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Combinatorial Aspects of

Abstract Young Representations
(Extended Abstract)

Ron M. Adin, Francesco Brenti, and Yuval Roichman

Abstract. The goal of this paper is to give a new unified axiomatic approach to the representation
theory of Cozeter groups and their Hecke algebras. Building upon fundamental works by Young and
Kazhdan-Lusztig, followed by Vershik and Ram, we propose a direct combinatorial construction,
avoiding a priori use of external concepts (such as Young tableaux). This is carried out by a natural
assumption on the representation matrices. For simply laced Coxeter groups, this assumption yields
ezxplicit simple matrices, generalizing the Young forms. For the symmetric groups the resulting rep-
resentations are completely classified and include the irreducible ones. Analysis involves generalized
descent classes and convexity (a la Tits) within the Hasse diagram of the weak Bruhat poset.

Résumé. L’objectif de cet article est de donner une nouvelle approche azriomatique unifiée
de la théorie des représentation des groupes de Coxeter et de leurs algébres de Hecke. FEn util-
isant les travaux de Young, Kazhdan-Lusztig ainsi que de Vershik et Ram, nous proposons une
construction combinatoire directe qui évite l'introduction de concepts extérieurs (par exemple les
tableauzr de Young). Cette construction est faite a partir d’une hypothése naturelle sur les matri-
ces de représentation. Pour les groupes de Coxeter simplement lacé, cette hypothése donne des
matrices simples explicites, généralisant la forme de Young. Pour les groupes symmétriques les
représentations associées sont complétement classifiées, en particulier celles qui sont irréductibles.
Ce travail utilise les classes de descente généralisées et la convezité (a la Tits) dans le diagramme
de Hasse de l’ordre de Bruhat faible.

1. Introduction

The goal of the construction of abstract Young representations, presented in [ABR1], is to give a new
unified axiomatic approach to the representation theory of Coxeter groups and their Hecke algebras.

‘We want our construction to

(a) apply in a general context;

(b) be simple, direct and combinatorial; and

(¢) avoid a priori use of concepts external to the group or algebra itself (such as standard Young
tableaux).
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4 COMBINATORIAL ASPECTS OF ABSTRACT YOUNG REPRESENTATIONS

Goals (a) and (c) were stated and pursued by Kazhdan-Lusztig [KL] and Vershik [V]. Goal (b) was
posed in [BRY.

Our guiding lines are two fundamental methods to construct representations: Young theory and Kazhdan-
Lusztig theory.

In Young Theory (as explained by James [J]) the construction starts with Young tableaux, which are
sophisticated ad-hoc combinatorial objects. Modules (in particular, irreducible ones) are generated by sym-
metrizers of Young tableaux. Representing matrices are obtained as a side benefit.This theory is effective
for classical Weyl groups. For a detailed description see [J] and [JK].

Kazhdan-Lusztig Theory [KL] is a very general approach to the construction of Hecke algebra repre-
sentations. A distinguished basis, indexed by group elements, is compatible with the decomposition of the
Hecke algebra. The Coxeter group acts on linear spaces with bases indexed by special subsets of the group,
called cells. The basic tools in this construction are Kazhdan-Lusztig polynomials. Resulting representation
matrices are given in terms of coefficients of these polynomials [Hu2, §7.14]. Unfortunately, these coefficients
(and thus entries of the representing matrices) are very difficult to compute. For an axiomatic approach to
this construction via cellular algebras see [GL].

The idea of “reversing Young theory”, namely, constructing representations using explicit representation
matrices for the Coxeter generators, is apparently due to Vershik [V], and was further developed in works
of Vershik-Okounkov [V] [OV], Pushkarev [P] and Ram [Ral] (see also [BR]). In these papers the external
objects (Young tableaux, or abstractions thereof) are applied as an important initial ingredient.

Our approach is different. The idea is, again, to reverse Young theory — but along “Kazhdan-Lusztig
language”. As in Kazhdan-Lusztig theory, we start with a (formal) basis indexed by group elements; de-
composition is compatible with special subsets of the group, called cells. The action is assumed to satisfy a
natural condition, as follows.

Let (W, S) be a Coxeter system, and let K be a subset of W. Let F be a suitable field of characteristic
zero (e.g., the field C(q) in the case of the Iwahori-Hecke algebra of type A), and let p be a representation of
(the Iwahori-Hecke algebra of) W on the vector space Vic := spanp{Cy, | w € K}, with basis vectors indexed
by elements of K. Motivated by goals (a)—(c) above, we want to study the sets K and representations p
which satisfy the following axiom:

(A) For any generator s € S and any element w € K there exist scalars as(w),bs(w) € F such that
05 (Cw) = as(w)Cyy + bs(w)Clys.
If w e K but ws ¢ K we assume bs(w) = 0.

A pair (p, K) satisfying Axiom (A) is called an abstract Young (AY) pair; p is an AY representation, and
K is an AY cell. If K # () and has no proper subset ) C K’ C K such that Vic/ is p-invariant, then (p, K) is
called a minimal AY pair. (This is much weaker than assuming p to be irreducible.)

Surprisingly, Axiom (A) leads to very concrete matrices, whose entries are essentially inverse linear.
Analysis of the construction involves a convexity theorem of Tits [T] and the generalized descent classes
introduced by Bjorner and Wachs [BW1].

This extended abstract is based on the paper [ABR1]. Main definitions and results of that paper are
surveyed in Sections 2 and 3. A new result on boundary conditions, not yet available in preprint form,
is proved in Section 4. A combinatorial characterization of minimal AY cells and representations for the
symmetric group is given in Section 5. For proofs and more details see [ABR1].
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Note Added: Having completed the current version of [ABR1], we have been informed of the important
recent paper [Ra2]. Although it differs from our work in context, initial assumptions, motivation and
language, there are points of contact and similarity in some of the results. In particular, the linear functional
(f,-) which appears in the coeflicients of a minimal AY pair (see Theorem 3.4 below) is a basic ingredient
in [Ra2].

2. Abstract Young Cells

Recall the definition of AY cells and representations from the previous section.
Problem 2.1. (Kazhdan [K]) Given a subset K C W, how many nonisomorphic abstract Young represen-
tations may be defined on Vic ?
In particular,
Problem 2.2. Which subsets of W are (minimal) AY cells?
Observation 2.3. Every nonempty AY cell is a left translate of an AY cell containing the identity element
of W.
Let T be the set of all reflections in W, and let A C T be any subset. The (left) A-descent set of an
element w € W is defined by
Desa(w) :=={t € A|L(tw) < £(w)}.
For D C A C T, the corresponding generalized descent class is
WE = {w e W|Desa(w) = D}.

These sets were studied by Tits [T, Ch. 2] and Bjérner-Wachs [BW1, BW2].

The right Cayley graph X (W, S) has W as the set of vertices, and has a directed edge w — ws whenever
w€ W and s € §. A subset K of W is convezr in X (W, S) if every shortest path between any two elements
of K has all its vertices in K.

Using [T, Theorem 2.19 | we prove
Theorem 2.1. Every minimal AY cell is a generalized descent class; in particular, it is convez in the right
Cayley graph X (W, S) (or, equivalently, under right weak Bruhat order).

3. Abstract Young Representations

In [ABR1] it is shown that, under mild conditions (see Theorem 3.1 below), Axiom (A) is equivalent
to the following more specific version.

(B) There exist scalars a, b, iir, by € F (Wt € T') such that, for all s € S and w € K:

(€, = sw—1Cw + bupsiw—1Cusy  if L(w) < L(ws);
P = et Coo + b1 Css if L(w) > £(ws).

Ifw € K andws ¢ K we assume that byg,-1 = 0 (if L(w) < £(ws)) or bysw-1 = 0 (if L(w) > L(ws)).
Theorem 3.1. Let (p,K) be a minimal AY pair for the Iwahori-Hecke algebra of (W,S). If as(w) =
ay (W) = bs(w) = by (') (Vs,8 € S,w,w" € K), then Azioms (A) and (B) are equivalent.

This theorem shows that the coefficients as(w) and bs(w) in Axiom (A) depend only on the reflection
wsw™! € T and on the relation between w and ws under right weak Bruhat order.

The assumption regarding the coefficients bs(w) in Theorem 3.1 is merely a normalization condition.
Thus, in order to determine an AY representation, it suffices to determine the coefficients a; and a; (actually,
a; will suffice) for all reflections ¢ and to choose a normalization for the bs and b;. One such normalization
is defined as follows (assuming, for simplicity, that K contains the identity element of W). Let

Txe = {wsw™'|se€ S, wwseK},
Tox = {wsw '|se S, wek, wsgK}.
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Fact 3.1.
Tic N Toxc = 0.
The row stochastic normalization satisfies

a+ir=1—q, b=1—ay, b=1—d (VteTk);

a € {1,—q}, b=0  (VteTo).
Problem 3.2. (Kazhdan [K]) Do the coefficients as(w) determine all the character values?
An (affirmative) answer to this problem, independent of the choice of normalization, will be given
in [ABR3].
It turns out that for simply laced Coxeter groups the coefficients a; are given by a linear functional (see
Theorems 3.3 and 3.4 below).
Let V be the root space of W, and let (, ) be an arbitrary positive definite bilinear form on V. For a
reflection ¢t € T, let a; € V' be the corresponding positive root.
Definition 3.2. Let I be a convex subset of W containing the identity element. A vector f in the root
space V is K-generic if:
(i) For all t € Tk,
<f7 O[t> ¢ {07 1a _1}
(ii) For all t € Tox,
<f, O[t> S {]., —1}
(iii) Ifw e K, s,t € S, (st)> =1 and ws, wt ¢ K then

<fa awsw—1> = <fu awtw—1>'

By Observation 2.3, every abstract Young representation is isomorphic to one on an AY cell containing
the identity element. Therefore, in the following theorems, we assume that K contains the identity element.
Theorem 3.3. Let W be an irreducible simply laced Cozeter group, and let K be a convex subset of W
containing the identity element. Let { , ) be an arbitrary positive definite bilinear form on the root space V.
If f € V is K-generic then

1

Cpsw—1 1= 75—
e <f7 awsw_1>

together with G ysy-1, i)wsw—l and Bwsw—l satisfying appropriate normalization conditions, define a represen-
tation p such that (p,KC) is a minimal AY pair.
For n € Z let

(Vw e K, s € 5),

1—q" _
e = 53— € Zla.g .

Replacing (f,a;) by its g-analogue [(f,ay)], gives representations of the Iwahori-Hecke algebra H,(W).
See [ABR1, Theorem 8.5].

The following theorem is complementary.
Theorem 3.4. Let W be an irreducible simply laced Coxeter group and let IC be a subset of W containing
the identity element. Assume that Gen—1 0 (Yw € K,s € S ). If (p, K) is a minimal AY pair satisfying
Axiom (B) then there ezists a K-generic f € V' such that
1

a =
e <fa O‘wsw*1>

For an Iwahori-Hecke algebra analogue see [ABR1, Theorem 8.6].

Mwek,sebl).
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4. Boundary Conditions

In this section it is shown that the action of the group W on the boundary of a cell determines the
representation up to isomorphism. As this result is not yet available in preprint form, it is given with a
proof.

Definition 4.1. Let W be a finite Coxeter group, and let V' be its root space. A basic (affine) hyperplane
in V has the form

Hie:={f € VI[{f o) =€},

where t € T and € = £1.
A basic (proper) flat in V is an intersection (other than () or V') of basic hyperplanes.
For a basic proper flat L, let

A=A, ={teT|LC H,, for some ¢ = £1}.

Then {WZ® | D C A} (see Section 2 for the definition of W 1) is a partition of W into convex subsets, called
the L-partition of W.

Let f be a K-generic vector in V. Denote by p/ the representation determined by f on K (say with the
row stochastic normalization).
Theorem 4.2. Let W be a finite simply laced Coxeter group. Let L be a basic proper flat in V, and fix
some nonempty convex set K in the L-partition of W. Then, for any two K-generic vectors f,g € L, the
representations pf and p9 on K are isomorphic.

ProoF. Choose fo € L, and let {f1,..., fi} be a basis for the linear subspace L — fo of V. Each f € L
has a unique expression as

f=fotrifi+-+rife

where 71,...,7r, € R. For any t € T UTpic, (f, a¢) is a linear combination of 1,71,...,7%, and is nonzero if
f is K-generic. Thus, for any K-generic f € L and any s € S, each entry of the matrix p/(s) is a rational
function of r1,...,7%; and the same holds for each entry of pf(w) (Vw € W) and for the character values
Tr(pf (w)). Note that the coefficients of these rational functions (unlike the actual values of ry,...,r}) do
not depend on the choice of K-generic f € L, even though the set of all such f may be disconnected (see
example below). By discreteness of character values and continuity in a small neighborhood of a K-generic
f € L, each character value is constant in each such neighborhood, and is thus represented by a constant
rational function. It is therefore the same for all the K-generic vectors in L, as claimed.

d
Example 4.1. Take W = S3 = (s1, $2) (type Az) and the basic flat L = {f € V | {f, @s;55s,) = —1}. Then
A = {s15251}, and we may choose K = {1y, s1,s2}. In that case, Tix = {s1,s2} and Tox = {s1s281} = A.
L is an affine line in V = R?, and the K-generic points in L form five disjoint open intervals (three of them
bounded). For any K-generic vector f € L, pf is the 3-dimensional representation isomorphic to the direct
sum of the sign representation and the unique irreducible 2-dimensional representation of S7.

5. The Symmetric Group

5.1. Minimal AY Cells. The following theorem characterizes the minimal AY cells in the symmetric
group S,.
Theorem 5.1. Let KC be a nonempty subset of the symmetric group Sy, and let 0 € K. Then IC is a minimal
AY cell if and only if there exists a standard Young tableau @ such that

o 'K = {r €S, Q" is standard},

where Q™ is the tableau obtained from @ by replacing each entry i by = (i).
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PROOF. First observe that any basic proper flat of the symmetric group contains a vector with integer
coordinates. Combining this observation with Theorem 4.2 and Observation 2.3 allows one to reduce the
discussion to minimal AY cells, containing the identity element, which are determined by integer valued
linear functionals. Theorem 5.2 below completes the proof.

O

For a vector v = (v1,...,v,) € F™ denote
Av:=(v2—V1,...,0 —Upn_1) € FrL

For a (skew) standard Young tableau T denote c(k) := j — 4, where k is the entry in row ¢ and column j of
T. Call cont(T) := (c(1),...,c(n)) the content vector of T, and call A cont(T') the derived content vector (or
azial distance vector) of T'.

Let w € W, and let f be an arbitrary vector in the root space V of W. Let

Ap ={t e T[(f,az) €{1,-1}},

and denote by Kf(w) the generalized descent class containing w, taken with respect to A = A g If fis
K/ (w)-generic then the corresponding AY representation of W, with any appropriate normalization, will be
denoted p/ (w).

Theorem 5.2. Let f € V have integer coordinates. Then: the cell KT (1y) is a minimal AY cell for W = S,
if and only if there exists a skew standard Young tableau T of size n such that

f=Acont(T).

Note that the cell K/ (1y) is the generalized descent class ng (see Section 2). The proof of Theorem 5.2

relies on the following lemmas. The proofs of these lemmas are purely combinatorial, see [ABR1]. Here o;
is the positive root corresponding to the reflection (transposition) (4,j) € S, (1 <i < j <n).

Lemma 5.1. Under the assumptions of Theorem 5.2, ifi < j and (f,a;;) € {0,1, 1} then w1 (i) < w=*(j)
for allw € KI (1w ).

Lemma 5.2. Let f € V be an arbitrary vector. The cell K := K (1) is a minimal AY cell for W = S,, if
and only if, for all 1 <i < j < mn:

(5.1) (f,eij) =0 = Fry,raefi+1,5—1] st (f, o) = —(f, qtir,) = 1.

Lemma 5.3. The vector ¢ = (c1,...,¢n) € Z™ is a content vector for some skew standard Young tableaux
if and only if for all 1 <i < j<n

(5.2) ¢i=c;=3r,re€li+1,j—1] st. ¢y, =¢; +1 and ¢y, = ¢; — 1.

5.2. Minimal AY Representations of S,. A direct combinatorial bijection between elements of
minimal AY cells and standard Young tableaux follows from Theorem 5.2. This is used to prove the following
result.

Theorem 5.3. The minimal AY representations of the symmetric group S, are exactly the skew repre-
sentations, i.e., the representations determined by Young symmetrizers of skew shape. In particular, every
irreducible representation of Sy, may be realized as a minimal abstract Young representation.
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Equi-distribution over Descent Classes
of the Hyperoctahedral Group
(Extended Abstract)

Ron M. Adin, Francesco Brenti, and Yuval Roichman

Abstract. A classical result of MacMahon shows that the length function and the major index are
equi-distributed over the symmetric group. Foata and Schiitzenberger gave a remarkable refinement
and proved that these parameters are equi-distributed over inverse descent classes, implying bivariate
equi-distribution identities. Type B analogues and further refinements and consequences are given
in this paper.

Résumé. Un résultat classique de MacMahon montre ’équi-distribution de [l’indice majeur et
de la fonction de longueur sur le groupe symétrique. Foata et Schiitzenberger en ont donné une
raffinement remarquable et montré ’équidistribution sur les classes de descentes inverses, impliquant
ainsi des équidistribu-tions bivariées. Les analogues pour le type B ainsi que d’autres raffinements
et conséquences sont donnés dans cet article.

1. Introduction

Many combinatorial identities on groups are motivated by the fundamental works of MacMahon [M]. Let
S, be the symmetric group acting on 1,...,n. We are interested in a refined enumeration of permutations
according to (non-negative, integer valued) combinatorial parameters. Two parameters that have the same
generating function are said to be equi-distributed. MacMahon [M] has shown, about a hundred years ago,
that the inversion number and the major index statistics are equi-distributed on S, (Theorem 2.2 below).
In the last three decades MacMahon’s theorem has received far-reaching refinements and generalizations.
Bivariate distributions were first studied by Carlitz [C]. Foata [F| gave a bijective proof of MacMahon’s
theorem; then Foata and Schiitzenberger [FS] applied this bijection to refine MacMahon’s identity, proving
that the inversion number and the major index are equi-distributed over subsets of S,, with prescribed de-
scent set of the inverse permutation (Theorem 2.3 below). Garsia and Gessel [GG] extended the analysis to
multivariate distributions. In particular, they gave an independent proof of the Foata-Schiitzenberger theo-
rem, relying on an explicit and simple generating function (see Theorem 2.4 below). Further refinements and
analogues of the Foata-Schiitzenberger theorem were found recently, involving left-to-right minima and max-
ima [RR, FH2] and pattern-avoiding permutations [RR, AR2]. For a representation theoretic application
of Theorem 2.3 see [Roi].
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12 EQUI-DISTRIBUTION OVER DESCENT CLASSES

Since the length and descent parameters may be defined via the Coxeter structure of the symmetric
group, it is very natural to look for analogues of the above theorems in other Coxeter groups. This is a
challenging open problem. In this paper we focus on the hyperoctahedral group B,, also known as the
classical Weyl group of type B.

Despite the fact that an increasing number of enumerative results of this nature have been generalized
to the hyperoctahedral group B,, (see, e.g., [Br, FH1, Re3, Re4, Stal]) and that several “major index”
statistics have been introduced and studied for B,, (see, e.g., [CF1, CF2, CF3, Rel, Re2, Ste, FK]),
no generalization of MacMahon’s result to B, has been found until the recent paper [AR1]. There a new
statistic, the flag major index, defined in terms of Coxeter elements, was introduced and shown to be equi-
distributed with length, which is the natural analogue of inversion number from a Coxeter group theoretic
point of view. A search was then initiated for a corresponding “descent statistic” that would allow the
generalization to B, of the Carlitz identity for descent number and major index [C], a problem first posed by
Foata. In [ABR1] we introduced and studied two families of statistics on the hyperoctahedral group B,,, and
showed that they give two generalizations of the Carlitz identity. Another solution of Foata’s problem, also
involving the flag major index, was presented most recently by Chow and Gessel [CG]. Combinatorial and
algebraic properties of the flag major index were further investigated in [AR1, HLR, AGR|). In particular,
it was shown to play an important role in the study of polynomial algebras, see [AR1, ABR2, Ba].

A natural goal now is to find a type B analogue of the Foata-Schiitzenberger theorem (Theorem 2.3);
namely, to prove the equi-distribution of the flag major index and the length function on inverse descent
classes of B,. This will be carried out by finding a type B analogue of the Garsia-Gessel theorem (Theo-
rem 2.4), which expresses the refined enumeration of the classical major index on shuffle permutations in
terms of g-binomial coefficients.

The last digit parameter is involved in several closely related identities on S, see e.g. [AR2, AGR,
RR]. Theorems 4.3 and 4.4 below present a refinement involving the last digit. This refinement implies
a MacMahon type theorem for the classical Weyl group of type D, which is the same as the one recently
proved in [BC]. See Subsection 5.1.

2. Background and Notation

2.1. Notation. Let P := {1,2,3,...}, N := P U {0}, and Z the ring of integers. For n € P let
[n] :={1,2,...,n}, and also [0] := 0. Given m,n € Z, m < n, let [m,n] := {m,m+1,...,n}. Forn € P
denote [£n] := [-n,n] \ {0}. For S C N write S = {ai1,...,a,}< to mean that S = {a1,...,a,} and
a1 < ...<ap. The cardinality of a set A will be denoted by |A|.

For n, k € N denote

1—q"
[nlg = 1—g¢ ;
[nlg! = (i) (n>1), [0]¢! =15
i=1
Gt
kl, [Klg![n — k]!
Given a sequence o = (a1, ..., a,) € Z"™ we say that a pair (i,7) € [n] X [n] is an inversion of o if i < j

and a; > aj. We say that ¢ € [n — 1] is a descent of o if a; > a,+1. We denote by inv(o) (respectively,
des(c)) the number of inversions (respectively, descents) of o. We also let

maj(o) = Z i
{’i: ai>ai+1}

and call it the major index of .
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Let M = {my,...,mi}< C [n— 1]. Denote mg := 0 and m¢41 := n. A sequence o = (ay,...,a,) is an
M -shuffle if it satisfies: if m; < a < b < m;;q for some 0 < ¢ <t theno=(...,a,...,b,...) (i.e. a appears
to the left of b in o).

2.2. Binomial Identities. In this subsection we recall some binomial identities which will be used in
the proof of Theorem 3.3.

Lemma 2.1. For every subset M = {my,...,mi}< C [n—1]
2.1 14+4¢")- _
( ) JI:‘[I( q) [ml—m07m2—m1,...,mt+1—mt:|q
[ n qZI(rrml)
{(ros--sre) | mi <ry<myyq (Vi)} 70 = 10, ML =70, - -5 Tt = MWit, M1 — T q?

where my := 0 and myy1 = n.

For t =0 (i.e., M = (}), identity (2.1) is equivalent to a well-known classical result of Euler, comparing
partitions into distinct parts with partitions into odd parts [An, Corollary 1.2]. The proof of the lemma is
obtained by induction on ¢, see [ABR3, Lemma 3.1].

The following “g-binomial theorem” is well-known.

Theorem 2.1. . .
. n k41
1 o = ( 2 ) k.
[Ja+a0) =3 [}] o)
i=1 k=0 q
2.3. The Symmetric Group. Let S,, be the symmetric group on [n]. Recall that S, is a Coxeter
group with respect to the Coxeter generators S := {s; | 1 <i <n — 1}, where s; may be interpreted as the
adjacent transposition (i,7 4+ 1). The classical combinatorial statistics of m € S,,, defined by viewing 7 as a
sequence (m(1),...,m(n)), may also be defined via the Coxeter generators.
For m € S, let £(7) be the standard length of m with respect to the set of generators S. It is well-known that
() = inv(m).
Given a permutation 7 in the symmetric group S, the descent set of 7 is
Des(m) :={1<i<n|l(r) >lrs;)} ={1<i<n|n@)>n(+1)}.

The descent number of m € S,, is des(w) := |Des(w)].
The major index, maj(w) is the sum (possibly zero)
maj(m) := Z i.
i€ Des(m)
The inverse descent class in S,, corresponding to M C [n — 1] is the set {m € S,, | Des(m—') = M}. Note the
following relation between inverse descent classes and shuffles.
Fact 2.2. For every M C [n — 1],

{n€S, | Des(r™' )T M} ={n €8, | (x(1),...,7(n))is an M-shuffle}.
MacMahon’s classical theorem asserts that the length function and the major index are equi-distributed

on S,.
Theorem 2.2. (MacMahon’s Theorem)

T ™ = 3 g = .
TESn TESh

Foata [F| gave a bijective proof of this theorem. Foata and Schiitzenberger [F'S] applied this bijection
to prove the following refinement.
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Theorem 2.3. (The Foata-Schiitzenberger Theorem [F'S, Theorem 1])

For every subset B C [n—1],
Z ¢'™ = Z g,
{m€S, | Des(nm—1)=B} {m€S, | Des(mr—1)=B}

This theorem implies
Corollary 2.3.

_1 : -1
Z qE(ﬂ')tdes(ﬂ' ) — Z qma](rr)tdes(ﬂ' )

TESy TESy
and
Z qE(ﬂ')tmaj(Trfl) _ Z qmaj(ﬂ)tmaj(ﬂ'fl)'
TESy TESK

An alternative proof of Theorem 2.3 may be obtained using the following classical fact [Sta2, Prop.
1.3.17].
Fact 2.4. Let M = {my,...,m:}< C [n — 1]. Denote mg := 0 and m¢;1 :=n. Then

E qinv(ﬂ') — |: n :|
{ﬂESn‘ Des(ﬂ'_l)gM} 1 05 2 1 ) t+1 t q

Garsia and Gessel proved that a similar identity holds for the major index.
Theorem 2.4. [GG, Theorem 3.1] Let M = {m1,...,m}< C [n —1]. Denote my = 0 and my41 = n.

Then
3 i) — [ n }
my — Mo, M2 — M1,...,M41 — Mg,

{m€Sn| Des(r—1)CM}
Combining this theorem with Fact 2.4 implies Theorem 2.3.
2.4. The Hyperoctahedral Group. We denote by B,, the group of all bijections o of the set [£n] :=
[-n,n] \ {0} onto itself such that
o(—a) =—o(a) (Va € [£n]),
with composition as the group operation. This group is usually known as the group of “signed permutations”

on [n], or as the hyperoctahedral group of rank n. We identify S,, as a subgroup of B,,, and B,, as a subgroup
of Sap, in the natural ways.

If o € B,, then write 0 = [a1, ..., a,] to mean that o(i) = a; for 1 <1i <n, and let
inv(o) == inv(ay,...,an),
Des (o) := Des(ay, ..., ay),
des (o) := des(ay, ..., an),
maj 4(0) :=maj(a,...,a,),

Neg(o) :={i € [n]: a; <0},
and
neg(o) = [Neg(o)|.
It is well-known (see, e.g., [BB, Proposition 8.1.3]) that B,, is a Coxeter group with respect to the generating
set {so, $1,82,...,8n—1}, Wwhere

and
si=1[1,2,...,i—1i+1,0i+2,...n] (1<i<n).
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This gives rise to two other natural statistics on B,, (similarly definable for any Coxeter group), namely

(o) :==min{reN: oc=s;...s, forsome i,..., i, €[0,n—1]}

(known as the length of o) and
desp(o) := |Desp(o)|,
where the B-descent set Desp(o) is defined as
Desp(o) :={i€[0,n—1] | £p(os;) < lp(o)}.
Remark 2.5. Note that for every o € B,
Desy(0) = Desp(o) \ {0}.

There are well-known direct combinatorial ways to compute the statistics for o € B,, (see, e.g., [BB,
Propositions 8.1.1 and 8.1.2] or [Br, Proposition 3.1 and Corollary 3.2]), namely

(o) = inv(o) — Z o(i)
i€Neg(o)
and
desg(o) ={i€[0,n—1]: o(i) >0o(i + 1)},
where ¢(0) := 0. For example, if 0 = [-3,1,—6,2, -4, —5] € Bg then inv(c) =9, desa(c) = 3, maj 4(0) =
11, neg(o) = 4, €p(o) =27, and desg(o) = 4.

We shall also use the following formula, first observed by Incitti [I]:
v (T) + neg(o)

(2.2) tp(0) = 5

where 7 denotes the sequence (o(—n),...,0(=1),0(1),...,0(n)). For example, if we take o = [-3,5, -7, 1,2, —4, 6]
3

then inv(d) = 35 and (p(0) = 222 = 19.

(Vo € By),

3. Main Results
The flag major index of a signed permutation o € B,, is defined by
fmaj(o) :=2-maja(o) + neg(o),

where maja(o) is the major index of the sequence (o(1),...,0(n)) with respect to the natural order —n <
e -I<T < <.

The following is a type B analogue of the Garsia-Gessel theorem (Theorem 2.4).
Theorem 3.1. For every subset M = {mq,...,my}< C [0,n — 1]

n

maj(o) __ iy . n
)3 om0 = L) }

{c€By| Desp(c—1)CM} i=mi+1 T4l t

where mgy := 0 and myy1 = n.
The following is a type B analogue of a classical result (Fact 2.4).
Theorem 3.2. For every subset M = {mq,...,my}< C [0,n — 1]

n

(o) 7 n
) 0= 01 avar [ ]

e My — M
{oc€B,,| Desg(c—1)CM} i=miq+1 » MTot41 t
where mgy := 0 and my41 = n.

We deduce a Foata-Schiitzenberger type theorem for B,,.
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Theorem 3.3. For every subset M C [0,n — 1]

Z g'e o) = Z g/meio).

{c€B,| Desg(c—1)=M} {c€B,| Desp(c—1)=M}

The following result refines Theorem 3.3.
Theorem 3.4. For every subset M C [0,n — 1] and j € [£n)]

Z ¢'e o) = Z g/mei(e)

{oc€B,,| Desgp(c—1)=M, o(n)=j} {oc€B,| Desp(c—1)=M, o(n)=j}
An analogue of MacMahon’s theorem for D,, follows; see Corollary 5.2 below.

4. Proof Outlines

Observation 4.1. Let M = {m1,...,mi}< C [n—1]. (Note: 0 ¢ M.) Let mg := 0 and my41 := n. For
0 € By, if Desa(0™!) = M then there exist ; (0 < i < t) such that m; < r; < m;41 and o is a shuffle of
the following increasing sequences:

(=ro,—ro+1,...,=1(= —(mo +1))),
(’r‘o + 1,79 +2,...7m1),
(—’I”l, —T1 + 17 ey —(m1 + 1))7

(r1+1,r1+2,...,m2),

(—Tt, —T¢ + 1, ey —(mt + 1))

and

(re+ 1, +2,...,n (= mep1)).
For every i, if r; —m; = 0 (mijp1 — r; = 0) then the sequence (—r;,...,—(m; + 1)) (respectively, (r; +
1,...,m;;1)) is understood to be empty. Also, with the above notations: 0 € Desg(o~!) if and only if
ro > 0.

First, we prove the following special cases.
Theorem 4.1. For every subset M = {my,...,mi}< C [n —1]

quaj(d) — Z qu(U) —

{c€B,| Desa(c—1)CM} {c€B,| Desa(c—1)CM}

. . n
:H(1+q1)_|: :| )
=1 my —Mmo,...,Mi41 — Mg,

where my := 0 and myy1 = n.

Theorem 4.2. For every subset M = {my,...,ms}< C [n —1]
gmai(e) _ >y 7 =
{c€B,| Desg(c—1)CM} {c€B,,| Desg(c—1)CM}
- H (1+q)-[m -m m —m]’
i=mq+1 1 Oy« ey HM0E41 tlq

where mg := 0 and myy1 == n.
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The proofs of Theorems 4.1 and 4.2 rely on Theorem 2.4, binomial identities (mentioned in Subsec-
tion 2.2), combinatorial properties of the length and descent functions on B,, (mentioned in Subsection 2.4)
and Observation 4.1. For detailed proofs see [ABR3].

PRrROOF OF THEOREMS 3.1 AND 3.2. Combine Theorems 4.1 and 4.2 with Remark 2.5.
O
Proor or THEOREM 3.3. Combine Theorems 3.1 and 3.2, and apply the Principle of Inclusion-

Exclusion.
O

Theorem 3.4 is an immediate consequence of the following refinements of Theorems 3.1 and 3.2.
Theorem 4.3. Let n € P, M = {my,ma,...,mi}< C[0,n— 1] and i € [£n]. Then

Z quaj(o’) =

{c€B,: Desp(c—1)CM, o(n)=i}

( n—1
[’mr*’mr—l]q n Lt T M J O
Tnlq [mI,mD ’’’’’ mt+1*mtj|q q H (1+¢"), ifi=m.,
j=mi1+1
forrelt+1];
_ < [ B ] n—1 ]
Mypyp1—Mrlq n LM J if g = — _
[n]q [m1—m0 77777 mt+1—mt]q q H (A+d), ifi=-my—1,
j=mi+1
forr € [t];
\0, otherwise.
Here mo := 0, myy1 :=n, and
- ml—l, ifi:ml;
mi = .
mi, otherwise.

