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Abstract

There are two readings of a possibility distribution,
a representation format which is useful for encoding
uncertain knowledge or preferences. The negative
information reading, based on possibility and necessity
measures, emphasizes the fact that some interpretations
are impossible, or at least have an upper-bounded
possibility level. The positive information reading
points out that possibility degrees are lower bounded,
and thus that some interpretations have non-zero
(guaranteed) possibility degrees. This paper provides
technical results for the positive view, showing how sets
of absolute, or relative, constraints expressed in terms
of guaranteed possibility measures can be represented
in terms of a possibility distribution. Using previously
obtained results for the “negative interpretation side”,
it enables us to jointly handle upper and lower logical
specifications of a possibility distribution on partitions
of the set of interpretations, as pointed out in the
conclusion.

Keywords: guaranteed possibility, possibilistic
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Introduction
Bipolar information is based on the idea of distinguishing
between positive information and negative information.
Information may express knowledge about the real world or
preferences of an agent. In fact, when information stands
for knowledge, we may express two kinds of knowledge
(Dubois, Prade, & Smets 2001). On the one hand, we
express which states of the world are impossible. This
is negative knowledge. On the other hand, we may also
express what states are guaranteed to be possible, since they
have been observed for instance. This is positive knowl-
edge. When information stands for an agent’s preferences,
negative preferences express what is not acceptable, while
positive preferences single out what is really satisfactory
(Benferhatet al. 2002b). Positive information does not
always correspond to the complement of negative informa-
tion: some worlds (resp. solutions) may not be impossible
(resp. not acceptable), although they are not guaranteed
to be possible (resp. satisfactory). Negative and positive
information are however related by a coherence condition
which says that what is positively assessed should be a part

of what is not impossible (i.e. acceptable).

Possibility theory offers an adequate representation
framework for bipolar information, using the possibility
measureΠ for representing negative information and the
guaranteed possibility measure∆ for representing positive
information. Indeed, on the one hand constraints, encoded
by necessity measure-based possibilistic logic formulas,
of the formN(φ) ≥ α (or equivalentlyΠ(¬φ) ≤ 1 − α)
describe impossibility statements, and thus negative in-
formation. On the other hand, constraints of the form
∆(φ) = minω|=φπ(ω) ≥ α express a lower bound on the
possibility degrees of a set of interpretations, which thus
corresponds to positive information.

In practice, it is generally difficult to provide a complete
possibility distribution on a discrete set of interpretations of
exponential size. However, the possibility theory framework
offers three compact representation formats of a possibility
distribution, namely alogical representationby means of
a set of prioritized formulas, aconditional representation
by means of a set of rules and agraphical representation
by means of a directed acyclic graph, based on condition-
ing. These three formats apply to both negative and pos-
itive information. The representation of negative informa-
tion has been widely investigated (Benferhatet al. 2001)
in the three representation formats. Recently, possibilistic
logic has been extended to positive information (Benferhat
et al. 2002b), while in (Benferhatet al. 2002a) a preliminary
study of the two other formats can be found. In this paper,
we will only focus on the conditional and logical represen-
tations of positive information and their semantic counter-
parts in terms of possibility distributions. More precisely,
we investigate the conditional representation in greater de-
tails in this paper, and also provide translations between the
two representation formats.

Background
We consider a propositional languageL over afinite alpha-
betP of atoms.Ω denotes the set of all classical interpreta-
tions (called also solutions). Logical equivalence is denoted
by≡. Classical disjunction and conjunction are respectively
represented by∨,∧. JψK denotes the set of all models of the
propositionψ (namely, interpretations satisfyingψ). ⊥ and



> denote respectively contradiction and tautology.

Guaranteed possibility and qualitative possibility
distributions
From a possibility distribution (Zadeh 1978)π which maps
each elementω of a set of interpretationsΩ into the unit
interval[0, 1], or any linearly ordered scale, one can define

– thepossibilitydegree of a formulaφ, denoted byΠ(φ):

Π(φ) = max{π(ω) : ω ∈ Ω andω |= φ}.

