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Abstract
Unlike most non-monotonic logics Plausible Logic was
designed from the very beginning with computer
implementation in mind.  But one aspect of implementation
was neglected, namely loop detection.  When using
Plausible Logic choices must be made.  Typically all
choices are explored and then the best one is chosen.  If one
choice loops then this needs to be detected so that the other
choices can be explored.  The version of Plausible Logic
defined in this paper is called Loop-detecting Plausible
Logic (LPL), and it explicitly builds the detection of loops
into the logic.  This paper presents LPL, considers looping
in a slightly more general context, shows that LPL is well-
behaved and that looping is unavoidable.

1.  Introduction
In the late 1980s Nute (Nute 1987) introduced a non-
monotonic reasoning formalism called Defeasible Logic.
In the late 1990s Billington (Billington 1998) introduced
Plausible Logic which was based on Defeasible Logic.
Both formalisms are propositional and deal with defeasible
information, as well as factual information.  Both logics
have a simple rule based syntax; distinguish between
formulas proved from just the facts and those proved using
defeasible information; and have a constructive deduction
procedure which is easy to implement (Billington and Rock
2001).  The main difference between the two logics is that
Plausible Logic can represent and prove clauses, whereas
Defeasible Logic cannot.

Unlike most non-monotonic logics, Plausible Logic was
designed from the very beginning with computer
implementation in mind.  But one aspect of implementation
was neglected, namely loop detection.  When using
Plausible Logic choices must be made.  Typically all
choices are explored and then the best one is chosen.  If
one choice loops then this needs to be detected so that the
other choices can be explored.  The version of Plausible
Logic defined in this paper is called Loop-detecting
Plausible Logic (LPL), and it explicitly builds the detection
of loops into the logic.  It would be possible to remove the
loop detection from LPL.  The resulting logic would have
the same set of conclusions as LPL.

The purpose of this paper is to present LPL, and to
consider looping in a slightly more general context.  An
overview of Plausible Logic is given in section 2.  Section
3 defines and explains the language of LPL, and section 4
defines and explains LPL.  Section 5 presents an example.
Section 6 states results that show that LPL is well-behaved.
Section 7 investigates looping in a more general context
and gives an example for which looping is unavoidable.
Section 8 is the conclusion.  Sections 3 and 4 formally
define LPL and so are more difficult to read.  A top level
understanding of this paper may be gained by omitting
sections 3 to 5 and the proofs in section 6 and referring
back to them only when required.

2.  An Overview of Plausible Logic
Before the formal definition of Plausible Logic in sections
3 and 4, it may be helpful to give an informal overview of
Plausible Logic.  The factual and defeasible information
with which Plausible Logic reasons is represented by strict
rules, plausible rules, defeater rules, and a priority relation
on the rules.  A rule which contains free variables is treated
as a rule schema, and so regarded as an abbreviation for the
set of ground instances of the rule.  Thus Plausible Logic is
essentially propositional.  All rules have the form  set-of-
literals arrow literal.

Strict rules, for example  A → l,  represent the aspects of
a situation which are certain.  If all the literals in A are
proved then l can be deduced, no matter what the evidence
against l  is.  So strict rules behave like material
implication.  An atomic fact is represented by a strict rule
with an empty antecedent.  For example, “Emma is an
emu.” is represented by  {} → emu(emma).

More generally a clausal fact with n  literals is
represented by n strict rules.  For instance, ¤{a, b, c} is
represented by the following three strict rules:  {~b ,
~c} →  a ,  {~a , ~c} → b ,  {~a , ~b} →  c.  All factual
information must first be transformed into a set of clauses,
and then each clause is converted into a set of strict rules.
For example, “Emus are birds.” is thought of as the strict
rule (schema)  emu(x) → bird(x),  which is transformed



into the clause  ¤{~emu(x), bird(x)}  which is converted
into the two strict rules  emu(x) → bird(x)  and its
contrapositive  ~bird(x) → ~emu(x).  (If the antecedent of a
rule is a singleton set then we often omit the set braces.)

Plausible rules, for example  A ⇒ l, represent some of
the aspects of a situation which are plausible.  If all the
literals in A are proved then l can be deduced provided that
all the evidence against l has been nullified.  So we take
A ⇒ l  to mean that, in the absence of evidence against l, A
is sufficient evidence for concluding l.  For example,
“Birds usually fly.” is represented by  bird(x) ⇒ fly(x).
The idea is that if we know that something is a bird, then
we may conclude that it flies, unless there is other evidence
suggesting that it may not fly.  Plausible rules are thus like
normal defaults in Default Logic.