Theorem 4.4. Let n € P, M = {my,ma,...,mi}< C [0,n — 1] and i € [+n]. Then ¢'2(?) satisfies exvactly
the same formula as does ¢f™%() in Theorem 4.3.
The proofs of Theorems 4.3 and 4.4 use case-by-case analysis.

ProOOF OF THEOREM 3.4. Combine Theorems 4.3 and 4.4, and apply the Principle of Inclusion-

Exclusion.
a
Problem 4.2. Find combinatorial (bijective) proofs for Theorems 4.3 and 4.4.

5. Final Remarks

5.1. Classical Weyl Groups of Type D. Let D,, be the classical Weyl group of type D and rank
n. For an element o € D,,, let /p (o) be the length of o with respect to the Coxeter generators of D,,. It is
well-known that we may take
D,, = {0 € B, | neg(c) =0 mod 2}.

Let 0 = [0(1),...,0(n)] € D,. Biagioli and Caselli [BC] introduced a flag major index for D,,:
fmajp(o) := fmaj(o(1),...,0(n—1),lo(n)|).
By definition,

(51) Z quajD(U) - Z quaj(o)'

o€D, {o€B,| o(n)>0}
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Proposition 5.1.

Z qZB(U) _ Z qZD(U).

{c€B,| o(n)>0} c€Dy,

For a proof see [ABR3, Proposition 6.1]. We deduce the following type D analogue (first proved in
[BC]) of MacMahon’s theorem.
Corollary 5.2.

Z quajp(d) — Z qZD(o).

ceDy, oceD,
ProOOF. Combine identity (5.1) and Proposition 5.1 with Theorem 3.4.

Problem 5.3. Find an analogue of the Foata-Schiitzenberger theorem for D,,.
The obvious candidate for such an analogue is false.

5.2. Two Versions of the Flag Major Index. The flag major index of o € B,,was originally defined
as the length of a distinguished canonical expression for o. In [AR1] this length was shown to be equal to
2-maja(o) + neg(o), where the major index of the sequence (o(1),...,0(n)) was taken with respect to the
order -1 < -+ < —n <1 < --- < n. In [ABR1] we considered a different order: —n < --- < -1 <1<
-+~ < n (ie., we defined fmaj as in Section 3 above).

While both versions give type B analogues of the MacMahon and Carlitz identities, only the second one
gives an analogue of the Foata-Schiitzenberger theorem. On the other hand, the first one has the alternative
natural interpretation as length, as mentioned above, and also produces a natural analogue of the signed
Mahonian formula of Gessel and Simion, see [AGR]. The relation between these two versions and their
(possibly different) algebraic roles requires further study.
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A New Representation of Formal Power Series

Kostyantyn V. Archangelsky

Abstract. This paper is dedicated to the genesis arising at the boundary between the theory of
formal power series (FPS) and combinatorics.

Similarly to combinatorics where any rational sequence of natural numbers {ry}r>o0 is repre-
sentable for all k in the form

(11) Tk4n = Zrk-‘—n—anfi
=1

where X; — are, generally speaking, complex numbers (Berstel, Reutenauer, [BR]), we prove
that any rational FPS r is representable in the form (1) where rs = 32, _ (r,w)w, and X; are
elements of some special skew field. As a trivial consequence of such a representation were obtained:
1)truthfulness of Eilenberg’s Equality Theorem [E], decidability of the equivalence problem of finite
multitape deterministic automata (Rabin,Scott [RS]) and decidability of problem of whether two
given morphisms are equivalent on reqular language, (Culik, Salomaa [CS]); 2) more simply formu-
lated and proved the results from monographs on FPS (Salomaa, Soittola [SS], Berstel, Reutenauer
[BR|, Kuich, Salomaa [KS]); 3) solved partial cases of the problem of existence for an inverse
element of Hadamard product and others; 4) provided 8 Conjectures and 10 Open problems.

The conclusion contains a complete comparative analysis of the attempts to utilize linear recur-
rence in theory of FPS by other authors.

RESUME.

We use the standard notations from monographs Berstel, Reuteneuer [BR] and Cohn [Coh]. In partic-
ular, it will be assumed that ¥ = {01, 09,...,0} is a finite alphabet, ¥ =1 = {Ufl, 051, ..., 07}, e is empty
word and unity in semigroup X* and group G, generated by X, §) is empty set and zero in semirings and
fields, generated by ¥, €,0,,0; ! are corresponding characteristic FPS, k is commutative zero-divizor-free
semiring embeddable in commutative field K (this includes the semirings N, Z, Q, R, C).

According to Salomaa, Soittola [SS], every FPS r € k"™ < ¥* > can be represented as a behaviour of
k — ¥X*-automaton

A =< {QI7q27 o '7q’n}7A7qlaF >
where A € k"™ < ¥ > - transition matrix, gi-initial state, F € k"' < {g,0} > - final states:

oo

ra =Y (A'F)1.
=0
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Key words and phrases. formal power series, representation, recurrence.

21



22 A NEW REPRESENTATION OF FORMAL POWER SERIES

We denote q = (ATF);, then roq = Y o7 qgl and

(1.2) g7 = ZA qiy

Let us consider a system of n equations with (n + 1) unknowns Xg, X1,..., X, :

(1.3) )Xn_Zq(n DX, s i=T,n

and show that it always has a non-zero solution in Malcev-Neumann skew field K((G)) of FPS with
well-ordered support.

We solve the system (3) following the usual Gauss algorithm by successive excluding unknowns Xo, X1, ..., X,.
On step 0 all coefficients of unknowns are qgj ) € k < ©* > and of course are elements of K ((@)). Let us
assume that on step 7 an equation for X; has the form of

(1.4) GinXn = Qin-1)Xn-1+ ...+ ¢iXi, gis € K <G>, s=n,i

and we can compute a leading term for every ¢;s.

Suppose q;; # () (otherwise we can exchange i-th column with one of
n—1,..,i+1;if all g;s = 0 for s = 4,n — 1 then assume X,, = () and go to an equation for X;;1). Then
for all non-zero g;s denote ¢;s = ;s + ¢, where «a;; is a leading term in ¢;,. It follows that after multiplying
both parts of the equation on a;il and solving it for X; we obtain

(1.5) X; = (—Oéi_ilq;i)* (a; cin + ;' dln) X — - — (. )X
where the bracket content (...) is analogous to the coefficient of X,, and is not provided for the sake of
simplicity. Substitute equation (5) into the remaining equations for X;, j=1,¢—I:

(16) (ajn + q;'n - (aji + q;l)( 'Zlq:l)*(a 10[”1 + ai_zlq:n))Xn =

= (...)Xn71+...+(...)Xi+1
Since supp(oz“ qj;) > € then leading term of the coefficient of X,, should be searched for in aj, —
ajlaiilam. If the coefficient equals () then we take next in ascending order elements from supp(q§7l), supp(q;-i),

supp(a;;*q),) and so on. This process is constructive (see Lewin [L], Cohn [Coh]), so the inductive hypothesis
holds true — at the beginning of next step of Gauss algorithm all coefficients of unknowns X, X,,—1,... X;41
will be again from K ((G)) with known leading terms.

At the last step for the equation ¢, X, = In(n—-1)Xn-1 We have:

(i) if gn(n—1) # 0 that is g, (1) = Qpm-1) + q;(n_l) then assume
-1 .
Xn=gXp1 = (_an(nfl)q;.(n—l)) an(nfl)q”n;

(ii) if gn(n—1) = 0, then assume X, =0, X,,_1 = £. So we proved
Theorem 1.1. A solution of the system (3) in K((G)) exists always in the form:

(1.7) (X0, X150, Xpr&s0,...,0), 1<p<n—1
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while some X; also can be () . M
We prove the main theorem of the paper.
Theorem 1.2. For all kK € N holds

(1.8) ¢ =N EIR, i =Ton
j=1

Proof. For k = 0 the statement is proved - suppose it is true for k. Then
+k+1) (2) +k +k—1) 5
ql(n = 21 Az‘qu('n = Do A 2 qj('n X1 =

n n n+k—1 > (2) «—n n+k+1-1) o
= 2Zu=1 (ijl Aijqj(' )) Xnt =2 q( )Xn,l.l

Definition 1. We call a representation of FPS ¢; in the form (8) a linear recurrence representation (further
referred shortly as LRR), vector-solution (7) - a stencil, qu ). j-th layer of FPS ¢;. &

Example 1.4. Following the considerations about the solving of system (3) one can find that FPS s =
(a?(ab)*F?(ab)")" has LRR

S4 2221_?2,83 =so=s51=0,50=¢,
Snts = Snia 0+ spp3(b%ab® + ab) + sppo - 0+ spy1(a?b® —ab 'ab®) + 5, - 0M
Having analyzed the process of solving system (3) it is not difficult to prove:
Theorem 1.3. There exists a stencil with coefficients from the set {—1,0,1} for a characteristic series of
an arbitrary given rational languages. W
The opposite is intresting:
Open problem 1. (7Fatou extension”) If : 1) stensil of FPSr has all the coefficients from the set {—1,0, 1},
2) layers of v have coefficients from the set {0, 1}, then: r is N -rational? And Z-rational? And K -algebraic?
(we point out to the relationship of this problem with the counter-example Reutenauer [R]). B
Corollary 1 (Eilenberg’s Equality Theorem [E]). Let =< {q1,...,qu}, A, q1, F1 >andB =< {p1,...,pm}, B, p1, F> >
be k — X*-automata. Then ro = ro iff (ra,w) = (re,w) for all w € X* of length at most (n+m-1).
Proof. Consider a system of equations:
{ q;ler = E;’L;rim ngnerij)Xn—Q—m—j, Z == 1771

n+m n+m (n+m—yjy (9)
pi+ :Z+ p(+ ])X

Definition 2. We call the solution of the system (9) and the system itself a common stencil for automata
2 and B. Common stencil exists for any finite number of k — X *-automata. B
Corollary 2. (Equivalence Problem for Multitape Deterministic Finite Autumata, Rabin,Scott [RS]) Two
automata A1 =< {q1,...,qn}, 21 UB2U ... UXg,01,q1, F1 > and As =< {p1,...,0m}, 21 US3U... U
Yk, 02, p1, Fo > are equivalent iff the sets of their acceptable words of length at most (n +m — 1) are equal.
Proof. Consider common stencil for automata 2 and B. As the direct product of fully ordered groups
equipped with lexicographic order 31 < Xg < ... < X is still fully ordered group Gy, (Passman [Pa]), hence
this common stencil exists in form of solution for system (9) in Z((G)). B
Remark 1. Harju, Karhumaki [HK] result is also in checking up of all words of length at most (n+m—1).
To check the equivalence of two finite multitape deterministic automata an exponential time, therefore, is
required. At the same time there exist polynomial algorithms for the checking of the equivalence of k —
Y*- automata (O(n*) — Tzeng [T], O(n®) — Archangelsky [A1]). This provides a hint that should exist a
polynomial algorithm. Indeed not every initial set of layers should be checked up because not all of them in
combination with stencil would generate only ‘clean’ noncommutative polynomials — the ones without 0;1. [ |
Open problem 2. How many ‘clean’ tuples of layers there exist for a given stencil? R

j=1 Fi ntm—j; = 1,m u
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Remark 2. Corollary 2 could have been proven more simpler by leaving out the process of finding of stencil
and the proof of its existence. According to Hebish, Weinert [HW] the semiring of FPS on partially com-
mutative monoids over Z is zero-divisor-free and additivelly- cancellative and multiplicately-left-cancellative.
This means that a solution of the system (9) exists over some partially commutative skew field. B
Corollary 3. (Equivalence Problem for Morphisms on Regular Languages, Culik, Salomaa [CS]) Let L be
a regular language, defined by the minimal deterministic automaton A =< {q1,...,qn},

0,1, F >, and h,g : ¥* — A* be morphisms. If h(w) = g(w) for all w € L of length at most (2n — 1),
then h(w) = g(w) for all w € L.

Proof. One may assume that ¥ N A = @) and letters from ¥ and A commute. We define the transition
function J;, in 2-tape automaton Ap =< {q1,...,qn}, XU A, 0, q1, F > as follows §5(qi, 05h(0;)) = g <
0(gi,05) = qi. Similarly define §4 and 2. Until common stencil of 2, and 2, is being built we assume for
convenience each o;h(o;) and ojg(co;) to be one unique letter. Thus the length of common stencil will be
2n. A
Remark 3. Proof of Corollary 3 does not use unlike Karhumaki [K] an Eihrengeucht’s conjecture. Actually
we have proven a more stronger result — the decidability of morphism equivalence on regular language with
multiplicities of words are taken into consideration.m
Corollary 4. Let r € k™ < * > and p be number of first nonzero element in stencil of r, i.e.
Xo=.=X,1=0,X,#0,0<p<n. Then

(i) r is identecically zero iff r; = 0 for all i =0, (n — 1);
(i) v is polynomial iff r; =0 for all i = p, (n — 1);
(i) 7 is ultimately constant iff r; = cX* for all i = p, (n — 1);

() 7 is identically constant iff r; = ¢X* for alli =0, (n — 1).

Proof. Trivial combinatorical considerations.m
Remark 4. Proof of Corollary 4 does not use, unlike Salomaa, Soittola [SS], Kuich, Salomaa [KS] Hadamard
product and morphisms. R

Let us investigate more scrupulously how of the summands with negative powers of letters in Zrle
annihilate. In the first approximation it can be done by tracing down step-by-step how only ‘clean’ non-
commutative polynomials are left in the following examples.
Example 1.5 (Berstel, Reutenauer [BR]). FPSs= )" |w|,w = X"a¥X" has the follows LRR:

so=0,51=a

Snt2 = sn41(2a+b+a"tha)+sp(—a?—2ba—balba)m

Example 1.6 (Berstel, Reutenauer [BR]). FPS
s =, (lwle—|wlp)w =X"(a — b)E" has the follows LRR:

so=0,s1=a—0b,

Sni2 = snt1-2(a7 D) (@ —a ') +sn(a+b)(a+b—2(a D) (a—a b)) m
Example 1.7 (Reutenauer [R]). FPS

s = Zw (a2(|w|m*‘w‘y) -+ Oﬂ(‘“"y*‘w‘z)) w = (a2£+ a*2g)* + (a*2£ + a2g)*
a=3(V5+1),
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has the follows LRR: so = 2¢,s1 = 3z + 3y,

Snt2 = sny1 - 3yt@ - 2zl 4+ sp(ePz+a?y) (alz4a’y -

3@ 'y @ -z y?))

Let us consider arbitrary sequential n-tuple of layers of 7 € k" << ¥* >>. One can say that they are
n-inert in ring K ((G)) in several weak sense because riin—; € k < X* > (and of course, 11— € K((GQ))
), Xn—i € K((@)), but 30 rhyniXn_i € k < X* >. And while the inertia theorem is proved (Bergman
[Ber], Cohn [Coh]) also for ring k < ¥* > in ring K < £* >, but not in ring K((G)), the following
analogue seems to be the case.
Conjecture 1. k < X* > is inert in the K((G)). &
Conjecture 2. Assuming Conjecture 1 is true - would matriz-trivializer M exist such that M,M~' ¢
K" <y >7m

Formulae (8) implies the following formulae for computing the coefficients in LRR:

(Tk+77,; U)) - Z (Tk+n—i; wis)(Xn—ia wzs) (10)

(1) 1<i<n
(2QwisWis=w, wis€X*, Wis€G
The second condition of summing means that w;s = a;s0;s, ﬂ;lvis = Wis, Qis,Ois,Vis € 2°. Therefore
|Bis| < |wis| =k 4+ n — i and number of summands in (10) is limited.
Conjecture 3. Would the length of canceling suffizes and prefizes (like a B;s) be limited too for each LRR M
Open problem 3 (Archangelsky [A2]). For a given 7 € K((G)) determine whether the lengths of all
negative subwords of words in supp (7) are limited (i.e., subwords in alphabet ¥~ only).m
We apply rule (10) for examining coefficients in the inverse element of Hadamard product.We mean
FPS p is Hadamard inverse of FPS r iff r ©p = Y 1-w = X*. The problem of existence of such
an element is still open. All papers on the issue either study FPS on cyclic/commutative semigroups (Cori
[Cor], Benzaghou [Ben1, Ben2],Benzaghou, Bezivin [BB], Anselmo, Bertoni [AB], Poorten [Po]) or simple
samples of inversable FPS on ¥*,|X| > 2 ( Gerardin [G]).
Theorem 1.4. Let ¥ be alphabet, |E| > 2, A, A, be Q" — X* - automata which behaviours are FPS r,p
and let the coefficients in the common stencil of automata
2,
%, (1)
g=3Xq+e
are in Q. Then r © p = X" implies both r,p have a finite image.
Proof.Consider common stencil of automata (11) (¢ is the sum of states for automata 2, and 2, plus 1):

_ t
Trgt = 2y Tnt—iXt—i

Prtt = Bi_ Pptt—iXi—i (12)
271—‘,—2& — 2521271+t—1Xt_i7 n 2 0
According to (12) and (10) a coefficient of the word w € supp(ry4¢) in r,4¢ satisfies the follows:
=) g5 sTs (13)
where g - coefficients of supp(Tn+t—i) and T - coefficients of

supp(X;_;), and | S| is finite. Respectively,

1
= ZSES O[_xs (14)
=D sesl s (15)

Multiplying (13) and (14) we obtain

1
o
1
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1 1
(o7 a =1= (ZSES asxs) (ZSES ESZ‘S) =
_ 2 UL DRSS 24 9 P
=D ses s+ Dizjijes o + o, )it = DosesTs T2 iz jes TiTj =

2
= (ZSGS (ES) = 17
that is why all o; = @; = v, i.e. new coeflicients do not appear in 7, ;. B
Open problem 4. Positiveness of all coefficients in all stencils and layers is an essential part of the proof
of Theorem 3. In general case this limitation would not exist — therefore one would require to solve (or
describe the set of solutions for) the system of Diophantine equations {(13), (14), (15)} (a; € N1, z; € Q).
For small numbers of unknowns the system above indeed has only trivial solutions. It seems like the class of
invertable by Hadamard rational FPS is very narrow. W
Method of Theorem 4 may be implememted for the obtaining a necessary condition for the solution of
following
Open problem 5 (Restivo,Reutenauer [RR]). Let s be a FPS with integer coefficients and p a prime
number; if Y., p®Ww is rational, then so are s and >w p~ (5w m
Corollary 5. If s € Q" < X" > pe N, 51 =, 0% 55 =3 p & 51,8 € (QT)* < X% >
and the coefficients of the common stencil of automata
As,
As,
g=Xq+¢e
are in RT, then s, s1, s3 have a finite image. |
Let us try for a given LRR build a FPS, a representation of which the former is:

r= Zz =0 Ti + Zz =nTi= Z;L:_Ol T+ Efin Z?:l Ti—j‘f("—j =
=D icoTi T 21 2 TiXjo1 =

1 -~ -
=2ico — 2= Lo X + D1 DimoTiXjm1 =

=70+ 30 (= YT e X D AFrY X (16)

Solve this equation for 7:

r= (ro+ X7 (i = Xt X)) (o X1 (17)

Unarguably we took too much liberty when applying limit to both parts of identity (16). It still needs
to be proved that the obtained expression is indeed the sum of r; and only them. Because of size limit we

would not do that but do illustrate using Example 2 that it is true:

(a+b)ala+b)* =52 (51 + 50— 50X1)(X1 + Xo)* =

=a(2a+b+atba —a®—2ba—ba"'ba)* = (¢ —2a—b—atba+
+Q2+26a+balba) D l=((at—e-bate—a—-0) "=
=(e-—a-baHe—a-b) "' =(a+b)*ala+b) =

Brzozowski, Cohen [BC] studied a decompositions of rational languages into star languages : P =
R*S.0ne may ask about such decomposition in K((G)). Of course, arbitrary regular language R may be
trivially decomposed into star FPS in K((G)) : R = P*(¢ — P)R, where P is arbitrary regular language too.
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It is interesting to study a nontrivial case. Consider a common stencil of two arbitrary FPS in the form (17).
It implies

Theorem 1.5. Each two FPSr,p € k™ < X* > have a representation in K ((G)) with nontrivial common
star factor : r =718, p=p15*. W

Judging by appearance the regular expression (17) does not represent FPS from k < X* >, since it
contains inverse elements from ! and K. The transition matrix for the corresponding K — (X U X~1)* -
automaton would contain elements from ¥~ and K too — although the behavior of this automaton would
be exactly FPS r that is without £~ and K\k.

Open problem 6 ("Fatou extensions”). Let A € Z™" < SUX™! > but all layers of FPSr = o2 (A )10
are in N < ¥* >. Wouldr € N™™ < ¥* > be true? And Z™™ < ¥* >? And K9 < ¥* > ? &
Open problem 7 (Berstel etc. [BBCPP]). Does a function n — 1, preserve a rationality? That is if
{an}n>0 is a rational sequence of natural numbers, r is rational FPS then would Y.~ Tq, be rational? W
Open problem 8. Based on given LRR of FPS p,q build LRR of : p*,p + q,pq,
p©gq,pllg. ®
Open problem 9. Describe the set of all stencils of given rational FPS. W
Open problem 10. Stencils in their turn are rational FPS. One can be built their LRR and so on. What
can be said about the process ¢ M

Conclusion

Many researchers guessed about the existence of a linear dependency between the current value of FPS
and a limited number of previous ones, but have failed to express it in a convenient universal form that
would allow to obtain trivially results above. Thus for example,

Restivo, Reutenauer [RR]: FPS s € K < X* > is rational iff for any word x there is a common linear
recurrence relation over K satisfied by all the sequences {(s,ux™v)}n>0,u,v € X*.

The below listed authors used for stencil the same ring as for represented FPS , what undercut readability
and applications:

Salomaa, Soittola [SS]: Assumer € K™ < X* > and N is rank of r. Show that if lwo| = N then there
are words wy, ..., wy and elements cy,...,cy of K such that |w;| < N,i =1, N and for all words w:

(rywwp) = e1(r,wwy) + - + ey (r, wwy)

Berstel, Reutenauer [BR]: For any rational series S of rank n there exist a prefiz-closed set P of n
elements, with an associated prefiz set C, and coefficients a.p(c € C,p € P) such that, for all words w and
allce C:

(S, cw) =3 e p Qep(S, pw).
or limited the domain of definition of the linear relation :

Eilenberg [E|: f = > anz™ is rational iff the following “recursion formula” holds for all t sufficiently
large:

At4+m + C1Q¢t+4+m + ...+ cpar = 0.

On the other hand Cohn [Coh] did not lost universality and convenience but to achieve that he had to
‘maim’ previous layers:

A series v € K((X;«)) is rational iff there exist integer m,ng and elements c1,...,¢m € K such that
for allm > ny:

Th =To_1C1 + Tgi2C2 + ...+ rg‘:nmcm

As for Varricchio [V] — he did not go beyond the statement of a linear dependency for initial interval of
FPS:

Let s € K™% < ©* > YN be the set of words of ¥ whose length is less then or equal to N, pu be matriz
interpretation of S. Then one can effectively compute an integer N, depending on S with the property that

for any u € E[NH} there exist a set T = {0y} 5 v1 © K such that p(u) =32, cr p(v).
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It is very strange that author failed to discover the attempts to use linear recurrence in FPS on free com-
mutative monoid ¢(¥*), |2| > 2. According to Kuich, Salomaa [KS] K% < ¢(X*) > = K™ < ¢(X*) >.
Therefore many K - algebraic FPS can be studied with the help of LRR.

As one see the proposed approach contrary to the predecessors is systematic and handy. As a indirect
proof of that fact is a large number of correlations between FPS and combinatorics collected by the author
and left out the scope of this work.
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Sign balance for finite groups of Lie type (Extended Abstract)

Eli Bagno and Yona Cherniavsky

Abstract. A product formula for the parity generating function of the number of 1’s in invertible
matrices over Zso is given. The computation is based on algebraic tools such as the Bruhat de-
composition. The same technique is used to obtain a parity generating function also for symplectic
matrices over Zo. We present also a generating function for the sum of entries modulo p of matrices
over Zy. This formula is a new appearance of the Mahonian distribution.

1. Introduction

Let G be a subgroup of GL,,(Z3). For every K € G define o(K) to be the number of 1’s in K. A natural
problem is to find the number of matrices with a given number of 1’s; or in other words, to compute the

following generating function:
O(G,t) = > oK),

KeG
It is not hard to see that in the case G = GL,(Z3), O(G,t) has n! as a factor but the complete generating
function can be rather hard to compute. A weaker variation of this problem is to evaluate O(G, —1). This
is equivalent to determining the difference between the numbers of even and odd matrices, where a matrix
is called even if it has an even number of 1’s and odd otherwise. The number O(G, —1) will be called the
parity difference or the imbalance of G. A set S is called sign-balanced if O(S,—1) = 0.

The notion of sign-balance has recently reappeared in a number of contexts. Simion and Schmidt [9]
proved that the number of 321-avoiding even permutations is equal to the number of such odd permutations
if n is even, and exceeds it by the Catalan number C'1(, ;) otherwise. Adin and Roichman (1] refined
this result by taking into account the maximum descent. In a recent paper [11], Stanley established the
importance of the sign-balance.

In this work we calculate the parity difference for GL,,(Z2) as well as for the symplectic groups Spay, (Z2).

We also generalize the problem of sign-balance to matrix groups over prime fields other than Z,. It
turns out that the appropriate parameter for these fields is the sum of non zero entries of the matrix (mod p)
rather than just the number of nonzero elements. A generalization of these results to groups over arbitrary
finite fields has also been done. It will be published in a future publication.

Another aspect of this work is the occurrence of the Mahonian distribution in our results. Recall that a
permutation statistic over S, is called Mahonian if it has the same distribution as the number of inversions.
MacMahon proved that major index has such distribution, explicitly:

Z g™ — Z g = [n],!

TES, TES,
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30 SIGN BALANCE FOR FINITE GROUPS OF LIE TYPE (EXTENDED ABSTRACT)

where [n], = %.

Our results can also be seen as an example of the cyclic sieving phenomenon (See [8] for details). They
also hint at the existence of permutation statistics theory for finite groups of Lie type. For a pioneering
results in this direction see [5].

We finally note that another approach to the case of type A was proposed to us by Alex Samorodnitzky

[10], and will be explained elsewhere.

2. Preliminaries

2.1. The groups of Lie Type A. Let F be any field and let G = GL,,(FF) be the group of invertible
n X n matrices over F. Let H be the subgroup of G consisting of the diagonal matrices. This is a choice of
a torus in G. It is easy to show that the normalizer of H, N(H), is the group of monomial matrices (where
each row and column contains exactly one non-zero element). The quotient N(H)/H is called the Weyl
group of type A, and is isomorphic to S, the group of permutations on n letters. The Borel subgroup BT
of the group G consists of the upper triangular matrices in G. The opposite Borel subgroup, consisting of
the lower triangular matrices, is denoted by B~. We denote by U™ and U~ the groups of upper and lower
triangular matrices (respectively,) with 1’s along the diagonal.

We finish this section with the following:
Proposition 2.1. (See for example [6, p.20]) For every finite field F with q elements the order of GL(F)
18

¢ (g - 1)"[n,!

2.2. Lie Type C. Let J denote the n x n matrix

0 -1
0 10
10 0

and let

0o J
M= (_ g 0) .
The Lie group of type C, or the symplectic group, is defined over the field F by:
Span(F) = {AT € SLon(F) | A"MA = M}.

This is the set of fixed points of the automorphism ¢ : SLa,,(F) — SLa, (F) given by: ¢(A) = M~1(AT)~1 M.
An alternative way to present the symplectic group is the following: We define first a bilinear form on

27

Definition 2.1. For every z = (21, ...,72,),y¥ = (Y1, ..., Y2n) € F2"

n 2n
B(x7y) = E Ti *Yan+1—i — E Ti " Yon+1—i-
=1 i=n+1

Denoting by {z1, ..., 22, } the set of columns of X it is easy to see that X € Spo,(F) if and only if the
columns satisfy the following set of equations:

o (=) i+ j=2n+1
B(”““J)_{ 0 i+j#2m+1

We end this section with the following well known fact:
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Proposition 2.2. (See for example [6, p.35])
For every finite field F with q elements the order of Spa,(F) is:

¢ (g —1)"[2]¢ - [2n]q

2.3. The Bruhat Decomposition for type A. The Bruhat decomposition is a way to write every
invertible matrix as a product of two triangular matrices and a permutation matrix. We start with the
following definitions:

Recall from Section 2.1 the definition of the Borel subgroup B+ and the unipotent subgroup U~. For
every permutation 7w € S,, we identify 7 with the matrix:

()i =

{ 1 i=m(j)

0 otherwise

Define for every 7 € Sy,

U =U" N(#rU7 ).
U, consists of the matrices with 1-s along the diagonal and zeros in place (i,j) whenever i < j or
7 1(i) < w7 1(j). This is an affine space of dimension (}) — ¢(r) over F. ({(r) is the length of 7 with respect
to the Coxeter generators).
Now, given g € G, we can column reduce g by multiplying on the right by Borel matrices in order to get
an element gb~! satisfying the following condition:

(%)

The right most nonzero entry in each row is 1

and it is the first nonzero entry in its column.

Those ”leading entries” form a permutation matrix corresponding to = € .S,,.

Now we can use 7! to rearrange the columns of gb~! in order to get gb~'n~! = u € Uy, i.e., g = unb.
This is called the Bruhat decomposition of the matrix g. One can prove that this decomposition is unique,
and thus we have a partition of G into double cosets indexed by the elements of the Weyl group S,.

If m € S, then the double coset indexed by 7 decomposes into left BT-cosets in the following way: For
every choice of u € Uy, ur is a representative of the left coset uwrB™. Thus a general representative of the
double coset U, can be taken as matrix of the form (x), with every column filled with free parameters beyond
the leading 1.

We summarize the information we gathered about the Bruhat decomposition for type A in the following;:
Proposition 2.3. The group GL,(F) is a disjoint union of double cosets of the form U,mBY, where © runs
through S,,. Every double coset decomposes into cosets of the form AB™ where A is a general representative
of the form (x). The number of free parameters in A is equal to (g) — ().

Here is an example of the coset decomposition for GL3(Zs):

1 0 0

U,1B* = a 1 0|B"|a,B,v€Z
gy 1
0 1 0

UgsiB* = [1 0 0B |a,8e2
a f 1
1 0 0

Us,5oB1 = a 0 1|B"|a,B€Z
31 0
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0 1 0
Us,s, 5251BT = 0 a 1|B"|acZ
1 0 0
0 0 1
U, s,5152BT = 1 0 0|B"|acz
a 1 0
0 0 1
U515251818281HB+ = 0 1 0 B+
1 0 O

2.4. Bruhat Decomposition for Type C. In order to be able to present the Bruhat decomposition
for type C, we must first define a Borel subgroup for Spa, (F). We present this subject following [11]. Note
that although the exposition of [11] deals with groups over algebraically closed fields, the results hold also
over finite fields. Start with the Borel subgroup BT, chosen for type A, consisting of the upper triangular
matrices.

If X = (48) e B", then p(X) = (J(CTO)AJ J(CTL),E;%T_(?;)AJ) € BT. (The automorphism ¢ was

defined in Section 2.2). Moreover, the automorphism ¢ keeps the Borel subgroup B, as well as the groups
of diagonal and monomial matrices (denoted by H and N(H) respectively in Section 2.1) invariant. Thus
we can take BY, = Spo,(F) N B* and B = Sp2,(F) N B~ as the Borel subgroup and the opposite Borel
subgroup of Spa, (F) respectively, and similarly for H and N(H).

The Weyl group of type C can be realized as the group of those permutations @ € Sy, such that
m(2n+1—1) =2n+ 1 — w(¢). This group is isomorphic to the hyperoctahedral group B,, (See definition in
Section ??). The isomorphism can be seen by labelling the basis elements of the space on which Spa, (F)
acts by indices n,n —1,....1,...,—n.

We define also the groups Uj = Ut N Spy,(F) and Us = U™ N Span(F) to be the upper and lower
unipotent subgroups respectively. For every m € B, we define UY = U N (nU;n~1). UY is the intersection
of Spa,, (F) with the set of matrices with 1’s along the diagonal and zeros at entries in location (7, j) whenever
i< jorm (i) < w1(j). This is an affine space of dimension n? — £(). (Here, ¢(r) is the length function
of B,).