– thenecessitydegree of a formulaφ, denoted byN(φ),
using an order-reversing map of the scale:

N(φ) = 1−Π(¬φ).

N(φ) ≥ α means that any solution violatingφ is rejected
with strength1− α.

– theguaranteed possibilitydegree of a formula, denoted
by ∆(φ):

∆(φ) = min{π(ω) : ω ∈ Ω andω |= φ}.
∆(φ) ≥ α means that any solution to desireφ has satis-
faction level at leastα.

Note that ∆ is a non-increasing set function and that
∆(φ ∨ ψ) = min(∆(φ),∆(ψ)). Thus if a formulaφ is
written in a disjunctive normal formφ = ∨iφi whereφi are
conjunctions of literals, a constraint of the form∆(φ) ≥ α
can be equivalently written∀i,∆(φi) ≥ α.

In the following, it is assumed thatΩ is finite and thus that
only a finite set of possibility levels is useful. Then, in this
paper, a possibility distribution is represented by its well-
ordered partitionπ = (E1, · · · , En) s.t.E1 ∪ · · · ∪En = Ω
andEi∩Ej = ∅ for i 6= j, with the following understanding:

• If ω ∈ Ei, ω′ ∈ Ej andi < j thenπ(ω) < π(ω′)
• If ω ∈ Ei, ω′ ∈ Ei thenπ(ω) = π(ω′).
Note that the smalleri, the smaller the possibility level of
the interpretations inEi. This choice will be justified later
in the paper since we will only focus on∆ measure.

Moreover, this qualitative view of possibility distribu-
tions assumes that when considering two distributions, the
interpretations having the same rank should be understood
as having the same possibility degree. Namely,

∀ω ∈ Ei, ω′ ∈ E′
i iff π(ω) = π′(ω′),

whereπ = (E1, · · · , En) andπ′ = (E′
1, · · · , E′

m).

The following definition gives a way to compare possi-
bility distributions based on the specificity principle (Yager
1993):

Definition 1 Let π = (E1, · · · , En) and π′ =
(E′

1, · · · , E′
m) be two possibility distributions. π is

said to be more specific thanπ′ if:
∀ω, if ω ∈ Ei andω ∈ E′

j theni ≤ j.
π is said to be the most specific possibility distribution
among a set of possibility distributionsM if there is noπ′

inM s.t.π′ is more specific thanπ.

∆-based possibilistic bases
The logical representation of a possibility distribution
by means a∆ measure is given under the form of a∆-
based possibilistic base(or ∆-possibilistic basefor short)
which is a finite set of prioritized formulas of the form
Σ = (Σ1, · · · ,Σn), where formulas ofΣi have priority
over formulas inΣj for i > j, and∆(φ) = αi for any
φ ∈ Σi andαi > αj if i > j. Thus a∆-possibilistic base
can be viewed as a set of absolute constraints of the form
∆(φi) ≥ αi.

Given a∆-possibilistic baseΣ, we can generate a unique
possibility distributionπΣ, where interpretations are ranked
w.r.t. the highest formula that they satisfy, namely (Dubois,
Prade, & Smets 2001):

Definition 2 Let Σ = (Σ1, · · · ,Σn) be a ∆-possibilistic
base. The possibility distribution associated withΣ, denoted
byπΣ, isπΣ = (E1, · · · , En+1), s.t.∀ω ∈ Ω:

• ω ∈ E1 if ω 6|=
∨
i=1,n,φ∈Σi

φ

• ω ∈ Ei iff ω |=
∨
φ∈Σi−1

φ andω 6|=
∨
j=i,n,ψ∈Σj

ψ.