A defeater rule, for example  A 1 ~l,  is evidence against
l.  In the absence of other rules, A 1 ~l  means that if A is
not disproved then it is too risky to conclude l.  Defeater
rules are used to prevent conclusions which would be too
risky.  For example, “Sick birds might not fly.” is
represented by  {sick(x), bird(x)} 1 ~fly(x).  The idea is
that a bird being sick is not sufficient evidence to conclude
that it does not fly; it is only evidence against the
conclusion that it usually flies.  Another use for defeater
rules is to cut chains of plausible rules which are too long.
For instance, given  a ⇒ b and  b ⇒ c  it may be too risky
to conclude that c holds given that a holds.  In which case
we could add the defeater rule  a 1 ~c.  The point is that
adding  a  ⇒  ~c  instead of  a 1  ~c  would be wrong,
because accepting a is not a reason for accepting ~c, indeed
it is a weak reason for accepting c.

The priority relation, >, on the set of rules allows the
representation of preferences among rules.  The priority
relation must be acyclic.  Moreover only plausible rules
can occur on the left of >; and strict rules must not occur
on either side of >.  For example consider the following
situation.

quail(Quin) [Quin is a quail.]
bird(Quin) [Quin is a bird.]

R1: bird(x) ⇒ fly(x) [Birds usually fly.]
R2: quail(x) ⇒ ~fly(x) [Quails usually do not fly.]

We want to conclude that usually Quin does not fly.  But
this can only be done if we prefer R2 to R1, that is we
define  R2 > R1.

Most non-monmotonic logics do not distinguish between
formulas proved using only factual information and those
proved using defeasible information.  Plausible Logic does.
Indeed Plausible Logic distinguishes between formulas
proved with each of five different proof algorithms.
(Alternatively this could be viewed as five different
logics.)  It does this by attaching the name of the algorithm
to the formula being proved.  The five algorithms are
denoted by µ , α , π, β , and δ .  So instead of proving

~fly(Quin) we actually prove λ~fly(Quin), where λ ∈ {µ,
α , π, β , δ}.  In most cases these algorithms form the
following hierarchy.  Everything proved by the µ algorithm
is provable by the α algorithm, everything proved by the α
algorithm is provable by the π algorithm, everything
proved by the π algorithm is provable by the β algorithm,
and everything proved by the β algorithm is provable by
the δ algorithm.  The stronger or more restricted algorithms
give conclusions which are more reliable.  The µ algorithm
only uses factual information.  Plausible Logic restricted to
just the µ algorithm is similar to classical propositional
logic.  The other four algorithms use all the available
information.  The π algorithm propagates ambiguity.  The
β algorithm blocks ambiguity and has been used in every
Defeasible and Plausible Logic.  The α algorithm is the
conjunction (and) of the π and β  algorithms.  The δ
algorithm is the disjunction of the π  and β algorithms.
Although the exact relationship between the algorithms is
still being investigated, such a hierarchy would partially
solve the debate about whether propagating or blocking
ambiguity is best.

A plausible theory, T = (R, >), consists of a set of rules R
and its priority relation >, which may be empty.  The task
of proving a formula is done by a recursive function P
called the proof function of T.  The input to P is the proof
algorithm to be used, the formula to be proved, and the
empty set.  The empty set is an initially empty storage bin
into which is put all the literals which are currently being
proved as P recursively calls itself.  The purpose of this bin
is to enable the detection of loops.  The output of P  is
either +1, 0, or –1.  Essentially we have a three valued
logic in which +1 denotes proved, 0 denotes loops, and –1
denotes that there is a demonstration that the formula is not
provable and does not generate a loop.

3.  The Language of Plausible Logic
The next two sections formally define Plausible Logic and
so are more difficult to read.  It may be possible to skip this
section, and refer back to it only when the definition of
some notation is required.

We often abbreviate “if and only if” by “iff”.  X is a
subset of Y  is denoted by  X  ⊆  Y ; the notation  X  ⊂  Y
means  X ⊆ Y  and  X ≠ Y, and denotes that X is a proper
subset of Y.  The empty set is denoted by {}, and the set of
all integers by Ÿ .  If m and n are integers then we define
[m..n] = {i∈Ÿ  : m≤i≤n}.  Let S be any set.  The cardinality
of S  is denoted by |S |.  It is sometimes convenient to
abbreviate “for all x in S” by “∀x∈S”.  Also “there exists
an x in S such that” is sometimes abbreviated to “∃x∈S”.