Now, we can use the Bruhat decomposition of G Loy, (IF) to produce the Bruhat decomposition for Spa, (F).
Let g € Spa,(F). Consider g as an element of GLo,(F) and write g = unb where m € Sa,, u € U, and
b € B*. We have:

9= #(9) = pw)p(m)e(b),
but from the uniqueness of the decomposition in G L, (IF) we have:

p(u) =u, @(r)=mh"", @(b)=hb
where h is diagonal and thus 7 € B, and b € IB%JCF. This gives us the Bruhat decomposition. The description
of the double cosets and the coset representatives is similar to the one given for type A, with the exception
that here we have to intersect with Spa, (IF).

We summarize the information we gathered about the Bruhat decomposition for type C in the following;:
Proposition 2.4. The group Spe,(F) decomposes into double cosets of the form Ugﬂ@g, where ™ runs
through By,. Every double coset decomposes into cosets of the form AIB%JCC where A is a general representative
of the form (x). The number of free parameters in A is equal to n® — ().

3. Sign Balance for Type A

3.1. Sign Balance over Zs. In this section we present the results concerning the imbalance of the
groups of type A over the field Zo . The proofs are written in ?7.
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Theorem 3.1.
Y (1) = 2E) [ - 1!
K€GLn(Zs)
1_gF
where [k]g = T4~

The following corollary is immediate:
Corollary 3.1. The number of even matrices in GL,(Z2) is exactly

[ —1]512() (271 — 1)
while the number of odd matrices in GLy(Zs) is:
[n — 1]512(2) 71
O
3.2. Sign Balance for Prime Fields. In this section we present the results concerning the imbalance
of the groups of type A over the field Z, . The proofs are written in 77.
Let p be a prime number and denote by Z,, the field with p elements. The results of Section 3.1 can be
extended to invertible matrices over the field Z,, provided we substitute a primitive complex p-th root of

unity in the generating function of the sum of elements of a matrix mod p. Explicitly, we use the information
we gathered in the previous section to get the following:

Theorem 3.2.
Yoo o = (- 1) G- 1,
K€eGL,(Zp)

where s(K) is the sum (mod p) of the elements of the matriz K, and wy is a primitive complex p-th root
of unity.

The following corollary is immediate:
Corollary 3.2. The number of matrices in GLy(Zy,) whose sum of entries modulo p is 0 is exactly

[ — 1, — )" pE) (prt — 1)

while for every 1 <i < p— 1, the number of matrices in GLy(Z,) whose entries add up to i modulo p is:

[0 =1, — 1) tp()

4. Sign Balance for Type C

In this section we prove the following result:
Theorem 4.1.

S (=)0 = o 2]p[4]y - 20— 2,
KeSpan (Zz)
The following corollary is immediate:
Corollary 4.1. The number of even matrices in Span(Zsa) is exactly
n?—1
2 [2]2[2”—2]2([2142 —1)

while the number of odd matrices is

27" 1[2]y - [2n — 2]5([2n] + 1). O

In order to prove the theorem, we take the following direction: Instead of summing over the whole group
of matrices, we sum over every coset separately. It turns out that some of the cosets are sign-balanced, while
the others have only odd matrices. We start with the following definition:
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Definition 4.2. A coset consisting entirely of odd matrices is called an odd coset.

The following lemma identifies the sign-balanced cosets.
Lemma 4.2. Let A be a general representative of the double coset UfﬂB%JCr corresponding to m € B,,. Make
some substitution in the free parameters of A to get a coset representative, and call it A. If A has an odd

column which is not the last one, then the coset [A] = {AB|B € B} is sign-balanced, i.c.,
> (=) =o.
KeAB

PRrROOF. An element of IB%JCr is an invertible upper triangular matrix which is also symplectic. The
condition of being symplectic is expressed by imposing a set of equations on the columns of the matrix. If
we take b to be an upper triangular matrix with a set of columns {vy, ..., v2, } then, as was stated in Section
2.2, forcing it to be symplectic is equivalent to imposing the equations (note that we are working over Zs):

L1 itj=2m+1
B(”“Uﬂ)_{o itj#2m+1

As is easy to check, the equations of the form B(v;,v;) = 0 are trivial over Zs. The equations of the form
2n
B(v;,van41—i;) = 1 are also trivial. (Indeed, B(v;,vont1—i) = Z bi,i - ban+1—k,2n+1—; but since b is upper

triangular, over Zy we have bj; - ban11—i2n+1—i = 1 and the other summands vanish since for k > 7 one has
br; = 0 and for k > 2n + 1 — 4 one has boyyi1-k2n4+1—-; = 0).

Now, the only non trivial equations involving the parameters appearing in the last column are the ones
of the form:

B(vi,van) =0,(2<i<2n-1)

and each such equation can be written in such a way that the parameters of the last column are free while
the parameters of the first row depend on them. Explicitly, we write the equation B(v;,v2,) = 0 as

2n

= E bri - bant1—k,2n-
=2

Note that the elements of the last column of the matrix b have no appearance as a part of a linear
combination in any place other than the first row. This is justified by the fact that every non trivial
equation, involving the first row, which we have not treated yet must be of the form B(v;,v;) = 0 for
1 <i < j <2n—1. Thanks to the upper triangularity of b, the elements laying in the first row vanish in
these equations.

Let us look at the following example:

1 bz b1z bus
0 O 1 bag
0 O 0 1

The only non trivial equations involving the last column are: B(vg,vs) =0 and B(vs,vs) = 0.
These equations can be written as:

bio = b3
b1z = bag + bag - b34
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so after intersecting with Spay,(Z2), the matrix b looks like:

1 bsg bag +bag-bss b1y

h— 0 1 b23 b24
“ 1o o0 1 b34
0 0 0 1

The elements of the last column appear only in the first row and in the equations of the form B(v;,v;) =0
the elements located in the first row vanish.

Note that in this case all of the parameters outside the first row are free. This doesn’t hold in general.
Nevertheless, as we have proven, we can arrange the parameters such that the elements of the last column
reappear only in the first row.

Returning now to the proof, we have two cases:

e The first column of A is odd. In this case we can use the element located in place (1,2n) to

construct a bijection between odd and even matrices inside the coset AIB%JCC This is done in the
same way described earlier for type A: Divide ]B%JCr into two disjoint subsets:

Blo = {T = (ti;) € BE | t1,2n = 0}
BS, = A{T = (ti;) € BE [ tion = 1}

For every matrix X € AIB%JCC, the k-th column of X is a linear combination of the first £ columns
of A. Now, due to the fact that the parameter appearing in the location (1,2n) has no other
appearance, for every B € IB%JCCO there is some B’ € IB%JCFI such that B and B’ differ only in the entry
numbered (1, 2n).

Note that AB and AB’ are obtained from A by the same sequence of column operations except
for the first column which was used in producing AB but was not used in producing AB'’. Hence
AB and AB’ have opposite parity. This gives us a bijection between the odd and the even matrices
of the coset A]Bg.

e The first column of A is even. Denoting by j the number of the first odd column of A, we use the
element located in place (j,2n) to construct a bijection between the odd and even matrices inside
AIB%JCC in the same way as in the previous case. Note that since the element located in place (j, 2n)
in the matrices of the Borel subgroup can reappear only in the first row, it affects only the first
column of A, which is even.

|

We turn now to treat the odd cosets.
Lemma 4.3. Let m € B,,. Let A be a general representative of the double coset UWWIB% corresponding to
7 € By. Make some substitution in the free parameters of A to get a coset representative, and call it A. If
all of the first 2n — 1 columns of A are even then all of the matrices belonging to the coset AIB%JCC are odd.
The imbalance calculated inside this coset is:

2
Yo (- = || = -2,
KeAB

PROOF. The last column of A is always odd and thus since all other columns of A are even, A itself is
an odd matrix and the same holds for AB for every B € IB%JCF. The size of the coset ABT is 2"2, and the
result follows. O

Lemma 4.4. Let m € B,,. The double coset UETI‘BJCr« contains odd cosets if and only if w(2n) = 2n.
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PROOF. Let A be a general representative of the double coset US B, Write U = Ax~%. Then U € UY
is a lower triangular matrix and since w(2n) = 2n (which implies also 7(1) = 1), the first column as well as
the last row of U contain 2n — 1 parameters. Note that UT € IB%JCr and thus by the considerations described
in Lemma 4.2, the parameters appearing in the last column of U” can reappear only in the first row of U™ .
We conclude that the parameters of the last row of U can reappear only in the first column of U. Now,
for every column numbered 2 < k < 2n — 1 in U and for every choice of the first elements of the column
numbered k, we are free to choose the parameter located in the bottom of this column, (2n, k), in such a
way that the column will be even. The parameter located in the place (2n,1) has no other appearance and
thus we can choose all of the first 2n — 1 columns of U to be even. Getting back to the general representative
A, since 7(2n) = 2n, we have also (1) = 1 and thus A and U differ only in the columns 1 < k < 2n so that
the proof works also for A.

On the other hand, if m(2n) # 2n then 7« contains a column numbered k¥ < 2n which has only one
nonzero element, located in place (2n, k). By the construction of the general representative A, there are
only zeros above the 1 coming from the permutation and thus this odd column appears also in A. By the
previous lemma, the coset {AB|B € B} is sign-balanced. O

Now, we have to count the imbalance on the odd cosets. By Lemma 4.4 we are interested only in the
double cosets corresponding to the permutations w € B, _1. The following lemma shows how to count.
Lemma 4.5. Let 7 € B,, such that m(n) = n . The double coset Ugﬂ'Bg contains exvactly 2(n=1*=€(m) g
cosets.

PROOF. Let A be representative of the double coset Ugﬂ'ﬁg. As was shown in the previous lemma, the
parity of a each one of the first 2n — 1 columns of A is determined by the free parameter in its bottom.
Since there are a total of n? — £(r) free parameters and exactly 2n — 1 ’bottom parameters’, the number of
substitutions of parameters giving all of the 2n — 1 first columns even is 2% ~¢(M=(2n=1)  This is also the
number of odd cosets in the double coset U O

U

We turn now to the proof of Theorem 4.1. In order to calculate the imbalance we have to count only odd
cosets. By Lemma 4.4, we are interested only in the double cosets corresponding to permutations 7 € B,,_.
By Lemma 4.5, every such double coset contains 2(n=1°=€(r) 5dd cosets. By Lemma 4.3, each odd coset
contributes —2"° to the imbalance, and we have in total:

Z (—=1)°) = Z _on?  g(n—1)~£(m)

KeSpan(Z2) ?G)Bn
m(n)=n

1 Z 9(n—1)%—£(m)
TEBn -1
— o’ 3 2t
TEB, 1
2
=-2" [n — ].]2'
2

= 27" [2s[4]2- - [2n — 2]
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Generating Functions For Kernels of Digraphs
(Enumeration & Asymptotics for Nim Games)

Cyril Banderier, Vlady Ravelomanana, and Jean-Marie Le Bars

Abstract. In this article, we study directed graphs (digraphs) with a coloring constraint due to Von
Neumann and related to Nim-type games. This is equivalent to the notion of kernels of digraphs,
which appears in numerous fields of research such as game theory, complexity theory, artificial
intelligence (default logic, argumentation in multi-agent systems), 0-1 laws in monadic second order
logic, combinatorics (perfect graphs)... Kernels of digraphs lead to numerous difficult questions (in
the sense of NP-completeness, #P-completeness). However, we show here that it is possible to use
a generating function approach to get new informations: we use technique of symbolic and analytic
combinatorics (generating functions and their singularities) in order to get exact and asymptotic
results, e.g. for the existence of a kernel in a circuit or in a unicircuit digraph. This is a first
step toward a generatingfunctionology treatment of kernels, while using, e.g., an approach “a la
Wright”. Our method could be applied to more general “local coloring constraints” in decomposable
combinatorial structures.

Résumé. Nous étudions dans cet article les graphes dirigés (digraphes) avec une contrainte de colo-
riage introduite par Von Neumann et reliée aux jeux de type Nim. Elle équivaut a la notion de noy-
aux de digraphes, qui apparait dans de nombreur domaines, tels la théorie des jeuz, la théorie de la
complexité, lintelligence artificielle (logique des défauts, argumentation
dans les systemes multi-agents), les lois 0-1 en logique
monadique du second ordre, la combinatoire (graphes parfaits)... Les noyauzx des digraphes posent de
nombreuses questions difficiles (au sens de la NP-complétude ou de la #P-complétude). Cependant,
nous montrons ici qu’il est possible de recourir aux séries génératrices afin d’obtenir de nouvelles
informations : nous utilisons les techniques de la combinatoire symbolique et analytique (étude des
singularités d’une série) afin d’obtenir des résultats exracts ou asymptotiques, par exemple pour
lexistence d’un noyau dans un digraphe unicircuit. Il s’agit la de la premiére étape vers une série
génératrilogie des NOYAUL. Notre
méthode peut étre appliquée plus généralement a des “contraintes locales” de coloriage dans des
structures combinatoires décomposables.

1. Introduction

Let V and E be the set of vertices and directed edges (also called arcs) of a directed graph D without
loops or multiarcs (we call such graphs digraphs hereafter). A kernel of D is a nonempty subset K of V,
such that for any a,b € K, the edge (a,b) does not belong to E, and for any vertex outside the kernel
(a € K), there is a vertex in the kernel (b € K), such that the edge (a,b) belongs to E. In other words,

Key words and phrases. generating functions, analytic combinatorics, kernels of graphs, Nim games, digraphs.
Corresponding author: Cyril.Banderier@lipn.univ-paris13.fr.
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K is a nonempty independent and dominating set of vertices in D [2]. Not every digraph has a kernel
and if a digraph has a kernel, this kernel is not necessarily unique. The notion of kernel allows elegant
interpretations in various contexts, since it is related to other well-known concepts from graph theory and
complexity theory. In game theory the existence of a kernel corresponds to a winning strategy in two players
for famous Nim-type games (cf. [3, 16, 17, 31]).

Imagine that two players A and B play the following game on D in which they move a token each in
turn: A starts the game by choosing an initial vertex vy € V' and then makes a move to a vertex v;. A move
consists in taking the token from the present position v; and placing it on a child of v;, i.e. a vertex v;i1
such that (v;,v;41) € E. B makes a move from v; to ve and gives the hand to A, which has now to play from
vg, and so on. The first player unable to move loses the game. One of the two players has a winning strategy
(as this game is finite in a digraph D without circuit, for circuits one extends the rules by saying that the
game is lost for the player who replays a position previously reached). Von Neumann and Morgenstern [31]
proved that any directed acyclic graph has a unique kernel, which is the set of winning positions for 4 (A
always forces B to play outside the kernel, until B cannot play anymore). Richardson [27] proved later that
every digraph without odd circuit has a kernel [7, 29]. Berge wrote a chapter on kernels in [2]. Furthermore,
there is a strong connection between perfect graphs and kernels (see the Berge and Duchet survey [1]). Some
natural variants of this property are studied in various logic for Intelligence Artificial, some of them are
definable in default logic [8] and used for argumentation in multi-agents systems, kernels appear there as
sets of coherent arguments [6, 12].

Fernandez de la Vega [13] and Tomescu [30] proved independently that dense random digraphs with n
vertices and m = ©(n?) edges, have asymptotically almost surely a kernel. In addition, they get the few
possible sizes of a kernel and a precise estimation of the numbers of kernels.

Few years ago a new interest for these studies arises by their applications in finite model theory. Indeed
variants of kernel are the best properties to provide counterexamples of 0-1 laws in fragments of monadic
second-order logic [21, 22]. Goranko and Kapron showed in [19] that such a variant is expressible in modal
logic over almost all finite frames for frame satisfiability; recently Le Bars proved in [23] that the 0-1 law
fails for this logic.

The existence of a kernel in a digraph has been shown NP-complete, even if one restricts this question
to planar graphs with in- and out-degree < 2 and degree < 3 [9, 11, 15]. It is somehow related to finding a
maximum clique in graphs [4, 21], which is known to be difficult for random dense graphs.

In this article, we use some generating function techniques to give some new results on Nim-type games
played on directed graphs (or, equivalently, some new informations on kernel of digraphs). More precisely,
we deal with a family of planar digraphs with at most one circuit or one cycle and we give enumerative
(Theorems 4.1, 4.2, 4.3, 4.4 in Section 4) and asymptotics results (Theorems 5.1, 5.2, 5.3, 5.4 in Section 5)
on the size of the kernel, the probability of winning on trees for the first player...

2. Definitions

We give below more precise definitions, readers familiar with digraphs can skip them.

Let D = (V, E) be a digraph. For each v € V, let vt = {w € V/(v,w) € E} and v~ = {w € V/(w,v) €
E}, |vT] is the out degree of v and |v™| is the in degree of v.

A vertex with an in degree of 0 is called a source (since one can only leave it) and a vertex with an out

degree of 0 is called a sink (since one cannot leave it). Let U C V, Ut = Uyepyvt and U™ = Uyepv™, we
denote by D(U) the subgraph induced by the vertices of U.

There is a path from vertex v to w means that there exists a sequence (v1,...,vx) such that v; = v,
vy =w and v; € v), Uv;,,, for i =1...k—1. There is a directed path from vertex v to w means that there
exists a sequence (v1,...,v) such that v1 = v, vy = w and v; € v;;l, fori=1...k—1.

A cycle is a path (v1,...,vx) such that v1 = vg. A circuit is a directed path (v1,...,v) such that
V1 = Vg.
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If D contains a directed path from vertex v to w then v is an ancestor of w and w is a descendant of v.
If this directed path is of length 1, then the ancestor v of w is also called a parent of w, and v a child of w.

D is strongly connected if for each pair of vertices, each one is an ancestor of the other. D(U) is a
strongly connected component of D if it is a maximal strongly connected subgraph of D.

U is an independent set when U NU™ = () and a dominating set when v+ MU # @ for any v € V\U. U
is a kernel if it is an independent dominating set.

D is a DAG if it is a directed digraph without circuit (the terminology “directed acyclic graph” being
popular, we use the acronym DAG although it should stands for “directed acircuit graph”, according to the
above definitions of cycles and circuits).

3. How to find the kernel of a digraph

Consider digraphs satisfying the following rules:
e each vertex is colored either in red or in green,
e cach green vertex has at least a red child,
e 10 red vertex has a red child.

It is immediate to see that a digraph satisfying such coloring constraints possesses a kernel, which is exactly
the set of its red vertices. It is now easy to see, e.g., that the circuit of length 3 has no kernel, that the
circuit of length 4 has 2 kernels, that any DAG has exactly one kernel. For this last point, assume that D
is a DAG (directed acircuit graph). Algorithm 1 (below) returns its unique kernel. It begins to color the
sinks in red and then goes up toward sources, as it is deterministic and as it colors at least a new vertex at
each iteration, this proves that each DAG has a single kernel. Such an algorithm was already considered by
Zermelo while studying chessgame.

Algorithm 1 The kernel of a DAG

Input: a DAG D = (V, E), Noncolored= V (i.e. no vertex is colored for yet)
Output: the DAG, with all its vertices colored, the red vertices being its kernel
while it remains some non colored vertices (Noncolored # @) do
for all v € Noncolored do
if v is a sink or if all the children of v are green then
color v in red
color all the parents of v in green
remove the colored vertices from Noncolored
end if
end for
end while

For sure, it is possible to improve this algorithm by using the poset structure of a DAG, and thus
replacing the “for all v € Noncolored” line by something like “for all v € Tocolornow” where Tocolornow is
a set of candidates much smaller than Noncolored.

More generally, in order to color a digraph which is not a DAG, simply split it in p components which are
DAGs. Then, apply the above algorithm on each of these DAGs (excepted the cut points that you arbitrarily
fix to be red or green). It finally remains to check the global coherence of these colorings. As one has p
cutting points (which can also be seen as p branching points in a backtracking version of this algorithm),
this leads to at most 2P kernels. This also suggests why this problem is NP: for large (dense) graph, one
should need to cut at least p ~ n points, which leads to a 2™ complexity (lower bound).

4. Generating functions of well-colored unicircuit digraphs

There exists in the literature some noteworthy results on digraphs using generating functions (related e.g.
to EGF of acyclic digraphs [18, 28], Cayley graphs [26], (0,1) matrices [25], Erdés—Rényi random digraph
model [24]), but as fas as we know we give here the first example of application to the kernel problem.
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FIGURE 1. The first digraph is a well-colored DAG (it has several cycles, but no circuit).
The second digraph is a well-colored digraph (it is not a DAG, as it contains one circuit).
The third digraph is a DAG, but is not well colored (the top green vertex misses a red child).
[For people who are reading a black & white version of this article, red vertices are fulfilled
and green vertices are empty circles.]

The coloring constraints mentioned in Section 3 are “local”: they are defined only in function of each
vertex and its neighbors. One nice consequence of this “local” viewpoint of kernels is that it opens up a whole
range of possibilities for a kind of context-free grammar approach. Indeed if one considers rooted labeled
directed trees that are well-colored (i.e. which possesses a kernel), one can describe/enumerate them with
the help of the five following families of combinatorial structures (all of them being rooted labeled directed

trees):

T: all the trees with the coloring constraint

T!: well-colored trees with a red root (with an additional out-edge)
T} well-colored trees with a red root (with an additional in-edge)
T]: well-colored trees with a green root (with an additional out-edge)

Tgl: well-colored trees with a green root (with an additional in-edge)
TgTr: well-colored trees with a green root (with an additional out-edge which has to be attached to
a red vertex)
Those families are related by the following rules:
T= TgT uT!
T} = g x Set>1(T}) x Set(T;} U Tgl uTy))
Tgl = gl x Set>1(T)]) x Set(T}} U Tgl uTy))
T — T 18 T
TTl = rl X Set(Tgi U Tg{)
Ty =7 xSet(Ty UTy )
T] =g xSet(T]UT}HUT}UT))
The Set operator reflects the fact that one considers non planar trees, i.e. the relative order of the subtrees
attached to a given vertex does not matter. The notation Set>; means one considers non empty set only.

b
AN

e © e © e ©
2 3 13 21

FIGURE 2. A tree € T} of size 3 and all its possible labellings. T} stands for directed trees
with a green root with an additional in-edge on this root.

As we are dealing with labeled objects (we refer to Figure 2 for the different labellings of a rooted directed
tree), it is more convenient to use exponential generating functions, the above rules are then translated (see
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e.g. [20, 14] for a general presentation of this theory of “graphical enumeration/symbolic combinatorics” )
into the following set of functional equations (where z marks the vertices):

T(2) =T)(2) + T} (2),
T)(2) = Ty(2) = z(exp(T}(2)) — 1) exp(T}H(2) + Ty (2) + T (2)),
T](2) = THz) = zexp(Ty (2) + T] (2)) -

Note that TgTT = T as one has the trivial bijection “TgTT ~trees with a root without red child” = “T!
trees” and “T,] trees with a root with at least a red child” = “T}} trees”. Define now Ty(z) := T,/(z) and
T.(z) := T)}(2), the above system simplifies to:

T(2) = Ty(2) + T;(2) = T (2),
Ty(z) = zexp(2T(2)) — zexp(T(2) + Ty(2)) ,
T(2) = zexp(Ty(2) + T(2)) = T(z) exp(=T7(2)) .
This system has a unique solution, as the relations can be considered as fixed point equations for power
series. Their Taylor expansions are:
22 3 4

T(z) =2+ 4= +363 +5124 + 100005 +2488326 +7529536 +0( 8,
ZQ 3 24
Tyz)= 25+ 152 o T 282+ 4535— + 114276 + 3478083 — = i 0(=%),
2 3 4 5 6
T(2) =2+ 2= o+ 21§ + 280I + 54655 + 1345566— + 4051453— +0(2%).

For sure, the i-th coefficients of these series are divisible by i, as we are deahng Wlth rooted object. Here
are the 3 generating functions of the corresponding unrooted trees:

2 3 4 5 6 7

TU(2) = 2 + 25 + 122 4+ 1282 4 2000 + 41472 + 1075648 —
(2) =z +25; +1257+ 84'+0005+ 76+075687+0()

2,2 23 4 5 6 7

T,"(2)= < i 55 + 58— + 9075 + 190466— + 496869F +0(2%),
2 53 4 45 56 57

T (2) = 2 4 Z— T 70— + 10935 + 224265 + 578779— O3,

Of course, trees are DAG and therefore have a unique kernel. This 1mphes that T'(z) is exactly the
exponential generating function of directed rooted trees, i.e.

T(z) = C(22)/2 and T}, = (2n)" !
where C(z) is the Cayley function (see Figure 3 and references [5, 10]), defined by

C(z) = zexp(C(2)) = Zn"‘l% .
n>1
Solving the set of equations for T, T, and T; finally leads to
Theorem 4.1 (Enumeration of well-colored trees).
By ditrees, we mean well-colored rooted labeled directed trees. By well-colored, we mean each green vertex
has at least a red child, each red vertex has no red child.
The exponential generating function of ditrees is given by T(z) = C(22)/2,
the EGF of ditrees with a red root is given by
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r1s

ro.5

FIGURE 3. The Cayley tree function C(z) goes from —oo for z ~ —oco to 1 at z = 1. It
satisfies C(z) = zexp(C(2)).

the EGF of ditrees with a green Toot is given by
Ty(z) = C(22)/2+ C(=C(22)/2),
where C(2) is the Cayley tree function C(z) = zexp(C(z)).
The EGF for the unrooted equivalent objects can be expressed in terms of the rooted ones:
unTe — T2 , T;},nr — Tunr. _ T;Ln'r ,
and T = 2T — 21T, + T, — 2T/T, + T?/2.

PrROOF. The formulae for T, T, and T, can be checked using the definition of C(z) in the fix-point
equations in the simplified system above. The fact that the GF for unrooted trees can be expressed in terms
of the GF of rooted ones can be proven by integration of the Cayley function, or by a combinatorial splitting
argument on trees. U

We can go on and enumerate the different possibilities of circuits for a well-colored digraph. They can
be described as
Cyc(g) U Cye(r —{g —}")
This reflects the fact that either a circuit is made up of green vertices only, or it contains some red vertices,
but they have to be followed by at least a green vertex. NB: Whether one counts or not the cycles of length
1 (i.e. a single red or green vertex) will only modify the first term of the generating function. Symbolic
combinatorics [14] translates the above cycle decompositions in the following function:

1 1
In{ —— In| —+—
n<1_g)+n<l_1rgg>

where r/g mark the number of red/green vertices. This leads to the following Theorem:



C. Banderier, V. Ravelomanana, and J.-M. Le Bars 45

Theorem 4.2 (Enumeration of possible well-colored circuits).
The exponential generating function of possible well-colored circuits is given by

2 22 23 24 25 28 27
L(z) = ~In(1 =z = 2°) = 2 4+ 357 + 857 +427 + 2647 + 2160 + 20880
Its coefficients satisfy L, = (n—1)! (¢™ + (1 — ¢)"), where Ly, are known as the n-th Lucas number (usually
defined by the recurrence Ly 1o = Lpi1+ Ln, L1 = 1, Ly = 3) and where ¢ = (1 4+ /5)/2 is the golden ratio.
Note that a reverse engineering lecture of this generating function leads to the simpler decomposition
Cyc(g U rg), which also explains the recurrence! Now, the following decomposition of possible cycles is

trivially related to the decomposition of possible circuits:

Cyc(r x { —g U <—g}Jr X { — U <—}) U Cyclg —Ug )

+0(z%).

leads to the EGF — In(1 — 2z — 422) whose coefficients are, with no surprise, 2" L,,.

‘%/3 , g

o/ Té/ r‘>

R T
e

FIGURE 4. Unicircuit digraphs consist in a circuit with attached trees on it. The left picture
above is a unicircuit digraph, to the right, we give its “canonical decomposition” as a circuit
of atoms which are trees. Any well-colored unicircuit digraph has such a “canonical decom-
position”.

Using the decomposition given in Figure 4, one obtains the generating function for unicircuits:
Theorem 4.3 (Enumeration of unicircuit well-colored digraphs).
The EGF of unicircuit well-colored digraphs is

U() = T —T,+Ih (W)
2
_Cer g ca),
I (1 _ C(;z) o 0(22z>) Lo(- 0(22z>) @)
= z+4 4; + 30; + 452% + 8840;—? + 224832§ + 6909784% + O(zs) ,

where C(2) is the Cayley tree function C(z) = zexp(C(z)).

Now, consider the larger class of unicycle digraphs (digraphs which have 0 or 1 cycle). Recall that a
circuit is a cycle, but a cycle is not necessarily a circuit. In order to get a “canonical decomposition” for
unicyle digraphs (similar to the one given in Fig. 4 for unicircuit digraphs), one considers 3 cases:

e Either the graph has no cycle, those graphs are counted by T""".
o Either it is a cycle with only T}, trees branched on it (i.e. no red nodes in the cycle), those graphs

are counted by (In (ﬁ) —2Tg—4Tg?/2)/2+ Tg?/2, where 2T'g corresponds to Ty x {— U <},
one removes cycles of length 1 and 2 from the logarithm (this explains the —2T'g — 4T'g?/2 term)
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and one divides the whole formula by 2 because one has to take into account the fact the cycle can
be read clockwise or not, and one adds the only legal cycle of length 2.

e Either the graph contains a cycle with some red nodes and then one considers the following possible
“bricks”:

— Tgr —

«— T, — (but not a cycle of length 2, because multiarcs are not allowed)

= (T{—=U})"T, — (but not a cycle of length 2)

= (T{—= U=} Ty —

T {- U} (T{— U} T,

T, Ty {= U} (T{—U}) Ty —

S8888

Theorem 4.4 (Enumeration of unicycle well-colored digraphs).
The EGF of unicycle well-colored digraphs is
1
12T,

V(z) = T"""+ % In ( ) ~Tg—Tg*/2~TrTg/2~T,T/2

N =

1
+-1In (1 - (QT T + T, Tg+Ty Ty, +2T, Tg, Tg+2T, T2 ) )
rdgp

12T,

- TV 74T, —T2/2—1n(1+Tr) — %ln(l —2T)

2 3 4 5 6 7

— z zZ zZ zZ z zZ 8
= 2445 3657 +6927; + 1592077 + 458622 5 + 15550264 = + O(=).

where T', Ty, Ty, and TY""™ are given in Theorem 4.1.
Note that in the two theorems above, any given non-colored graph is counted with multiplicity 0, 1 or
2 (if there are 0, 1 or 2 ways to color it). We explained in Section 3 that a multiplicity larger than 2 was
not possible for unicycle digraphs. We enumerate in the following proposition those with exactly 2 possible
colorations.
Proposition 4.5 (Enumeration of unicycle digraphs with two kernels).
The EGF of unicycle digraphs with 2 kernels is

D(z) = —In\/1+C(~C(22)/2)2,

where C(z) is the Cayley tree function C(z) = zexp(C(z)).
Remark: From the definition of cycle/circuit, D(z) is also the EGF of unicircuit digraphs with 2 kernels.

PROOF. Let D be the set of unicycle digraphs with 2 kernels. First, it is easy to see that Cyc(T?) C D
(with a sligth abuse of notation, as we first only consider the shape, not the coloration of the T, trees):
simply color the nodes in the cycle alternatively in green and red, and switch the colors of a part of attached
trees, if needs be.

We now prove the next step D C Cyc(T?): Take a unicycle graph in D, it means at least one of its vertex
can be colored both green and red. Such a vertex v can be taken, without loss of generality, in the circuit
(from the above remark, the cycle is in fact a circuit). [If it were not the case, all bi-colorabled vertices
would be in the tree components, but then one could split our graph to get DAGs which are known to be
uniquely colorable]. But when v is red, it implies it has only T}, trees attached to it, which means than when
it gets green, the next node in the circuit has be red (and was previously green!). This implies alternation
red/green (and even length for parity reasons) for all the nodes in the circuit.

This leads to a canonical decomposition

Cyc(T?).
If one divides by 2 for the (anti)clockwise readings, this leads to the Theorem. O
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Most of these results (and also the computations of Section 5 hereafter) were checked with the computer
algebra system Maple. A worksheet corresponding to this article is available at
http://algo.inria.fr/banderier/Paper/kernels.mws
(or kernels.html), it uses the Algolib library, downloadable at
http://algo.inria.fr/libraries/.

5. Asymptotics

In this section, we give asymptotic results for n — 4oc0.
Theorem 5.1 (Proportion of trees with a green/red root).
Asymptotically }jr—i‘ ~ 47.95% of the trees have a green root, where the constant A\ =~ 0.351733 is defined as
the unique real Toot of 2)\ = exp(—A\).

A more pleasant way to formulate this Theorem consists in considering Nim-type games (first player
who cannot move loses) on directed trees where the tree and the starting position are chosen uniformly at
random. The strategies of the two players being optimal, the first player has then a probability of 47.95%
(asymptotically) to win the game. (Recall that if the starting position can be chosen by the first player, then
he will always win.)