Example 1 LetΣ = (Σ1,Σ2) withΣ1 = {¬s∧t, s∧¬t, h∧
¬t} andΣ2 = {h ∧ s}, whereh, s and t are propositional
symbols.
The set of possible worlds is
Ω = {ω0 : ¬h¬s¬t, ω1 : ¬h¬st, ω2 : ¬hs¬t,

ω3 : ¬hst, ω4 : h¬s¬t, ω5 : h¬st, ω6 : hs¬t,
ω7 : hst}.

Then,πΣ = (E1, E2, E3) whereE1 = {ω0, ω3},
E2 = {ω1, ω2, ω4, ω5} andE3 = {ω6, ω7}.
Let us now give a brief background on∆-possibilistic bases.
For more details, we refer the reader to (Dubois, Prade, &
Smets 2001; Benferhat & Kaci 2003).

Definition 3 Let Σ and Σ′ be two ∆-possibilistic bases.
Then,Σ andΣ′ are said to be semantically equivalent iff they
generate the same possibility distribution i.e.,πΣ = πΣ′ .

The following proposition shows that two formulas having
the same rank inΣ can be replaced by their disjunction with
also the same rank:

Proposition 1 Let Σ = (Σ1, · · · ,Σn) be a∆-possibilistic
base. Letφ and ψ be two formulas inΣi, and Σ′ =
(Σ1, · · · ,Σi−1,Σ′

i,Σi+1, · · · ,Σn), where Σ′
i = (Σi −

{φ, φ′})∪{φ∨φ′}. Then,Σ andΣ′ are semantically equiv-
alent.

With ∆-possibilistic bases, subsumed formulas are those
thatentailhigher ranked formulas. This comes from the fact
that∆(φ) ≤ ∆(ψ) if ψ ` φ, and thusα ≤ ∆(φ) ≤ ∆(ψ)
subsumes∆(ψ) ≥ β for β < α. For instance, declaring
that any solution satisfyingψ is nice (with satisfaction de-
greeβ) is superseded by a statement that solutions to some
less restrictedφ are actually very nice(α > β).

Definition 4 Let Σ = (Σ1, · · · ,Σn) andφ be a formula in
Σi. Then,φ is said to be strictly subsumed byΣ if φ `∨
{φk : φk ∈ Σj andj > i}.

Indeed, we have the following lemma:



Lemma 1 Letφ be a strictly subsumed formula byΣ. Then,
Σ andΣ− {φ} are semantically equivalent.

The following lemma shows that contradictions are not use-
ful in Σ since they do not alter the computation ofπΣ, and
can be removed without changingπΣ.

Lemma 2 Let⊥ be a contradictory formula inΣ. Then,Σ
andΣ′ = Σ− {⊥} are semantically equivalent.

As can be seen,∆-based possibilistic logic bases behave in
a dual manner (exchanging disjunction and conjunction and
reversing the direction of entailment) w.r.t. N-based possi-
bilistic logic bases, as explained in (Dubois, Hajek, & Prade
2000).

∆-based conditional bases
In the standard representation of conditional information
that is based on possibility measureΠ, a conditional piece
of information of the form ”ifp thenq”, denoted byp  q,
means that in the contextp (i.e. whenp is satisfied), it
is preferred to satisfyq rather than to falsify it. This rule
expresses a relative constraint based onΠ of the form
Π(p ∧ q) > Π(p ∧ ¬q), which compares the best models
and the best counter-models ofq in the contextp.

The “rule” p → q based on a∆ measure, corresponding
to the constraint∆(p∧ q) > ∆(p∧¬q) compares theworst
models and theworst counter-models ofq, in the context
p. It means: in the contextp the agent likesq. It implies
that if p is true, any model ofq is more desired than the
worst counter-models ofq. From a preference modeling
point of view, ∆(p ∧ q) > ∆(p ∧ ¬q) corresponds to a
pessimistic view since it focuses on worst cases, while
Π(p ∧ q) > Π(p ∧ ¬q) corresponds to an optimistic view
by considering only best cases. If∆(p ∧ q) > ∆(p ∧ ¬q)
it means that choosing a solution wherep ∧ q is true, one is
sure to be better off than going with a solution top ∧ ¬q. It
is one form of conditional preference forq rather than¬q in
the contextp.

