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Abstract 
Within the law, the traditional test for attributing causal 
responsibility is the counterfactual “but-for” test, which 
asks whether the injury complained of would have occurred 
but for the defendant’s wrongful act. This definition 
generally conforms to common intuitions regarding 
causation, but gives non-intuitive results in situations of 
overdetermination with two or more potential causes 
present. To handle such situations, Wright defined the 
NESS Test of causal contribution, described as a 
formalization of the concept underlying common intuitions 
of causal attribution. Halpern and Pearl provide a definition 
of actual causality in the mathematical language of 
structural models that yields counterintuitive results in 
certain scenarios. We present a new definition that appears 
to correct those problems and explain its greater conformity 
with the intuitions underlying the NESS test. 

Introduction  
According to Ashley (1990, p. 2), the legal domain is of 
interest to AI because it is between those formal domains 
so amenable to knowledge representation and those 
commonsense domains whose representation remains so 
elusive. Here we discuss actual causation (also called 
causation in fact) in the law from both perspectives. In 
common law jurisdictions, actual causation must be 
established between the defendant’s wrongful conduct and 
the injury suffered for liability to be attached. The 
generally accepted test for determination of actual 
causation in the law is a counterfactual test, the but-for 
test. If the specified injury would not have occurred ‘but 
for’ the defendant’s wrongful conduct, then actual 
causation is established. The test is considered 
straightforward enough to be applied by juries. However, 
the test is not comprehensive. It is known to fail when the 
scenario describing the injury includes other potential 
causes that would have caused the specified injury in the 
absence of the defendant’s wrongful conduct. This is 
known as overdetermined causation. 
 Wright (1975, pp. 1775-76) divides cases of 
overdetermined causation into preemptive and duplicative 
causation cases. In preemptive causation, the effect of 
other potential causes is preempted by the effect of the 
defendant’s wrongful act. For example, the defendant stabs 
and kills the victim before a fatal dose of poison previously 

administered by a third party can take effect. In duplicative 
causation, the effect of the defendant’s act combines with, 
or duplicates, the effect of other potential causes where the 
latter were alone sufficient to bring about the injury. For 
example, the defendant and another party start separate 
fires that combine to burn down the victim’s house where 
each fire was independently sufficient to do so. Since in 
these cases it is not true that ‘but for’ the defendant’s 
wrongful act the specified harm would not have occurred, 
according to the but-for test, in neither scenario is the 
defendant’s conduct an actual cause of the injury. Such a 
result is contrary to intuitions about responsibility and, by 
implication, about causality.  
 To cope with overdetermination, Wright (1985) 
proposes a comprehensive test for actual causation, the 
NESS (Necessary Element of a Sufficient Set) test. He 
adopts the view that there is an intelligible, determinate 
concept of actual causation underlying and explaining 
common intuitions and judgments about causality and that 
this concept explains the “intuitively plausible factual 
causal determinations” of judges and juries when “not 
confined by incorrect tests or formulas.” Wright (1985, p. 
1902) contends that not only does the NESS test capture 
the common-sense concept underlying these common 
intuitions and judgments, the NESS test defines that 
concept. 
Pearl (2000, pp. 313-15) claims that while the intuitions 
underlying the NESS test are correct the test itself is 
inadequate to capture these intuitions because it relies on 
the traditional logical language of necessity and 
sufficiency, which cannot capture causal concepts. Pearl 
(Pearl, 1995; Galles and Pearl, 1997; Galles and Pearl, 
1998; Pearl, 2000) proposes a mathematical language of 
structural causal models (structural language) for 
formalizing counterfactual and causal concepts. Pearl 
(1998; 2000, Chap. 10) first applies this structural 
language to define actual causation using a complex 
construction called a causal beam. (Halpern and Pearl, 
2000) develops a “more transparent” definition (Halpern-
Pearl definition), but still using structural models. 
 In (Baldwin and Neufeld, 2003) we suggested that the 
Halpern-Pearl definition essentially formalizes Wright’s 
NESS test. However, a result of Hopkins and Pearl (2003) 
shows that this is not the case. In the sequel we discuss the 
implications of the Hopkins and Pearl result for the 
relationship between the Halpern-Pearl definition and the 



NESS test and, in response, we present an alternative 
structural language definition of actual causation which we 
believe does capture the essential meaning of the NESS 
test. We illustrate this through re-analysis of the examples 
in (Baldwin and Neufeld, 2003) and in the process lend 
validity to Wright’s controversial NESS analysis of a 
complex class of causal scenarios known as double 
omission cases.  