Our alphabet is the union of the following four pairwise
disjoint sets of symbols: a non-empty finite set, Atm, of
(propositional) atoms; the set {¬, ⁄ , ¤ , → , ⇒ , 1 } of



connectives; the set {µ, α, π, β, δ} of tags denoting various
proof algorithms; and the set of punctuation marks
consisting of the comma and both braces.  By a literal we
mean any atom, a, or its negation, ¬a.  A clause, ¤L, is the
disjunction of a finite set, L, of literals.  ¤{} is the empty
clause or falsum and is thought of as always being false.  If
l is a literal then we regard ¤{l} as another notation for l
and so each literal is a clause.  A clause ¤L is a tautology
iff both an atom and its negation are in L.  A contingent
clause is a clause which is not empty and not a tautology.
A dual-clause, ⁄L, is the conjunction of a finite set, L , of
literals.  ⁄{} is the empty dual-clause or verum and is
thought of as always being true.  If l is a literal then we
regard ⁄{l} as another notation for l and so each literal is a
dual-clause.  Thus  ⁄{l} = l = ¤{l}.  Neither the verum nor
the falsum are literals.  The verum is not a clause, and the
falsum is not a dual-clause.  A cnf-formula, ⁄C , is the
conjunction of a finite set, C , of clauses.  A dnf-formula,
¤D, is the disjunction of a finite set, D, of dual-clauses.  If
c is a clause then we regard ⁄{c} as another notation for c.
If d is a dual-clause then we regard ¤{d} as another
notation for d.  Thus both clauses and dual-clauses are both
cnf-formulas and dnf-formulas.  By a formula we mean any
cnf-formula or any dnf-formula.  The set of all literals is
denoted by Lit; the set of all clauses is denoted by Cls; the
set of all dual-clauses is denoted by DCls; the set of all cnf-
formulas is denoted by CnfFrm; the set of all dnf-formulas
is denoted by DnfFrm ; and the set of all formulas is
denoted by Frm.  Frm is finite.

We define the complement, ~f, of a formula f and the
complement, ~F, of a set of formulas F as follows.  If f is
an atom then ~ f is ¬f; and ~¬f is f.  If L is a set of literals
then  ~L = {~l : l ∈ L}.  If ¤L is a clause then  ~¤L = ⁄~L.
If ⁄L  is a dual-clause then  ~⁄L  = ¤~L .  So the
complement of a clause is a dual-clause, and the
complement of a dual-clause is a clause.  In particular the
falsum and the verum are complements of each other.  If E
is a set of clauses or a set of dual-clauses then  ~E = {~e : e
∈ E}.  If ⁄C is a cnf-formula then  ~⁄C = ¤~C.  If ¤D is a
dnf-formula then  ~¤D = ⁄~D.  So the complement of a
cnf-formula is a dnf-formula, and the complement of a dnf-
formula is a cnf-formula.  If F is a set of formulas then  ~F
= {~f  : f  ∈  F}.  Both Lit and Frm are closed under
complementation.

The information with which Plausible Logic reasons is
either certain or defeasible.  All the information is
represented by various kinds of rules and a priority relation
on those rules.  Define r  to be a r u l e  iff  r  =
(A(r), arrow(r), c(r))  where A(r) is a finite set of literals
called the antecedent of r, arrow(r) ∈ {→, ⇒, 1}, and c(r)
is a literal called the consequent of r.  A rule r which
contains the strict arrow, →, is called a strict rule and is
usually written  A(r) → c(r).  A rule r which contains the
plausible arrow, ⇒, is called a plausible rule and is usually

written  A(r) ⇒ c(r).  A rule r which contains the defeater
arrow, 1 , is called a defeater rule and is usually written
A(r) 1 c(r).  The antecedent of a rule can be the empty set.
The set of all rules is denoted by Rul.  Rul is finite.

Let R be any set of rules.  The set of antecedents of R is
denote by A(R); that is  A(R) = {A(r) : r∈R}.  The set of
consequents of R is denote by c(R); that is  c(R) = {c(r) :
r∈R}.  We denote the set of strict rules in R by Rs, the set
of plausible rules in R by Rp, and the set of defeater rules in
R by Rd.  Also we define  Rpd = Rp∪Rd  and  Rsp = Rs∪Rp.

Let l be any literal.  If C is any set of clauses define  C[l]
= {¤L∈C : l∈L}.  Then C[l] is the set of all clauses in C
which contain l.  If R is any set of rules and L is any set of
literals then define  R[l] = {r∈R : l = c(r)},  and  R[L] =
{r∈R : c(r)∈L}.  Then R[l] is the set of all rules in R which
end with l; and R[L] is the set of all rules in R which have a
consequent in L.