In order to select a possibility distribution among a
set of constraints of the∆ (resp. Π)-type, a maximal
(resp. minimal) specificity principle is used. The maximal
specificity principle amounts to saying that anything that is
not explicitly desired is considered indifferent. The minimal
specificity principle says that anything that is not rejected is
acceptable.

Let us now compare the two rules w.r.t. their associated
possibility distributions. It has been shown (Benferhat,
Dubois, & Prade 1992) that following theminimal speci-
ficity principle, there is a unique possibility distribution,
associated withp  q which satisfies the constraint
Π(p ∧ q) > Π(p ∧ ¬q). This possibility distribution
is of the form πΠ = (E1, E2), whereE2 is composed
of solutions falsifyingp ∧ ¬q, i.e. the set of models
of ¬p ∨ q, andE1 = Ω − E2. It means that the best
models are interpretations which satisfyq when p is
satisfied, and are also interpretations which falsifyp. This
confirms the fact thatΠ is used to representnegative

information, since the best models are interpretations which
are not rejected, those which do not falsifyq in the contextp.

Now it is easy to check that applying themaximal
specificity principle, the most specific possibility distri-
bution associated with the rulep → q is of the form
π∆ = (E′

1, E
′
2), whereE′

2 contains models ofp ∧ q and
E′

1 = Ω − E′
2. Then, the preferred solutions are those

which only satisfyq in the contextp. This confirms the
fact that∆ represents positive information, sinceE′

2 only
contains interpretations that are regarded as more desired
in the context where a preference has been expressed.
Nothing is known about other contexts, so in the con-
text ¬p, preference is neutral by default. Note also that
E′

2 ⊆ E2 which confirms the fact that positive information
is included in what is not rejected. The complementar-
ity between the∆ and theΠ conditionals can be also
seen by noticing that theΠ conditional is equivalent to
IΠ(p ∧¬q) > IΠ(p ∧ q) with IΠ = 1−Π, which expresses
that the models ofp ∧ ¬q are more impossible than those
of p ∧ q, while the∆ conditional means that the models of
p∧q are guaranteed to be more possible than those ofp∧¬q.

Besides, note that any inequality of the form∆(r) >
∆(s) can be always put under the form∆(p ∧ q) > ∆(p ∧
¬q). Indeed∆(r) > ∆(s) is equivalent to the ruler∨s→ r,
since∆((r∨ s)∧ r) > ∆((r∨ s)∧¬r)⇔∆(r) > ∆(¬r∧
s)⇔min(∆(r∧ s),∆(r∧¬s)) > min(∆(r∧ s),∆(¬r∧
s)) (indeedmin(x, y) > t⇔ min(x, y) > min(x, t) since
x < t is impossible)⇔ ∆(r) > ∆(s).
Definition 5 LetP be a finite set of∆-based rules. Then, a
possibility distributionπ is said to be compatible withP iff
it holds that for each rulepi → qi in P,

∆(pi ∧ qi) > ∆(pi ∧ ¬qi).
Let ∆(P) be the set of possibility distributions satisfying all
the rules ofP in the sense of Definition 5. In the next sec-
tion, we will characterize the most specific possibility distri-
bution in∆(P).