The Ness Test  
Wright (1985, 1988, 2001) describes the NESS test as a 
refinement and development of the concept of a causally 
relevant condition as developed by Hart and Honore 
(1985). As Wright describes their analysis, this concept of 
singular (actual) causation depends on the core concept of 
general causality we all employ that conforms to and is 
explained by a regularity account of causation attributed to 
Hume as modified by Mill. To Hume is attributed the idea 
that causal attributions exhibit a belief that a succession of 
events fully instantiates some causal laws or 
generalizations (incompletely described causal laws). A 
causal law is described as an if-then statement whose 
antecedent lists minimal sufficient sets of conditions for 
(necessary for the sufficiency of) the consequent (the 
effect). Mill’s contribution to the analysis is that there may 
be more than one set of sufficient conditions for an effect 
in general and in particular situations (the “plurality of 
causes” doctrine). Stated in full, the NESS test requires 
that a particular condition was a cause of (condition 
contributing to) a specific consequence if and only if it was 
a necessary element of a set of antecedent actual conditions 
that was sufficient for the occurrence of the consequence. 
 In circumstances where only one actual or potential set 
of conditions is sufficient for the result, the NESS test 
reduces to the but-for test (Wright, 1985). To illustrate that 
the NESS test matches common intuitions where the but-
for test fails, Wright considers three variations of a two-
fire scenario: fires X and Y are independently sufficient to 
destroy house H if they reach it and they are the only 
potential causes of house H’s destruction so that if neither 
reach the house it will not be destroyed. In the first 
situation, X reaches and destroys H and Y would not have 
reached H even if X were absent. The common intuition 
here is that X was a cause of the destruction of H but not Y. 
In this case there is a single actually sufficient set of 
conditions and no other even potentially sufficient set of 
conditions. (This assumes that actually sufficient sets of 
conditions are minimal.) X was a necessary element 
(necessary for the sufficiency) of that single, actually 
sufficient set, a NESS condition. It was also a but-for 
condition. 
 In the second situation, X and Y reach H simultaneously 
and combine to destroy it. Here Wright claims that the 
common intuition is that both X and Y were causes of the 
destruction of the house. There are two overlapping sets of 
actually sufficient conditions.  X is necessary for the 

sufficiency of the set including itself but not Y and Y is 
necessary for the sufficiency of the set including itself but 
not X. Neither X nor Y is a but-for cause of the destruction 
of H but each is a duplicative NESS cause.  
 In the final situation, X reaches and destroys H before Y 
can arrive and, if X had been absent, Y would have 
destroyed H. Here the common intuition is unquestionably 
that X caused the destruction of H and Y did not. Fire Y is 
not a NESS condition for the destruction of H since any 
actually sufficient set of conditions, given the assumptions 
of the scenario, must include X, and Y is not necessary for 
the sufficiency of any set of conditions that includes X. 
Fire X, on the other hand, is necessary for the sufficiency 
of the actually sufficient set of which it is a member. 
Because the set containing Y but not X would have been 
sufficient in the absence of X, X is not a but-for cause of 
the destruction of H. X was a preemptive NESS cause 
because it preempted the actual sufficiency of the 
potentially sufficient set including Y. 

The Structural Equation Model 
Following  (Halpern and Pearl, 2001; Pearl, 2000) a 
signature S is a 3-tuple (U, V, R), where U is a finite set of 
exogenous variables, V is a set of endogenous variables, 
and R is a relation associating with each variable 
Y∈ UU V a nonempty set R(Y) of possible values for Y 
(the range of Y). 
 A causal model over a signature S is a 2-tuple 

( ,  )M S F= , where F is a relation associating each X ∈ V 
with a function FX that describes the outcome of X given 
the values of other variables in the model. These functions 
are the structural equations and describe the process by 
which the dependent variable receives its value; they 
correspond to causal mechanisms (law-like regularities) in 
the domain being modeled. The values of endogenous 
variables are determined by the values of other 
endogenous variables and exogenous variables. The values 
of exogenous variables are determi ed outside the model 
and are given. A particular setting  of variables in U is a 
context for the model M and a model with a given context 
is a causal world. 

n
ur

 We consider recursive causal models, where for any two 
variables X and Y either FX is independent of the value of Y 
(i.e., FX (…, y, …) = FX(…, y´, …) for all y, y´∈ R(Y)) or 
FY is independent of the value of X. Recursive causal 
models have a unique solution, a unique set of variable 
values simultaneously satisfying all model equations. If 
PAX is the minimal set of variables in X−V

U

XPA UU

 and UX the 
minimal set of variables in U that together suffice to 
represent FX, a recursive causal model gives rise to a 
causal diagram, a directed acyclic graph (DAG) where 
each node corresponds to a variable in V  and the 
directed edges point from members of  to X and 
are direct causes of X. (PAX connotes the parents of X, 
conventionally restricted to endogenous variables.) The 

U

X



HC2. There exists a partition ( , )Z W
r r

 of V with X Z⊆
r r

 
and some setting ( , )x w′ ′r r  of the variables in ( , )X W

r r
 

such that, where ( , )M ur  B Z = z* for each Z ∈ Z
r

(i.e., 
the actual value of z in con ext   t ur

]wX x ϕ′ ′← ← ¬
r rr r

edges in a causal diagram represent the non-parameterized 
(or arbitrary) form of the function for a variable, 

( ,X X X )X F U PA= . 

X
r
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 An external intervention (or surgery) setting X = x, 
where X ∈ V, is denoted X x←  and amounts to pruning 
the equation for X from the model and substituting X x=  
in the remaining equations. An intervention that forces the 
values of a subset of V prunes a subset of equations from 
the model, one for each variable in the set, and substitutes 
the corresponding forced values in the remaining 
equations. (A set X of variables in V is sometimes written 

 and a setting of those vectors is written X x←
r r .) 

Interventions represent non-modeled contingencies 
perturbing causal mechanisms. The result of an 
intervention 

r
 is a new causal model (a submodel), 

denoted , over the signature 

. In the corresponding causal 

diagram, it amounts to removing the edges from PAX ∪ UX 
to X. A submodel represents a counterfactual world. 
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r

, and 
 (b) ( , )  B *z ]ϕ←

r  for every 
subset Z ′  of Z

r
. 

X
r

X
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HC3.  is minimal; no subset of  satisfies conditions 
HC1 and HC2. 
 