PROOF. The key step of this result and the following ones are the following expansions (derived from
the expansion of the Cayley function) for T', T, and T}:

|
o g VT30 + 01~ 22)

Tr(z) ~ A — )\—ﬂ\/l —2ez+ O(1 — 2ez)

T(z)

14+
1 11—\
Tg(Z)N5—)\—51_’_—)\\/1—262"'0(1—262),

where the constant A is defined as A := T,.(5-) ~ 0.351733.

By Pringsheim theorem [14], as T-(z) has nonnegative coeflicients, then T}.(z) has a positive singularity.
As coefficients of 7). are smaller than coeflicients of T', its radius of convergence belongs to [0,1/(2¢)]. Now,
—C(22)/2 is negative on this interval, and thus C(—C/(2z2)/2) is analytic there, and 1/(2e) is therefore its
only possible dominating singularity. The radius of T follows from T = 7). 4+ T,. The theorem follows by

considering [[Z;]]:’i;i’((zz)) = }J—r_;\ — ?j(j\)ir)‘é)% +O0(L). e

Theorem 5.2 (Proportion of red vertices in possible circuits).
Asymptotically % — ﬁ ~ 27.63% of the vertices of a possible circuits are red.

PROOF. One has to considerer the following bivariate generating function (exponential in z, ordinary
in u): In (m) The wanted proportion is then given by %, where [2"]0, F(z,1) means the

n-th coefficient of “the derivative with respect to u of F(z,u), then evaluated at u = 1. O

Then, one can wonder if the asymptotic density of well-colored unicircuit graphs is more than 50% or
even if it is 100%? The following theorem gives the answer:
Theorem 5.3 (Proportion of well-colored unicircuit digraphs).
The proportion of well-colored graphs amongst unicircuit digraphs is asymptotically:
SN+ A2 - -1
(I+X2(A—1))

where X\ is the constant defined in Theorem 5.1.

~ 92.65%
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PROOF. Relies on a singularity analysis of the generating function of Theorem 4.3, with the expansions
given in Theorem 5.1. Note that some unicircuit digraphs can have 2 kernels, so one has to perform the
following asymptotic expansions:

[2"UG) = D) g9 65— % + 0(%) ,

where F(z) = T%""(z) + ln(#(z)) — T'(#) is the EGF of (non-colored) unicircuit digraphs. O

For sure, it one considers now the asymptotic density of well-colored unicircuit graphs, the proportion
should be larger, as one only adds DAGs (which are all well-colorable). The following theorem gives the
noteworthy result that unicircuit graphs are in fact almost surely well-colored:

Theorem 5.4 (Proportion of well-colored unicycle digraphs).
There is asymptotically a proportion of 1 — (H_SQE’%W% ~1-— 0'—\/%5 of well-colored graphs amongst

unicycle digraphs of size n, where X is the constant defined in Theorem 5.1.

PROOF. Relies on a singularity analysis of the generating function of Theorem 4.4, with the expansions

given in Theorem 5.1. Note that some unicycle digraphs can have 2 kernels, so one has to consider
[2"]V(z) = D(z)
[2"]G(2)

where G(z) = T"""(z) + %ln(#ﬂz)) —T(2) —T(2)%/2 is the EGF of (non-colored) unicycle digraphs (one
substracts T2 /2 because amongst the 4 graphs with a cycle of length 2 created by the ln(#ﬂz)) part, 3 are
not legal: 1 was already counted because of symmetries, and the other 2 have in fact a multiple arc, whereas
it is forbidden for our digraphs). O

Finally, if one considers graphs with at most k cycles, it means one has more cutting points, which relaxes
the constraints for well-colarability (=existence of kernel). According to the above results, this implies an
asymptotic density of one. This gives as a corolary of our results, that all these families have almost surely
a kernel. A kind of “limit case” is dense graphs, for which some results already mentionned by Fernandez
de la Vega [13] and Tomescu [30] give that they have indeed almost surely a kernel.

6. Conclusion

It is quite pleasant that our generating function approach allows to get new results on the kernel problem,
giving e.g. the proportion of graphs satisfying a given property, and new informations on Nim-type games
for some families of graphs.

As a first extension of our work, it is possible to apply classical techniques from analytic combina-
torics [14] in order to get informations on standard deviation, higher moments, and limit laws for statistics
studied in Section 5.

Another extension is to get closed form formulas for bicircuit/bicycles digraphs, (the generating function
involves the derivative of the product of two logs and the asymptotics are performed like in our Section 5).
It is still possible (for sure with the help of a computer algebra system) to do it for 3 or 4 cycles but the
“canonical decompositions” and the computations get cumbersome. In order to go on our analysis far beyond
low-cyclic graphs, one needs an equation similar to the one given by E.M. Wright [32, 33] for graphs. Let
Wy be the family of well-colored digraphs with ¢ edges more than vertices, (¢ > —1). It is possible to get
an equation “a la Wright” for W, by pointing any edge (except edges linking a green vertex to a red one)
in a well-colored digraph. It is however not clear for yet if and how such equations can be simplified in
order to get a recurrence as “simple/nice” to the one that Wright got for graphs, thus opening the door to
asymptotics and threshold analysis beyond the unicyclic case.
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Negative-descent representations for
Weyl groups of type D

Riccardo Biagioli and Fabrizio Caselli

Abstract. We introduce a monomial basis for the coinvariant algebra of type D, that allows us to
define a new family of representations of D,. We decompose the homogeneous components of the
coinvariant algebra into a direct sum of these representations and finally we give the decomposition of
them into irreducible components. This algebraic setting is then applied to find new, and generalize
various, combinatorial identities.

Résumé. On introduit une base monomiale de l’algebre coinvariante de type D, ce qui nous permet
de definir une nouvelle classe de representations de D,,. On decompose les composantes homogénes
de l’algébre coinvariante comme somme directe de ces representations et on decrit leur decomposition
en modules irreductibles. Ce contexte algebrique est finalement utilisé pour decouvrir des nouvelles
identités combinatoires.

1. Introduction

Let W be one of the classical Weyl groups A,,_1, B, or D,, and let IV be the ideal of the polynomial
ring P,, := Clz1,...,2,] generated by costant-term-free W-invariant polynomials. The quotient R(W) :=
P,,/I}V is called the coinvariant algebra of W and it’s well know that it has dimension |IW| as a C-vector space.
The problem of finding a basis for the coinvariant algebra has been studied by a number of mathematicians
(see, e.g., [3, 4], [5]). Garsia and Stanton presented a descent basis for a finite dimensional quotient of the
Stanley-Reisner ring arising from a finite Weyl group (see [10]). For type A, unlike for other types, this
quotient is isomorphic to R(W) and in this case the basis elements are monomials of degree equal to the
“major index” (mayj) of the indexing permutation. On the other hand it is well known that R(W) affords
the left regular representation of W (see e.g., [11]), i.e. the multiplicity of each irreducible representation is
its dimension. Moreover, the action of W preserves the natural grading induced from that of P, by total
degree, and so it is natural to ask about the multiplicity of each irreducible representation of W in the
k-th homogeneous component R}C’V. In the case of the symmetric group S, the answer is given by a well
known theorem, due independently to Kraskiewicz and Weymann [13] and Stanley [18], that expresses the
multiplicity of the irreducible S;,-representations in RS" in terms of the statistic maj defined on standard
Young tableaux (SYT).

For type B these problems have been studied by Adin, Brenti and Roichman in [1]. They provide a
descent basis of R(B) and an extension of the construction of Solomon’s descent representations (see [17])
for this type.

In this extended abstract we show how to extend these results to the Weyl groups of type D. We construct
an analogue of the descent basis for the coinvariant algebra of type D via a Straightening Lemma. The basis
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52 NEGATIVE-DESCENT REPRESENTATIONS

elements are monomials of degree Dmaj, that is an analogous statistic of maj for D,, (see [7]). This basis
leads to the definition of a new family of D,-modules Rp n, which have a basis indexed by the even-signed
permutations having D and N as “descent set” and “negative set”, respectively. For this reason we call them
negative-descent representations. They are analogous but different from Solomon descent representations
and Kazhdan-Lusztig representations (see [12]). We decompose Ri™ into a direct sums of these Rp n.
Finally, we introduce the concept of D-standard Young bitableaux. By extending the definition of Dmaj on
them we give an explicit decomposition into irreducible modules of these negative-descent representations,
refining a theorem of Stembridge [20]. This algebraic setting is then applied to obtain new multivariate
combinatorial identities.

2. Notation and preliminaries

In this section we give some definitions, notation and results that will be used in the rest of this work.
We let P := {1,2,3,...} , N:= PU{0}. For a € N we let [a] := {1,2,...,a} (where [0] := ). Given
n,m € Z, n <m, we let [n,m] :={n,n+1,...,m}.

2.1. Statistics on Coxeter groups. We always consider the linear order on Z
“-1<-2<---<—1"m=<:--<0<1=<2<---<n<--
instead of the usual ordering. Given a finite sequence o = (01,...,0,) € Z™ we let
Inv(o) :={(i,j) : i<j, o;> 05} and inv(o) := [Inv(o)|.
The set of descents and the descent number of o are respectively
Des(o) :={i€[n—1] : 0, > gi41} and des(o) := |Des(o)].
The number of descents in ¢ from position ¢ on is denoted by
(2.1) di(o) :==|{j € Des(o) : j > i}
The magor index of o (first defined by MacMahon in [15]) is
maj(o) = Z i.
i€Des()
Note that di(o) = des(o) and Y., d;(0) = maj(o). Moreover we let
Neg(o) :={i € [n]:0; <0} and neg(o):=|Neg(o)|.

The generating function of the joint distribution of des and maj over S, is given by the following Carlitz’s
Identity, (see, e.g., [9]). Let n € P. Then

des(o) ,maj(o)
S Ir+1ptr = Z"Esgt 1 .
>0 [Li—o(X —tq")
in Z[q][[t], where [i]g :=1+q¢+¢*+...+¢ "

Let B, be the group of all bijections 3 of the set [—n,n]\ {0} onto itself such that 8(—i) = —3(i) for
all i € [-n,n]\ {0}, with composition as the group operation. We will usually identify 8 € B,, with the
sequence (3(1),...,3(n)) and we call this the window notation of 8. Following [2] we define the flag-major
index of § € By, by fmaj(f5) := 2maj(8) + neg(B)

It’s known that fmaj is equidistributed with length on B, and that it satisfies many other algebraic
properties (see, for example, [1] and [2]).

We denote by D,, the subgroup of B,, consisting of all the signed permutations having an even number
of negative entries in their window notation, i.e.

D,, :={y € B, : neg(y) =0(mod 2)}.
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Following [7] for v € D,, we let

Yln = (v(@), ..., y(n = 1), [v(n)]) € B,
Dy := Des(|y|n) and Ny := Neg(|7]n).
Then we define the D-major index of v € D,, by
Dmaj(y) =2 Z i+ [Ny,
i€D.,
and the D-descent number of v by
Ddes(7y) == 2|Dy[ +m(7)
where
_ | 1L ify(1) <o,
m() '_{ 0, otherwise.
For example if v = [2,—5,3,1, —4], then D, = {1,3} and N, = {2} and hence Dmaj(y) = 9 and Ddes(y) =
4.
The statistic Dmaj is Mahonian (i.e. equidistributed with length) on D,, and the generating function
of the pair (Ddes, Dmaj) is given by

S e, tPdes()gPmai(a)

2.2 r4 1" =
22 2;[+]J (1—1)(1 —tq") TT1= (1 — t2¢2)

in Z[q][[t]], (see [7, Theorem 4.3] for a proof).

2.2. Partitions and tableaux. A partition )\ of a nonnegative integer n is an integer sequence
(A1, A2, .05 Agny), Where Ay > Ag > -+ > gy and [A| := >, A; = n, denoted also A\ = n. We denote
by M the conjugate partition of A. The dominance order is a partial order defined on the set of partitions
of a fixed nonnegative integer n as follows. Let p and A\ two partitions of n. We define p < X if for all ¢ > 1

prtp2t e <A+ At A

A standard Young tableau of shape X is obtained by inserting the integers 1,2,...,n (where n = |\|) as
entries in the cells of the Young diagram of shape A in such a way that the entries increase along rows and
columns. We denote by SYT'()) the set of all standard Young tableaux of shape A. For example the tableau
T in Figure 1 belongs to SYT'(5,3,2,1).

1135|810
216 |7
T:=
4 11
9
FIGURE 1

A descent in a standard Young tableau T is an entry ¢ such that i + 1 is strictly below i. We denote the set
of descents in T' by Des(T). The major index of a tableau T is

maj(T) := Z i

i€Des(T)
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In the example in Figure 1 Des(T) = {1, 3,5, 8,10} and so maj(T) = 27.

A bipartition of a nonnegative integer n is an ordered pair (A, u) of partitions such that [A| + |u| =n
denoted by (A, 1) F n. The Young diagram of shape (A, ) is obtained by the union of the Young diagrams
of shape A and p by positioning the second to the south-west of the first. A standard Young bitableau
T = (T1,T5) of shape (A, u) F n is obtained by inserting the integers 1,2,...,n in the corresponding Young
diagram increasing along rows and columns.

Definition. Given two partitions A, p such that |A| +|u| = n, we define a D-standard bitableau T = (T1,Ts)
of type {\, 1} as a standard Young bitableau of shape (A, u) or (i, A) such that n is an entry of T3.

We let Des(T') and maj(T) be as above and we let Neg(T) be the set of entries of T5. The D-magjor
indez of a D-standard bitableau is defined by

Dmaj(T) :=2-maj(T) + |Neg(T)|.

For example T and S in Figure 2 are two D-standard bitableau of type {(3,1),(2,2,1)} and we have
Dmaj(T) =215+ 5 = 35 and Dmaj(S) =213+ 4 = 30.

3|/6|7 1] 2
9 415
11 4 9
T:= S=
2|5 3/6]|8
8 7
FIGURE 2

We denote by DSYT{\, u} the set of all D-standard bitableaux of type {A, u}.

2.3. Irreducible representations of classical Weyl groups. Recall that the irreducible represen-
tations of the symmetric group S, are indexed by partitions of n in a classical way (see, for example, [19,
§7.18]) and denote S* the irreducible module corresponding to A

In the case of B,, the irreducible representations are parametrized by ordered pairs of partitions such
that the total sum of their parts is equal to n (see, for example, [14]), and we denote by S*# the irreducible
module corresponding to (A, y).

Since D, is a subgroup of index 2 of the Weyl group B,,, the restrictions of an irreducible representation
of B, to D, is either irreducible, or splits up into two irreducible components. Let (A, u) be a pair of
partitions with total size n. If A # u then the restrictions of the irreducible representations of B,, labeled
by (A p) and (u,A) are irreducible and equal. If A = p then the restriction of the character labeled by
(X, \) splits into two irreducible components, which we denote by (A, A\)™ and (A, A\)~. Note that this can
only happen if n is even. Hence we may denote all irreducible modules of D,, by S»*€ where A and p are
two partitions such that |[A| 4+ || = n, A < p in some total order < on the set of all integer partitions, and
€ is equal to < if A # p and € is equal to + or — if A = p.

3. Monomial bases of coinvariant algebras

Let P, := Clz1,...,z,] and consider the natural action ¢ of a classical Weyl group W (with W =
An_1, Bn, Dy) on P, defined on the generators by

(w) : @ %xw(m,
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for all w € W and extended uniquely to an algebra homomorphism. Let IV be the ideal of P,, generated
by the elements in P without costant term. The quotient

R(W) :=P, /1)

is called the coinvariant algebra of W and it is well known that it has dimension |W| as a C-vector space.
Moreover, W acts naturally as a group of linear operators on this space and it can be shown that this
representation of W is isomorphic to the regular representation (see e.g., [11, § 3.6]). All these properties
naturally lead to the problem of finding a “nice” basis for R(W). A basis for the coinvariant algebra of type
A has been found by Garsia and Stanton [10]. For o € S,, they define

Qg = H (mo(l) T xo(j))'

j€Des(o)

It’s immediate to see that a, := Hz;lxi‘(g‘;) where d;(0) is defined in (2.1). They show that the set

{ay + 15" : 0 € S,} is a basis of R(S,,), called the descent basis. Note that the representatives a, of this
basis are actually monomials with deg(a,) = maj(o).

Allen ([4]) constructed a non-monomial basis for R(W) for all classical Weyl groups and Adin, Brenti
and Roichman ([1]) defined for any 8 € B, a monomial bg of degree fmaj(3) such that the set of the
corresponding classes in the coinvariant algebra of type B is a linear basis of this vector space.

The first main goal of this work is to define a family of monomials, indexed by D,,, and to show that the
corresponding classes form a basis of the coinvariant algebra of type D. To this end we present a straightening
lemma for expanding an arbitrary monomial in P,, in terms of the descent basis with coefficients in Pf ",
This algorithm is a generalization of the one presented in [1] for type A and B.

For v € D,, and i € [n — 1], we let

N g L oy, if (i) <0
)= GeD, izl mi={ g K0S
and
hi(7y) = 20;(7) + mi (7).
Note that
n—1
(3.1) Z hi(v) = Dmaj(v) and hq(y) = Ddes(y).
i=1
Definition. For any v € D,,, we define
n—1
- hi ()
&= H1 Tl

For example, if v := (6, —4, —2,3, -5, —1) € Dg, then (h1(7),...,hs(7)) = (6,5,3,2,1) and ¢, = zixjziz3x].
The goal of this section is to show how we can prove that the set {c, + IP : v € D,} is a linear basis
for the coinvariant algebra of type D. We call it the negative-descent basis. We denote by

fi(z, ... xn) ;:{

where ¢; is the i-th elementary symmetric function. It is clear that the polynomials f; are invariant under
the action of D,,. Moreover, for any partition A = (A1,...,\;) with A\; < n, we define fy := fi, -+ f),-
Let’s restrict our attention to the quotient S := P,,/(f,) and we denote by 7 : P,, — S the natural projection.
We start by associating to any monomial M € S an even-signed permutation (M) and a partition p(M).
Let M be a monomial such that (M) # 0, M = [\, 2" (note that p; = 0 for some i > 1). We define
v =~(M) € D,, as the unique even-signed permutation such that, for i € [n — 1],

ei(x3,...,22), forien—1];
T1-Tp, for i =n,
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@) Plyi)] 2 Ply(i)); . .
i) Ply(i)| = Pyt = V(@) < |[v(@+1);
ZZZ) Plvi) = 0 (HlOd 2) <~ ’}/(Z) > 0.

Note that the last condition determines also the sign of v(n).

We show how to determine (M) with an example. For n = 6, let M = zl{zoa$zs2i. Reorder the
variables in such a way that the exponents are weakly decreasing without inverting the variables having the
same exponent. We obtain M = z{z$xizixlz}. Then ~(M) is given by the indices of M reordered in this
way and we put a minus sign in the first six entries according to the parity of the corresponding exponent in
M. Hence we obtain v(M) = (—1,3,6,—2, —5,—4). To define the partition (M) we first need the following
observation.

Lemma 3.1. Let M =[]\, ¥ such that (M) # 0. Then the sequence (pyi) —hi(y(M))), i =1,...,n—1,

consists of nonnegative even integers and is weakly decreasing.
. n—1
We denote by p(M) the partition conjugate to (w) ~, where v = y(M) (note that p(M); <

n). In our running example we have (hi(7),...,hs(y)) = (3,2,2, 11, i) and hence u(M) = (3,2).
Now we introduce a technical partial order on the monomials of the same total degree that we will use

later on.
Definition. Let M and M’ be monomials such that 7(M) # 0 and 7(M’) # 0 with the same total degree
and such that the exponents of z; in M and M’ have the same parity for every ¢ € [n]. Then we write
M’ < M if one of the following holds

1. A(M'") < A(M), or

2. MM = AM) and inv(|y(M')|,) > inv(|y(M)],).
Lemma 3.2 (Straightening Lemma). Let M be a monomial in S. Then M admits the following expression

M = fuan) - &yan + Y naranfuar) - Sy
M'<M

where nar - are integers.
For example, let n = 4 and M = zjraxi. We have v(M) = [1,4,-2,-3], (h1,h2,h3) = (2,2,1),
Cy(my = @iaox] and p(M) = (2). Then, if we set My = zia3x] and My = xz3a], we have that
M = C’y(M)fQ - M1 - MQ
in S, with M; < M for i = 1,2. One can easily verifies that v(My) = [1, 2,4, =3], p(My) = 0, v(M2) =
[4,-2,1,-3] and p(M2) = (3) and concludes that
M = ey f2 = ¢yam) — Cyaz) fo-

Now the main result of this section is a mere consequence of Lemma 3.2.
Theorem 3.1. The set
{e; +IP : ye D,}
is a basis for R(D,).

4. Negative-descent representations of D,

The coinvariant algebra has a natural grading induced from the grading of P,, by total degree and we
denote by Ry, its k-th homogeneous component, so that
R(W) =D R
k>0

In the case of the symmetric group the major index on standard Young tableaux plays a crucial role in
the decomposition of Ry into irreducible representations. The following theorem due independently to
Kraskiewicz and Weymann [13] and Stanley [18, Proposition 4.11] (see also, [16, Theorem 8.8]) holds.
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Theorem 4.1. In type A, for 0 < k < (;), the representation Ry is isomorphic to the direct sum ©my xS,
where X runs through all partitions of n, S is the corresponding irreducible Sy, -representation, and

mex =] {T € SYT(N\) : maj(T)=k}|.

The following is the analogous result for D,, and was proved by Stembridge [20] (see also [4]). Here we
state it in our terminology.
Theorem 4.2. In type D, for 0 < k < n? — n, the representation RkD is isomorphic to the direct sum
@mk)()\,#,e)sx“ﬁ where SM€ s the irreducible representation of D, labelled as in §2.3, and

M, (ape) = {T € DSYT{\ u} : Dmaj(T) =k} |.

Now we introduce a new family of D,-modules Rp n. We decompose RkD ™ into a direct sum of these
modules and finally we compute the multiplicity of each irreducible representation of D, in Rp n. This
result is a refinement of Theorem 4.2.

For any D C [n—1] we define the partition Ap := (A1,..., A\n—1), where A; := |DN[i,n—1]|. For D, N C [n—1],
we define the vector

AD,N :=2-Ap +1n,
where 1y € {0,1}"! is the characteristic vector of N. If Ap y is a partition we say that (D, N) is an
admissible couple. It is easy to see that (D., N,) is admissible for all v € D,,. If (D,N) and (D', N') are
two admissible couples then we write (D, N) < (D', N') if Ap,y < Ap/ ns. A direct consequence of Lemma
3.2 is that, for all v,£ € D,,, we have

5 cCy = Z Ny Cy +p7
{u€Dn : (Du,Nu)<(D~,Ny)}

where n, € Z and p € IP. Tt clearly follows that

. = spang{es + 17| € Du, (D, N5) < (D, N)}
and

J5.n = spanc{cy + 7 |y € Dy, (D, Ny) < (D,N)}

are two submodules of R, where k = |[Ap |, for all admissible couples (D, N). Their quotient is still a
D,-module denoted by

J<1
Jp

2

F

Rp N =

z

If (D, N) is not admissible we let Rp y := 0.
Proposition 4.1. For any D, N C [n — 1], the set

{¢;, : v€D,, Dy=D and N, = N},

where ¢ is the image of cy in the quotient Rp n, is a linear basis of Rp n.

By the previous proposition it is natural to call the D,-module Rp n a negative-descent representation.
Now we are ready to state the following decomposition of the homogeneous components of the coinvariant
algebra.

Theorem 4.3. For every 0 <k < n? — n,

D Yy
Ry =D Ro.n
D,N

as Dy -modules, where the sum is over all D, N € [n — 1] such that 2-) . i+ |N| = k.
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Our next goal is to show a simple combinatorial way to compute the multiplicities of the irreducible
representations of D,, in Rp n.
For any standard Young bitableau T = (17, T5) of shape (A, i), following [1], we define for i € [n] ,

where d;(T) :=|{j > ¢ : j € Des(T)}, and ¢,(T) :=1, if i € Neg(T) and €;(T) := 0 otherwise.
The following technical lemma is the key ingredient in the proof of the next theorem.
Lemma 4.2. Let T = (T1,T2) be a Young standard bitableau of total size n such that n € Ty. Then

hi(Ty,To) = hiy(To,T1) + 1

foralli=1,....n
Theorem 4.4. For any pair of subset D, N C [n — 1], and a bipartition of n (A, u) b n, the multiplicity of
the irreducible Dy, -representation corresponding to (A, )€ in Rp n is

mp N,y = {T € DSYT{\, pu} : Des(T) = D and Neg(T) = N}|.

Theorem 4.2 easily follows from this and Theorem 4.3, by observing that S>7—" h;(T') = Dmaj(T), for any
T € DSYT{\, ).

5. Combinatorial Identities

In this last section we compute the Hilbert series of the polynomial ring P,, with respect to multi-degree
rearranged into a weakly decreasing sequence in two different ways and we deduce from this some new
combinatorial identities. In particular we obtain one of the main results of [7, Corollary 4.4] as a special
case of Corollary 5.1.

Following [6] we recall the negative statistics on D,,. For v € D,, we define the D-negative descent
multiset

(5.1) DDes(y) = Des(v) H{Neg(y ™)} \ {n}.
and we let
ddes(y) := |DDes(vy)| and dmaj(vy) := Z i
i€DDes(vy)

The Hilbert series of P,, can be computed by considering the even-signed descent basis for the coinvariant
algebra of type D and applying the Straightening Lemma. It’s easy to see that the map P,, — D,, x P(n)
given by

(5.2) M — (v(M), (M)’),
is a bijection, where, if M = f!M’, with M’ € S, then u(M) = ((n)*, u(M’)). For a partition A\ we let

m;(\) = [{i € [n] : A = j}|, and
(m?») - (mo(x>,£l<x>7...>’

be the multinomial coefficient.
Theorem 5.1. Let n € P. Then

n n—1 28;(v)+n:
> < ( )Hq*i: hep, TH5
mA)/) 1 Q=g TS A= a3

(N <n

qat)

in Zq1, ... qn)]-
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Now we compute the Hilbert series in a different way using the following observation. Let T := {0 €
D,, : des(o) = 0}. It is well known, and easy to see, that

(5.3) D, = tl-J {ou:0 €T},
u€ESy
where |4 denotes disjoint union. Now define 7i;(y) := [{j > ¢ : j € Neg(|v|n)}|- It follows that
(5.4) ddes(vy) = di1(7) +n1(7).
Theorem 5.2. Let n € P. Then

n— d Ayt
5 ()l - Sea a0
( n 1(1 2

()<n | @)L —qrqn)

in Z[q1, .-, qnl]-
The following beautiful identity easily follows by Theorems 5.1 and 5.2.
Corollary 5.1. Let n € P. Then

Z qu i(v)+ni(y Z H 265 (V) +mi (7).

Y€ED,, i=1 YED,, i=1
O
The two pair of statistics (ddes,dmaj) and (Ddes, Dmaj) have the same distribution on D,,, (see [7,
Corollary 4.4]) given by (2.2). Now it is clear that this result follows directly by Corollary 5.1 by setting
q1 = qt and ¢; = q for i > 2.
Corollary 5.2. Let n € P. Then

Z tddes('y) dmaj(y Z thes v) Dma]( )
YEDR YED,
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Sharper estimates for the number of permutations avoiding a layered or
decomposable pattern

Miklés Bona

Abstract. We present two methods that for infinitely many patterns q provide better upper bounds
for the number Sn(q) of permutations of length n avoiding the pattern q than the recent general
result of Marcus and Tardos. While achieving that, we define an apparently new decomposition of
permutations .

Résumé. Nous montrons deur méthodes qui prouvent des bornes supérieurs pour les nombres
Sn(q) dénombrant les permutations de longueur n évitant le motif q. Nos méthodes peuvent étre
appliquées pour un nombre infini des motifs, et les bornes obtenues sont meilleur que celles découlant
du résultat récent de Marcus et Tardos. Nous allons également définir une decomposition des
permutations qui semble d’étre nouvelle.

1. Introduction

Let S,,(¢) be the number of permutations of length n (or, in what follows, n-permutations) that avoid
the pattern gq. The long-standing Stanley-Wilf conjecture claimed that for any given pattern g, there exist
an absolute constant c, so that S,(q) < ¢} for all n. See [3] or [6] for the relevant definitions.

The Stanley-Wilf conjecture was open for more than 20 years. It has recently been proved by a spec-
tacular, yet simple argument [11]. That argument actually proved a stronger conjecture, the Fiiredi-Hajnal
conjecture [8] , which was shown to imply the Stanley-Wilf conjecture three years ago in [9].

Perhaps because the Stanley-Wilf conjecture was proved as a special case of a stronger conjecture, the
obtained upper bound seems far away from what is thought to be the truth. Indeed, it is proved in [11]
(along with another, stronger conjecture from [1]), that if g is a pattern of length &, then

2
(1.1) Sn(q) <cy where cq < 152+ (%),

For the rest of this paper, k will denote the length of the pattern g. For instance, if kK = 3, then the above
result shows only that ¢, < 15398 while in fact it is well-known [3] that ¢, = 4 is sufficient. Therefore, it
seems reasonable to think that in the near future significant research will be devoted to the improvement of
this upper bound. In fact, R. Arratia [2] conjectures that ¢, < (k —1)? for any patterns g. There are several
patterns, for instance, monotone patterns, for which (k —1)? is known [10] to be the smallest possible value
of ¢q4.

In this paper we present two methods that can prove upper bounds for certain patterns from the upper
bounds for certain shorter patterns.

Department of Mathematics, University of Florida, Gainesville FL 32611-8105. Supported by a Young Investigator Grant
of the National Security Agency.
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For instance, one of our methods will provide upper bounds for all layered patterns, which are patterns
consisting of decreasing subsequences that increase among the layers. The other one will work for all
decomposable permutations. The arguments will be remarkably simple, compared to previous work on
layered patterns. While our upper bounds will still be significantly weaker than the conjectured (k — 1)2",
they will not be doubly exponential, like the result shown in (1.1).

We mention that it follows from subsequent work of present author ([4], to be presented at the subsequent
Pattern Avoiding Permutations conference) that for any layered pattern ¢ of length k, we have L(q) =
lim,, oo ¥/Sn(q) > (k — 1)2. In other words, in the asymptotic sense, layered patterns are at least as easy
to avoid as the monotone patterns. Present paper complements those results by bounding L(g) from above.

2. The Pattern 1324

We explain our method by demonstrating it on the pattern 1324, but this is only to make our discussion
easier to read. The crucial properties of this pattern for our purposes are that it starts with its minimal
entry, it ends with its maximal entry, and that if we remove either of these entries, we get a pattern (132 or
213) for which a good exponential upper bound is known.

Our crucial definition is the following.

Definition 2.1. We will say that an n-permutation p = p1ps - - - p, is orderly if p1 < p,. We will say that p
is dual orderly if the entry 1 of p precedes the maximal entry n of p.

It is clear that p is orderly if and only if p~! is dual orderly.

The importance of these permutations for us is explained by the following lemma.

Lemma 2.2. The number of orderly (resp. dual orderly) 1324-avoiding n-permutations is less than 8" /4(n+

1).

PROOF. It suffices to prove the statement for orderly permutations as we can take inverses after that to
get the other statement.
The crucial idea is this. Each entry p; of p has at least one of the following two properties.

(a) pi > p1;

(b) Di S Pn-
In words, everything is either larger than the first entry, or smaller than the last, possibly both. This would
not be the case had we not required that p be orderly.

Define S = {i|p; > p1} and T = {i|p; < p1}. Then S and T are disjoint, SUT = [n], and crucially, ifi € T,
then, in particular, p; < p,. Recall that for any pattern g of length three, we have S,(q) = C,, = (*")/(n+1),
and that the numbers C,, are the well-known Catalan numbers [3]. Let |S| = s and |T'| = ¢. Then we have
C,_1 possibilities for the substring ps of entries belonging to indices in S, and C; = C),_s possibilities for
the substring pr of entries belonging to indices in S. Indeed, pg starts with its smallest entry, and then the
rest of it must avoid 213, (otherwise, together with p;, a 1324-pattern is formed) and pr must avoid 132
(otherwise, together with p,,, a 1324-pattern is formed). Finally, we have (2:22) choices for the set of indices
that we denoted by S. Once s is known, we have no liberty in choosing the entries p;, (i € S) as they must
simply be the s largest entries.

Therefore, the total number of possibilities is

n

n—2 - 8"
s— n—s 2n72 s— n—s 2n72 n 1)\
Z<8_2)0 1Cn_s < ;C 1Cn_s < C, It

s=2

O

We have seen that it helps in our efforts to limit the number of 1324-avoiding permutations if a large
element is preceded by a small one. To make good use of this observation, look at all non-inversions of a
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generic permutation p = pi1ps - - - pp; that is, pairs (¢,7) so that ¢ < j and p; < p;. Find the non-inversion
(i,4) for which

(2.1) max(j —4,p; — pi)
(4,4)

is maximal. If there are several such pairs, take one of them, say the one that is lexicographically first.
Call this pair (¢, 7) the critical pair of p.