Characterizing the most specific possibility
distribution in ∆(P)

Our aim in this section is to characterize the most specific
possibility distribution associated with a set of rulesP. The
rationale behind maximal specificity here is as follows: if a
solution is not pointed out as a desired one, assume the agent
is indifferent about it. It leads to minimize degrees of guar-
anteed possibility. We first show that this most specific pos-
sibility distribution can be computed using an appropriate
conjunctive aggregation operator, and then that this possibil-
ity distribution is unique. Lastly, this possibility distribution
is proved to be the one computed by means of an algorithm
already given in (Benferhatet al. 2002b).
Let us first define theMIN operator to aggregate two pos-
sibility distributions:
Definition 6 Letπ = (E1, · · · , En) andπ = (E′

1, · · · , E′
m)

be two possibility distributions s.t.n ≥ m andE′
j = ∅

for m < j ≤ n. Then,MIN (π, π′) = (E′′
1 , · · · , E′′

n) is
defined as follows:



• E′′
1 = E1 ∪ E′

1,
• for i = 2, · · · ,m, E′′

i = (Ei ∪ E′
i)− (

⋃
j=1,···,i−1E

′′
j ).

• removeE′′
i which are empty by renumbering the non-

empty ones from bottom to top.

Example 2 Leta andb two propositional symbols andπ =
(E1, E2, E3) and π′ = (E′

1, E
′
2, E

′
3) s.t. E1 = {a¬b},

E2 = {¬a¬b}, E3 = {ab,¬ab} and E′
1 = {¬a¬b},

E′
2 = {a¬b}, E′

3 = {ab,¬ab}. Then,π′′ = (E′′
1 , E

′′
2 , E

′′
3 )

whereE′′
1 = {a¬b,¬a¬b}, E′′

2 = ∅ andE′′
3 = {ab,¬ab}.

Now we removeE′′
2 and renumber theE′′

i , we get: π′′ =
(E′′

1 , E
′′
2 ) whereE′′

1 = {a¬b,¬a¬b} andE′′
2 = {ab,¬ab}.

The following proposition first shows that∆(P) is closed
underMIN operation i.e., combining two possibility dis-
tributions in∆(P) provides a possibility distribution which
also belongs to∆(P). Then, we show that this operator
computes the most specific possibility distribution in∆(P).

Proposition 2 Letπ andπ′ be two elements of∆(P). Then,

1. MIN (π, π′) ∈ ∆(P).
2. MIN (π, π′) is more specific thanπ andπ′.

Proof
Let π = (E1, · · · , En) and π′ = (E′

1, · · · , E′
m) be

two elements of∆(P). Let π′′ = MIN (π, π′) =
(E′′

1 , · · · , E′′
min(n,m)). In a first step, we considerπ′′ with-

out removing the empty strata i.e., only applying the two
first points of Definition 6.

1. Letp→ q ∈ P. Let Jp ∧ qKπ (resp.Jp ∧ ¬qKπ) be the set
of models ofp ∧ q (resp.p ∧ ¬q) having the least priority
in π.
π satisfies all the constraints induced byP means that if
Jp ∧ qKπ ⊆ Ei thenJp ∧ ¬qKπ ⊆ Ej s.t. i > j.
Also, π′ satisfies all the constraints induced byP means
that if Jp∧ qKπ′ ⊆ E′

k thenJp∧¬qKπ′ ⊆ E′
m s.t.k > m.

Following the two first points of Definition 6, we have
Jp ∧ qKπ′′ ⊆ E′′

min(i,k) andJp ∧ ¬qKπ′′ ⊆ E′′
min(j,m).

Now since i > j and k > m then min(i, k) >
min(j,m). Thenπ′′ satisfiesp→ q.
Now observe that applying the last point in Definition 6,
i.e. diminishing some possibility levels in case of empty
stratum, leads to an even more specific distribution while
preserving the strict ordering on the interpretations. In-
deedMIN (π, π′) satisfiesp→ q.

2. To show thatπ′′ = MIN (π, π′) is a more specific than
π, let us show that∀ω ∈ Ω, if ω ∈ Ei thenω ∈ E′′

j with
j ≤ i.
Let ω ∈ E′

k. Following the two first points of Definition
6, we haveω ∈ E′′

min(i,k).
Alsomin(i, k) ≤ i thenπ′′ is more specific thanπ.
Now since applying the last point of Definition 6 leads to
a more specific distribution thenMIN (π, π′) is a more
specific thanπ.