Condition HC2 exemplifies what has been called the 
“counterfactual strategy” for defining actual causation—
“event C causes event E iff for some appropriate G, E is 
counterfactually dependent on C when we hold G fixed” 
(Hopkins and Pearl, 2003). The basic idea is that an active 
causal process (a set Z satisfying condition HC2) be 
shielded from spurious (preempted) or redundant 
(duplicative) causal processes before testing whether the 
effect is counterfactually dependent on the putative cause. 
However, contrary to the claim in (Baldwin and Neufeld, 
2003) that the Halpern-Pearl definition essentially 
formalizes Wright’s NESS test, it turns out that the choice 
of “appropriate G” under condition HC2 is too permissive 
to represent the NESS test in the language of structural 
models. 

 For a given signature S = (U, V, R), a primitive event is 

a formula of the form X x=

]ky

, where X ∈ V and x ∈ R(X). 
A basic causal formula is of the form 

ϕ← , where ϕ  is a Boolean 
combination of primitive events, Y  are distinct 
variables in V, and . Basic causal formulas are 

abbreviated as [

1 kYK

(iy ∈R

]y

)

ϕ
r  or just ϕ  when k = 0. A causal 

formula is a Boolean combination of basic causal 
formulas. 

The Halpern-Pearl Definition and NESS 
Hopkins and Pearl (2003) show that even locally, between 
a variable (the effect) and its parents (direct causes), the 
Halpern-Pearl definition does not require that an active 
causal process (a set Z) be actually sufficient; 
counterfactual dependence satisfying condition HC2(b) 
may depend on non-actual conditions. 
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 To see this, consider a causal model M with context 
u=
r

U . For simplicity, assume that all U  are trivial in 
the structural equation 

∈U
XF  for X (i.e., U  is empty) so 

that 
X

: ( (X X ) )F Dom PA om X

XPA ←

D→

Xpa

. Now consider an 

assignment 
uuur uur

 (here, the vector notation 

represents an ordered assignment of values Xpa
uuuuur

 to 

variables XPA
uuuuur

) such that X x=

1{ , , }nX v v=

. If  

and 
1{ ,V V…, }n=XPA

uuur

pa
uur

… , the logical sentence consisting of 
the conjunction of literals Vi iv=  (i.e., 

1 1V v n nV v= ∧ ∧ =… ) implies X x

X
u
=

PA
uu

. If such a sentence 

is formed for each assignment  such that Xpa←
r uur

X x=  and a new sentence, denoted ( )X x=∆ , is formed 
as a disjunction of all such sentences (so that the resulting 
logical sentence is in disjunctive normal form), then 
X x=  iff ( )X x=∆ . To illustrate, Hopkins and Pearl give 

this example. 

 A basic causal formula is true or false in a causal model 
given a context . Where ψ  is a causal formula (or a 
Boolean combination of primitive events), ( , )M u ψr

B  
means that  is true in the causal model M in the context 

. B [ ]  means that X has value x in 
the unique solution to the equations in the submodel 

 in context . In other words, in the world in 

which U = u , the model predicts that if Y  had been 

(X

ur

)x=

r
yr  

then X would have been x; that is, in the counterfactual 
world , resulting from the intervention Y y←

r r , X 

has the value x. Causes are conjunctions of primitive 
events of the form written X x=

r
.  r

 
Definition (Actual Cause; Halpern-Pearl): X x=

r r  is an 
actual cause of  in a model M in the context ur  (i.e., in 

) if the following conditions hold: 
)

r Example (firing squad) A firing squad consists of shooters 
B and C. Shooter C loads and shoots his own gun while HC1. ( ,M u  B ( )X x ϕ= ∧

r . 



shooter B is lazy and insists that A load his gun for him. 
The prisoner D will die (D = 1) if, and only if, either A 
loads B’s gun (A = 1) and B shoots (B = 1) or C loads his 
gun and shoots (C = 1); that is, . ( )D A B C= ∧ ∨
 
 
 
 
 
 
 
 
 

Figure 1: Firing Squad 
For this example, if ( ,  then ) ( 1)M u D =

r
B

( 1) ( 1 1 1)
( 1 1 0) ( 0 1 1

D A B C
A B C A B C

= = = ∧ = ∧ =
∨ = ∧ = ∧ = ∨ = ∧ = ∧ =
∆

( 1 0 1) ( 0 0A B C A B C∨ = ∧ = ∧ = ∨ = ∧ = ∧ =
)
)

) )

x
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A term (conjunction of literals) that entails a sentence S is 
an implicant of S; an implicant that does not entail any 
other implicant is a prime implicant. The prime implicant 
form of a sentence is a disjunction of all its prime 
implicants and is unique. The prime implicant form of 

 is . ( 1D =∆ ( 1) ( 1 1) ( 1D A B C= = = ∧ = ∨ =∆
 With these preliminaries, Hopkins and Pearl (2003) 
prove the following theorem: 
Theorem (prime implicant) In a causal model M with 
conte t , let  with u=

r
U ,X Y ∈V YX PA∈ . If 

( , ) ( )M u X = ∧x Y =
r
B y  and the literal X x=  occurs in 

any prime implicant of  then the Halpern-Pearl 
definition of actual causation will classify 

(Y y=∆ )
X x=  as an 

actual cause of Y y . =
 Note that the prime implicant theorem does not require 
that any other literals (if they exist) in any of the prime 
implicants of ∆  to which (Y y= ) X x=  belongs be 
satisfied (true) in ( , )M ur