Any binary relation, >, on any set S is cyclic iff there
exists a sequence, (r1, r2, ..., rn) where n≥1, of elements of S
such that  r1 > r2 > ... > rn > r1.  A relation is acyclic iff it is
not cyclic.  If R is a set of rules then > is a priority relation
on R iff > is an acyclic binary relation on R such that > is a
subset of Rp×Rpd.  We read  r1 > r2  as r 1 beats r2, or r2 is
beaten by r1.  Notice that strict rules never beat, and are
never beaten by, any rule.  Also defeater rules never beat
any rule.  Let  R[l;s] = {t∈R[l] : t>s}.  Then R[l;s] is the set
of all rules in R that beat s and have consequent l.

A plausible description of a situation is a 4-tuple  PD =
(Ax, Rp, Rd, >)  such that PD1, PD2, PD3, and PD4 all hold.
(PD1) Ax is a set of contingent clauses.
(PD2) Rp is a set of plausible rules.
(PD3) Rd is a set of defeater rules.
(PD4) > is a priority relation on Rpd.
The clauses in Ax, called axioms, characterise the aspects
of the situation that are certain.  The set, SR(Ax), of strict
rules generated  from A x  is defined by  S R (A x ) =
{~(L–{l}) → l : l∈L and ¤L∈Ax}.  (R, >) is the plausible
theory generated by the plausible description (Ax, Rp, Rd, >)
iff  R = SR(Ax)∪Rp∪Rd.  T is a plausible theory  iff there is
a plausible description which generates T.  If  T = (R, >)  is
a plausible theory then define  Ax(T) = {¤({c(r)}∪~A(r)) :
r ∈ Rs}.  Then  SR(Ax(T)) = Rs.

Let S be a set of clauses.  A clause C n is resolution-
derivable from S iff there is a finite sequence of clauses
C1, ..., Cn  such that for each i in [1..n], either Ci∈S or Ci is
the resolvent of two preceding clauses.  The sequence  C1,
..., Cn  is called a resolution-derivation of Cn from S.  The
set of all clauses which are resolution-derivable from S is
denoted by Res(S ).  Define  Rsn (S ) = Res(S)–{¤{}}.
Rsn(S) is the set of all non-empty clauses in Res(S).

Let S be a set of sets.  Define the set of minimal elements
of S, Min(S), to be the set of minimal elements of the
partially ordered set (S, ⊆).  That is,  Min(S) = {Y∈S : if
X⊂Y then X∉S}.



Let  T  = (R, >)  be a plausible theory.  Define  Inc(R) =
{~L : ¤L ∈ Rsn(Ax(T))∪{¤{k,~k} : k∈c(R)}}.  Then every
set in Inc(R) is a non-empty set of literals which are
inconsistent with R.  Define  Inc(R ,l ) = Min({I –{ l} :
I∈Inc(R) and l∈I}).  Each member of Inc(R,l) is a minimal
set of literals which is inconsistent with l.  Since Ax  is finite
and R is finite, Res(Ax), Rsn(Ax), Inc(R), and Inc(R,l) are
finite.

A tagged formula is a formula preceded by a tag; so all
tagged formulas have the form λf where λ ∈ {µ, α , π, β,
δ}, and f is a formula.

4.  Plausible Logic
The basic plan for each of the proof algorithms denoted by
the various tags is as follows.  If C is a set of two or more
clauses then to prove ⁄C  every member of C  must be
proved.  (See ⁄ .2 below.)  If L is a set of two or more
literals then to prove ¤L at least one member of L must be
proved.  (See ¤.2 below.)  To prove a literal l two things
must be done.  First evidence for l must be established.
This is done by finding a strict or plausible rule ending in l
(see L.1.2) and then proving the conjunction of its
antecedent (see L.2 and L .4).  The second thing is to
nullify all the evidence against l (see L.3.2).  In the case of
µ there is nothing to be done (see L.3.1).  But for the other
tags this is done by disabling all the sets, J, of literals
which are inconsistent with l (see L.5).  A set of literals, J,
is disabled by discrediting an element, j, of J (see L.6).
Among other things this means that j cannot be proved.  A
literal, j, is discredited by defeating each rule, s, which
ends in j (see L.7).  There are two ways to defeat s, either
beat it or prove it is inapplicable (see L.8).  The first is to
find a plausible rule, t, which ends in l and beats s and then
prove the conjunction of the antecedent of t (see L.9).  The
second way to defeat s is to show that s is inapplicable (see
L.10).  There are four ways to do this as follows.  For π we
prove the negation of the conjunction of the antecedent of s
(see L.10.π).  For β  we show that all proofs of the
conjunction of the antecedent of s fail in a finite number of
steps (see L.10.β).  For α we show that both the conditions
for π and β hold (see L.10.α).  For δ we show that at least
one of the conditions for π and β holds (see L.10.δ).