�
Let us now show that theMIN operator leads to com-

pute the most specific possibility distribution in∆(P) which
is unique.

Proposition 3 Let P be a ∆-based conditional base and
∆(P) be the set of possibility distributions satisfying all the
constraints induced byP. Then there exists a unique pos-
sibility distribution in∆(P) which is the most specific one,
denoted byπ∆ m.spec, and computed in the following way:

π∆ m.spec =MIN{π : π ∈ ∆(P)}.
Proof
Indeed, following the first point of Proposition 2,π∆ m.spec

belongs to∆(P).
Suppose now that there exists a possibility distributionπ∗

in ∆(P) s.t. π∆ m.spec is not more specific thanπ∗. This
contradicts the second point of Proposition 2.
�

In (Benferhatet al. 2002b), an algorithm has been given
for computing a possibility distribution associated with a set
of ∆-based constraints.
Let P = {pk → qk : k = 1, · · · ,K} be a set
of ∆-based rules. Let us denote byC = {Ck :
(L(rk), R(rk)), rk : pk → qk ∈ P} the set of∆-
based comparative constraints induced byP, where
L(rk) = {ω : ω |= pk ∧ qk andrk : pk → qk ∈ P} and
R(rk) = {ω : ω |= pk ∧ ¬qk andrk : pk → qk ∈ P}.
Algorithm 1 provides a possibility distribution satisfying
P, denoted byπP . The idea of the algorithm consists in
assigning to each interpretation the lowest possibility de-
gree. At each stepi, we put inEi the interpretations which
are not in the left-hand part of any remaining∆-based
comparative constraint(L(rk), R(rk)) (otherwise such a
constraint will be falsified). For instance, the least preferred
(or plausible) interpretations are those which do not verify
any rule (namely, are not in anyL(rk)).

Algorithm 1:

Data:P = {rk : pk → qk}
Result:πP = (E1, · · · , En)
begin

Let C = {Ck = (L(rk), R(rk)) : rk ∈ P};
i← 0;
while Ω 6= ∅ do

i← i+ 1;
Ei = {ω : @Ck ∈ C s.t.ω ∈ L(rk)};
if Ei = ∅ then
P is inconsistent

- Remove fromΩ elements ofEi;
- Remove fromC constraintsCk s.t.Ei∩R(rk) 6=
∅.

return (E1, · · · , Ei).
end

Example 3 LetP = {r1 : ¬s → t, r2 : s ∨ h → ¬t, r3 :
h→ s} ands, h andt are three propositional symbols which
stand respectively forsun, holidays andtown.
Thusr1 means that when there is no sun, the best thing is to
remain in town.r2 means that if there is sun or if one is on



holidays, it is good to be out of town. In holidays, it is better
to have sun.
Let Ω = {ω0 : ¬h¬s¬t, ω1 : ¬h¬st, ω2 : ¬hs¬t, ω3 :
¬hst, ω4 : h¬s¬t, ω5 : h¬st, ω6 : hs¬t, ω7 : hst}.
Let us now apply Algorithm 1. We have:
C = {C1 : (L(r1), R(r1)), C2 : (L(r2), R(r2)),

C3 : (L(r3), R(r3))}
= {C1 : ({ω1, ω5}, {ω0, ω4}),

C2 : ({ω2, ω4, ω6}, {ω3, ω5, ω7}),
C3 : ({ω6, ω7}, {ω4, ω5})}.