1 1)D= ∧ =

. For example, assume the context 
 in the firing squad example is such that C shoots and A 

loads B’s gun, but B does not shoot. Since 
 and 

ur

( , ) (M u Ar
B 1A =

(D =
 occurs in the prime 

implicant  for ∆ , according to the 
prime implicant theorem, the Halpern-Pearl theorem 
should (counter-intuitively) classify A’s loading of B’s gun 
as a cause of D’s death t ough B does not shoot. Ind ed, 
taking 

( 1 1A B= ∧ =

)

)

h e

1)

( ,Z A D=
r

 and W B
r

 and setting W( , )C= w=
r r  = 

(1,0)) satisfies conditions HC2(a) and (b) of the definition. 
 Hopkins and Pearl (2003) point out the similarity of the 
prime implicant form of a sentence with Mackie’s INUS 
account of singular causation, according to which C is a 
cause of E iff C is an insufficient but non-redundant part of 
an unnecessary but sufficient condition for E (Mackie, 
1974, pp. 61-62): “For instance, A loading B’s gun is a 
necessary part of a sufficient condition to ensure the 
prisoner’s death. In terms of the prime implicant logical 
form, sufficient conditions map to implicants. For instance, 

1 1A B= ∧ =  is a sufficient condition for 1D = . 
Furthermore, since 1 1A B= ∧ =  is a prime implicate 
(hence no subset of its conjuncts is an implicate), we 

observe that both 1A =  and  are necessary parts of 
this sufficient condition. Hence any atomic expression that 
appears in a prime implicate satisfies the INUS condition.” 

1B =

D =

1

px′∨
p=

x p′

x p′

 Accepting the mapping of sufficient conditions to 
implicants, then Mackie’s INUS test (Kim, 1993) requires 
that for 1A =  to be a cause of , not only must 1 1A =  
occur as an atomic proposition (or literal) in some prime 
implicant for D =  (i.e., be an INUS condition for 1D = ) 
but also that every other atomic proposition in that 
implicant be satisfied. This part of Mackie’s analysis is 
consistent with the NESS test (see Baldwin, 2003). It 
follows then that the Halpern-Pearl definition is less 
restrictive than both Mackie’s INUS analysis and Wright’s 
NESS test. As Hopkins and Pearl say, their prime 
implicant theorem exposes that the Halpern-Pearl 
definition is over permissive. It is at least too permissive to 
formally capture the meaning of the NESS test. 

Preliminaries to the New Definition 
We take as a consequence of Hopkin’s and Pearl’s prime 
implicant theorem that if a structural definition of actual 
causation employing the counterfactual strategy is to 
capture the meaning of the NESS test, the choice of which 
variables in the model may have their values fixed must be 
controlled by the relationship of belonging to the same 
minimal sufficient condition (set of conditions) for an 
effect. Pearl (2000) suggests that this information may 
already be encoded in the structural language. In 
discussing Mackie’s (1974) scenario of the ill-fated desert 
traveler—where a traveler has two enemies, one who 
poisons (p = 1; variables are chosen to be consistent with 
Pearl’s exposition) the traveler’s water canteen and the 
other, unaware of the poisoning, shoots and empties the 
traveler’s canteen (x = 1) as a result of which the traveler 
dies—Pearl (2000, p. 312) considers the structural 
equations y x=  ( x′  represents x¬ ) and the 
logically equivalent y x∨  and states, “Here we see in 
vivid symbols the role played by structural information. 
Although it is true that x∨  is logically equivalent to 
x p∨ , the two are not structurally equivalent; x p∨  is 
completely symmetric relative to exchanging x and p, 
whereas x x p′∨  tells us that, when x is true, p has no 
effect whatsoever—not only on y, but also on any of the 
intermediate conditions that could potentially affect y. It is 
this asymmetry that makes us proclaim x and not p to be 
the cause of death.” 
 Hausman and Woodward (1999) shed more light on the 
relationship between the structural information that the 
causal relation between an independent variable and 
dependent variable in a structural equation depends (or 
does not depend) on one or more other independent 
variables in the equation (e.g., the difference between 
x p∨  and x∨ ) and minimal sets of sufficient 
conditions. They point out that a structural equation may 
capture more than one causal mechanism; terms in additive 
relations in a single structural equation may represent 
distinct causal mechanisms. For example, x and x p′  



represent distinct causal processes ending in the traveller’s 
death. Hausman and Woodward (1999, p. 547) say that a 
system of structural equations with additive terms where 
each term in each equation represents a distinct causal 
mechanism (“and thus acts independently of the 
mechanisms registered by other terms”) exhibits coefficient 
invariance, which is violated when the terms in the 
structural equations are not additive or when the causal 
relationship between two variables depends on the level of 
a third. Hausman and Woodward (1999, p. 547) then say, 
“If one thinks of individual causes of some effect Y as 
conjuncts in a minimal sufficient condition for Y (or the 
quantitative analogue thereof)—that is, as ‘conjunctive 
causes’—then the relationship between an effect and its 
individual causes will not satisfy coefficient invariance” 
 Hausman and Woodward define coefficient invariance 
as a global property of systems of structural equations and 
as a means of identifying distinguishable (if not distinct in 
the sense of shared variables) mechanisms within a single 
structural equation—which we require—their explication 
of the concept is too strict. (Hausman and Woodward 
(1999, p. 547) say that coefficient invariance holds only 
when every variable in a structural equation belongs to a 
single additive term ruling out, for example, equations of 
the form .) For our purposes, it is enough that 
for a set of additive structural equations, expressed in sum 
of products form, each term in an equation represents a 
separate mechanism, a separate set of minimal sufficient 
conditions (“or the quantitative analogue thereof”), for the 
effect represented by the equation’s dependent variable. 
We call this property term modularity. A causal model 
whose structural equations satisfy this property allows for 
the development of a criterion, ultimately derivative of 
Hausman and Woodward’s concept of coefficient 
invariance, for determining what variables should be held 
fixed and what variables may be altered in testing for 
counterfactual dependence between an effect variable and 
one of its (putative) causal variables in the model. This, in 
turn, will allow for a new structural definition of actual 
causation that avoids the problem identified by Hopkins 
and Pearl and that formalizes the NESS test in the context 
of a scenario modelled by a causal world in the structural 
language. 