So for β, α, and δ showing finite failure is crucial.  This
means that detecting loops is necessary.  To detect loops
we introduce a background set B of literals whose proof
result is currently being calculated.  A proof result is either
+1 for proved, or 0 for loops, or –1 for finite failure.

Suppose  S ⊆ {–1, 0, +1}.  If S is not empty then the
minimum element of S  is denoted by minS , and the
maximum element of S is denoted by maxS.  We define
min{} = +1,  and  max{} = –1.  However {} is the only set
whose max is less than its min.

Given a plausible theory  T  = (R , >)  we define the
following ten functions P, Strict, Plaus, For, Nullified,
Disabled, Discredited, Defeated, Beaten, and Inappl all of
which depend on T .  P is called the proof function of T, the
other nine functions merely assist in the definition of P.  P
takes a tagged cnf-formula λf and a background set B of
literals and returns a result in {+1, 0, –1}.  In the following
definition, B is a set of literals, l is a literal, and  λ ∈ {µ, α,
π, β, δ}.
Ÿ.1) P(λ⁄{}, B) = +1.
Ÿ.2) If C is a set of two or more clauses then

P(λ⁄C, B) = min{P(λc, B) : c∈C}.
⁄.1) P(λ¤{}, B) = –1.
⁄.2) If L is a set of two or more literals then

P(λ¤L, B) = max{P(λl, B) : l∈L}.
L.1.1) If  l ∈ B  then  P(λl, B) = 0.
L.1.2) If  l ∉ B  then

P(λl, B) = max{Strict(λl, B), Plaus(λl, B)}.
L.2) Strict(λl, B) = max{P(λ⁄A(r), B∪{l}) : r∈Rs[l]}.
L.3.1) Plaus(µl, B) = –1.
L.3.2) If  λ ≠ µ  then

Plaus(λl, B) = min{For(λl, B), Nullified(λl, B)}.
L.4) For(λl, B) = max{P(λ⁄A(r), B∪{l}) : r∈Rp[l]}.
L.5) Nullified(λl, B) =

min{Disabled(λl, B, J) : J∈Inc(R,l)}.
L.6) Disabled(λl, B, J) =

max{Discredited(λl, B, j) : j∈J}.
L.7) Discredited(λl, B, j) =

min{Defeated(λl, B, s) : s∈R[j]}.
L.8) Defeated(λl, B, s) =

max{Beaten(λl, B, s), Inappl(λl, B, s)}.
L.9) Beaten(λl, B, s) =

max{P(λ⁄A(t), B∪{l}) : t∈Rp[l;s]}.
L.10.α) Inappl(αl, B, s) =

min{P(α~⁄A(s), B∪{l}), –P(α⁄A(s), B∪{l})}.
L.10.π) Inappl(πl, B, s) = P(π~⁄A(s), B∪{l}).
L.10.β) Inappl(βl, B, s) = –P(β⁄A(s), B∪{l}).
L.10.δ) Inappl(δl, B, s) =

max{P(δ~⁄A(s), B∪{l}), –P(δ⁄A(s), B∪{l})}.
The functions Strict, Plaus, For, Nullified, Disabled,

Discredited, Defeated, Beaten, and Inappl are undefined if
l ∈  B.  Similarly the functions For, Nullified, Disabled,
Discredited, Defeated, Beaten, and Inappl are undefined if
λ = µ.

The deducibility relation ¢ is defined by  T  ¢  +λf  iff
P(λf, {}) = +1,  T ¢ 0λf  iff  P(λf, {}) = 0, and  T  ¢  –λf  iff
P(λf, {}) = –1.  We define  T (+λ) = {f : T  ¢  +λf},  T(0λ) =
{f : T ¢ 0λf},  and  T(–λ) = {f : T  ¢  –λf}.  A Plausible Logic
consists of a plausible theory and its proof function.



5.  Example
The purpose of this moderately complex example is to
illustrate how a reasoning puzzle is translated into a
plausible description, how that is translated into a plausible
theory, and how the proof function is evaluated.

Suppose
(1) Egbert is an academic computing person.  [ac]
(2) Egbert lives in Uniplace.  [up]
(3) Academic computing people are computing people.

[ac → c]
(4) Academic computing people are usually not rich.

[ac ⇒ ¬r]
(5) Computing people are usually rich.  [c ⇒ r]
(6) People who live in Uniplace live in Richdale.

[up → rd]
(7) People who live in Uniplace are usually not rich.

[up ⇒ ¬r]
(8) People who live in Richdale are usually rich.  [rd ⇒ r]
Is Egbert rich?  [Since  P(p¬r, {}) = +1, the answer is no.]