We put inE1 interpretations which do not belong to any left-
hand part of the desires inC, namelyE1 = {ω0, ω3}.
Then, we remove fromC the constraintsC1 andC2 since
R(C1) ∩ E1 6= ∅ andR(C2) ∩ E1 6= ∅. We getC = {C3 :
(L(r3), R(r3))}.
Similarly, we getE2 = {ω1, ω2, ω4, ω5} and E3 =
{ω6, ω7}. Then,πP = (E1, E2, E3).
This reveals that what is preferred is to be in holidays with
sun(hs), while the least preferred is to be at work(¬h) with
either sun in town or no sun out of town.
Note that the possibility distribution computed in the above
algorithm is the most specific possibility distribution asso-
ciated withP. To show this, it is sufficient to show that it
belongs to the set of most specific possibility distributions in
∆(P).
The maximal specificity criterion can be checked by con-
struction. Indeed letπ = (E1, · · · , En).
Following Algorithm 1, we put inEi all interpretations
which don’t satisfy any desire induced by the actual set of
rulesPi i.e., if ω ∈ Ei then∀p → q ∈ Pi, ω 6|= p ∧ q. This
means that ifω 6∈ Ei then∃p→ q ∈ Pi, ω |= p ∧ q.
Let us now try to put some interpretationω ∈ Ej with j < i
in Ei. However this is not possible sinceω ∈ Ej means that
ω 6∈ Ei i.e., there existsp → q in Pi s.t. ω |= p ∧ q, which
is a contradiction.

Bridging ordinal and absolute representations
of positive information

In the previous sections, two representation frameworks
have been given for representing positive information in pos-
sibility theory, namely the logical and conditional represen-
tations. In this section, we give a method to translate a set
of ∆-based rules into a∆-possibilistic base and conversely.
This is interesting for taking advantage of the benefits of
each representation format.

From a ∆-based conditional base to a
∆-possibilistic base
The translation of a set of∆ conditional desires into a∆-
possibilistic base can be achieved by Algorithm 2. This is
particularily interesting from an information fusion point of
view, when information to be merged may be expressed in
heterogeneous formats. The fusion of∆-possibilistic bases
has been developed in (Benferhat & Kaci 2003).
Proposition 4 LetP be a set of rules. LetπP andπΣ be the
possibility distributions associated toP following Algorithm
1 and 2 respectively. Then,

πP = πΣ.

Algorithm 2:

Data:P = {rk : pk → qk}
Result:Σ = (Σ1, · · · ,Σm)
begin

m← 0;
while P 6= ∅ do

m← m+ 1;
A = {¬pk ∨ ¬qk : pk → qk ∈ P};
Σm = {pk ∧ qk : pk → qk ∈ P andA ∪
{pk} is consistent};
If Σm = ∅ thenP is inconsistent;
P = P − {pk → qk : pk ∧ qk ∈ Σm};

return Σ = (Σ1, · · · ,Σm).
end

Example 4 Let us consider again the∆-based conditional
base given in Example 3 and apply Algorithm 2.
First we haveA = {s ∨ ¬t, (¬s ∧ ¬h) ∨ t,¬h ∨ ¬s}.
Note that each ofA ∪ {¬s} andA ∪ {s ∨ h} is consistent,
howeverA ∪ {h} is inconsistent.
Then,Σ1 = {¬s ∧ t, (s ∨ h) ∧ ¬t}.
We now remove the rules¬s → t ands ∨ h → ¬t fromP
since¬s ∧ t ∈ Σ1 and (s ∨ h) ∧ ¬t ∈ Σ1, we getP =
{h → s}. Then we haveΣ2 = {h ∧ s}. Hence we get
Σ = (Σ1,Σ2).
We can check thatπΣ is indeed the possibility distribution
computed in Example 3.

From a ∆-possibilistic base to a∆-based
conditional base
This section provides the converse translation namely from
a ∆-possibilistic base to a∆-based conditional base. This
is interesting since∆-based conditional desires are easily
understood: they express preferences given some context.
Then the agent may for example revise its desires by chang-
ing the rules.
Let Σ = (Σ1, · · · ,Σn) be a∆-possibilistic base without
subsumed formulas, where eachΣi (i = 1, · · · , n) is com-
posed of one formula1. We construct fromΣ a ∆-based
conditional baseP as follows:
PΣ = {→ Σ1,

Σ1 ∨ Σ2 → Σ2, · · · ,
Σn−1 ∨ Σn → Σn}.