Recall that an entry of a permutation is called a left-to-right minimum if it is smaller than all entries on
its left. Similarly, an entry is a right-to-left mazimum if it is larger than all entries on its right.

The following proposition is obvious, but it will be important in what follows, so we explicitly state it.
Proposition 2.3. For any permutation pips - - - pn, the critical pair (i,7) is always a pair in which p; is a
left-to-right minimum, and p; is a right-to-left mazimum.

The following definition proved to be useful for treating 1324-avoiding permutations in the past [7].
Definition 2.4. We say that two permutations are in the same class if they have the same left-to-right
minima, and the same right-to-left maxima, and they are in the same positions.

Example 2.5. The permutations 36127/5 and 3416725 are in the same class.
Proposition 2.6. The number of nonempty classes of n-permutations is less than 9™.

PRrROOF. Each such class contains exactly one 1234-avoiding permutation, namely the one in which all
entries that are not left-to-right minima or right-to-left maxima are written in decreasing order. As it is
well-known that S,,(1234) < 9™, the statement is proved. O

To achieve our goal, it suffices to find a constant C' so that each class contains at most C™ 1324-avoiding
n-permutations.

Choose a class A. By Proposition 2.3, we see that the critical pair of any permutation p € A is the same
as it depends only on the left-to-right minima and the right-to-left maxima, and those are the same for all
permutations in A.

We will now find an upper bound for the number of 1324-avoiding n-permutations in A.

For symmetry reasons, we can assume that in the critical pair of p € A, we have j —4 > p; — p;, in other
words, the maximum (2.1) is attained by j — i.

We will now reconstruct p from its critical pair. First, all entries that precede p; must be larger than p;.
Indeed, if there existed k < i so that py < p;, then the pair (j, k) would be a “longer” non-inversion than
the pair (4, j), contradicting the critical property of (¢,7). Similarly, all entries that are on the right of p;
must be smaller than p;.

This shows that all entries p; for which p; < p; < p; must be positioned between p; and p;, that is,
i < t < j must hold for them. However, if j —¢ = p; — p; + b, where b is a positive integer, then we can
select b additional entries that will be located between p; and p;. We will call them ezxcess entries; that is,
an excess entry is an entry p, that is located between p; and p;, but does not satisfy p; < p, < p;.

The good news is that we do not have too many choices for the excess entries. No excess entry can be
smaller than p; —b. Indeed, if we had p,, < p; — b for an excess entry, then for the pair (u, j) the value defined
by (2.1) would be larger than for the pair (7, j), contradicting the critical property of (7, j). By the analogous
argument, no excess entry can be larger than p; + b. Therefore, the set of b excess entries must be a subset
of the at-most-(2b)-element set ({p; —b,p; —b+1,--- ,p; —1}U{p; +1,p; +2,--- ,p; +b}) N [n]. Therefore,
we have at most (be) choices for the set of excess entries, and consequently, we have (be) choices for the set of
j —1i—1+belements that are located between p; and p;. As p; < p;, the partial permutation p;p;41 - - p; is
orderly, and certainly 1324-avoiding. Therefore, by Lemma 2.2, we have less than 8/ ~“+1 /4(j —i+ 1) choices
for it once the set of entries has been chosen.
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This proves that altogether, we have less than
j—it1
4. L <3277

4(j—i+1)
possibilities for the string p;p;+1---pj. We used the fact that b < j —i — 1 as b counts the excess entries
between ¢ and j. Note that we have some room to spare here, so we can say that the above upper bound
remains valid even if we include the permutations in which the maximum was attained by (p;,p;), and not
by (i, ).

We can now remove the entries p;11---pj—1 from our permutations. This will split our permutations
into two parts, pr, on the left, and pr on the right. It is possible that one of them is empty. We know exactly
what entries belong to p;, and what entries belong to pg; indeed each entry of py, is larger than each entry
of pr. Therefore, we do not loose any information if we relabel the entries in each of py, and pr so that
they both start at 1 (we call this the standardization of the strings). This will not change the location and
relative value of the left-to-right minima and right-to-left maxima either. The string p;41 - - - pj—1 should not
be standardized, however, as that would result in loss of information.

See Figure 1 for the diagram of a generic permutation, its critical pair, and the strings p; and pg.

FIGURE 1. A generic permutation and its critical pair.

Then we iterate our procedure. That is, we find the critical pairs of py, and pr, denote them by (ir, jr.)
and (ig, jr), and prove, just as above, that there are at most 3272 %L possibilities for the string between i,
and jz, and there are at most 32787 possibilities for the string between iz and jr. Then we remove these
strings again, cutting our permutations into more parts, and so on, building a binary tree-like structure of
strings. Note that the leaves of this tree will be orderly or dual orderly permutations.

Note that this procedure of decomposing of our permutations is injective. Indeed, given the standardized
string pr,, the partial permutation p; - - - p;, and the standardized string pr, we can easily recover p.

Iterating this algorithm until all entries of p that are not left-to-right minima or right-to-left maxima
are removed, we prove the following.

Lemma 2.7. The number of 1324-avoiding n-permutations in any given class A is at most 32™.

PROOF. The above description of the removal of entries by our method shows that the total number of
1324-avoiding permutations in A is less than

3922k Jk—ik
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where the summation ranges through all intervals (i, ji) whose endpoints were critical pairs at some point.
As these interiors of these intervals are all disjoint, ), jx —ix = n — 1, and our claim is proved. O

Now proving the upper bound for S,,(1324) is a breeze.
Theorem 2.8. For all positive integers n, we have S,(1324) < 288™.

PROOF. As there are less than 9™ classes and less than 32" n-permutations in each class that avoid
1324, the statement is proved. O

Note that an alternative way of proving our theorem would have been by induction on n. We could
have used the induction hypothesis for the class A’ that is obtained from A by making p; and p; consecutive
entries by omitting all positions between them, and setting their values so that each entry on the left of p;
is larger than each entry after p;.

Finally, we point out that using specific properties of the pattern 1324, we could have decreased the
upper bound a little further, but that is not our goal here. Our goal is to find a method that works for many
patterns.

3. Layered Patterns

As a generalization, we look at patterns like 14325, 154326, and so on, that is, patterns that start with
1, end with their maximal entry k, and consist of a decreasing sequence all the way between.
Theorem 3.1. Letk >4, and let gy =1k —1k—2---2k. Then for all positive integers n, we have

Sn(qr) < 72"(k —2)*" = (72(k — 2)%)".

PROOF. We again look at orderly permutations first. If p is orderly and avoids gi, then define S,
ps and T, pr just as in the proof of Lemma 2.2. Then pg starts with its smallest entry, and the rest
must avoid ¢, = k —2---21k — 1, whereas pr must avoid ¢/ = 1k —1k —2---2. It is known that
Sn(qy) = Su(q)) = Sn(12---(k — 1)) < (k — 2)*", so it follows, just as in Lemma 2.2 that the number of
orderly (resp. dual orderly) n-permutations that avoid g is less than (2(k — 2)?)".

The transition from orderly permutations to generic permutations is identical to what we described in
the case of ¢4 = 1324. O

Let us now find an upper bound for all layered patterns. Recall that a permutation is called layered if it
is the concatenation of decreasing subsequences di,ds, - - - , d; so that each entry of d; is less than each entry
of d; for all ¢ < j. For instance, 321546 is a layered pattern. We will use the following definition and lemma,
first used in [7].

Definition 3.2. Let ¢ be a pattern, and let y be an entry of q. Then to replace y by the pattern w is to
add y — 1 to all entries of w, then to delete y and to succesively insert the entries of w at its position.
Lemma 3.3. (“replacing an element by a pattern”) Let q be a pattern and let y be an entry of q so that
for any entry x preceding y we have x < y and for any entry z preceded by y we have y < z. Suppose that
Sn(q) < K™ for some constant K and for all n.

Let w be a pattern of length m starting with 1 and ending with m so that S, (w) < C™ holds for all n,
for some constant C. Let q¢' be the pattern obtained by replacing the entry y by the pattern w in q. Then
Sn(q) < (ACK)™.

PROOF. Take an n-permutation p which avoids ¢’. Suppose it contains q. Then consider all copies of ¢
in p and consider their entries y. Color these entries blue, that is, and entry is blue if it can play the role of
y in a copy of g. Clearly, these entries must form a permutation which does not contain w. For suppose they
do, and denote y; and y,, the first and last elements of that purported copy of w. Then the initial segment
of the copy of ¢ which contains y; followed by the ys through y,_1 and the ending segment of the copy of ¢
which contains y; would form a copy of ¢’.
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Therefore, if p avoids ¢, then it either avoids g, or the substring of its blue entries avoids w. As we have
at most 2"~ ! choices for the set of blue entries, and at most 2! choices for their positions, this shows that

less than (4C)"~1 - K" + K™ < (4CK)"™ permutations of length n can avoid ¢'. O
Now let @ = Q(a1,as, - ,a:) be the layered pattern whose layers are of length a1, as, -+ ,as. It is then

clear that @ is contained in the pattern Q' = Q(1,a1,1,a2,1,---1, a4, 1). Therefore,

(3.1) Sn(Q) < Sn(@Q).

On the other hand, Q" can be obtained if we take q,, = Q(1, a1, 1), then replace the last entry of this pattern
by the pattern q,, = Q(1, as, 1), then replace the last entry of the obtained pattern by ¢., = Q(1,as, 1), and
SO on.

Then it follows by iterated applications of Theorem 3.1 and Lemma 3.3 that

t t
Sn(@Q) <472 [ e = 288" [ 03"
=1

i=1

So by (3.1), we have

t
Sn(Q) < 288" [ a3
i=1
For any fixed layered pattern @), the number of layers ¢ will be fixed, so 288" is simply exponential. While
Hle a; can be as large as 3¥/3 which makes cg an exponential function of k, it is still not doubly exponential,
unlike the general result (1.1).

4. Further Generalizations

We can find a somewhat more general application of our methodology. For a pattern g, let 1¢ denote
the pattern obtained from ¢ by adding one to each of the entries and then writing 1 to the front, and let gm
denote the pattern that we obtain from ¢ by simply affixing a new maximal element to the end of ¢q. Finally,
let 1gm denote the pattern (1g)m = 1(¢gm). So for example, if ¢ = 2413, then 1q = 13524, and gm = 24135,
while 1gm = 135246.

Theorem 4.1. Let q be a pattern so that there exist constants c¢1 and co satisfying S, (1q) < ¢ and Sy, (gm) <
cy for all n. Then for all positive integers n, we have

Sp(lgm) < 72" - (max(cy, c2))".

PRrROOF. Similar to the proof of Theorem 3.1. The upper bound for orderly permutations is 2" -
(max(cy,c2))™, the number of classes is 9", and the remaining 4™ comes from the choices for the excess
entries. 0

This theorem permits a little improvement on the general upper bound (1.1) for all patterns that start
with their minimal entry and end in their maximal entry.
Corollary 4.2. If r = 1gm, then

¢ < 727 15200 (5,
PRrOOF. Follows from (1.1), applied to the patterns 1¢g and gm, and Theorem 4.1. O

While this last corollary is not a significant improvement as far as principles are concerned, numerically
it still decreases ¢, by several orders of magnitude.
Another improvement comes from a variation of Lemma 3.3.
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Lemma 4.3. Let g be as in lemma 3.3 and let y be its last entry. Replace y by any pattern w which starts
with its smallest entry. Then for the pattern q' obtained this way, we have

S,(q) < (ACK)™

ProOOF. This can be proved exactly as Lemma 3.3. The special values and positions of y obviate the
omitted restrictions. (]

Let us call a permutation v decomposable if v = LR so that all entries of L are less than all entries of
R, for some nonempty strings L and R. Let v = LR be decomposable, and insert the entry |L|+1 = h
immediately after L, increasing all entries of R by one. Call the obtained permutation pattern ¢’. Then ¢’ is
nothing else but the pattern ¢ = Lh in which we replace the entry h by the pattern 1R. Therefore, Lemma
4.3 applies, and we have

Sn(v) < Sn(q') < (deger)™.

This leads to significant numerical improvements over the general result, particularly if L and R are also
decomposable.
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A Generalization of su(2)

Brian Curtin

Abstract. We consider the following generalization of su(2). Let P(q,x,y, z) denote the associative
algebra over any field K generated by A1, Aa, As with relations [A1, A2)q = xAs +yl + z(A1 + As,
[A2, As]q = 2 A1 + yI + z(A2 + As), [As3, A1]q = xA2 + yI + 2(As + A1) for some q, x, y, z € K.
Assume that q # 0 is either 1 or not a root of unity and that x # 0. We describe the multiplicity-
free finite-dimensional representations of this generalized algebra, and we describe an action of the
modular group on this algebra.

Résumé. Nous considérons la généralisation suivante de su(2). Soit P(q,z,y,z) Ualgebre
associative avec des générateurs A1, Az, As et rélations [A1,A2]q = xAs + yI + z(A1 + Ag,
[A2, As]lq = ©A1 + yI + z(A2 + A3), [As, A1]q = ©A2 + yI + 2(As + A1) pour q, =, y, z € K.
Supposez que q # 0 est 1 ou pas une racine de l'unité, et supposez que Nous décrivons | x # 0.es
représentations fini-dimensionnelles sans multiplicité de cette algébre généralisé, et Nous décrivons
une action du groupe modulaire sur cette algébre.

1. Introduction
Recall that the special unitary Lie algebra su(2) is the Lie algebra with basis S, S2, S3 and relations
(1.1) [S1,52] = 1S5, [S2, S3] = 154, [S3,51] = 1Ss.

We generalize su(2) (or rather its enveloping algebra) as follows.
Definition 1.1. Let K denote any field. Pick ¢, z, y, z € K. Let P = P(q, x,y, z) be the associative algebra
over K generated by three symbols S, S2, S3 subject to the relations

(1.2) [Sl,SQ]q = x53—|—y1—|—z(51 —|—52),
(1.3) [S2,53]q = xS1+yl+ 2(S2+ Ss),
(1.4) [53,51],1 = $52+yI+Z(S3+51),

where [z,y], = 2y — qyz.
Like the relations of (1.1), the relations (1.2) — (1.4) express (g-)commutators as linear expressions in
the three generators (the two in the commutator having the same coefficient) and have a cyclic symmetry.
We describe the multiplicity-free irreducible finite-dimensional representations of P(q, x, y, z) when  # 0
and ¢ is some nonzero element of K which is not a root of unity, other than perhaps 1 itself. We need some
notation. Fix a field K and a vector space V over K of finite nonnegative dimension. Let End(V') denote the
vector space of all K-linear transformations from V to V. A square matrix over K is said to be tridiagonal
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70 A GENERALIZATION OF SU(2)

whenever every nonzero entry appears on the diagonal, the superdiagonal, or the subdiagonal. A tridiagonal
matrix is irreducible whenever the entries on the sub- and superdiagonals are all nonzero.
Definition 1.2. Let A;, As, A3 denote an ordered triple of elements taken from End(V'). We call this triple
a Leonard triple on V whenever for each A € {41, Aa, A3} there exists a basis of V with respect to which
the matrix representing A is diagonal and the matrices representing the other two operators in the triple are
irreducible tridiagonal.

By an antiautomorphism of End(V'), we mean a K-linear bijection 7 : End(V) — End(V) such that
T(XY)=7(Y)r(X) for all X, Y € End(V).
Definition 1.3. Let A;, A, A3z denote a Leonard triple on V. Then this Leonard triple is said to be
modular whenever for each A € {4, Ay, A3} there exists an antiautomorphism of End(V') which fixes A
and swaps the other two operators in the triple.

Our main result on the representations of P(q,z,y, ) is the following.
Theorem 1.4. With reference to Definition 1.1, assume x # 0. Also assume that ¢ # 0 is either 1 or
not a root of unity. Let V denote an irreducible finite-dimensional module for P(q,x,y,z). Let a1 = Si|v,
as = Sal|v, ag = Ss|v. Assume that a1, as, as are multiplicity-free. Then a1, az, as is a modular Leonard
triple on V.

The modular Leonard triples are completely characterized—we recall this characterization in Section 3.
We conclude by showing that the modular group PSLy(Z) acts on P(q, x,y, z) when x # 0.

2. Multiplicity-free representations of P

We show that the representations of P(q,z,y,z) of interest are closely related to Leonard pairs. We
begin by recalling the notion of a Leonard pair.
Definition 2.1. Let Ay, Ay denote an ordered pair of elements taken from End(V). We call this pair a
Leonard pair on V whenever for each A € {A1, Az} there exists an ordered basis of V' with respect to which
the matrix representing A is diagonal and the matrix representing the other member of the pair is irreducible
tridiagonal.
We need the following criterion.
Theorem 2.2 (Vidunas and Terwilliger [VT]). Let V denote a vector space over K of finite positive di-
mension. Let A, As denote an ordered pair of elements of End(V) linear operators in End(V). Assume
that
(1) A1 and Ay are multiplicity-free;
(2) V is drreducible as an (A1, As)-module;
(3) there exist B, v, v*, p, p*, w, n, n* € K such that

(2.1) A%Ag — A1 A A + AQA% — (4142 + AsA1) — pAs V*A% + wA1 +nl,
(22) A22A1 — ﬁAQAlAQ —+ A1A22 — ’}/*(AQAl + AlAQ) — p*Al - ’YAQQ + UJAQ + T]*I,

L= B is a root of unity.

(4) no q satisfying ¢ +q~
Then Ay, As is a Leonard pair on V.
Theorem 2.3. With reference to Definition 1.1, assume x # 0. Then any two of S1, Sa, Ss satisfy (2.1)

and (2.2) with

B = q+1/q,
y=7" = z2(¢g-1)/q,
p=p" = (*=2°)/q
w=w" = (ylg—1)+z(z—1x))/q,

n=n" = ylk-1z)/q
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PrOOF. Each of Sy, Sa, S3 appears linearly with coefficient z in one of equations one of (1.2)—(1.4).
Solve for, say, S3 in (1.2), and eliminate it in (1.3) and (1.4). O

Lemma 2.4. With the notation and assumptions of Theorem 1.4, any two of a1, a2, and az form a Leonard
paair.

PROOF. Observe that V' is irreducible as, say, an (a1, az)-module since V' is irreducible as a P(q, z,y, 2)
and ag is expressed using a1 and as. The result follows from Theorems 2.2 and 2.3. O

It turns out that the representations of P(q,x,y, z) of interest correspond to a special extension of a
Leonard pair.

PrROOF OF THEOREM 1.4. (sketch) By Lemma 2.4, any two of a1, ag, ag form a Leonard pair. Thus
by Definition 2.1 there is a basis of V' with respect to which the matrix representing, say, a; is irreducible
tridiagonal and the matrix representing as is diagonal. Substituting these forms into (1.2) gives that the
matrix representing as is also irreducible tridiagonal. Thus a1, as, as is a Leonard triple. It turns out
that all Leonard pairs in Lemma 2.4 are isomorphic. (This follows from the fact that they all satisfy the
same Askey-Wilson relations and some facts about canonical forms of a Leonard pair [T4]). Composing the
antiautomorphism of End(V') which fixes a1 and a2 and the automorphism which swaps a; and as gives an
antiautomorphism which swaps a1 and as. Applying this map to (1.2) gives that it fixes as. O

We conclude this section with some comments on Leonard pairs. Leonard pairs were introduced by
P. Terwilliger [T1, T3] as an algebraic abstraction of work of D. Leonard concerning the sequences of
orthogonal polynomials with discrete support for which there is a dual sequence of orthogonal polynomials.
[Lenl, Len2| (cf. [BI]). Leonard characterized these orthogonal polynomials in terms of hypergeometric
series. This result is analogous to Askey and Wilson’s characterization of similar orthogonal polynomials
with continuous support [AW1, AW2] (cf. [KS]). The reference [T5] describes a bijective correspondence
between the isomorphism classes of Leonard pairs and the appropriate orthogonal polynomials. In particular,
results concerning Leonard pairs can be viewed as results concerning such orthogonal polynomials. This
connection is further developed in [T6]. Relations (2.1) and (2.2) are called the Askey-Wilson relations.
They were introduced by Zhedanov et. al. [GLZ, Z] in connection with the quadratic Askey-Wilson algebra.

3. The modular Leonard triples

We now recall a characterization of the modular Leonard triples [C]. We do so by first describing
three examples of modular Leonard triples in Lemmas 3.1, 3.2, and 3.3, and then describing how, up to
isomorphism, they are the only examples. We use the following conventions throughout. Given any square
matrix X of order n with entries in K, we view X as a linear operator on K", acting by v — Xwv. Let d
denote a nonnegative integer. Write

bo by --- bg.i %
Ay = tridiag| ap a1 -+ ag-1 aq |,

* €1 ot Cd—1 G4
A2 = diag(@o, 01, ey 9(1),

b0V1 bll/g cee bd—lyd *
As = tridiag ag ay e aqg—1 aq

x o/ - ca—1/Va—1 cd/va
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Lemma 3.1. ([C]) Set

vi = vgit (1<i<ad),
0; = Op+h(l—q¢"H(1—v2¢ g (0<i<d),
po o= =g 407"
¢ ¢4 (1 -v) ’
o d—iN 201 3, d+i—1
T T R i OO

(L= vg) (T =P )

hv(1 — ¢ (1 + vgt=9) (1 — v2g¢d+i-1 .
“ - ((Jd”ql gi - ngl)zl( - V2q§i’1) | h=isd=t),
o = hv(1—q?) (1 +v)
¢l —vg?=t) 7
a; = 00—b¢—ci (OSZSd)(COZO,bdZO)

for some scalars 0y, h, v, q in K such that hvg #0, ¢ #1 (1 <i <d), v3¢?¥ 171 #£ —1 (1 <i <d), and
Vit #1 (0 <i<2d—2). Then Ay, Ay, Az is a modular Leonard triple on K4+t
Lemma 3.2. ([C]) Assume charK is 0 or an odd prime greater than d. Set

0; = 6Oo+hi(i+1+s) (0<i<d),
—hd(3s + 2d + 4)
bO E 4 ’
L — a2 2 4
p, — Mitlts)(d—0)(2i+3s+2d+4) (1<i<d-—1),
4(2i+1+s)
o = Mlitstd+D@i-s-2d-2) . _,_, 4
4(2i4+1+s)
¢y = —hds+2)
d = 4 )
a; = bBp—b—¢c (0<i<d) (co=0,bg=0)

for some scalars 0y, h, s in K such that h #0, s # —i (2 <i<2d), and 3s # —2i (d+2 <i<2d+1).
Then Ay, As, As is a modular Leonard triple on K+T,
Lemma 3.3. ([C]) Assume charK =0 or charK > d. Set

vi = U (1<i<d),
0; = 69+ hi (0<i<d),
h(d —i)(1 — v+ v?)

b = — L (0<i<d-—1),
hiv .

¢ = m (1<i<d),

a; = 00—bi—ci (OSZSd)(CQZO,bdZO)

for some scalars 0o, h, v in K such that hv #0, v #1, and 1 —v +v? #0. Then Ay, Ay, Az is a modular
Leonard triple on K41,

Definition 3.4. Let V denote a vector space over K of finite positive dimension. Let Ay, A3, A3 denote a
modular Leonard triple on V. We say that the triple Ay, As, As is of type I, type II, or type III, respectively,
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whenever there exists a basis of V' with respect to which the matrices representing Ay, As, As are as in
Lemma 3.1, Lemma 3.2, or Lemma 3.3, respectively.

Theorem 3.5 ([C]). Let V' denote a vector space over K of finite positive dimension. Let A1, As, Az denote
a modular Leonard triple on V.. Then A1, As, As is of type I, type 11, or type III.

Theorem 3.6. Let Ay, Ay, Az denote a modular Leonard triple on V. Then there are scalars q, x, y, z in
K with x # 0 such that (1.2)-(1.4) hold.

PROOF. Direct verification using the above classification of modular Leonard triples. O

4. A modular group action

We describe an action of the modular group PSLy(Z) on P(q,x,y,z). This modular group action
was first observed for the modular Leonard triples, hence their name. We begin with describing some
antiautomorphisms for P(q, z,y, 2).

Lemma 4.1. With reference to Definition 1.1, assume x # 0. Then for any T € {S1, S, S5}, there exists
an antiautmorphism of P(q,x,y, z) which fizes T and swaps the other two generators.

PROOF. Let p : P — P denote a linear map which reverses the order of multiplication and swaps S
and S3. Then p fixes the g-commutator in (1.2). On the right-hand side of (1.2) the linear terms involving I
and S7 + 97 are fixed, so S3 is fixed by such a map. Observe that p is indeed an antiautomorphism of P. O

Lemma 4.2. With reference to Definition 1.1, assume x # 0. Then for any T € {S1,S2, S5}, there exists
an antiautmorphism of P(q, z,y, z) which fizes the elements of {S1,S2, S3}\T .

PROOF. Let a: P — P denote a linear map which reverses the order of multiplication and swaps S; and
Sa. Applying « to (1.2) gives an expression for «(S3). Essentially the same computation as was performed
in Theorem 2.3 shows that « is indeed an antiautomorphism of P. O

Recall that PSLy(Z) has presentation (s, t|s? =1, t3 = 1).
Lemma 4.3. With reference to Definition 1.1, assume x # 0.

(1) Let o denote the composition of the antiautomorphisms of P which respectively fix and swap S1 and
Sy. Then o2 = 1.

(2) Let T denote the composition of the antiautomorphisms of P which respectively swap S1 and Sy and
swap So and S3. Then 73 =1.

In particular, PSLo(Z) acts on P as a group of automorphisms.

PROOF. It is easy to verify from their constructions that 7 sends S; to Ss3, S2 to S1, and S5 to Sz, and
that o swaps S; and S3. The result follows. O

References

[A] T.M. Apostol, The Modular Group and Modular Functions. Ch.E2 in Modular Functions and Dirichlet Series in Number
Theory, 2nd ed, pp.El? and pp. 26-46, Springer-Verlag, New York, 1997.

[AW1] R. Askey and J. Wilson, A set of orthogonal polynomials that generalize the Racah coefficients or 6 — j symbols, STAM
J. Math. Anal. 10 (1979), pp. 1008-1016.

[AW2] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize the Jacobi polynomials,
Mem. Amer. Math. Soc. 54 (1985).

[BI] E. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.

[BB] J.M. Borwein and P.B. Borwein, Pi & the AGM: A Study in Analytic Number Theory and Computational Complezity,
p.E113, Wiley, New York, 1987.

[C] B. Curtin, Modular Leonard triples, preprint.

[GLZ] Ya.A. Granovskii, A.S. Lutzennko and A.S. Zhedanov, Mutual integrability, quadratic algebras, and dynamical symmetry,
Ann. Phys 217 (1992), pp. 1-20.



74 A GENERALIZATION OF SU(2)

[KS] Koekoek and Suwartouw, The Askey scheme of hypergeometric orthogonal polynomials and its g-analog, Reports of the
Faculty of Technical Mathematics and Informatics, vol. 98-17, Delft, Netherlands, 1998.

[Lan] R.H. Landau Quantum Mechanics II: A Second Course in Quantum Theory, 2nd ed. Wiley, New York, 1996.

[Lenl] D. Leonard, Orthogonal polynomials, duality, and association schemes, STAM J. Math. Anal. 13 (1982), pp. 656-663.

[Len2] D. Leonard, Parameters of association schemes that are both P- and Q-polynomial, J. Combin. Theory Ser. A 36
(1984), pp. 355-363.

[T1] P. Terwilliger, The subconstituent algebra of an association scheme, J. Alg. Combin. Part I: 1 (1992), pp. 363-388; Part
II: 2 (1993), pp. 73-103; Part III: 2 (1993), pp. 177-210.

[T2] P. Terwilliger, Leonard pairs from 24 points of view, Rocky Mountain Journal of Mathematics, 32 (2002), pp. 827-888.

[T3] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra
Appl. 330 (2001), pp. 149-203.

[T4] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: The TD-D and
LB-UB canonical forms, preprint.

[T5] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other: Comments on the
parameter array, preprint.

[T6] P. Terwilliger, Leonard pairs and the q-Racah polynomials, preprint.

[VT] R. Vidunas and P. Terwilliger Leonard pairs and Askey- Wilson relations, preprint.

[Z] A.S. Zhedanov, Hidden symmetry of Askey-Wilson polynomials, Teoret. Mat. Fiz., 89 (1991), pp. 190-204.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TaAMPA, FL USA, 33620
E-mail address: bcurtin@math.usf.edu



Formal Power Series and Algebraic Combinatorics ==
Séries Formelles et Combinatoire Algébrique FFOALYS
Vancouver 2004

Two New Criteria for Comparison in the Bruhat Order

Brian Drake, Sean Gerrish, and Mark Skandera

Abstract. We give two new criteria by which pairs of permutations may be compared in defining
the Bruhat order (of type A). One criterion utilizes totally nonnegative polynomials and the other
utilizes Schur functions.

RESUME. Nous donons deuz critéres nouveauz avec lesquels on peut comparer couples de per-
mutations en definant l’order de Bruhat (de type A). Un critére utilise les polynémes totallement
nonnegatifs et ’autre utilise les fonctions symétriques de Schur.

1. Main

The Bruhat order on S, is often defined by comparing permutations # = w(1)---7(n) and ¢ =
o(1)---o(n) according to the following criterion: © < o if o is obtainable from 7 by a sequence of trans-
positions (¢, 7) where i < j and 4 appears to the left of j in 7. (See e.g. [7, p.119].) A second well-known
criterion compares permutations in terms of their defining matrices. Let M (7) be the matrix whose (4, j)
entry is 1 if j = 7(i) and zero otherwise. Defining [i] = {1,...,i}, and denoting the submatrix of M (r)
corresponding to rows I and columns J by M (m)r s, we have the following.

Theorem 1.1. Let ™ and o be permutations in S,. Then 7 is less than or equal to o in the Bruhat order if
and only if for all 1 <i,j < n —1, the number of ones in M(7)};,; 45 greater than or equal to the number
of ones in M (o), 15)-

(See [1], [2], [3], [6, pp- 173-177], [8] for more criteria.) Using Theorem 1.1 and our defining criterion we
will state and prove the validity of two more criteria.

Our first new criterion defines the Bruhat order in terms of totally nonnegative polynomials. A matrix
A is called totally nonnegative (TNN) if the determinant of each square submatrix of A is nonnegative.
(See e.g. [5].) A polynomial in n? variables f(z11,...,2n.) is called totally nonnegative (TNN) if for each
n x n TNN matrix A = (a;;) the number f(a11,...,an,,) is nonnegative. Some recent interest in TNN
polynomials is motivated by problems in the study of canonical bases. (See [10].)

Theorem 1.2. Let m and o be two permutations in Sy,. Then m is less than or equal to o in the Bruhat
order if and only if the polynomial

(11) T1,7(1) " Tn,m(n) — L1lo(1) """ Tn,o(n)

is totally nonnegative.

PROOF. (=) If m = o then (1.1) is obviously TNN. Suppose that 7 is less than ¢ in the Bruhat order.
If 7 differs from o by a single transposition (7, j) with ¢ < j, then we have 7 (i) = o(j) < 7(j) = o(4), and
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the polynomial (1.1) is equal to

T1,72(1) " Tn,x(n
(1.2) ) Oy

Ty i) Tim(5) Tj,m(i))
which is clearly TNN. If 7 differs from o by a sequence of transpositions, then the polynomial (1.1) is equal
to a sum of polynomials of the form (1.2) and again is TNN.

(<) Suppose that 7 is not less than or equal to ¢ in the Bruhat order. By Theorem 1.1 we may choose
indices 1 < k,£ < n — 1 such that M(o)[,jq contains ¢ + 1 ones and M (7)), contains g ones. Now define
the matrix A = (a; ;) by

2 ifi<kandj</{
Q; i =
7 1 otherwise.

It is easy to see that A is TNN, since all square submatrices of A have determinant equal to 0,1, or 2.
Applying the polynomial (1.1) to A we have

al)ﬂ.(l) e an,ﬂ'(’n) — al,o‘(l) . an,o(n) — _2q7

and the polynomial (1.1) is not TNN. O

Our second new criterion defines the Bruhat order in terms of Schur functions. (See [9, Ch.7] for
definitions.) Any finite submatrix of the infinite matrix H = (hj_;); j>0, where hy is the kth complete
homogeneous symmetric function and hy = 0 for k < 0, is called a Jacobi- Trudi matriz. Let us define a
polynomial in n? variables f(z1.1,...,%nn) to be Schur nonnegative (SNN) if for each n x n Jacobi-Trudi
matrix A = (a;;) the symmetric function f(a1,1,...,ann) is equal to a nonnegative linear combination of
Schur functions. Some recent interest in SNN polynomials is motivated by problems in algebraic geometry [4,
Conj. 2.8, Conj. 5.1].

