flouris, Plexousakis, and Antoniou 2004). One 
important property of this relation is the fact that it 
preserves AGM-compliance. Thus, once a logic has been 
proven to be AGM-compliant (or non-AGM-compliant), 
we can propagate this result to all its equivalent logics. 

The second important property of equivalence is related 
to the connection of our theory with lattice theory (see 
(Grätzer 1971) for details on lattice theory). Any given 
logic in our framework can be mapped to a complete 
lattice, by mapping each belief (set of expressions) of the 
logic to an element of the lattice and using ⊧ (or its 
symmetric) as the partial order of the lattice. In fact, it can 
be proved that the class of logics we consider (modulo the 
above equivalence relation) is isomorphic to the class of 
complete lattices. 

This result allows any logic to be represented as a 
complete lattice and vice-versa. Therefore, all results 
related to our theory can be formulated in terms of lattice 
theory. Lattice theory provides a nice and clear 
visualization of the concepts and results presented. 
Moreover, the concepts and results of lattice theory that 
have been developed over the years can be used directly in 
our framework; this ability may allow the development of 
deeper results regarding AGM-compliant logics. 
Describing this alternative representation in more detail 
was omitted due to lack of space.  

 



 

 

Conclusion and Future Work 
In this paper, we studied the class of logics that satisfy the 
Tarskian axioms and developed results regarding the 
connection of the AGM theory with arbitrary logics from 
this class. It was shown that some, but not all, logics in this 
wide class admit AGM-compliant contraction operators. 
Using our approach we showed that some DLs are not 
AGM-compliant. It would be interesting to find a DL that 
supports an AGM-compliant operator. We are currently 
studying this problem; it is possible that some of the very 
expressive DLs is AGM-compliant.  

A further application of our results dealt with the 
problem of applying the AGM postulates in belief base 
operations. We established the exact properties required in 
order for a logic to support an AGM-compliant operator 
for belief bases and explained why the logics originally 
considered in the AGM framework are not base-AGM-
compliant. Furthermore, we showed that, in some cases, a 
careful selection of the base can guarantee the existence of 
an AGM-compliant operator for belief bases. This is 
trivially true for base-AGM-compliant logics, but it also 
applies for some of the other logics. Despite this 
encouraging result, several problems regarding the 
application of the AGM postulates (especially the recovery 
postulate) in belief base operations still remain (such as 
finiteness of base-decomposable bases). 

We consider the above results important because they 
provide a theoretical framework allowing us to study the 
feasibility of applying the AGM model in logics originally 
excluded from the AGM theory, such as DLs. They also 
allow the reconsideration, on new grounds, of several 
approaches regarding belief base contraction operators. 

Our study opens up several interesting questions. Only 
the contraction operator was considered; we believe that 
our approach could give similar results regarding other 
operators, such as revision, update and erasure (Katsuno 
and Mendelzon 1992). Moreover, it would be interesting to 
study the supplementary AGM postulates, a set of 
additional postulates for contraction proposed by AGM in 
(Alchourron, Gärdenfors, and Makinson 1985).  

Since the original publication of the AGM theory, 
several equivalent formulations were published such as 
partial meet functions (Alchourron, Gärdenfors, and 
Makinson 1985), safe contraction operations (Alchourron 
and Makinson 1985), systems of spheres (Grove 1988), 
epistemic entrenchment orderings (Gärdenfors and 
Makinson 1988) and persistent assignments and 
interpretation orderings (Katsuno and Mendelzon 1990). 
Such approaches could be viewed under the prism of our 
more general framework; it would be worthwhile to study 
whether they remain equivalent to the AGM postulates 
when the original AGM assumptions are lifted. 
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