A plausible description of this puzzle is
PD = (Ax, Rp, Rd, >)  where
Ax = {ac, up, ¬ac ∨ c, ¬up ∨ rd},
Rp = {ac ⇒ ¬r,  c ⇒ r,  up ⇒ ¬r,  rd ⇒ r},  Rd = {},  and
> is defined by  ac ⇒ ¬r  >  c ⇒ r,  and
up ⇒ ¬r  >  rd ⇒ r.

Define R1 to R8 as follows.  R1: {} → ac,  R2: {} → up,
R3: {ac} → c,  R4: {¬c} → ¬ac,  R5: {up} → rd,
R6: {¬rd} → ¬up,  R7: {ac} ⇒ ¬r,  R8: {c} ⇒ r,
R9: {up} ⇒ ¬r,  R10: {rd} ⇒ r.
Then the Plausible Theory corresponding to PD is  T = (R,
>), where  R = {R1, ..., R10}  and > is defined by  R7 > R8,
and  R9 > R10.

An evaluation of P(π¬ r, {}) follows.  Each step is
followed by a justification which either refers to previous
steps, or refers to the definition of the function on the left
of the = sign.  This definition contains variables which are
instantiated in the following evaluation.  For example
L.1.2(λ=π, l=¬r, B={}) indicates in the definition prefixed
by L.1.2 the λ is replaced by π, the l is replaced by ¬r, and
the B is replaced by {}.  In the following evaluation since λ
is always π we shall not keep mentioning this fact; and we
shall abbreviate Defeated by Def.
  1) P(π¬r, {}) = max{Strict(π¬r, {}), Plaus(π¬r, {})},

by L.1.2(l=¬r, B={}).
  2) Plaus(π¬r,{}) = min{For(π¬r,{}), Nullified(π¬r,{})},

by L.3.2(l=¬r, B={}).
  3) For(π¬r,{}) = max{P(πac,{¬r}), P(πup,{¬r})},

by L.4(l=¬r, B={}, Rp[¬r]={R7, R9}).
  4) P(πac,{¬r}) =

max{Strict(πac,{¬r}), Plaus(πac,{¬r})},
by L.1.2(l=ac, B={¬r}).

  5) Strict(πac,{¬r}) = P(π⁄{},{ac,¬r}),
by L.2(l=ac, B={¬r}, Rs[ac]={R1}).

  6) P(π⁄{},{ac,¬r}) = +1, by ⁄.1(B={ac,¬r}).
  7) Plaus(π¬r,{}) = Nullified(π¬r,{}),

by (6), (5), (4), (3), and (2).
  8) Nullified(π¬r,{}) = Disabled(π¬r,{},{r}),

by L.5(l=¬r, B={}, Inc(R,¬r)={{r}}).
  9) Disabled(π¬r,{},{r}) = Discredited(π¬r,{},r),

by L.6(l=¬r, B={}, J={r}).
10) Discredited(π¬r,{},r) =

min{Def(π¬r,{},R8), Def(π¬r,{},R10)},
by L.7(l=¬r, B={}, j=r, R[r]={R8, R10}).

11) Def(π¬r,{},R8) =
max{Beaten(π¬r,{},R8), Inappl(π¬r,{},R8)},
by L.8(l=¬r, B={}, s=R8).

12) Beaten(π¬r,{},R8) = P(πac,{¬r}),
by L.9(l=¬r, B={}, s=R8, Rp[¬r;R8]={R7}).

13) P(πac,{¬r}) = +1, by (6), (5), and (4).
14) Discredited(π¬r,{},r) = Def(π¬r,{},R10),

by (13), (12), (11), and (10).
15) Def(π¬r,{},R10) =

max{Beaten(π¬r,{},R10), Inappl(π¬r,{},R10)},
by L.8(l=¬r, B={}, s=R10).

16) Beaten(π¬r,{},R10) = P(πup,{¬r}),
by L.9(l=¬r, B={}, s=R10, Rp[¬r;R10]={R9}).

17) P(πup,{¬r}) =
max{Strict(πup,{¬r}), Plaus(πup,{¬r})},
by L.1.2(l=up, B={¬r}).

18) Strict(πup,{¬r}) = P(π⁄{},{up,¬r}),
by L.2(l=up, B={¬r}, Rs[up]={R2}).

19) P(π⁄{},{up,¬r}) = +1, by ⁄.1(B={up,¬r}).
20) P(π¬r, {}) = +1, by (19), (18), (17), (16), (15),

(14), (9), (8), (7), and (1).