Theorem 1.3. Let m and o be permutations in S,. Then 7 is less than or equal to o in the Bruhat order
if and only if the polynomial

(13) T1,7(1) " Tn,m(n) — L1,0(1) """ Ln,o(n)

is Schur nonnegative.

PROOF. (=) If m = o then (1.3) is obviously SNN. Let A be an n x n Jacobi-Trudi matrix and suppose
that 7 is less than ¢ in the Bruhat order. If 7 differs from o by a single transposition (4, ), then for some
partition v and some k, ¢, m (¢, m > 0), the evaluation of the polynomial (1.3) at A is equal to

(1.4) ho (Pisebsm — Pryermbi),

and (1.3) is clearly SNN. If 7 differs from o by a sequence of transpositions, then the evaluation of (1.3) at
A is equal to a sum of polynomials of the form (1.4) and again (1.3) is SNN.

(<) Suppose that 7 is not less than or equal to ¢ in the Bruhat order. By Theorem 1.1 we may choose
indices 1 < k,£ < n — 1 such that M(c)[,jq contains ¢+ 1 ones and M (7)), contains g ones. Now define
the nonnegative number r = (k — ¢)(n + k — £ — 2) and consider the Jacobi-Trudi matrix B defined by the
skew shape (n — 1+ 2r)k(n — 14 7))k /rf,

hn71+r e hn+€72+r hn+€71+27‘ e h2n72+27‘

B = hn—k+r e h77,—k+£—1+r h77,—k+£+2r e hQn—k—1+2r
hnk-1 - hnkyeo  hngre1yr o honpooyr
L o o he—1 hitr R P
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The polynomial (1.3) applied to B may be expressed as hy — h,, for some appropriate partitions A, p
depending on 7,0, respectively. We claim that A\ is incomparable to or greater than p in the dominance
order. Since M (7)(x],¢+1,n] cOntains k& — g ones we have that

(1.5) M4+ Mg 2 (k—q)(n—k+042r).
Similarly, we have
(1.6) p1t ot p—g < (k—g¢g—-1)2n—-24+2r)+max{n+£¢—-2+r2n—k—2+r}.

Subtracting (1.6) from (1.5), we obtain
(M1 44+ Ak—g) = (1 + - + pto—g) = n —max{l,n — k} >0,

as desired.
Recall that the Schur expansion of h, is

hy=s,+ Z K, .50,

v>p

where the comparison of partitions v > p is in the dominance order and the nonnegative Kostka numbers
K, , count semistandard Young tableaux of shape v and content p. (See e.g. [9, Prop.7.10.5, Cor.7.12.4].)
It follows that the coefficient of s, in the Schur expansion of hy — h, is —1 and the polynomial (1.3) is not
SNN. O

The authors are grateful to Sergey Fomin, Zachary Pavlov, Alex Postnikov, Christophe Reutenauer,
Brendon Rhoades, Richard Stanley, John Stembridge, and referees for helpful conversations.
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Restricted Motzkin permutations, Motzkin paths, continued fractions, and
Chebyshev polynomials

Sergi Elizalde and Toufik Mansour

Abstract. We say that a permutation w is a Motzkin permutation if it avoids 132 and there do
not exist a < b such that mo < mp < mp11. We study the distribution of several statistics on Motzkin
permutations, including the length of the longest increasing and decreasing subsequences and the
number of rises and descents. We also enumerate Motzkin permutations with additional restrictions
and study the distribution of occurrences of fairly general patterns in this class of permutations.
Résumé. On dit qu’une permutation m est une permutation de Motzkin si elle évite le motif 132
et s’il nexiste pas a < b tels que mq < mp < mWpy1. Nous étudions la distribution de plusieurs
statistiques sur permutations de Motzkin, entre autres la longueur des sous-suites croissantes et
décroissantes les plus longues et le nombre de montées et descentes. Nous énumérons aussi des
permutations de Motzkin avec des contraintes supplémentaires et nous étudions la distribution du
nombre d’occurrences de motifs assez généraux dans cette classe de permutations.

1. Introduction

1.1. Background. Let a € S,, and 7 € S be two permutations. We say that a contains 7 if there
exists a subsequence 1 < iy < i < --- < i < n such that (ay,,...,q;, ) is order-isomorphic to 7; in such a
context 7 is usually called a pattern. We say that a avoids T, or is T-avoiding, if such a subsequence does
not exist. The set of all 7-avoiding permutations in S,, is denoted Sy, (7). For an arbitrary finite collection of
patterns T, we say that « avoids T if « avoids any 7 € T'; the corresponding subset of S,, is denoted Sy, (7).

While the case of permutations avoiding a single pattern has attracted much attention, the case of
multiple pattern avoidance remains less investigated. In particular, it is natural, as the next step, to consider
permutations avoiding pairs of patterns 71, 7. This problem was solved completely for 7,7 € S3 (see [24])
and for 7 € S35 and 72 € Sy (see [25]). Several recent papers [5, 15, 11, 16, 17, 18] deal with the case
71 € S3, 79 € Sk for various pairs 71, 72. Another natural question is to study permutations avoiding 71 and
containing 7o exactly r times. Such a problem for certain 71,72 € Ss and r = 1 was investigated in [20], and
for certain 71 € S3, 72 € Sk, in [22, 15, 11]. The tools involved in these papers include Catalan numbers,
Chebyshev polynomials, and continued fractions.

In [1] Babson and Steingrimsson introduced generalized patterns that allow the requirement that two
adjacent letters in a pattern must be adjacent in the permutation. In this context, we write a classical pattern
with dashes between any two adjacent letters of the pattern (for example, 1423 as 1-4-2-3). If we omit the
dash between two letters, we mean that for it to be an occurrence in a permutation 7, the corresponding
letters of m have to be adjacent. For example, in an occurrence of the pattern 12-3-4 in a permutation m,
the letters in 7 that correspond to 1 and 2 are adjacent. For instance, the permutation m = 3542617 has
only one occurrence of the pattern 12-3-4, namely the subsequence 3567, whereas 7 has two occurrences of

79
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the pattern 1-2-3-4, namely the subsequences 3567 and 3467. Claesson [3] presented a complete solution for
the number of permutations avoiding any single 3-letter generalized pattern with exactly one adjacent pair
of letters. Elizalde and Noy [8] studied some cases of avoidance of patterns where all letters have to occur
in consecutive positions. Claesson and Mansour [4] (see also [12, 13, 14]) presented a complete solution
for the number of permutations avoiding any pair of 3-letter generalized patterns with exactly one adjacent
pair of letters. Besides, Kitaev [9] investigated simultaneous avoidance of two or more 3-letter generalized
patterns without internal dashes.

A remark about notation: throughout the paper, a pattern represented with no dashes will always denote
a classical pattern (i.e., with no requirement about elements being consecutive). All the generalized patterns
that we will consider will have at least one dash.

1.2. Basic tools. Catalan numbers are defined by Cy, = =1+ (*") for all n > 0. The generating function

for the Catalan numbers is given by C(z) = 1-yI-dz

2z
Chebyshev polynomials of the second kind (in What follows just Chebyshev polynomials) are defined by
U, (cosf) = Smg#l)e for r > 0. Clearly, U,(t) is a polynomial of degree r in ¢ with integer coefficients, and
the following recurrence holds:

(1.1) Uo(t) = 1, Uy(t) = 2t, and Up(t) = 2tU,_(t) — Up_o(t) for all r > 2.

The same recurrence is used to define U, (t) for r < 0 (for example, U_1(¢) = 0 and U_3(t) = —1). Chebyshev
polynomials were invented for the needs of approximation theory, but are also widely used in various other
branches of mathematics, including algebra, combinatorics, and number theory (see [21]). Apparently, the
relation between restricted permutations and Chebyshev polynomials was discovered for the first time by
Chow and West in [5], and later by Mansour and Vainshtein [15, 16, 17, 18], Krattenthaler [11].

Recall that a Dyck path of length 2n is a lattice path in Z? between (0,0) and (2n,0) consisting of

up-steps (1,1) and down-steps (1, —1) which never goes below the z-axis. Denote by @n the set of Dyck

paths of length 2n, and by @ = U,>o0 @n the class of all Dyck paths. If D € ((_};n, we will write |D| = n.
Recall that a Motzkin path of length n is a lattice path in Z? between (0, 0) and (n,0) consisting of up-steps
(1,1), down-steps (1, —1) and horizontal steps (1,0) which never goes below the z-axis. Denote by M,, the
set of Motzkin paths with n steps, and let M = J,,»o M. We will write [M| = n if M € M,,. Sometimes
it will be convenient to encode each up-step by a letter u, each down-step by d, and each horizontal step

by h. Denote by M, = |M,| the n-th Motzkin number. The generating function for these numbers is
M(JI): l—z—V/1—2x— 3:102

22
Define a Motzkin permutation m to be a 132-avoiding permutation in which there do not exist indices

a < b such that 7, < m, < mpy1. In such a context, m,, mp, 41 is called an occurrence of the pattern 1-23
(for instance, see [3]). For example, there are exactly 4 Motzkin permutations of length 3, namely, 213, 231,
312, and 321. The set of all Motzkin permutations in .S,, we denote by 91,,. The main reason for the term
“Motzkin permutation” is that |9,,| = M,,, as we will see in Section 2.

It follows from the definition that the set 901, is the same as the set of 132-avoiding permutations = € .S,,
where there is no a such that 7, < mg41 < Tay2. Indeed, assume that = € S,,(132) has an occurrence of
1-23, say m, < mp < mp41 With a < b. Now, if m,_1 > 7, then m would have an occurrence of 132, namely
TaMp—1Tp+1- Lherefore, mp_1 < mp < mp41, so 7 has three consecutive increasing elements.

For any subset A C S, and any pattern «, define A(a) := AN S, (a). For example, M, («) denotes the
set of Motzkin permutations of length n that avoid «.

1.3. Organization of the paper. In Section 2 we exhibit a bijection between the set of Motzkin
permutations and the set of Motzkin paths. Then we use it to obtain generating functions of Motzkin
permutations with respect to the length of the longest decreasing and increasing subsequences together with
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the number of rises. The section ends with another application of the bijection, to the enumeration of fixed
points in permutations avoiding simultaneously 231 and 32-1.

In Section 3 we consider additional restrictions on Motzkin permutations. Using a block decomposition,
we enumerate Motzkin permutations avoiding the pattern 12... k, and we find the distribution of occurrences
of this pattern in Motzkin permutations. Then we obtain generating functions for Motzkin permutations
avoiding patterns of more general shape. We conclude the section considering two classes of generalized
patterns (as described above), and we study its distribution in Motzkin permutations.

2. The bijection © : M,, — M,

In this section we establish a bijection © between Motzkin permutations and Motzkin paths. This
bijection allows us to give the distribution of some interesting statistics on the set of Motzkin permutations.

2.1. The bijection ©. We can give a bijection © between 9,, and M,,. For that we use first the

following bijection ¢ from S, (132) to ((_};n, which is essentially due to Krattenthaler [11]. Consider w € S,,(132)
given as an n X n array with crosses in the squares (¢, 7;). Take the path with up and right steps that goes
from the lower-left corner to the upper-right corner, leaving all the crosses to the right, and staying always
as close to the diagonal connecting these two corners as possible. Then ¢(7) is the Dyck path obtained
from this path by reading an up-step every time the path goes up and a down-step every time it goes right.
Figure 1 shows an example when m = 67435281.

FicURE 1. The bijection ¢.

There is an easy way to recover 7 from (7). Assume we are given the path from the lower-left corner
to the upper-right corner or the array. Row by row, put a cross in the leftmost square to the right of this
path such that there is exactly one cross in each column. This gives us 7 back.

One can see that © € S,,(132) avoids 1-23 if and only if the Dyck path () does not contain three
consecutive up-steps (a triple rise). Indeed, assume that o(m) has three consecutive up-steps. Then, the
path from the lower-left corner to the upper-right corner of the array has three consecutive vertical steps.
The crosses in the corresponding three rows give three consecutive increasing elements in 7 (this follows from
the definition of the inverse of ), and hence an occurrence of 1-23.

Reciprocally, assume now that 7 has an occurrence of 1-23. The path from the lower-left to the upper-
right corner of the array of = must have two consecutive vertical steps in the rows of the crosses corresponding
to ‘2 and ‘3’. But if ¢(7) has no triple rise, the next step of this path must be horizontal, and the cross
corresponding to ‘2’ must be right below it. But then all the crosses above this cross are to the right of it,
which contradicts the fact that this was an occurrence of 1-23.

Denote by &, the set of Dyck paths of length 2n with no triple rise. We have given a bijection between
M, and &,. The second step is to exhibit a bijection between &, and M,,, so that © will be defined as the
composition of the two bijections. Given D € &,, divide it in n blocks, splitting after each down-step. Since



82 RESTRICTED MOTZKIN PERMUTATIONS

D has no triple rises, each block is of one of these three forms: uud, ud, d. From left to right, transform the
blocks according to the rule

(2.1) uud — u, ud — h, d—d.

We obtain a Motzkin path of length n. This step is clearly a bijection.
Up to reflection of the Motkin path over a vertical line, © is essentially the same bijection that was given
by Claesson [3] between M, and M,,, using a recursive definition.

2.2. Statistics in 91,,. Here we show applications of the bijection © to give generating functions for
several statistics in Motzkin permutations. For a permutation 7, denote by lis(w) and lds(w) respectively
the length of the longest increasing subsequence and the length of the longest decreasing subsequence of 7.
The following lemma follows from the definitions of the bijections and from the properties of ¢ (see [11]).

Lemma 2.1. Let m € M, let D = () € G, and let M = O(m) € M,,. We have

(1) 1ds(m) = #{peaks of D} = #{steps u in M} + #{steps h in M},

(2) lis(m) = height of D = height of M + 1,

(3) #{rises of m} = #{double rises of D} = #{steps u in M}.
Theorem 2.2. The generating function for Motzkin permutations with respect to the length of the longest
decreasing subsequence and to the number of rises is

. 1 — vz — /1 —2vz + (vV2 — dvy)z?
.: lds(m), #{rises of 7} n _
Alv,y,2) =) 50 > e, VY x Soga? :

Moreover,

B 1 2n m—+ 2n m+2n, m+n, n
A(U7y7x)_zn>ozm>0n+1<n)( 2n )x ° v

PROOF. By Lemma 2.1, we can express A as

A(’U’ y7x) — ZMGM v#{steps w in M}+#{steps h in M}y#{steps u in M}{EIM‘

Using the standard decomposition of Motzkin paths, we obtain the following equation for the generating
function A.

(2.2) Alv,y,z) = 1 +vzA(v,y,x) + vyz? A% (v, y, x).

Indeed, any nonempty M € M can be written uniquely in one of the following two forms: (1) M = hM; and
(2) M = uMydMsy, where My, My, M5 are arbitrary Motzkin paths. In the first case, the number of horizontal

steps of hM; is one more than in M7, the number of up steps is the same, and |hM;| = |M1| + 1, so we get
the term varA(v,y,x). Similarly, the second case gives the term vyz2A?(v,y,z). Solving equation (2.2) we
get the desired expression. O

Theorem 2.3. Fork >0, let By(v,y,2) 1=}, 5 Zwemn(l2...(k+l)) plds(m)g#{rises of han bo the generating
function for Motzkin permutations avoiding 12 ... (k4 1) with respect to the length of the longest decreasing
subsequence and to the number of rises. Then we have the recurrence

1
B =
k(U,y75U) l_vx—vymgkal(vayﬁr),
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with By (v,y,z) = 1_1 . Thus, By can be expressed as

vT

By(v,y,x) = 5 ,
1—vx—

where the fraction has k levels, or in terms of Chebyshev polynomials of the second kind, as

Ui (45%)
Bk(U,y,fﬁ) = 17101 .
x,/vyUs (zmm)

PROOF. The condition that 7 avoids 12...(k + 1) is equivalent to the condition lis(r) < k. By
Lemma 2.1, permutations in 9, satisfying this condition are mapped by © to Motzkin paths of height
strictly less than k. Thus, we can express By as

Bk (U y I) — Z ,U#{steps w in M}+#{steps h in M}y#{steps u in M}$|M\

MeM of height<k

For k > 1, we use again the standard decomposition of Motzkin paths. In the first of the above cases, the
height of hM; is the same as the height of M;. However, in the second case, in order for the height of
uModM3 to be less than k, the height of Ms has to be less than £ — 1. So we obtain the equation

Bk(’U, Y, I) =1+ vrByg (Ua Y, 'T) + nyQBk—l(Ua Y, 'T)Bk (U7 Y, I)

For k = 1, the path can have only horizontal steps, so we get Bi(v,y,z) = 1=—. Now, using the above
recurrence and Equation 1.1 we get the desired result. |

2.3. Fixed points in the reversal of Motzkin permutations. Here we show another application
of ©. A slight modification of it will allow us to enumerate fixed points in another class of pattern-avoiding
permutations closely related to Motzkin permutations. For any m = myme ... m, € S, denote its reversal
by 78 = 7, ... mm. Let ME := {7 € S, : 7f* € M, }. In terms of pattern avoidance, M2 is the set of
permutations that avoid 231 and 32-1 simultaneously, that is, the set of 231-avoiding permutations m € S,
where there do not exist a < b such that 7,1 > 7, > m,. Recall that ¢ is called a fized point of 7 if m; = i.
Theorem 2.4. The generating function o> copr wP™ g for permutations avoiding simultaneously
231 and 32-1 with respect to to the number of fized poiﬁts 18

(2.3)

1—wx —
22

1—a— M (w—1)z3 — z?

1—r—M2(w—1)x4—i

1—a2— My(w—1)a2 —

where after the second level, the coefficient of (w — 1)x"*2 is the Motzkin number M,,.

ProOOF. We have the following composition of bijections:

9)'{5 — M, — En —s M,

T o=t s o) = ()
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The idea of the proof is to look at how the fixed points of 7 are transformed by each of these bijections.
For this we use the definition of tunnel of a Dyck path given in [6], and generalize it to Motzkin paths.

A tunnel of M € M (resp. D € (5) is a horizontal segment between two lattice points of the path that
intersects M (resp. D) only in these two points, and stays always below the path. Tunnels are in obvious
one-to-one correspondence with decompositions of the path as M = XuYdZ (resp. D = XuYdZ), where

Y € M (resp. Y € ((_};) In the decomposition, the tunnel is the segment that goes from the beginning of
the u to the end of the d. Clearly such a decomposition can be given for each up-step u, so the number of
tunnels of a path equals its number of up-steps. The length of a tunnel is just its length as a segment, and
the height is its y-coordinate.

Fixed points of m are mapped by the reversal operation to elements j such that 7TJR =n-+1—j, which in
the array of 7 correspond to crosses on the diagonal between the bottom-left and top-right corners. Each
cross in this array naturally corresponds to a tunnel of the Dyck path ¢(7), namely the one determined by
the vertical step in the same row as the cross and the horizontal step in the same column as the cross. It is
not hard to see (and is also shown in [7]) that crosses on the diagonal between the bottom-left and top-right
corners correspond in the Dyck path to tunnels T satisfying the condition height(T') + 1 = Llength(T).

The next step is to see how these tunnels are transformed by the bijection from &, to M,. Tunnels of
height 0 and length 2 in the Dyck path D := (7#) are just hills ud landing on the r-axis. By the rule (2.2)
they are mapped to horizontal steps at height 0 in the Motzkin path M := ©(7®). Assume now that k > 1.
A tunnel T of height k and length 2(k+ 1) in D corresponds to a decomposition D = XuY dZ where X ends

at height k and Y € @zk. Note that Y has to begin with an up-step (since it is a nonempty Dyck path)
followed by a down-step, otherwise D would have a triple rise. Thus, we can write D = XuudY’dZ where

Y'e @Q(k_l). When we apply to D the bijection given by rule (2.2), X is mapped to an initial segment X

of a Motzkin path ending at height k, vud is mapped to u, Y’ is mapped to a Motzkin path Y’ € My_; of
length k — 1, the d following Y is mapped to d (since it is preceded by another d), and Z is mapped to a
final segment Z of a Motzkin path going from height k to the xz-axis. Thus, we have that M = XuY'dZ.
It follows that tunnels T' of D satisfying helght(T) +1= 1length(T) are transformed by the bijection into

tunnels 7' of M satisfying height(T) + 1 = length(T ) We will call good tunnels the tunnels of M satisfying
this last condition. It remains to show that the generating function for Motzkin paths where w marks the
number of good tunnels plus the number of horizontal steps at height 0, and = marks the length of the path,
is given by (2.3).

To do this we imitate the technique used in [7] to enumerate fixed points in 231-avoiding permutations.
We will separate good tunnels according to their height. It is important to notice that if a good tunnel of
M corresponds to a decomposition M = XuYdZ, then M has no good tunnels inside the part given by Y.
In other words, the orthogonal projections on the z-axis of all the good tunnels of a given Motzkin path are
disjoint. Clearly, they are also disjoint from horizontal steps at height 0. This observation allows us to give
a continued fraction expression for our generating function.

For every k > 1, let gt, (M) be the number of tunnels of M of height k& and length &k + 1. Let hor(M)
be the number of horizontal steps at height 0. We have seen that for 7 € ME, fp(r) = hor(O(r)) +
Yo 8t (0(7 ). We will show now that for every k > 1, the generating function for Motzkin paths where
w marks the statistic hor(M) + gt, (M) + - - - + gt,_, (M) is given by the continued fraction (2.3) truncated
at level k, with the (k + 1)-st level replaced with M (z).

A Motzkin path M can be written uniquely as a sequence of horizontal steps h and elevated Motzkin
paths uM’d, where M’ € M. In terms of the generating function M (z) = > ,,;c 4 z!M| this translates into

the equation M (x) = m The generating function where w marks horizontal steps at height 0 is
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just
1
hor(M) ,.|M| _
ZMGMU) * 1—wr—22M(x)

If we want w to mark also good tunnels at height 1, each M’ from the elevated paths above has to be
decomposed as a sequence of horizontal steps and elevated Motzkin paths uM”d. In this decomposition, a
tunnel of height 1 and length 2 is produced by each empty M", so we have

(2.4) Z whor(M)+gty (M) [ M| _ 1
MeMm

3:2

1—z—2?w—1+ M(z))

1—wx —

Indeed, the My(= 1) possible empty paths M" have to be accounted as w, not as 1.
Let us now enumerate simultaneously horizontal steps at height 0 and good tunnels at heights 1 and 2.
We can rewrite (2.4) as
1

$2

1—wx —

1
1—z—22M(x)
Combinatorially, this corresponds to expressing each M” as a sequence of horizontal steps and elevated
paths uM"’d, where M"" € M. Notice that since uM"’'d starts at height 2, a tunnel of height 2 and length

3 is created whenever M’ € M. Thus, if we want w to mark also these tunnels, such an M’ has to be
accounted as wz, not . The corresponding generating function is

l—z—2?2|w—1+

S aphorM et ()4t (M) M| 1

MeM 1—wxr —

1

1 — o — 12 w—1+1_x_x2[(w—l)l‘+M(x)]

Now it is clear how iterating this process indefinitely we obtain the continued fraction (2.3). From the
generating function where w marks hor(M) + gt (M) + - - - + gt (M), we can obtain the one where w marks
hor(M) + gt (M) + - - - + gty (M) by replacing the M(x) at the lowest level with

1
11—z —22[Mg(w — 1)zF + M(x)]’
to account for tunnels of height k and length k£ + 1, which in the decomposition correspond to elevated
Motzkin paths at height k. U

3. Restricted Motzkin permutations

In this section we consider those Motzkin permutations in 9,, that avoid an another pattern 7. More
generally, we enumerate Motzkin permutations according to the number of occurrences of 7. Subsection 3.2
deals with the increasing pattern 7 = 12...k. In Subsection 3.3 we show that if 7 has a certain form, we
can express the generating function for 7-avoiding Motzkin permutations in terms of the the corresponding
generating functions for some subpatterns of 7. Finally, Subsection 3.4 studies the case of the generalized
patterns 12-3-...-k and 21-3-...-k.

We begin by setting some notation. Let M,(n) be the number of Motzkin permutations in 9%, (1),
and let N-(z) = >, -, M-(n)z"™ be the corresponding generating function. Let 7 € 9,,. Using the block
decomposition approach (see [18]), we have two possible block decompositions of w. These decompositions
are described in Lemma 3.1, which is the basis for all the results in this section.
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Lemma 3.1. Let m € 9M,,. Then one of the following holds:
(i) m = (n,B) where € Mp_1,
(ii) there exists t, 2 <t <mn, such that m = (a,n —t + 1,n,3), where

(o1 —(n—t+1),...,000—(n—t+1)) € M_2 and B € M,,_+.

PRrROOF. Given 7 € M,,, take j so that m; = n. Then 7 = (7', n,7”), and the condition that = avoids 132
is equivalent to 7’ being a permutation of the numbers n—j+1,n—j5+2,...,n—1, 7’ being a permutation
of the numbers 1,2,...,n — j, and both 7’ and 7 being 132-avoiding. On the other hand, it is easy to see
that if 7’ is nonempty, then 7 avoids 1-23 if and only if the minimal entry of 7’ is adjacent to n, and both
7" and " avoid 1-23. Therefore, 7 avoids 132 and 1-23 if and only if either (i) or (ii) hold. O

3.1. The pattern 7 = (). Here we show the simplest application of Lemma 3.1, to enumerate Motzkin
permutations of a given length. This also follows from the bijection to Motzkin paths in Section 2.
Proposition 3.2. The number of Motzkin permutations of length n is given by M,, the n-th Motzkin
number.

PRrROOF. As a consequence of Lemma 3.1, there are two possible block decompositions of an arbitrary
Motzkin permutation = € 9,,. Let us write an equation for Ny(z). The first (resp. second) of the block
decompositions above contributes as xNgy(x) (resp. 2*Nj(z)). Therefore Ny(x) = 1+ 2Ny(z) + 2 Nj(x),
where 1 is the contribution of the empty Motzkin permutation. Hence, Ny(x) is the generating function for
the Motzkin numbers M,,, as claimed. O

3.2. The pattern 7 = 12...k. For the first values of k, we have from the definitions that Ni(z) =1
and Nia(z) = 1==. Here we consider the case 7 = 12...k for arbitrary k. From Theorem 2.3 we get the
following expression for V., for which we also give a direct derivation using the block decomposition of

Motzkin permutations.

1—x
Theorem 3.3. For all k > 2, Nia_ (x) = %(fiz))
TUE—1 2x

PRrROOF. By Lemma 3.1, we have two possibilities for the block decomposition of an arbitrary Motzkin
permutation m € M,,. Let us write an equation for Nia. k(). The contribution of the first (resp. second)
block decomposition is £ N1z, k(%) (resp. #2Nia (5-1)(z)N12..k(x)). Therefore,

Niz. k(@) =1+ aNio. k() + 2°Nio. k(@) N2, o—1) (@),

where 1 comes from the empty Motzkin permutation. Now, using induction on %k and the recursion (1.1) we
get the desired result. O

This theorem can be generalized as follows. Let N(x1,x2,...) be the generating function

PDNUD DI | I
n>0 meom, L1>177 ’

where 12...j(m) is the number of occurrences of the pattern 12...j in 7.

Theorem 3.4. The generating function 3, o> . con, Hj>1 xj1-2"'j(ﬂ) is given by the following continued
fraction:
1
2 )
rixg
L= — —
$1x2x3
1 =@ = r2adairy
1= zyadey — AT2TET

) . . )+ o . )
in which the n-th numerator is H;:ll xi(l_l) =) and the monomial in the n-th denominator is [, ©

(i)

%
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PRrROOF. By Lemma 3.1, we have two possibilities for the block decomposition of an arbitrary Motzkin
permutation 7 € M,,. Let us write an equation for N(z1,x2,...). The contribution of the first decomposition
is 21 N (21,2, ...), and the second decomposition gives w2z N (2172, 7223, ...)N (21, 72,...). Therefore,

N(z1,29,...) =1+ x1N(x1,22,...) + m%ng(xlxz,xzajg, .. )N (21, 22,...),

where 1 is the contribution of the empty Motzkin permutation. The theorem follows now by induction. O

3.2.1. Counting occurrences of the pattern 12...k in a Motzkin permutation. Using Theorem 3.4 we can
enumerate occurrences of the pattern 12...% in Motzkin permutations.
Theorem 3.5. Fix k > 2. The generating function for the number of Motzkin permutations which contain
12.. .k exactly r, 7 =1,2,...,k, times is given by

—z —x r—1
(Uk—2(*52) — 2Uk-3('52)) .
)

PROOF. Let 21 = &, 2 =y, and a; = 1 for all j # 1,k. Let Gy(x,y) be the function obtained from
N(z1,z2,...) after this substitution. Theorem 3.4 gives

Gk(may): 2
1—x—

Yy

l—z— 2 kH1

1—2y—

So, Gi(z,y) can be expressed as follows. For all k > 2,

1
1—2—22Gr_1(x,y)’

Gi(z,y) =

and there exists a continued fraction H(x,y) such that Gi(z,y) = Now, using induction

lfwy*y’g“H(Ly) ’
on k together with (1.1) we get that there exists a formal power series J(z,y) such that

. _ Uk_z(lg—zw) - (Uk—3(1;_zx) - xUk—4(1;_zw)) Y
Gi(z,y) = aUp—1(352) — o (Up—2(52) — aUr—s(2)) v

The series expansion of G (x,y) about the point y = 0 gives

+yF I (z,y).

—x —z —z Un—2("5") —2Uk—s (*5" ) T
Gi(o.9) = [Ui-2(52) = (Unea (i) — alioa(i52)) o] - £ Ol ety g ot g2,
Hence, by using the identities UZ(t) — Ug—1(t)Uk41(t) = 1 and Ug(t)Ug—1(t) — Ug—2(t)Ug+1(t) = 2t we get
the desired result. O

3.2.2. More statistics on Motzkin permutations. We can use the above theorem to find the generating
function for the number of Motzkin permutations with respect to various statistics.

For another application of Theorem 3.4, recall that 7 is a free rise of 7 if there exists j such that 7; < ;.
We denote the number of free rises of 7 by fr(w). Using Theorem 3.4 for 1 = z, 22 = ¢, and z; = 1 for
j > 3, we get the following result.
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Corollary 3.6. The generating function ano Zwesmn 2"q?"(™) s given by the following continued fraction:

1
2 I
z7q
1l—2— 25
1—2q— P
1—zq?—
in which the n-th numerator is £2¢°"~1 and the monomial in the n-th denominator is xq™ ".

For our next application, recall that m; is a right-to-left mazimum of a permutation 7 if m; < 7; for all
i > j. We denote the number of right-to-left maxima of 7 by rim(w).
Corollary 3.7. The generating function ), -, Zweimn z"q"™(™) s given by the following continued frac-
tion: -

1
2
1—2q— 4

332

l1—x—
)

l—2z——

Moreover, ano Zwesmn Zngrm(m) = EmZO 2™ (1 4 zM(z))™g™.

Proor. Using Theorem 3.4 for z; = xq, and zo; = xgjlﬂ = ¢ ! for j > 1, together with [2, Proposi-
tion 5] we get the first equation as claimed. The second equation follows from the fact that the continued
fraction

1
2
1—x— * 5
1—z— 2
is given by the generating function for the Motzkin numbers, namely M (x). O

3.3. General restriction. Let us find the generating function for those Motzkin permutations which
avoid 7 in terms of the generating function for Motzkin permutations avoiding p, where p is a permutation
obtained by removing some entries from 7.