y x px′= ∨

The “term modularity” criterion encodes the 
relationship, among the parents of a variable, of being 
components of distinct component causal mechanisms (or 
elements of minimal sufficient conditions for the variable). 
For distinct variables X, Y, and Z, where X and Y occur as 
independent variables in the structural equation (parents) 
for Z in a causal world ( , )M ur

)M ur B
, X is coefficient invariant 

to Y for term T if ( ,  (i.e., the term is 
satisfied, or non-zero in quantitative contexts, in 

( 0)T¬ =
( , )M ur ), 

X occurs as a literal in T, and Y is not a variable in T 
(symbolically, ; note that X is a literal of 
the form 

( ;Z | )X YT
ucoinr

X x=  where ( , ) ( )M u X =B

| )n Y

xr

( ;T
u Z Xr

 while Y is a 

variable). When coi  the causal relation 

between X and Z does not depend on the value of Y in 
context ur . Locally, to avoid satisfying actually unsatisfied 
terms (minimal sufficient sets) as happens with the 
Halpern-Pearl definition, between a variable X and its 
parents (Y ), in testing whether Y  is an actual 
cause of X = x, 

1, , nYK i y= i

iiY y= should belong to a satisfied term T 
and only parent variables  that Y  is coefficient 

invariant to for T in the equation for X  ( ) 
should be allowed to have their values altered.  

jY i
Tcoinr ( ; | )u iX Y Y

( )D A B= ∧ ∨
) ( )u A B∧B

B
( ) ( ;A B D A | )Bu
∧r

)A
1=

ur

1

1X 2

1X 1X

1 1( ; |Y Y2 )

2

X 2X

X 1

1
2 ( ;

TX Xr

2

2 1 |Y Yucoin

1X

1

2

2

2Y X 2 2y=

2

2( 2 ))u Y y=B

i

1

X Xi

1( ;iX Y 2| )YXi

j

Returning to Hopkins and Pearl’s firing squad example, 
where the sole structural equation is C , 
( ,M r  and it is not the case that A is coefficient 
invariant to B for T A(= ∧

(

 in the equation for D 

( ). Therefore, in the context such that 
A = C = 1 and B = 0, to test whether D = 1 is 
counterfactually dependent on A = 1, the value of B may 
not be altered. Since 

coin¬

B∧  is the only satisfied term in 
the equation for D in which A (i.e., A ) occurs, contrary 
to the Halpern-Pearl approach, it is not possible to modify 
the model so that D is counterfactually dependent on A in a 
scenario where B = 0. 

)

 Globally in a causal model with context U = , when 
distinct variables Y  and Y  occur as common parents of 
distinct variables 

2
 and X  it can happen that there 

exists a term T in the equation for  such that 

 but any satisfied term T  in the 

equation for 

1TX
ucoinr

 that includes Y  also includes 

( ); that is, Y  is coefficient 
invariant to Y  for some term in the equation for 

2Y ¬ 2 )
 but 

not in the equation for 2X . In that case, if Y  is part of the 
“active causal process” being tested, before allowing the 
value of Y  to be altered, it is necessary to interfere 
directly in the equation for X  by substituting a constant 

 for  in the equation for 2y 2  where Y  in the 
unaltered model (i.e., fix Y  at its actual value, 
( ,M r ). This avoids the possibility of the 
counterfactual or original values of Y  interacting with 
non-actual values to satisfy non-actually satisfied minimal 
sufficient sets for some variable, the problem that plagues 
the Halpern-Pearl definition. This process must be repeated 
for all  where for all satisfied terms T  including 

. Only then should altering the value 
of Y  be allowed. 

T
ucoin¬ r

2



New Structural Definition of Actual Causation 
A causal route 1, , , ,nR C D D E=

r
K  between two 

variables C and E in V is an ordered sequence of variables 
such that each variable in the sequence is in V and a parent 
of its successor in the sequence. 
 For a causal mode M with route 1, , , ,nR C D D E=

r
K  

and a sequence of terms 1 , , ,D D EnT T=
r

…

r

T T , where T  

is a satisfied term in the equation for X, the submodel 

relative to  and T  in context u  (denoted 

X

]
R
r r

[ ,
T
R u

M
r

r r ) is 

derived from (M, ) as follows: for distinct ur , ,X Y W ∈V  
with X R – E∈

r
, , and WY R∉

r
C≠ , if 

 replace the function ( ;W X | Y )TW
ucoin¬ r WF  for by the 

function that results when Y is replaced with a constant y 
where (M, u ) B (Y = y). r