6.  Main Results
All the proofs of all the results obtained for LPL are in
(Billington 2003a).  The first result says that conjunction
and disjunction behave as expected.  Its proof follows in a
straightforward manner from the definitions.
Theorem 1 (Conjunction and Disjunction)

Suppose T is a plausible theory, P is its proof function,
and λ ∈ {µ, α, π, β, δ}.  Let C* be a set of clauses and
suppose  C ⊆ C*.  Let L* be a set of literals and suppose
L ⊆ L*.  Let B be a background.
(1) P(λ⁄C*, B) ≤ P(λ⁄C, B).
(2) If  T ¢  +λ⁄C*  then  T ¢ +λ⁄C.
(3) If  T ¢  –λ⁄C  then  T ¢ –λ⁄C*.
(4) P(λ¤L, B) ≤ P(λ¤L*, B).
(5) If  T ¢  +λ¤L  then  T ¢  +λ¤L*.
(6) If  T ¢  –λ¤L*  then  T ¢  –λ¤L.
End



The resolution property (theorem 3) is an interesting
property which seems to be necessary for proving relative
consistency.
Lemma 2 (Unit Resolution Property)

Suppose T is a plausible theory and  λ ∈ {µ, α, π, β, δ}.
Let L be a set of literals and let l be a literal.  If  l ∈ T(+λ)
and  ¤(L∪{~l}) ∈  T (+λ)  then either  ¤L  ∈  T (+λ)  or
{l, ~l} ⊆ T(+λ).
Proof

Suppose  l ∈  T(+λ)  and  ¤(L∪{~l}) ∈  T(+λ).  If
|L∪{~l}| = 1  then L∪{~l} = {~l}  and so  ~l ∈ T(+λ).
Thus  {l, ~l} ⊆ T(+λ).

So suppose  |L∪{~l}| ≠ 1.  By ¤.2, either  ~l ∈ T(+λ)
and so  {l, ~l} ⊆ T(+λ), or there exists  m ∈ L–{~l}  such
that  m ∈ T(+λ).  If  |L| = 1  then  L = {m}  and hence  ¤L ∈
T(+λ).  If  |L| ≠ 1  then by ¤.2,  ¤L ∈ T(+λ).
EndProof

Theorem 3 (Resolution Property)
Suppose T is a plausible theory and  λ ∈ {µ, α, π, β, δ}.

Let L and M be two sets of literals and let l be a literal.  If
¤(L∪{l}) ∈ T (+λ)  and  ¤(M∪{~l}) ∈ T(+λ)  then either
¤(L∪M) ∈ T(+λ)  or  {l, ~l} ⊆ T(+λ).
Proof

Suppose  ¤(L∪{l}) ∈ T(+λ)  and  ¤(M∪{~l}) ∈ T(+λ).
If  |L∪{l}| = 1  or  |M∪{~l}| = 1  then by lemma 2 and
theorem 1(5) the lemma holds.  So suppose  |L∪{l}| ≠ 1
and  |M∪{~l}| ≠ 1.  By ¤ .2, either  l ∈ T(+λ), or there
exists  k ∈ L–{l}  such that  k ∈ T(+λ).  By ¤.2, either  ~l ∈
T(+λ), or there exists  m ∈ M–{~l}  such that  m ∈ T(+λ).
If  l ∈ T(+λ)  and  ~l ∈ T(+λ)  then  {l, ~l} ⊆ T(+λ).

So suppose either  l  ∉  T(+λ)  or  ~l ∉  T(+λ).  Then
either  k ∈  L–{l}  and  k ∈ T(+λ), or  m  ∈  M–{~l}  and
m ∈ T(+λ).  In either case there exist  j ∈ L∪M  such that
j ∈ T(+λ).  If  |L∪M | = 1  then  L∪M = {j}  and hence
¤(L∪M) ∈ T(+λ).  If  |L∪M| ≠ 1  then by ¤.2,  ¤(L∪M) ∈
T(+λ).
EndProof

Let T  be a plausible theory and F be a set of cnf-
formulas.  Define  F–^ = {c : ⁄C ∈ F  and  c ∈ C}.  Then F
is consistent [respectively, T -consis tent ] iff  ¤ {} ∉
Res(F–^) [respectively, ¤{} ∉  Res(F–^∪Ax(T))].  S  is
inconsistent iff S is not consistent.

If F  is T -consistent then F  is consistent.  But the
converse is not always true.  For example let  Ax(T) =
{¤{a, b}}, and  F = F–^ = {¬a, ¬b}.  Then F is consistent
but F is not T-consistent.
Theorem 4 (Relative Consistency)

If T is a plausible theory and  λ ∈ {µ, α, π, β, δ}  then
T(+λ) is T-consistent iff Ax(T) is consistent.
Sketch of Proof

If T(+λ) is T-consistent then clearly Ax(T) is consistent.