Theorem 3.8. Let k>4, 7= (p/,1,k) € My, and let p € My_o be the permutation obtained by decreasing
each entry of p’ by 1. Then
1

Ne@) = T oN, @)

PRrROOF. By Lemma 3.1, we have two possibilities for block decomposition of a nonempty Motzkin per-
mutation in 9,,. Let us write an equation for N, (z). The contribution of the first decomposition is x N (),
and from the second decomposition we get 22N, (z)N,(z). Hence N, (z) = 1+ zN,(x) + 22N, (z)N, (),
where 1 corresponds to the empty Motzkin permutation. Solving the above equation we get the desired
result. g

For example, using Theorem 3.8 for 7 =23...(k — 1)1k (p = 12...(k — 2)) we have

1
— 2 —22Nyo (h-2)(z)

Nos. (k—1)1%(7) = T
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Hence, by Theorem 3.3 together with (1.1) we get

N _ e
23...(k 1)1k(33) !EUk72(2—r‘T)
Corollary 3.9. Forall k> 1,
Uk—1(5"
Nkt 1) (k—1) (k+2) (k—2) (k+3)...1(2k) (T) = A ((é)),
2x

and
Ur('5") + Ur-1 ()
N(k+1)k(k+2)(kfl)(k+3)m1(2k+1) (x) = - (Uk+1(171) T Uk(liw)) :
2z

2z
PROOF. Theorem 3.8 for 7 = k(k+ 1)(k — 1)(k +2)(k — 2)(k + 3) ... 1(2k) gives
1

N, (x) = .
(=) 1 — 2 — 22 N 1)k (k—2) (h41) (k—3) (k+2)... 1(2k—2) (T)

Now we argue by induction on k, using (1.1) and the fact that Nis(x) = ﬁ Similarly, we get the explicit
formula for Nk 1)k(rt2)(k—1)(k43)...12k41) (2)- =

Theorem 3.3 and Corollary 3.9 suggest that there should exist a bijection between the sets 9, (12. .. (k+
1)) and M, (k(k+ 1)(k—1)(k+2)(k —2)(k+3)...1(2k)). Finding it remains an interesting open question.
Theorem 3.10. Let 7 = (p',t,k,0',1,t — 1) € My, such that p), > t > 0, for all a,b. Let p and 0 be the
permutations obtained by decreasing each entry of p’ by t and decreasing each entry of 68’ by 1, respectively.
Then

N—,—(!E) _ 1 _$2NP($)N9(:£) :
1= o~ 2(Ny(@) + No(@))

where Ny(z) =

1
1—z—22Ny(z) "

PrOOF. By Lemma 3.1, we have two possibilities for block decomposition of a nonempty Motzkin
permutation 7 € M,. Let us write an equation for N.(x). The contribution of the first decomposition is
N, (x). The second decomposition contributes #2N,(z) N, (z) if a avoids p, and (N, (z) — N,(x))No(z)
if a contains p. This last case follows from Theorem 3.8, since if a contains p, § has to avoid (6,1,¢t — 1).
Hence,

No(2) = 1+ &N, (@) + 2 Ny(2) N+ (@) + 2> (N, (2) — N, (2)) N (),
where 1 is the contribution of the empty Motzkin permutation. Solving the above equation we get the desired
result. O

For example, for 7 = 546213 (7 = p46613), Theorem 3.10 gives N, (z) = %

The last two theorems can be generalized as follows.
Theorem 3.11. Let 7 = (7', t1+1,t0, 7%, ta+1,t1, ..., 7™ ty+1,tm—1) where t;_y > 71 > t; for alla and j.
We define 07 = (1, t1+1,to,...,77) forj=2,...,m, 0" =0, and 7 = (79, t;+ 1, t;—1,...., 7" tm+1,tm_1)
forj=1,2,...,m. Then

N.(x) =1+ 2N, (z) + 2* Z(N"j () = Nyi-1)Nyi(x).
j=1

(By convention, if p is a permutation of {i+1,i+2,...,i+l}, then N, is defined as N, , where p’ is obtained
from p decreasing each entry by i.)
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PrOOF. By Lemma 3.1, we have two possibilities for block decomposition of a nonempty Motzkin
permutation 7 € M,,. Let us write an equation for N-(x). The contribution of the first decomposition is
2N, (z). The second decomposition contributes x%(N,; (z) — Nyji-1(2))Nys(x) if a avoids o/ and contains
071 (which happens exactly for one value of j), because in this case 3 must avoid §7. Therefore, adding
all the possibilities of contributions with the contribution 1 for the empty Motzkin permutation we get the

desired result. O

For example, this theorem can be used together with Theorem 3.3 to give the following result.
Corollary 3.12. (i) For all k > 3, Ng_1)p12...(k—2)(7) = %;

x 2
i Up—a(552)—2Un_s(52)
F >4, N = .

(ii) For all k > 4, N(x—1)(k—2)k12...(k—3)(T) P O = )_IUHL(lQ?));

Up—a( 522

(iii) For all 1 <t <k —3, Nt12)(t+3)...(k—1)(t+1)k12..t(Z) = ﬁ((f}))

3.4. Generalized patterns. In this section we consider the case of generalized patterns (see Subsec-
tion 1.1), and we study some statistics on Motzkin permutations.

3.4.1. Counting occurrences of the generalized patterns 12-3-...-k and 21-3-...-k. We denote by F(t, X,Y)
= F(t,z2,23,...,Y2,Y3,...) the generating function Y > con t" HJ>2 x;Q 3 (ﬁ)yfl_g_'”_](ﬁ), where

12-3-...-j(m) and 21-3-...-j(m) are the number of occurrences of the pattern 12-3-...-j and 21-3-...-j in
m, respectively.
Theorem 3.13. We have

F(t,X,Y)=1—

1 9
1+ tao(1 — yoys) + taoyaysF (6, X', Y7)

where X' = (zox3, 2324, ...) and Y' = (Y2y3, Y3y, . ..). In other words, the generating function

tys —

F(t,xa,x3,...,Y2,Y3,...) is given by the continued fraction
t
- w2 - 17525823/23/3
14 tas — t B 1
e 1+ txoxs — tzxga:gygy%gfl
ty2y§y4 a 22013 w4y2Y3Y3Ys

1+ tachgm —

PRrROOF. As usual, we consider the two possible block decompositions of a nonempty Motzkin per-
mutation 7 € 9M,, (see Lemma 3.1). Let us write an equation for F(t,X,Y). The contribution of the
first decomposition is t + ty2(F(t, X,Y) — 1). The contribution of the second decomposition gives t2xs,
t2roy2(F(t, X,Y) — 1), t220y2y3(F(t, X', Y') — 1), and t2xoy3ys(F(t, X,Y) — 1)(F(¢t, X', Y’) — 1) for the four
possibilities a = =0, a=0# 8, =0 # o, and 3, a # ), respectively. Hence,

Ft,X,Y)=1+t+ty(F(t,X,Y) — 1) + t229 + t222y2y3(F(t, X'Y') — 1)
+t220y2 (F(t, X,Y) — 1) + t2woy3ys(F(t, X, Y) — 1)(F(t, X', Y') — 1),
where 1 is as usual the contribution of the empty Motzkin permutation. Simplifying the above equation we

get
t

F(t,X,Y)=1— -

1+ tao(1 — yoys) + twoyaysF (6, X', Y7)

tys —
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The second part of the theorem now follows by induction. O

As a corollary of Theorem 3.13 we recover the distribution of the number of rises and number of descents
on the set of Motzkin permutations, which also follows easily from Theorem 2.2.
Corollary 3.14. We have

Z Z tnp#{rises in Tr}q#{descents in 7w} — 1- qt - 2pq(1 - q)tQ - \/(1 - qt)Q - 4pqt2
n>0 TEM, ’

2pq2t2
As an application of Theorem 3.13 let us consider the case of Motzkin permutations which contain either
12-3-...-k or 21-3-...-k exactly r times. Using the same arguments as in the proof of Theorem 9, we can

apply Theorem 3.13 to obtain the following result.

Theorem 3.15. Fiz k > 2. Let N.(x;r) be the generating function for the number of Motzkin permutations
which contain T exactly r times. Then
Up—1 (5*)
wUk(i54)

Nig-z-. .-1(2;0) = Noi-3-..-1(2;0) =

and for allr=1,2,...,k—1,

2 ()
(-2 U5 (35

2" (L+2) Ui, (45F)

(Vi (U52) — alhs('52)) ™
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Formal Power Series and Algebraic Combinatorics
Séries Formelles et Combinatoire Algébrique
Vancouver 2004

Dénombrement des classes de symétries des polyominos hexagonaux convexes

Dominique Gouyou-Beauchamps and Pierre Leroux

Abstract. In this paper, we enumerate the symmetry classes of convex polyominoes on the hon-
eycomb lattice (hexagonal polyominoes). Here convexity is to be understood as convexity along the
three main column directions. We deduce the generating series of free (i.e. up to reflection and
rotation) and of asymmetric convex hexagonal polyominos, according to area and half-perimeter.
See [4] for a longer version in English.

Résumé. Dans ce travail, nous dénombrons les classes de symétrie des polyominos heragonaux
convezes. Ici, la convexité est par rapport aux trois directions principales des colonnes. Nous en
deduisons les séries génératrices des polyominos hexagonauzr convexes libres, c’est-a-dire a réflexions
et rotations pres, ou encore de ceur qui sont asymétriques, selon ’aire et le demi-périmétre.

1. Introduction

Un polyomino hexagonal, est un ensemble fini connexe de cellules de base d’un réseau hexagonal du plan.
Sauf mention contraire, les polyominos considérés ici seront toujours hexagonaux. L’aire d’'un polyomino
est le nombre de cellules qui le composent; son périmétre est le nombre de segments qui composent sa
frontiere. On dit qu'un polyomino est convexe selon une direction donnée si l'intersection du polyomino
avec toute droite parallele a cette direction et passant par le centre d’une cellule est connexe. Les directions
sont caractérisées par l'angle a (0 < o < 7) qu’elles font avec ’axe horizontal positif, calculé dans le sens
anti-horaire.

FicURE 1. Un polyomino convexe et les directions de convexité
1991 Mathematics Subject Classification. Primary 05A15 05A30; Secondary 82B20.

Key words and phrases. polyomino enumeration, convex polyominoes, honeycomb lattice, symmetry classes.
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Plusieurs concepts de convexité ont été introduits dans la littérature pour les polyominos hexagonaux,
selon les directions de convexité demandées. Suivant la nomenclature de Denise, Diir, et Hassani (voir [2]),
signalons les polyominos EG-convexes, ot @ = 0 et 7/2, étudiés par Guttmann et Enting [5] et par Lin et
Chang [9], les polyominos C''-convexes, olt v = 7/2, énumérés selon plusieurs parametres par Lin et Wu [10]
et par Fereti¢ et Svrtan [3], les polyominos fortement convexes (F- ou F3-convexes), o o = 0, /3 et 27/3,
introduits par Hassani [6] et étudiés dans [2], et finalement les C- ou C3-convexes, ou o = /6, 7/2 et 57/6,
introduits et énumérés suivant le périmetre dans [6] et [2]. En particulier, Hassani donne explicitement la
série algébrique qui énumere les polyominos C-convexes suivant le demi-périmetre.

Ce sont ces derniers polyominos qui nous intéressent ici et que nous appelons tout simplement convezes.
Ce concept généralise bien la convexité des polyominos dans un réseau carré car les directions de convexité
sont celles des colonnes principales du réseau hexagonal. La figure 1 représente un polyomino convexe d’aire
64 et de périmetre 70.

Ces polyominos sont traditionnellement pris a translation pres. Il est cependant naturel de les considérer
également a rotation et réflexion pres, comme des objets qui vivent dans I'espace. Suivant Voge, Guttmann
et Jensen [15], nous appelons ces classes d’équivalences polyominos libres. En chimie organique, ces objets
représentent des molécules d’hydrocarbures benzénoides. Voir [15] ol ces molécules (sans la propriété de
convexité) sont énumérées par génération exhaustive.

Notre objectif est donc de dénombrer les polyominos convexes libres, selon l'aire et le demi-périmetre.
Pour cela, nous les considérons comme les orbites du groupe diédral Dg, des isométries de ’hexagone,
agissant sur les polyominos convexes, et nous faisons appel a la Formule de Cauchy-Frobenius (alias Lemme
de Burnside). Nous sommes donc amenés & dénombrer les classes de symétries de polyominos convexes, ¢’est-
a-dire les polyominos laissés fixes par chacun des éléments du groupe Dg, suivant la démarche entreprise dans
Leroux, Rassart et Robitaille [8] pour le réseau carré.

Pour toute classe de polyominos (hexagonaux) convexes F, nous notons F(x,q,u,v,t) sa série géné-
ratrice, ou la variable z compte le nombre de colonnes, g compte l’aire, u compte la taille de la premiere (a
gauche) colonne, v, la taille de la derniere colonne, et ¢ le demi-périmetre. Par exemple, le polyomino de la
figure 1 est de poids z'4¢%u?v3t3°. 1l est possible que les variables n’apparaissent pas toutes a la fois. Les
séries génératrices seront données par des formules explicites ou implicites qui se pretent bien a 'utilisation
du calcul formel.

2. Préliminaires

2.1. Classes particulieres de polyominos convexes. Quelques classes familieres de polyominos
convexes du réseau carré se retrouvent naturellement sur le réseau hexagonal et s’averent utiles par la suite.
C’est le cas notamment des polyominos partages et parallélogrammes. Par contre, pour les polyominos tas,
une variante distincte apparait.

3 b) ©)

FIGURE 2. polyominos partages et parallélogrammes
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2.1.1. Les polyominos partages. La figure 2a représente le partage (4,2,2) inscrit dans un rectangle de
taille 5 x 4 dans le réseau hexagonal. De méme, la figure 2b représente le partage en parts distinctes et
bornées par 6, (5,4,3,2). Notons par D,,(u,q) le polynéme générateur des partages en parts distinctes
bornées par m, ou la variable u compte le nombre de parts. On a

(2.1) Dp(u,q) = (1 +uq)(1 +ug?) --- (1 4+ ug™) et Do(u,q) = 1.

2.1.2. Les polyominos parallélogrammes. La figure 2c représente un polyomino parallélogramme (stair-
case en anglais) du réseau carré (voir par exemple [1] ou [7]) reporté sur le réseau hexagonal. On remarque
que le demi-périmetre est alors égal a 2p — 1 ou p est le demi-périmetre sur le réseau carré. On sait que ces
polyominos sont dénombrés selon le demi-périmetre par les nombres de Catalan et selon l'aire par la suite
M1175 de [13] (A006958 de [12]) dont la série génératrice est un quotient de deux g-fonctions de Bessel.

On note Pa ’ensemble des polyominos parallélogrammes sur le réseau hexagonal et Pa(z, ¢, u,v,t) leur
série génératrice. En analysant ce qui se passe lorsqu’on ajoute une colonne par la droite, la méthode de M.
Bousquet-Mélou donne, pour Pa(v) = Pa(z, ¢, u,v,t) (comparer avec [1], Lemma 3.1),

rquut3 xqut?
(2.2) Pa(v) = T g2 T 1= qoi) (1 —q0) (Pa(1) — Pa(vq))
et
_ (@) + () Jo(1) — Ji(1)Jo(v)
(2.3) Pa(v) = o) ,

. xn+1vn+1ut2n+3q(";’2)
J]_(’U) = Z(_l) 2. . 1 n+1 2
(qut?; q)n(qu; @)n (1 — g"Huvt?)

n>0
et
xnvnt2n (n;rl)
= qut?; q)n(qui q)n
La série Pa; ;(x,q,t) est définie comme le coefficient de u'v? dans Pa(z, q,u,v,t):
(2.4) Pa(z,q,u,v,t) = Z Pa, j(z,q,t)u'v’.

i>145>1

2.1.3. Les polyominos tas. Pour les polyominos tas, il existe une variante pour le réseau hexagonal,
représentée a la figure 3. Ce sont des empilements pyramidaux d’hexagones, vus de coté. La premiere classe
(figure 3a), notée T, a été considérée dans la littérature sous le nom de pyramidal stacking of circles, voir
[11]. Leur série selon laire est référencée sous les numéro M0687 dans [13] et A001524 dans [12].

a) b) ©) d)

FIGURE 3. Tas et tas symétrique
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Soit T'(x, u, q), la série génératrice des polyominos tas selon le nombre de colonnes (la largeur), la taille
de la premiere colonne (la hauteur), et aire, et soit T, (z,q) = [u"]T(z,u,q), la série génératrice des tas
dont la premiere colonne est de taille n. Noter que le demi-périmetre est égal & deux fois la hauteur plus la
largeur de sorte que la série T'(zt, ut?, q) tiendra compte également de ce parametre.

On a

xmq(mgl)um

(2.5) T(z,u,q) =Y

m>1 ((U(]§ Q)m71)2 (l — uqm)
et
(2.6) T(x,q) = i 2mgn () % [mﬂjjfl}q {%52}(].
m=1 =

Les polynomes T, (z, ¢) peuvent aussi étre calculés rapidement par récurrence en utilisant la classe TO0,, des
polyominos tas dont la premiere colonne est de taille n en incluant des cellules vides aux deux extrémités.
Voir la figure 3b. En effet, on a

(2.7) To(z,q) = ©¢"T0,—_1(x, q).
avec TOg(x,q) =1, T01(z,q) = 14xq, et, en raisonnant sur lexistence de cellules vides aux deux extrémités,
(2.8) T0,(z,q) = (z¢" + 2)T0,,—1 — T0,—2,

2.1.4. Les tas symétriques. Les tas symétriques, par rapport & 1’axe horizontal (voir les figures 3c et 3d),
constituent les familles TS et T'SO. Utilisant les mémes notations que pour les tas, on a

m, m_, m(m+1)/2 m
a"™uMq (1 +ug™)
(2.9) TS(z,q) = Z 1 — w21 —u2¢h) - (1 — u2g®™)

m>1
De plus,
(2.10) TS, (z,q) = 2q"TS0,—1(z, q).
avec TS0¢(z,q) = TS0_1(z,q) =1, et
(2.11) TS0, (z, q) = 2q" TS0, —1(x, q) + TS0, —2(z, q),

2.2. Le groupe diédral Dg. Le groupe diédral Dg est défini algébriquement par
De={p,7|p°=1,72=1, 1pr =p 1)

Ici Dg est réalisé comme le groupe des isométries de ’hexagone, avec p = r = la rotation de 7/3 radian (dans
le sens horaire) et 7 = dsg, la réflexion selon ’axe horizontal. On a

: 2 .3 .4 .5 .
D6 = {ld,I‘,I‘ ,r,r,1r ,dal,dag,dag,dsl,dbg,dS:g},

ol dsy = 7p?, ds; = 7p?, les réflexions selon les axes sommet-sommet, et dag = 7p, dag = 7p%, et da; = 7p°,
les réflexions selon les axes arétes-arétes. Voir la figure 4.

Le groupe diédral Dg agit sur les polyominos (hexagonaux) de fagon naturelle, par rotation ou réflexion.
Pour toute classe de polyominos F, munie d’'un poids monomial w correspondant a certains parametres,
notons |F|, le poids total (i.e. la série génératrice) de cette classe. Si F est invariante sous l’action de
D¢, 'ensemble des orbites de cette action est notée F/Dgs. Le lemme de Burnside permet de dénombrer
ces orbites en termes des ensembles Fix(g) de points fixes de chacun des éléments g de Dg, les classes de
symétries de F. Notons fiz(g) = |Fix(g)|w. On a évidemment fiz(r) = fiz(r5), fiz(r?) = fiz(r?) et, pour
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ds; U&=V ds,

FIGURE 4. Les réflexions de Dg

des raisons de symétries, fiz(day) = fiz(das) = fiz(das) et fiz(ds1) = fiz(dss) = fiz(dss). Par la suite,
on choisira v = dag, ’axe vertical, et h = ds3, ’axe horizontal. On a alors

1 .
2 Z fiz(g)

9€Ds

% (|.7-'|w + 2fix(r) + 2fix(r?) + fix(r®) + 3fix(v) + 3fix(h)) )

|F/Dé|w

(2.12)

2.3. Phases de croissance des polyominos convexes. Tout polyomino convexe peut étre décomposé
en blocs selon les phases de croissances, de gauche a droite, de ses profils supérieur et inférieur. La figure
5 donne un exemple de cette décomposition. Le profil supérieur y est représenté par le chemin de A & B
le long de la frontiere supérieure, et le profil inférieur, par le chemin de C' a D. Sur le profil supérieur,
on parle d'une croissance faible si le niveau monte d’'un demi-hexagone seulement par rapport a la colonne
précédente, et d’une croissance forte si le niveau monte de plus d’un demi-hexagone. On définit de maniere
analogue la décroissance faible ou forte. Sur le profil inférieur, une croissance correspond a une descente et
une décroissance, & une montée.

FI1GURE 5. Phases d'un polyomino convexe

On décrit ’état dans lequel se trouve une colonne par un couple (4,75), 4,5 = 0, 1,2, la premiere com-
posante correspondant au profil supérieur et la deuxieme, au profil inférieur. L’état 0 correspond a une
croissance faible ou forte, au début du polyomino, I’état 1 & une croissance ou une décroissance faible, dans
une phase d’oscillation, et ’état 2, & une décroissance forte ou faible, dans la derniere partie du polyomino.
Pour passer de I’état 0 a I’état 1, il doit y avoir une premiere décroissance, et pour passer de ’état 1 a 1’état
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2, il doit y avoir une décroissance forte. Enfin, on ne peut passer de I’état 1 a I’état 0 ni de ’état 2 a I’état
1 ou 0. Finalement, un bloc H;; est caractérisé par une suite maximale de colonnes consécutives qui sont
dans I'état (i, 7).

On peut donc voir un polyomino convexe comme un assemblage de blocs et leur dénombrement passe
par celui des H;;. Nous donnons ici les diverses séries génératrices de la forme H;;(x,q, u,v,t).

2.4. Les familles Hyy et Hss. Les polyominos des classes Hyg et Hoo sont faciles & énumérer car ce
sont en fait des polyominos tas. Ici, une seule des deux variables u et v est utilisée a la fois. On a

(213) H22 (Z‘, q, U, t) = T(.It, Ut27 Q) et HOO(xv q,v, t) = T(l‘t7 UtQa Q)v

ou T'(x,u,q) est donnée par la formule (2.5).

2.5. Les familles Hyy, Hig, Hi2, et Hs;. Les classes de polyominos Hyy, Hig, Hi2, et Ha1 sont en
bijection entre elles par les réflexions horizontales et verticales et sont donc équivalentes & dénombrer. La
figure 6 illustre un polyomino de Hig. On trouve facilement que

rquut? xt?(1 + qut)
2.14 Hyyg(z,q,u,v,t) = + Hio(z,q,u,vq,t
( ) 10(2, ¢ ) 1— quot? 1= qui2 10(z, ¢ q,1)
2™ uvt?™ 1 (—qut; @) e
(2.15) _ Z q (—=qut;)m 1y
(qut%; @) m—1(1 — g™ uvt?)

m>1

La formule (2.15) se voit directement sur la figure 6. On peut aussi y voir que

FIGURE 6. Polyomino de Hig

m—1
(216)  Hio(w.quv,t) = Y uloh Y amgmh 37 vig(h) [2o1] N piqi2me2hitaiy {W;—QH} :
h>1 m>1 i=0 >0 q
Noter que
Hoi(x,q,u,v,t) = Hig(x, q,u,v,t)
et que

ng(x,q,U,U,t) = HQl(Z‘,q,u,'U,t) = Hl()(x7QaU7u7t)

2.6. Les familles Hys et Hoy. Ces deux classes sont en fait équivalentes aux polyominos parallélogrammes:

(217) H()Q(Qf, q,u,v, t) = Pa(x, q,u,v, t) = HOQ (Z‘, q,u,v, t)
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2.7. La famille Hi;. La classe Hj; contient les polyominos convexes dont les profils supérieur et
inférieur oscillent tous les deux. Lorsque l'on examine la rangée connexe d’hexagones dans l'axe dag (voir
Figure 4) contenant la cellule inférieure de la premiere colonne, on voit apparaitre deux sous-classes de H1;.
La premiere classe, notée Hii,, est celle ou cette rangée et celles qui sont & sa droite (jusqu’a la derniere
colonne) forment un polyomino parallélogramme (incliné de 7/3); voir la figure 7a. La deuxieme classe,
notée Hiyp, est celle ou cette rangée est la base d’un rectangle de hauteur au moins 2; voir la figure 7b. Dans
les deux cas, on retrouve au-dessus et au-desssous de ces objets (parallélogramme ou rectangle) des partages
en parts distinctes qui sont justifiés a gauche et a droite, respectivement.

b)
FIGURE 7. Polyominos de H;
Rappelons que dans la série Pa; ;(z, ¢, t), définie par (2.4), la variable  marque le nombre de colonnes du

parallélogramme(non incliné). Notons plutot le lien entre sa largeur ¢, lorsqu’incliné, et son demi-périmetre
p: p=2¢+1. On a donc

(2.18) Hii(z,q,u,v,t) = Hira(z, g, u,v,t) + Hi1p(x, g, u, v, t),

avec

(2.19) Hiio(z,q,u,v,t) = Z x_%uvPai,j(l,q,tx%)Di_l(ut,q)Dj_l(vt, q)
i>15>1

et

(2.20) Hipp(x,q,u,v,t) = Z xn(l?nu?v?t%zg?’;;iﬁ’ 9)Dn1 (vt q).

n>1

3. Les polyominos convexes

Notons C, la classe de tous les polyominos convexes et C;;, la sous-classe des polyominos dont la derniere
colonne est dans I'état (7, 5), 4,5 = 0,1, 2. Ceci détermine une partition de C. Pour dénombrer C), il faut donc
dénombrer chacune des classes C;;. Nous donnons les séries génératrices C;(, g, v, t), suivant essentiellement
la méthode de Hassani [6], utilisant la décomposition d’un polyomino convexe selon les phases de croissance,
de gauche a droite.

Nous utilisons la notation C;; ® Hyj pour désigner I'ensemble des polyominos convexes obtenus en
recollant de toutes les fagons légales possibles un polyomino de Cj; avec un de Hy . On introduit les séries
Cijn(x,q,t) et Hijn(z,q,v,t) par les extractions de coefficients

(31) Cij,n(x7 (],t) = [vn]Cij(xv%vat) et Hij,n(x7 qvvvt) = [un]Hij(va;uvvvt)’
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Par exemple, on a Copg = Hog, C19 = Coo ® Hyp et

—~ 1
ClO(xv%U?t) = Z(Zt%—_lcoo,k(xaq’to HlO,n(x’qvvvt)

n>1 \k=1
n

52) . (z tmxt,@) Hion(ag,0.1)

n>1 \k=1

= Coi(z,q,v,t).
De méme, C11 = (Coo + Cro + Co1) @ Hi1 = Coo ® H11 + C1o ® Hi1 + Co1 ® Hy et
1
(33) C(00 & Hll (LL', q,U,t) = Z t2n—_2000,n(x7 qvt)Hll,n—l(x7q7v7t)7
n>2
1 1
(3.4) Cro®H11 (z,q,v,t) = Z th—_lClo,n(xa% t)Hll,n(xvq»v7t)+Z th—_QClo,n(x,q,t)Hll,n—l(x,q,U,t)-
n>1 n>2

On a aussi Coz = (Coo + Co1) @ Hog,
Ci2 = (Coo + Co1 + Cro + C11 + Co2) ® Hya,

Caz = (Coo + Co1 + C1o + C11 + Coz2 + Co2) @ Hao.
Finalement

(3.5) C(z,q,v,t) = (Coo + 2C10 + C11 + 2Ch2 + 2C12 + Ca2)(x, q, v, t).

4. Les classes de symétrie réflexives

4.1. Symétrie verticale. Considérons un polyomino convexe v-symétrique P. On constate que 'axe
de symétrie passe par une colonne centrale. Notons K la région fondamentale gauche de P, incluant la
colonne centrale. Voir la figure 8. On a

\'

FI1GURE 8. Polyomino convexe v-symétrique

(41) K(LL', q,, t) = CO()(LL', q,, t) + 2010(1', q,, t) + Cl,l(xv q, Q]?t)
= Z Ky (z,q,t)0o™
m>1
et
. 1
(4.2) [Fiz(v)|q: = Z WKm(LqZ,tQ)-

m>1
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4.2. Symétrie horizontale. La classe S des polyominos convexes h-symétriques se partage en trois
classes: S, et Sp, suivant qu’on peut trouver ou non dans la partie oscillante un polyomino pointe de fléche
(figures 9a et 9b) et la classe S, s’il n’existe pas de partie oscillante.

a)

FI1GURE 9. Polyominos convexes h-symétriques

Pour construire un polyomino de la classe pointes de fleches, notée A, on démarre avec un triangle de
coté n auquel un tas symétrique est possiblement attaché pour former la phase Hso; notons B, cette classe
de polyominos de départ. On construit A a partir de B en attachant successivement des bandes en forme de
V par la gauche, comme illustré a la figure 9a. On a donc

(4.3) B(s,r,q,t) = szqt® + Z g tD230 T80, _g(t, q),
n>2

ou la variable s marque la taille de la partie supérieure gauche du dernier V, et la série génératrice A(s) =
A(s,x,q,t) est caractérisée par I'équation fonctionelle suivante, qui se résout par la méthode habituelle:
A(1) — A(sq?
(4.4) A(s) = B(s) + 52x2q3t4%
— sq

Finalement, posant A(s,z,q,t) = >, <, Am(x,t,¢)s™ et tenant compte des décorations supplémentaires et
des deux cas de parité de la premiere colonne de la partie oscillante, on a

Sa(x’ t, q) = Z qh(h+1)t2h+2TSQh+2 (xtv (Z) Z I:W}Ll_l] 2 Am (ac, t, q)
h>0 m>h+1
(4.5) + > " TIERMTS 4 (at ) Y | [, Am(@,tq).
h>1 m>h

Les calculs de Sy(z,t,q) et de S.(z,t, q) sont plus simples et on trouve

n—1

(x,t,q) =) a" R > TS0, ok s(t, q) Y TN [nh_l]q2 TSokr2n+2(,t,q)
n>1 k1 h=0
(4.6) + > an (") en D P EARITS0, Lo g (wt, q) Y 2" (1] TSantonta (2,1, q)

n>0 k>1 h=0



102 DENOMBREMENT DES CLASSES DE SYMETRIES DES POLYOMINOS HEXAGONAUX CONVEXES

et

(4.7) Se(x,t,q) = Y t*" TSy (xt,q) TS0, 5(at, q).
h>1

Ainsi

(4.8) |Fiz(h)|ge = Sa(1,t,q) + Sp(1,t,q) + Sc(1,t,q).

5. Symétries de rotation

5.1. Symétrie par rapport a la rotation r de 7/3 radian. Les polyominos symétriques par rapport
a la rotation r de 7/3 radian sont essentiellement des polyominos formés de grands hexagones décorés par
des tas TO. On trouve

(51) |Fix(r)|q7t _ Z t3(2h_1)q3h(h_1)+1T0h,1(tﬁ, q6).
R>1

5.2. Symétrie par rapport a la rotation r?, de 27/3 radian. Ce cas est plus complexe. Il faut
d’abord distinguer le cas ou le centre de rotation est au milieu d’'un hexagone de celui ou il est en un sommet.
Ceci détermine deux sous-classes, notées P et Q. Dans le premier cas, il y a trois sous-cas selon que hy > ho,
ho > hy ou hy = hg, correspondant aux trois sous-classes P1, P2 et P3. La figure 10 illustre le premier
cas P;. Cette figure ne représente qu'un tiers du polyomino r?-symétrique, sa région fondamentale. On
voit apparaitre une nouvelle classe de polyominos hexagonaux convexes, les dirigés (vers le haut), a base
diagonale, notée D, qu’il faut d’abord dénombrer avant de déterminer P;(q,t). Nous manquons d’espace ici
pour donner les détails de ces calculs. Notons que pour des raisons de symétrie, Pa(q,t) = P1(q,t). Les
calculs sont semblables pour la classe Q, et

(5.2) |Fiz(r?)|q.c = 2P1(q,t) + P3(q,t) +2Q1(q, t) + Qs(q, t).

ho hz

FIGURE 10. Région fondamentale d’'un polyomino convexe r2-symétrique dans P;
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5.3. Symétrie par rapport a la rotation r3, de 7 radian. Si le centre de rotation est au milieu
d’une aréte, il y a trois cas similaires correspondant aux trois types d’arétes. Prenons le cas de l'aréte
horizontale et notons A la classe correspondante. On a

1
(5.3) A(z,q,t) = Z W(Ooo,zk +2Co1,21 + Cr1,2k + 2002,2k)(332; .1

k>1

Si le centre de rotation est au milieu d’un hexagone, on note H la classe correspondante et on a

1 2 2,2
(5.4) H(z,q,t) = 1§) W(OOO,%H +2C01,2k+1 + Cr1,2k41 + 2C02,2641) (27, g7, 7).

Finalement,

(5.5) |Fiz(r®)|q.: = 3A(1, q,t) + H(1, q,1).

6. Conclusion

Il est maintenant possible d’utiliser la formule de Burnside (2.12), avec F = C, pour dénombrer les
polyominos convexes libres, c’est-a-dire a rotation et réflexion pres, selon l'aire et le demi-périmetre. Quelques
résultats numériques sont présentés dans les tableaux 1 et 2, selon laire seule (jusqu’a laire 20) ou le demi-
périmetre seul (jusqu’au demi-périmetre 16). Voir sous la colonne Orbites. Ces résultats ont été vérifiés
expérimentalement par une énumération exhaustive par ordinateur.