 
Definition (actual cause; new version) C = c is an actual 
cause of E = e in (M, ) if the following conditions hold: ur

AC1. (M, u ) B ( C c ) r E e= ∧ =
r

AC2. There exists a route 1, , , ,nR C D D E= K  in M, a 

sequence of satisfied terms 1 , , ,D D EnT T=
r

…

′

T T , and a 

setting  for W = V −  and a setting c ≠ c for C such 
that: 

wr
r

R
r

(
[ , ]
T
R u

M
r

r r , ) B [ , , and ur ] (C c W w E e′← ← ¬ =
r r

r r

)

(
[ , ]
T
R u

M r r , ) B [ , . ur ](C c W w E e← ← =
r )

Because there are no causal interaction effects between 

variables in  and W  in R
r r

[ , ]
T
R u

M r r

r

, by the construction of 

[ , ]
T
R u

M
r

r r  (variables in  are coefficient invariant to all 

variables in W by definition of 

R
r

r

[ , ]
T
R u

M
r

r r ), the setting 

 cannot “contaminate” the test of counterfactual 
dependence in AC2 in the sense of satisfying a non-
actually satisfied minimal sufficient set of conditions. 

W ←
r rw

 In practice, it rarely happens that a literal X occurs in 
more than one satisfied term in a structural equation; a 
non-quantitative equation having more than one satisfied 
term with distinct literals only occurs itself in cases of 
duplicative causation. To avoid the cumbersome and 
somewhat confusing terminology, subsequently, unless the 
context requires otherwise (as in the analysis of the 
pollution cases below), the choice of the sequence T

r
 will 

be left as implied by the analysis of the scenario and the 

superscript T
r

 left out of the notations coi  and ( ; | )T
un Z X Yr

[ , ]
T
R u

M
r

r r . 

( , )M ur

,D E

, , ,D EnT T…

R T

AC { }iR X
r
U

iX ∈V Z R A∈
r
–

( ;YT
ucoin¬
r

r
[ , ]
T
R u

ACP
r

r r

[ , ]
T
R u

M
r

r r R
r

CP DS= ¬ ∧
PD DS

Suppose that C is an actual cause of E in . Then 

there exists a route 1, , , nR C D=
r

K  and a sequence 

of satisfied terms 1DT T satisfying 

condition AC2 of the new definition of actual causation. 
The active causal process relative to 

r
 and 

=
r

r
 in ur  

(denoted 
[ , ]
T
R u

P
r

r r ) is the set  where 

R
r

– , Y R E∈
r
– , , and 

| )iXZ Z . That is to say,  is the subset 

of variables in V that have their valued fixed in forming 

 that are parents of a variable in . (Again, the 

term specific terminology and the accompanying 
superscripts will be discarded where the context does not 
require them.) 

Examples of NESS and the New Definition 

Preemptive causation 
 
Wright (1985, p 1795) considers two scenarios: in the first, 
D shoots and kills P before P drinks tea fatally poisoned 
by C and, in the second, D shoots and instantly kills P after 
P drinks tea fatally poisoned by C but before the poison 
takes effect. In the first scenario, in Wright’s (1985, p 
1795) NESS analysis, D's shot was necessary for the 
sufficiency of a set of actual antecedent conditions that did 
not include the poisoned tea. Conversely, C's poisoning of 
the tea was not a necessary element of any sufficient set of 
actual antecedent conditions. A set that included the 
poisoned tea but not the shooting would be sufficient only 
if P actually drank the tea, but this was not an actual 
condition. The shooting preempted the potential causal 
effect of the poisoned tea. 
 In this scenario, the story of death by poisoning would 
have occurred (the intake of the poison through 
consumption of the tea will have occurred) but for D 
shooting P. This is reflected in the following causal model. 
The model has the following propositional variables: DS 
represents “D shoots,” PT represents “C poisons the tea,” 
CP    represents    “P    consumes   poison,”   and   PD   for  
“P dies.” The  structural  equations  are PT  
and CP= ∨ . The causal diagram corresponding to 
these equations is represented in Figure 2. 



 
 Duplicative Causation Scenarios 
 Among the duplicative causation cases, of particular 

interest are a group of pollution cases where defendants 
were found liable though none of their individual acts 
(their “contributions” to the pollution) was sufficient, or 
necessary given the contributions of the other defendants, 
to produce the plaintiff’s injuries (some adverse effect on 
the use of his property).1 Wright (1985, p 1793) applies the 
NESS test to an idealized example in which, five units of 
pollution are necessary and sufficient for the plaintiff’s 
injury and seven defendants discharge one unit each. The 
NESS test requires only that a defendant’s discharge be 
necessary for the sufficiency of a set of actual antecedent 
conditions, and that (Wright 1985, p 1795) “each 
defendant's one unit was necessary for the sufficiency of a 
set of actual antecedent conditions that included only four 
of the other units, and the sufficiency of this particular set 
of actual antecedent conditions was not affected by the 
existence of two additional duplicative units.” 

 
    
 
 
 
 
 

Figure 2: Causal diagram for the poisoned tea scenario 
 
 To show that  is an actual cause of 1DS = 1PD = , let 

,R DS PD=
r

( ;ucoin PD DSr

 for condition AC2. Since 
, | )CP [ , ] ( , )R uM M u=r r

r

(0,0)=
r

[ , ]R u

 and therefore 

. Setting W  then satisfies conditions 

AC2(a) and (b). Note that 

( ,W PT CP=
r

)

ACP R=r r
r

1= ( ,

 and the NESS set 

including  for  in 1 PDDS = )M u
r  is just { 1}DS = , 

as it is with Wright’s analysis.  In fact, in this sense, for each defendant’s discharge 
there are fifteen distinct actually sufficient sets of 
antecedent conditions, one for each possible choice of any 
four of the 6 remaining defendant’s units of pollution.  