The ruleΣi∨Σi+1 → Σi means that when eitherΣi orΣi+1

is satisfied, we prefer to satisfyΣi+1 which reflects the pri-
ority between strata ofΣ. Then, the following proposition
can be established:

Proposition 5 Let Σ = (Σ1, · · · ,Σn) be a∆-possibilistic
base without subsumed formulas andP be the∆-based
conditional base constructed fromΣ as shown above. Let
πΣ and πP be the possibility distribution associated toΣ
andPΣ following Definition 2 and Algorithm 1 respectively.

1This hypothesis is not a limitation since following Proposition
1, a set of formulas having the same rank can be replaced by their
disjunction with also the same rank.



Then,
πΣ = πPΣ .

The proof is omitted for the sake of brevity.

Example 5 Let Σ = (Σ1,Σ2) whereΣ1 = {¬s ∧ t, s ∧
¬t, h∧¬t} which is equivalent to{(¬s∧t)∨((s∨h)∧¬t)}
andΣ2 = {h ∧ s}.
Following the construction ofPΣ, we get:
PΣ = {→ (¬s ∧ t) ∨ (s ∧ ¬t) ∨ (h ∧ ¬t),
(¬s ∧ t) ∨ (s ∧ ¬t) ∨ (h ∧ ¬t) ∨ (h ∧ s)→ h ∧ s}.
It can be checked thatΣ andPΣ generate the same possibil-
ity distributions.

Conclusion
This paper has shown how a possibility distribution express-
ing more or less desirable states of the worlds can be in-
duced from a set of desires expressed by means of weighted
formulas or “rules” stated in terms of a guaranteed possibil-
ity measure. The paper has discussed ordinal and absolute
representations in terms of this measure. Ordinal representa-
tions of the form∆(p∧q) > ∆(p∧¬q) are simpler and more
natural for expressing pieces of preference. Moreover, this
is a suitable format in case of preference revision. However,
absolute representation of the form∆(p) ≥ α are less natu-
ral for direct elicitation but turn out to be simpler to handle
in the possibilistic logic calculus.

The framework proposed in this paper applies to the rep-
resentation of preferences. However it may also be used
for uncertainty representation purposes. In this case, a∆-
based possibilistic logic base represents a set of observations
which are more or less strongly supported by evidence.

Taking into account the result of this paper together with
the one of N-based possibilistic logic, we are now in a posi-
tion for a joint handling of positive and negative preferences
respectively expressed in terms ofΠ and∆ measures, thus
inducing upper and lower bounds on the possibility distribu-
tion encoding the preference. Then adding new information
of this form leads to an iteratively constructed approxima-
tion (from below and above) of a possibility distribution that
is defined on finer and finer partitions of the set of inter-
pretations. This comes very close to C-calculus (Caianiello
& Ventre 1985), where pieces of information about upper
bounds and lower bounds of function over a partitioned do-
main are combined with similar information pertaining to
another partition of the same domain. This is also similar to
the idea of rough sets (Pawlak 1991), where set characteris-
tic functions are approximated from above and below on a
domain quotiented by an equivalence relation.

The handling of preferences in logical, conditional or
graphical settings has raised the interest of several AI re-
searchers in the last past years, e.g., (Boutilier, Deans, &
Hanks 1999; Benferhat, Dubois, & Prade 2001; Brafman &
Domshlak 2002). Graphical representations of preferences
are widely studied in literature such as for example CP-Nets
(Brafman & Domshlak 2002), which are graphical models
for representing conditional preferences. Indeed they are
close to rule-based representation of preferences given in
this paper however they do not distinguish between positive
and negative preferences. A deeper comparison between the

different types of preference representations is left to a fu-
ture work.
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