Conversely, suppose T(+λ) is not T-consistent.  Then
¤{} ∈  Res(T(+λ)–^∪Ax).  Let  T  = (R , >).  If there is a
literal l such that  {l, ~l} ⊆ T (+λ)–^, then  { l, ~l} ∈ Inc(R),
and so by a lemma Ax is inconsistent.  So suppose there is
no literal l such that  { l, ~l} ⊆  T(+λ)–^.  By theorem 3,
Rsn(T(+λ)–^) = T(+λ)–^.  If  ¤{} ∈ Res(T(+λ)–^)  then there
is a literal k such that  {k, ~k} ⊆  Rsn(T(+λ)–^), and hence
{k, ~k} ⊆ T(+λ)–^.  So suppose  ¤{} ∉ Res(T(+λ)–^).  Let L
be the set of all literals in T(+λ).  Then  L ⊆ T(+λ)–^, and
so by a lemma ¤{} ∉  Res(L).  By ¤.2, every clause in
T(+λ)–^∪Ax has a subclause in L∪Ax , and so by a lemma
every clause in Res(T(+λ)–^∪Ax ) has a subclause in
Res(L∪Ax).  Hence  ¤{} ∈ Res(L∪Ax).  By a lemma there
is a finite subset K of L such that  ¤(~K) ∈ Res(Ax).  If  ~K
= {}  then Ax is inconsistent.  So suppose ~K is not empty.
Then  ¤(~K) ∈ Rsn(Ax)  and so  K ∈ Inc(R).  By a lemma,
Ax is inconsistent.
EndProof

Relative consistency is important because it shows that
the deduction mechanisms do not create inconsistencies,
and hence are trustworthy.  Unfortunately the more
complicated disjunction of the Plausible Logic introduced
in (Billington and Rock 2001) has meant that relative
consistency could not be proved for that Plausible Logic.

The last two results show that if the axioms of a
plausible theory are consistent then the set of proved
formulas is closed under resolution.

7.  Decisiveness
Consider the following example which we shall call NT for
negative triangle.  NT consists of the following six
plausible rules, the priority relation is empty.
Ra: {} ⇒ a Rb: {} ⇒ b Rc: {} ⇒ c
Rab: a ⇒ ¬b Rbc: b ⇒ ¬c Rca: c ⇒ ¬a
This example is symmetric in a, b, and c.

All Plausible Logics and all Defeasible Logics have a
proof algorithm which has the following property, which
we shall call Prop.  To prove x two conditions must be
satisfied.  (1) The antecedent A(r) of a strict or plausible
rule r whose consequent is x must be proved.  (2) If the
priority relation is empty then the antecedent A(s) of any
rule s whose consequent is ~x must be proved to be not
provable.  The β  proof algorithm has Prop .  A proof
algorithm is decisive iff for each cnf-formula f either f can
be proved or f can be proved to be not provable.

Now assume there is a decisive proof algorithm which
has Prop.  In NT if a is provable then b is not provable.  By
decisiveness b can be proved to be not provable.  Therefore
c  is provable.  Thus a  is not provable; which is a
contradiction.  Moreover if a  is not provable then by
decisiveness a can be proved to be not provable.  Therefore
b  is provable.  Therefore c  is not provable.  By



decisiveness c can be proved to be not provable.  Thus a is
provable; which is a contradiction.  Thus decisiveness and
Prop lead to a contradiction.

Consider the following extension of Plausible Logic by a
new proof algorithm denoted by γ.  Define γ as follows.
L.10.γ) If  P(γ⁄A(s), B∪{l}) ≠ 0  then

Inappl(γl, B, s) = –P(γ⁄A(s), B∪{l}).
If  P(γ⁄A(s), B∪{l}) = 0  then
Inappl(γl, B, s) = +1.

Then γ has Prop and is decisive.  The attraction of γ is
that P(γf, B) is never 0 and so there is no looping.  But in
the plausible theory defined by NT we have  P(γc,{}) = +1,
and  P (γc, {a}) = –1.  (Details of the evaluation are in
(Billington 2003b).)  This contradicts an intuitively
appealing lemma of (Billington 2003a) which is used to
prove relative consistency.  Thus we reject γ, and conclude
that Prop means that looping is unavoidable.

8.  Conclusion
A Loop-detecting Plausible Logic (LPL) has been defined
and shown to be well-behaved.  A property that is
fundamental to the proof algorithms of both Defeasible and
Plausible Logic has been shown to make looping
unavoidable in some cases.

Loop-detecting Plausible Logic cannot always prove its
axioms or tautologies.  A slight generalisation of LPL to
allow tautologies and LPL’s axioms to be proved is being
developed.  The relationships between the five proof
algorithms is being investigated.
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