 Suppose that the context was such that D does not shoot 
( ) but P still poisons the tea. Then CPDS¬ 1=  and 

 and it is straightforward to show that 1PD = 1PT =  is a 
cause of  by letting 1PD = , ,R PT CP PD=

ucoin Cr

}

r
 in condition 

AC2. Note, however, that since ¬ , ( ;P PT | )DS

[ , ] { , , ,R uACP r

1PT =

PT=

PD

CP DS P

1=

D

)

r  and the NESS set including 

 for  in ( ,M u
r ,PT CP is { 1 : 

the absence of the preempting condition DS must be 
included. 

1, DS= = 0}=

 The causal model for this example has variables iX , 
1, ,7i = … 1, ,7i = … , representing whether defendant i 

contributed his one unit of pollution ( iX 1)=  or not 
( 0iX )= . The single structural equation is 

1 2 3 4 5

7 6 5 4 3

( 1 1 1 1 1)
         ( 1 1 1 1 1)
DP X X X X X

X X X X X
= = ∧ = ∧ = ∧ = ∧ = ∨ ∨

= ∧ = ∧ = ∧ = ∧ =

…
. 

It consists of 21 terms where each term is a conjunction of 
5 of the 7 literals 1iX = . Since each literal 1iX =  is 
satisfied in the given scenario ( , )M ur , each literal occurs 
in 15 satisfied terms in conjunction with 4 of the remaining 
6 iX  or, equivalently, each literal  occurs in 15 
terms without conjuncts involving 2 of the remaining 6 
variables. Thus, for any  and variables 

1i =X

1i =X kX , lX  
(i k )l≠ ≠ , there exists some term DPT  with 

. ( ; |DP X X , )i k lXT
unrDPcoi

 For the second example, Wright’s (1985, p 1795) NESS 
analysis of why D’s shooting was a cause of P’s death is 
the same as that for the first example; as to whether C’s 
poisoning of the tea was a cause: “Even if P actually had 
drunk the poisoned tea, C's poisoning of the tea still would 
not be a cause of P's death if the poison did not work 
instantaneously but the shot did. The poisoned tea would 
be a cause of P's death only if P drank the tea and was 
alive when the poison took effect. That is, a set of actual 
antecedent conditions sufficient to cause P's death must 
include poisoning of the tea, P's drinking the poisoned tea, 
and P's being alive when the poison takes effect. Although 
the first two conditions actually existed, the third did not. 
D's shooting P prevented it from occurring. Thus, there is 
no sufficient set of actual antecedent conditions that 
includes C's poisoning of the tea as a necessary element. 
Consequently, C's poisoning of the tea fails the NESS test. 
It did not contribute to P's death.” 

Without loss of generality, to show that each defendant’s 
pollution discharge is an actual cause of 1DP = , let i 1=  

and choose DPT  so that  (i.e., 1 6|X X X7( ; ,TDP
ucoin DPr )

                                                 
1 For example, Wright (2001, p 1100) cites the case of Warren v. 
Parkhurst, 92 N.Y.S. 725 (N.Y. Sup. Ct. 1904), aff’d, 93 N.Y.S. 
1009 (A.D.1905), aff’d, 78 N.E. 579 (N.Y. 1906), where each of 
twenty-six defendants discharged “nominal” amounts of sewage 
into a creek which individually were not sufficient to destroy the 
use of downstream plaintiff’s property but the stench of the 
combined discharges was sufficient. 

 A causal model for this scenario differs from the 
previous one by the addition of a variable PTE for “the 
poison takes effect.” The structural equation for PD 
becomes  and the equation for CP 
becomes . As with Wright’s NESS analysis, the 
proof that  is an actual cause of  would be 
essentially the same as with the previous example.  

PD DS PTE= ∨
CP PT=

1DS = 1PD =



1 2 3 4 5( 1 1 1 1DPT X X X X X= = ∧ = ∧ = ∧ = ∧ =1) ). Then 

with 1,R X DP=
r

 and T DP=
r

[ , ]
T

, the equation for DP  

R u
M

r

r r

[ , ]
T
R u

M
r

r r

2 5{ , , }X X… { },  2,iX i= = =
r r
V – …

66X 7X 6 7( , ) (0,0)X X = X

1 2 5[ , ]
{ , , , }TDP

R u
CP X X X DP=

r

r r …,

( , )M ur 1 1X =

1 1X =

 Wright’s (1985, p. 1801) NESS analysis (where D 
represents the driver, C represents the car rental company, 
and P represents the pedestrian) is as follows: D's 
negligence was a preemptive cause of P's injury. C's 
negligence did not contribute to the injury. D's not 
applying the brakes was necessary for the sufficiency of a 
set of actual antecedent conditions not including C's failure 
to repair the brakes. The sufficiency of this set was not 
affected by C's failure to repair the brakes: “A failure to try 
to use brakes will have a negative causal effect whether or 
not the brakes are defective.” C's failure to repair the 
brakes was not a necessary element of any set of 
antecedent actual conditions that was sufficient for the 
occurrence of the injury: “Defective brakes will have an 
actual causal effect only if someone tries to use them.” The 
effect of C's failure to repair the brakes was preempted by 
D's failure to try to use them. 

in  is                                           

1 6 7 1 6 1 7

6 7 1 6 7

( 1) ( 1) ( 1) ( 1 1) ( 1 1)
         ( 1 1) ( 1 1 1)
DP X X X X X X X

X X X X X
= = ∨ = ∨ = ∨ = ∧ = ∨ = ∧ =

∨ = ∧ = ∨ = ∧ = ∧ =
 

Since, in , DP is a trivial function of the variables 

in , for W R , of 
condition AC2 of the new definition, only the settings for condition AC2 of the new definition, only the settings for 

,7

 and  matter. Setting , 1 1=  is 
easily seen to satisfy the counterfactual test of condition 
AC2.  Notice that interchanging C and D’s negligent acts in 

this argument results in an apparently equally plausible 
argument for C's negligence being a preemptive cause of 
P's injury. According to Wright (2001, p.1125): “At the 
time that I wrote this explanation, I was aware that it was 
too brief and cryptic, relied upon an insufficiently 
elaborated notion of causal sufficiency and ‘negative 
causal effect,’ and therefore could seemingly be reversed 
to support the opposite causal conclusions merely by 
switching the references to the two omissions. 
Nevertheless, I thought it roughly stated the correct 
analysis in very abbreviated form.” 

 Note that A  and, in the 

causal world ,  is necessary for the 
sufficiency of the set including defendant one’s discharge 
( ) and only four other discharges. 

Double Omission Cases 
A class of cases that have proved problematic for the 
NESS test, the so-called double omission cases, suggest 
that modeling is an important aspect of a NESS enquiry in 
practice: “Some of the most difficult overdetermined-
causation cases, at least conceptually, are those involving 
multiple omissions, which usually involve failures to 
attempt to use missing or defective safety devices or 
failures to attempt to read or heed missing or defective 
instructions or warnings.” (Wright 2001, pp. 1123-1124). 

 Binary variables for this causal model might be: RB for 
“repairs brakes”, AB for “applies brakes”, BO for “brakes 
operate”, and HP for “pedestrian is hit”. The question is, 
what are the structural equations? The structural equations 
suggested by the argument that in the NESS analysis the 
roles of C an D are symmetrical might be 

BO RB AB¬ = ¬ ∨¬  and . PH BO= ¬Wright (1985, p. 1801; 2001, p. 1124 ff.) considers in 
detail the case of Saunders System Birmingham Co. v. 
Adams1 where a car rental company negligently failed to 
discover or repair bad brakes before renting a car out. The 
driver who rented the car then negligently failed to apply 
the brakes and struck a pedestrian. In general, courts have 
held that individuals who negligently fail to repair a device 
(or provide proper safeguards or warnings) are not 
responsible when (negligently) no attempt was made to use 
the device (or use the safeguards or observe the warnings). 
According to Wright (2001, p. 1124), the court’s decisions 
reflect a “tacit understanding of empirical causation in 
such situations”: not providing or repairing a device (or not 
providing proper safeguards or warnings) can have no 
causal effect when no attempt was or would have been 
made to use the device (or use the safeguard or observe the 
warning)—unless no attempt was made because it was 
known that the device was inoperative (or the safeguards 
or warnings were inadequate). 

 It is easy to see that the new definition will classify both 
RB¬  and AB¬  as actual causes of PH for this model. On 

the other hand, suppose the structural equations are 
BO RB AB= ∧ and PH BO= ¬ . In that case the new 
definition will classify neither RB nor AB as a cause of PH. 
This model captures the intuition that not repairing the 
brakes is not a cause of the pedestrian being hit if the 
brakes are not applied but also suggests that not applying 
the brakes cannot cause the striking of the pedestrian if the 
brakes are not operative. Notice, however, that in Wright’s 
analysis there is the suggestion of a mechanism that neither 
of these models includes: not using the brakes will have a 
causal effect whether or not the brakes are not repaired. In 
other words, there are two distinct mechanisms for the 
pedestrian being hit; confusion arises because not braking 
just happens to play a part in both. On this latter analysis, 
BO RB AB= ∧ and PH BO AB= ¬ ∨¬  are the model 
equations. The causal diagram for this model is 
represented in Figure 3.                                                  

1 Saunders Sys. Birmingham Co. v. Adams, 117 So. 72 (Ala. 
1928). 
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Figure 3: Causal diagram for the braking scenario 
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Indeed, for this model the new definition will classify 
AB¬  as a cause of PH but not . It is this missing 

mechanism that lies behind the intuitive and analytic 
confusion in the double omission cases. Wright’s initial 
NESS argument was not incorrect but only lacked an 
adequate language to represent the causal dynamics of the 
scenario.  
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Developing a definition of actual or token causation 
conforming to intuitive judgments is an active problem for 
both legal scholarship and AI. As an element in the 
determination of legal responsibility, courts have been 
required to develop a practical test for actual causation. 
The accepted test, the ‘but-for’ test, is limited in its 
application. Wright’s NESS test appears to successfully 
address these limitations. The NESS test itself requires a 
counterfactual test. The language of structural models 
allows for the formal representation of counterfactual 
arguments. We have presented a formal definition of actual 
causation in the language of structural models, which we 
believe captures the essential meaning of the NESS test 
while successfully avoiding the weaknesses inherent an 
earlier structural definition of Halpern and Pearl. 
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