Il est également possible de dénombrer les polyominos convexes asymétriques ou ayant exactement les
symétries d’un sous-groupe donné H de Dg, a I’aide de I'inversion de Mobius dans le treillis des sous-groupes
de Dg. Ce treillis et sa fonction de Mébius sont bien décrits dans la these de Stockmeyer [14] pour tout
groupe diédral D,,. Nous suivons ici cette nomenclature et quelques résultats se trouvent dans les tableaux
1 et 2. On voit bien sur ces tableaux que presque tous les polyominos convexes sont asymétriques.

On trouvera plus de détails dans la forme longue de ce résumé substantiel sur le site Web des archives
mathématiques http://arxiv.org arXiv:math.CO/0403168.
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TABLE 1. Classes de symétries des polyominos hexagonaux convexes selon 'aire

Aire | id h v r|r? ] Orbites | Dg | F31 | H31 | Do1 | Asym

1 1 1 1 1(1 |1 1 1 1 1 1 0

2 3 1 1 00 |3 1 0 0 0 1 0

3 11 3 3 012 |3 3 0 2 0 1 0

4 38 2 4 012 |12 6 0 0 2 2 24

5 120 6 10 0|10 |12 15 0 0 0 2 72

6 348 6 12 06 |42 38 0 2 0 2 264

7 939 9 27 113 |37 91 1 1 3 3 816

8 2412 12 |30 0|10 | 126 222 0 0 0 4 2184

9 5973 17 | 63 012199 528 0 0 0 3 5640

10 14394 20 | 66 0|6 | 336 1250 0 2 4 4 13836

11 34056 30 | 142 | 0|0 | 252 2902 0 0 0 6 33324

12 79602 38 | 140 |0 |18 | 840 6751 0 2 0 4 78240

13 184588 46 | 310 | 1|13 |616 15525 1 1 5 8 182952
14 426036 62 | 286 | 0|0 |2028 | 35759 0 0 0 8 423012
15 980961 69 | 665 |0|30]|1461 | 82057 0 2 0 7 977316
16 2256420 | 100 | 580 | 0 | 18 | 4788 | 188607 |0 0 6 8 2249640
17 5189577 | 1151|1441 |0 |0 | 3435 | 433140 |0 0 0 11 5181540
18 11939804 | 154 | 1184 | 0 | 50 | 11142 | 996255 | O 2 0 12 11924676
19 27485271 | 175 | 3145 | 1 | 27 | 8005 | 2291941 | 1 1 7 13 | 27467376
20 63308532 | 238 | 2458 | 0 | 0 | 25800 | 5278535 | 0 0 0 16 | 63274740

TABLE 2. Classes de symétries des polyominos hexagonaux convexes selon le demi-périmetre

%pér id h |v r|r? ] Orbites | Dg | F31 | H31 | D21 | Asym
3 1 1 |1 111 |1 1 1 1 1 1 0

4 0 0 |0 0|0 |0 0 0 0 0 0 0

5 3 1 |1 0[{0 |3 1 0 0 0 1 0

6 2 2 |0 012 |0 1 0 2 0 0 0

7 12 2 |4 0|0 |6 3 0 0 0 2 0

8 18 2 |0 010 |0 2 0 0 0 0 12

9 59 519 115 (19 |11 1 3 3 3 24

10 120 8 |0 0|0 |0 12 0 0 0 0 96

11 318 10[24 |00 |48 |39 0 0 0 6 204
12 714 1410 011210 65 0 4 0 0 672
13 1743 | 25|59 |0|0 |129 | 177 0 0 0 7 1368
14 4008 360 0|0 |0 343 0 0 0 0 3900
15 9433 | 53 | 143 | 2 | 28 | 323 | 867 2 6 8 15 | 8616
16 21672 | 76 | 0 010 |0 1825 0 0 0 0 21444
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A characterization of the simply-laced FC-finite Coxeter groups

HAGIWARA Manabu, Masao ISHIKAWA, and Hiroyuki TAGAWA

Abstract. We call an element of a Coxeter group fully covering if its length is equal to the number
of the elements covered by it. For the Coxeter groups of type A, an element is fully covering if and
only if it is 321-avoiding. In this sense it can be regarded as an extended motion of 321-avoiding. It
also can be seen from the definition that a fully covering element is always fully commutative. Also,
we call a Cozxeter group bi-full when an element of the group is fully commutative if and only if it
18 fully covering. We show that the bi-full Coxeter groups are of type A, D, E. Note that we do not
restrict the type E to Es, E7, and Eg. In other words, Coxeter groups of type Fg, F1o,... are also
bi-full. According to a result of Fan, a Cozeter group is a simply-laced FC-finite Cozeter group if
and only if it is a bi-full Cozeter group.

1. Introduction

It is needless to say that the notion of Coxeter groups appears in various mathematical fields and have
widely interested people, but they, themselves, are still very interesting objects for study. It is also well
known that the Coxeter groups of type A, D, Eg, Fr7, and Fg, i.e. simply laced Weyl groups, share a lot of
interesting properties and attract many researchers. Usually, when we say the groups of type E,, we often
tend to restrict ourselves to n = 6,7 and 8 cases. However, we sometimes find that the general Coxeter groups
of type E,, which are not restricted to n = 6,7, 8, also share some very interesting properties. For example,
we can mention FC-finite Coxeter groups. An element of a Coxeter group is said to be fully commutative if
any reduced expression for it can be obtained from any other by transposing adjacent commuting generators.
A FC-finite Coxeter group is, by definition, a Coxeter group which has a finite number of fully commutative
elements. C. K. Fan proved that the simply-laced FC-finite irreducible Coxeter groups are only of type A, D,
and E, and vice versa ([3, Proposition 2.]). Here, of course, the Coxeter groups of type E means of type E,,
which are not restricted to n = 6,7, 8.

In this paper, we call an element of a Coxeter group fully covering if its length equals the number of
elements covered by it. This notion was already appeared in [4, Theorem 1]. Further we say a Coxeter group
is bi-full when each element of the group is fully commutative if and only if it is fully covering. The purpose
of our paper is to characterize the bi-full Coxeter groups. Although it is a consequence of the result by Fan,
that the Coxeter groups of type A, D, Fg, E7, and Eg are bi-full (see [4, Theorem 1]) and the Coxeter group
of type Aj is not bi-full (see [4, Conclusion]), his results do not give a complete characterization of all the
bi-full Coxeter groups. In fact, one of our main goals in this paper is to prove that the irreducible bi-full
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Coxeter groups are only of type A, D, E and vice versa. Accordingly it immediately implies that a Coxeter
group is a simply-laced FC-finite if and only if it is bi-full (see Theorem 2.9).

Now we recall some notation from the symmetric groups. An element o of the symmetric group of
degree n is called a 32I-avoiding if there is no triple 1 < i < j < k < n such that (i) > o(j) > o(k).
Our original motivation is to regard the notion of “fully covering” as an extension of that of 321-avoiding
(see [1]) to any Coxeter groups. In fact, it is a consequence of some well known facts that, if we restrict
our attention to the Coxeter groups of type A, then a permutation is fully covering if and only if it is
321-avoiding. Actually, this observation was the starting point of our research. We should note that there
is another interesting extension of the notion of 321-avoiding. In [5], Green extended the notion to the
affine permutation groups from another point of view, whereas our extension, i.e. fully covering, and his
definition of 321-avoiding in the affine permutation groups are not equivalent. Indeed, he defined the notion
of 321-avoiding permutations for any affine permutation groups and showed that an element is 321-avoiding
if and only if it is fully commutative. In [6, Thm. 5.1] Hagiwara proved that a 321-avoiding permutation in
an affine permutation group is a minuscule element of the group, and vice versa. Meanwhile, it is not hard
to see that, for the affine permutation groups, fully covering implies fully commutative, but the reverse is
not true.

We conclude this section by making a remark on the Kazhdan-Lusztig theory. Let W be any Coxeter
group and let x, w be elements of W. Let pi(x,w) denote the coefficient of degree 1 in the Kazhdan-Lusztig
polynomial P, ,, for the interval [z,w] in the Bruhat ordering of W. M. Dyer showed that pi(e,w) =
¢ (w) — |supp(w)| and p1(e,w) > 0 (see [2]). Thus, if W is of type A, D, E and w is a fully commutative
element of W, then we can rewrite this result as p;(e, w) = £(w) — |supp(w)].

This paper is organized as follows: In §2, we recall and provide some basic terminology. In §3, we collect
some important properties of a fully commutative element. In §4, we show that Coxeter groups of type A,
D, and FE are bi-full. Moreover, we show that a Coxeter group which is neither of type A, D nor E cannot
be bi-full.

2. Preliminaries and Notations

Now we start with notation and preliminaries again from scratch as this paper become more compre-
hensive even though it might be slightly repetitious. Throughout this paper, we assume that (W, .S) always
denote a Coxeter system with finite generator set S and Coxeter matrix M = [m(s,t)]stes. Thus m(s,t) is
the order of st in W (possibly m(s,t) = co). When m(s,t) = 2, we say s and ¢t commute. The Coxeter graph
T of (W,S) is, by definition, the simple graph with vertex set S and edges between two non-commuting
generators. We may regard (I, M) as a weighted graph by interpreting the entries of M as a weight function
on the edges of I, and call it the Coxeter diagram of (W,S). We illustrate a Coxeter diagram by labeling
an edge (s,t) of the Coxeter graph I' with m(s, t) when m(s,t) > 4.

We denote the set of integers by Z and denote the set of positive integers by Z~q. For a positive integer
n, we put [n] :={1,2,...,n}. For a set A, we denote its cardinality by |A| or §A.

Notation 2.1. Let w be an element of W and let e be the identity of W. A length function ¢ is a
mapping from W to Z defined by ¢(e) equals 0 and ¢(w) equals the smallest m such that there exist elements

S1,82,...,5m of S satisfying w = s1s2... s, for w # e. We call [(w) the length of w. Let x1,x9,..., 2, be
elements of W. If we have w = z122... 2y, and (x122 ... Tp) = L(z1) + l(x2) + - - + £(z4,), then we call
(x1,22,...,2m) an extended reduced word for w and w = z1x2 . .. 2, an extended reduced expression for w.
Note that we do not assume that x1,xa, ...,z belong to S. In particular, we call the word (x1, 22, ..., Tm)
a reduced word for w and w = x1%3...T, a reduced expression for w if x; € S for i = 1,2,...,m and
L(w) = m.

Definition 2.2. Let (W, S) and M = [m(s,t)]s,es be as above.
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(i) If {m(s,t)|s,t € S} C {1,2,3}, then we say (W,S) (resp. W) is a simply-laced Coxeter system
(resp. a simply-laced Coxeter group).
(i) If there exist elements s1, S2,..., s, of S (m > 3) such that m(sp, s1) > 3, m(si, siy1) > 3 for all
i € [m — 1], then we say (W, S) (and W) is cyclic. If not, then we say it is acyclic.
(iii) If the Coxeter graph I of (W, S) is connected, then we say (W, S) (and W) is irreducible.

Definition 2.3. Let (W, S) be a Coxeter system whose Coxeter diagram is given by Figure 1 (resp. Figure
2). Then we call (W, S) a Coxeter system of type E,14 for r > 2 (resp. type D,y3 for r > 1).

T

F1GURE 1. Coxeter diagram of type Fyy4

v
a1 (6%) (679 u

F1GURE 2. Coxeter diagram of type D,3
For integers m > 0 and s,t € S, set (s,t),, to be the word (s,t,s,t,s,...) of length m. We introduce
—_———

m
an equivalence relation &~ between the words of S generated by the braid relations (s, B m(s,) = {t, s>m(s,t)
for all s,t € S such that m(s,t) < co. It is an important fact that any reduced word for w can be obtained
from any other by the braid relations, i.e. the set of reduced words for w consists of one equivalence class
with respect to ~. Following [9], we also introduce a weaker equivalence relation ~ on the set of the words
of S generated by the relations (s,t) ~ (¢,s) for all s,t € S such that m(s,t) = 2. We say that w is fully
commutative if the set of reduced words for w consists of just one equivalence class with respect to ~, i.e.
any reduced word for w can be obtained from any other by transposing adjacent commuting pairs. For a
Coxeter group W, we put
WY .= {w € W|w is fully commutative}.

If the cardinality of WX is finite, then we say (W,S) is (resp. W) a FC-finite Coxeter system (resp. a
FC-finite Coxeter group).

From now on, we denote a Coxeter group of type X by W(X).

Theorem 2.4 (C. K. Fan). If W is an irreducible simply-laced FC-finite Coxeter group, then W should be
one of W(Ay), W(Dyny3) and W(Ep15) for some n > 1 (see [3]).

We recall the definition of the Bruhat ordering. Let T := {wsw~!|s € S, w € W} be the set of reflections
in W. Write y — z if z = yt for some ¢t € T with ¢(y) < ¢(z). Then define y < z if there is a sequence
Yy =wy— w; — -+ — Wy = z. It is clear that the resulting relation y < z is a partial ordering of W, and
we call it the Bruhat ordering. We say z covers y (or equivalently y is covered by z), denote by y < z, if
y < zand £(y) = £(z) —

The following is a well known characterization of the Bruhat ordering which is called the subword
property. Give a reduced expression w = $1592 -+ Sy, for w € W, let us call the products (not necessarily
reduced, and possibly empty) of the form s;, 54, ...5;, (1 <41 <y < --- <ig < m) the subexpressions of
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$182 -+ Sm. Let w = s1...s,, be a fixed, but arbitrary reduced expression for w € W. Then x < w if and
only if x can be obtained as a subexpression of this reduced expression.

The ordering handled in this paper is always assumed to be the Bruhat ordering.
Notation 2.5. For w € W, we put

supp(w): = {s€ S|s <w},
C (w): = {zeWlz<w},
c(w): = [|C™(w)].

Definition 2.6. For w € W, we call w fully covering if {(w) = ¢~ (w).

By the above subword property, the reader easily see that w € W is fully covering if and only if, given
any reduced expression w = $1--- S, deleting any one generator from this expression always reduce its
length by 1.

If w € W is not fully commutative, then there exists a reduced expression w = s;...$,, including a
braid relation (s,t) (s, with m(s,t) > 3. Thus, by discarding one of s or t from this braid relation, we
obtain an element w’ < w of the form w’ = s1...5;... 8, which is not reduced. This immediately shows w
is not fully covering, and implies the following proposition.

Proposition 2.7. A fully covering element w of W is fully commutative.

The reverse is not always true, and we will give some examples later. If the reverse is true, i.e. a fully
commutative element w € W is always fully covering, we say W (resp. (W,S)) is a bi-full Coxeter group
(resp. a bi-full Coxeter system).

Remark 2.8. Let (W3,S51), (W2, S2) be bi-full Coxeter systems (resp. FC-finite Coxeter systems). If we
have S1 N Sy = () and s1s2 = s281 for any (s1,s2) € S1 x S then (W1 Wa, S1 U S3) is also a bi-full Coxeter
system (resp. a FC-finite Coxeter system).

The main result of this paper is the following theorem.

Theorem 2.9. W is a simply-laced FC-finite Cozeter group if and only if W is a bi-full Coxeter group.

By Remark 2.8, we can easily reduce Theorem 2.9 to the irreducible cases. By Theorem 2.4, we already
know that an irreducible simply-laced FC-finite Coxeter group must be one of type A, D or E. Thus it is
enough to show the following theorem to complete the proof of Theorem 2.9.

Theorem 2.10. Let W be an irreducible Coxeter group. Then, W is bi-full if and only if it is either of type
A, D orE.
By Proposition 2.7, if the following two claims hold then we can obtain Theorem 2.10.

Claim 1. Any fully commutative element of the Coxeter group of type E is fully covering (Theorem 4.3).

Claim 2. If W is neither of type A, D nor E, then there is an element in W which is fully commutative,
but not fully covering (Theorem 4.9).

We often use the following notation and facts which the reader may be already familiar with (see [8]).
For any subset J C S, let W; = (J) denote the subgroup of W generated by all s € .J, which is usually
called the parabolic subgroup of W generated by J. Put W7 = {x € W |l(xy) = £(z) + {(y) for all y € Wy}
and /W = {z € W|l(yx) = {(y) + £(x) for all y € W}, then the following fact shows W (resp. /W) is the
set of left (resp. right) coset representatives of W with respect to W;.

Fact 2.11. (i) For any w € W, there is a unique pair (z,y) € W7 x W such that w = zy.
(ii) For any w € W, there is a unique pair (y, z) € Wy x /W such that w = yz.

3. Properties of fully commutative elements

In this section, we collect some basic and important properties of fully commutative elements which will
be concerned with the rest of the paper. Throughout this section we assume that W always denotes any
Coxeter group if there is no special mention.
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By the definition of the fully commutativity, we have the following.

Lemma 3.1.

(i) Let w be an element of W. Let s183...8m and sysh...s, be reduced expressions for w. If w is
fully commutative then we have

{51,82,. .., 8m} = {81,855, ...,8,} as multisets.

(ii) Assume m(s,t) is odd or 2 for any s,t € S. For any w € W, w is fully commutative if and
only if we have {s1,s2,...,8m} = {s1,85,...,s,,} as multisets for any reduced expressions w =
8182 ...8m = S185...50 .

(ili) An element is fully commutative if it has a unique reduced expression.

(iv) Let xzyz be an extended reduced expression for w. If w is fully commutative then y is also fully
commutative.

(v) Let W be a simply-laced Cozeter group and let w be an element of W. Then w is not fully com-
mutative if and only if there is a reduced expression s15s .. .Sy, for w such that s; = s;1o for some
1<i<m-—-2.

The following lemma is a key lemma of this paper.

Lemma 3.2. Let w be a fully commutative element and let s1s2 ... s, be a reduced expression for w (r > 2).
If we have w = ss183...5.—1 for some s € S then we have the followings:

(i) s=sy,
(ii) ss; = s;s for any j € [r—1],
(iii) s £ $182...8—1.

The following corollary is useful to find an element which is fully commutative and is not fully covering.
Corollary 3.3. Let w be an element of W and let s1, 52, ..., Sy be elements of S such that w = s183... Sy,
Note that we do not assume that s182 . ..Sm is a reduced expression for w. We define a condition (FC) as
follows:

(FC) If there exists a pair (i,]) of integers such that i < j and s; = s;, then there exists a pair (a,b) of
integers such that i < a < b < j, 848; # SiSq and SpS; 7 SiSp-

Then we have the followings.

(i) If s152...sm satisfies the condition (FC) then sisa...sy, is a reduced expression for w and w is
fully commutative.

(ii) If W is a simply-laced Cozeter group, $1S2...Sm is a reduced expression for w and w is fully
commutative, then $18z . ..Sm satisfies the condition (FC).

By Corollary 3.3, we have the following.
Corollary 3.4. Let W be a simply-laced Coxzeter group and let w be an element of W such that £(w?) = 20(w)
and w? is fully commutative. Then for any k € Zso we have {(w®) = kf(w) and w* is fully commutative.
In particular, W is not a FC-finite Coxeter group.

The following lemma holds for any Coxeter system (W, S).
Lemma 3.5. Let (W,S) be a Coxeter system and let x be an element of W. Let s1, so be elements of S
such that s1sox is an extended reduced expression and that sos189 is reduced (i.e. m(s1,s2) > 3). If we have
s1 & supp(x) then sos1sax is an extended reduced expression.

The following lemma holds for any simply-laced Coxeter system.
Lemma 3.6. Let (W, S) be a simply-laced Coxeter system, and let w be a fully commutative element of W.
If s182... 8y, is a reduced expression for w, then 18383 ... 8y, s reduced.
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4. Main results

There is a method to derive the following proposition from a well-known fact on 321-avoiding per-
mutations of the symmetric groups. However, here we give a sketch of our proof without the notion of
321-avoiding.

Proposition 4.1. Let W be a Weyl group of type A,.. Then a fully commutative element w of W is fully
covering.

Let (s1,82,...,8m) € S* be any word from S (i.e. an element of the free monoid generated by S), and
let o be an element of S. Then we use the notation:

go(51,52,- 5m)) == H{i € [m] | i = a}.
By Lemma 3.1(i), when w is fully commutative, we can define

go(w) := ga((51,52,. -, 5m))

without ambiguity where (s1,s2,...,Sy,) is a reduced word for w.
Lemma 4.2. Let w = $182...Sm be a reduced expression for w € W. Let {a1,a9,...,a,} be a subset of
supp(w) satisfying the following conditions (1),(2), and (3).
(1) a;s = say for any i € [r] and for any s € supp(w) — {aq, a9, ..., o }.
(2) (a1, 9,...,0p) is a Weyl group of type A,, whose Cozeter graph is given by Figure 3. (i.e.
{a1,a2,...,a,} is a connected component of the Coxeter graph of W and ay is one of its end-
points.)

aq Qg Qr_1 Qp

F1GURE 3. Coxeter diagram of type A,

(3) ga,((s1,82,-..,8m)) > 2.
Then w is not fully commutative.

Here we don’t have enough space to give a detailed proof of this lemma, which the reader can find in
our original paper [7]. The proof of Proposition 4.1 reduce to this lemma. This fact was the starting point
of our main result. In fact the idea of the proof of the following theorem resides in a similar method for type
E, while the proof needs more complicated computations. Thus it is worth describing the proof in the case
of type A.

Theorem 4.3. Let W be a Cozxeter group of type E and let w be an element of W. Ifw is fully commutative
then w is fully covering.

By a similar argument as above, the proof of Theorem 4.3 reduce to the following two lemmas, which is
a fundamental idea of our proof. Thus the proofs of the following lemmas are main goal of our paper.
Lemma 4.4. Let (W, S) be a Coxeter system of type D,3, whose Cozeter graph is given by Figure 2 (r > 1).
(i.e. a1, B and vy are the endpoints designated in the figure.) Put J := S — {a1}. Let w € "W be a fully
commutative element and let s182...5m be a reduced expression for w. If supp(w) includes the endpoints
a1, 3,7, then the followings hold.

(i) r+3<m, s152...8.43 = a1a2....ufy.
(ii) For any s € J, sw is not fully commutative.

(iii) m < 2r+4.

(iv) If m > r +4 then we have Sy 448r45 - - Sm = UQQp—1 - . . Agpt5—m Where aypy1 = U.

Lemma 4.5. Let (W,S) be a Cozeter system of type E.+q (r > 1) whose Coxeter graph is designated in
Figure 1 (i.e. a1, (1 and ~y are the endpoints in the figure). Put J := S — {a1}. Let w € 7W be a fully
commutative element and let s183 . ..8y, be a reduced expression for w. Then the followings hold.
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(i) If supp(w) includes all the end points a1, $1 and vy, then sw is not fully commutative for all s € J.
(ii) Assume that we have aq, B2,y € supp(w), f1 & supp(w) and s € J. If sw is fully commutative then
we have s = (1.
(iii) Assume that we have gqo, (W) > 2 and we have s € J such that sw is fully commutative. Then we
have w = a1 . .. apuyBouy, ...z and s = (.
(iv) Assume that we have go,(w) > 3 and we have w € "W N'W7. Then there exists an element v of
Ws_{a1,a0} Such that

(v1g . .. apuyBouc a1 ... a2)a1 S1vfi (e . . . aruyBotu,p_y ... (11)

is an extended reduced expression for w and that BivfB, € S~ W qwS—161},

Remark 4.6. Let w be an element of a Coxeter group. In [4], w is said to be short-braid avoiding if and
only if any reduced expression $15z ... sy, for w satisfies s; # s; 40 for all i € [m — 2]. It is easy to see that a
fully covering element is short-braid avoiding, and that a short-braid avoiding element is fully commutative.
By the same method as the one adopted in the proof of [4, Theorem 1] and Theorem 4.3, we can easily
obtain the following which includes Fan’s result [4, Theorem 1]. Let (W, S) be a Coxeter system and let
(Wo, So) be a Coxeter system defined by So := S as a set and m(s,t) := 3 if m(s,t) > 3 in W for s,¢ € Sp.
If Wy is a Coxeter group of type A, D or E then for w € W, w is a short-braid avoiding element if and only
if w is a fully covering element.

Although it is already shown by Fan that a Coxeter group of type F is FC-finite, we can give an explicit
upper bound for the maximum length of fully commutative elements.
Proposition 4.7. Forn > 3, we have

max{/(w)|w € W(E,)F} <2n=1 -1,

where we put W(E3) := (b1, B2,7). In particular, we have |W (E,)F¢| < cc.
Remark 4.8. In [10], H. Tagawa showed that we have max{c™ (z)|z € W(A,)} = |(n + 1)?/4], where |a)
is the largest integer equal or less than a. By the formula, it is easy to show that we have max{/{(x)|z €
W (A,)FCY = [(n+ 1)2/4]. Note that it does not hold on case of type D. In fact, we have max{c™(z)|z €
W(D4)} =8 > 6 = max{/(z)|xr € W(D4)F°}.

Moreover, we can show the following.
Theorem 4.9. Let W be an irreducible Cozeter group which is neither of type A, D nor E. Then W is not
a bi-full Coxeter group. In other words, there is an element of W which is fully commutative and which is
not fully covering. In particular, if W is a simply-laced Cozeter group then we have |WF¢| = oo.

This theorem is easily obtained by the following proposition.
Proposition 4.10. Let (W7, S1) (resp. (Wa,S2), (Ws,S3), (W4, S1), (Ws,S5)) be a Coxeter system of type
A, (n>2) (resp. Dyy3 (r>1), Eg, Er, Iy(m) (m >4)). Then for each 1 <i <5 there exists an element
w; of Wi such that w; is fully commutative and w; is not fully covering. Furthermore we have |WFC| = oo
forany 1 <i <A4.
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Cyclic Resultants

Christopher J. Hillar

Abstract. Let k be a field of characteristic zero and let f € k[z]. The m-th cyclic resultant of f is
rm = Res(f,x™ —1). We characterize polynomials having the same set of nonzero cyclic resultants.
Generically, for a polynomial f of degree d, there are exactly 24~ distinct degree d polynomials with
the same set of cyclic resultants as f. However, in the generic monic case, degree d polynomials are
uniquely determined by their cyclic resultants. Moreover, two reciprocal (“palindromic”) polynomials
gwing rise to the same set of nonzero rm are equal. The reciprocal case was stated many years ago
(for k = R) and has many applications stemming from such disparate fields as dynamics, number
theory, and Lagrangian mechanics. In the process, we also prove a unique factorization result in
semigroup algebras involving products of binomials.

1. Introduction

Let k be a field of characteristic zero and let f(x) = agz? + a12¢™ ! + -+ + aq € k[z]. The m-th
cyclic resultant of f is r,,(f) = Res(f,2™ — 1). We are primarily interested here in the fibers of the map
r: klx] — kN given by f +— (Tm)f::()' In particular, what are the conditions for two polynomials to give rise
to the same set of cyclic resultants? For technical reasons, we will only consider polynomials f that do not
have a root of unity as a zero. With this restriction, a polynomial will map to a set of all nonzero cyclic
resultants.

One motivation for the study of cyclic resultants comes from the theory of dynamical systems. Sequences
of the form r,, arise as the cardinalities of sets of periodic points for toral endomorphisms. Let f be monic of
degree d with integral coefficients and let X = T¢ = R?/Z? denote the d-dimensional additive torus. Then,
the companion matrix Ay of f acts on X by multiplication mod 1; that is, it defines a map 7" : X — X
given by

T(x)=Asx mod 1.
Let Per,,(T) = {x € T¢ : T™(x) = x} be the set of points fixed under the map T™. Under the ergodicity
condition that no zero of f is a root of unity, it follows (see [3]) that [Per,,(T')[ = | det(A}' —I)|, in which I is
the d-by-d identity matrix, and both of these quantities are given by |r,,(f)|. As a consequence of our results,
we characterize when the sequence |Per,,(T)| determines the spectrum of the linear map A : R? — R? that
lifts T'.

In connection with number theory, such sequences were also studied by Pierce and Lehmer [3] in the
hope of using them to produce large primes. As a simple example, the polynomial f(z) = x — 2 gives the
Mersenne sequence M,,, = 2™ — 1. Indeed, we have M,, = |det(A}" — I)|, and these numbers are precisely

Key words and phrases. cyclic resultant, binomial factorization, group rings.
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the cardinalities of the sets Per,,(T") for the map T'(z) = 2 mod 1. Further motivation comes from knot
theory [9] and Lagrangian mechanics [6, 7].

The principal result in the direction of our main characterization theorem was discovered by Fried [4]
although certain implications of Fried’s result were known to Stark [2]. One of our motivations for this work
was to present a complete and satisfactory proof of this result. Fried’s argument in [4], while elegant, is
difficult to read and not as complete as one would like. Given a polynomial f of degree d, the reversal of f
is the polynomial 2 f(1/z). Additionally, f is called reciprocal if a; = aq—; for 0 < i < d (sometimes such
a polynomial is called palindromic). Alternatively, f is reciprocal if it is equal to its own reversal. Fried’s
result may be stated as follows.

Theorem 1.1 (Fried). Let p(z) = agx? + -+ + ag—12 + aq € R[] be a real reciprocal polynomial of even
degree d with ag > 0, and let r,, be the m-th cyclic resultants of p. Then, |ry| uniquely determine this
polynomial of degree d as long as the r, are never 0.

2. Statement of Results

As far as we know, the general (non-reciprocal) case has not received much attention. We begin by
stating our main characterization theorem for cyclic resultants.
Theorem 2.1. Let k be a field of characteristic zero, and let f and g be polynomials in k[x]. Then, f and
g generate the same sequence of nonzero cyclic resultants if and only if there exist u,v € k[z] with deg(u)
even, u(0) # 0, and nonnegative integers l1 = ly (mod 2) such that

f(x) = 2l o(@)u(z )zt

g(z) = a"v(z)u(z).

Although the theorem statement appears somewhat technical, we present a natural interpretation of the
result. Suppose that g(x) = z2v(z)u(z) is a factorization of a polynomial g with nonzero cyclic resultants.
Then, another polynomial f giving rise to this same sequence of resultants is obtained from v by multiplication
with the reversal of u and a factor 't in which I; € N has the same parity as ly. In other words, f(z) =
gho(z)u(z— )z | and all such f must arise in this manner.

Example 2.2. One can check that the polynomials
f(z) =23 —102% + 31z — 30
g(x) = 152° — 38 2% +172% — 227
both generate the same cyclic resultants. This follows from the factorizations
f(z) = (z—2) (152® — 8z + 1)
g(z) = 2*(z — 2) (2 — 8z + 15).
The following is a direct corollary of our main theorem to the generic case.

Corollary 2.3. Let k be a field of characteristic zero and let g be a generic polynomial in k[z] of degree d.
Then, there are exactly 24~ distinct degree d polynomials with the same set of cyclic resultants as g.

PROOF. If g is generic, then g will not have a root of unity as a zero nor will g(0) = 0. Theorem 2.1,
therefore, implies that any other degree d polynomial f € k[z] giving rise to the same set of cyclic resultants
is determined by choosing an even cardinality subset of the roots of g. Such polynomials will be distinct
since ¢ is generic. Since there are 2% subsets of the roots of g and half of them have even cardinality, the
theorem follows. O

Example 2.4. Let g(z) = (z—2)(z —3)(z —5) = 2> — 1022 + 31 — 30. Then, there are 237! — 1 = 3 other
degree 3 polynomials with the same set of cyclic resultants as g. They are:

1523 —3822 + 172 —2
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102% — 3722 +222 -3
62 —352%+26x —5.

If one is interested in the case of generic monic polynomials, then Theorem 2.1 also implies the following
uniqueness result.
Corollary 2.5. Let k be a field of characteristic zero and let g be a generic monic polynomial in klx] of
degree d. Then, there is only one monic, degree d polynomial with the same set of cyclic resultants as g.

PROOF. Again, since g is generic, it will not have a root of unity as a zero nor will g(0) = 0. Theorem
2.1 forces a constraint on the roots of g for there to be a different polynomial f with the same set of cyclic
resultants as g. Namely, a subset of the roots of f has product 1, a non-generic situation. O

As to be expected, there are analogs of Theorem 2.1 and Corollary 2.5 to the real case involving absolute
values.
Theorem 2.6. Let f and g be polynomials in R[z]. If f and g generate the same sequence of nonzero cyclic
resultant absolute values, then there exist u,v € Clx] with u(0) # 0 and nonnegative integers ly,ly such that

flx)= =+ xllv(x)u(xfl)xdeg(w
9(z) = 2v(z)u(2).

Corollary 2.7. Let g be a generic monic polynomial in Rlz| of degree d. Then, g is the only monic, degree
d polynomial in R[x] with the same set of cyclic resultant absolute values as g.

The generic real case without the monic assumption is somewhat more subtle than that of Corollary 2.3.
The difficulty is that we are restricted to polynomials in R[z]. However, there is the following
Corollary 2.8. Let g be a generic polynomial in Rlx] of degree d. Then there are exactly 2[4/21+1 distinct
degree d polynomials in R[x] with the same set of cyclic resultant absolute values as g.

PROOF. If d is even, then genericity implies that all of the roots of g will be nonreal. In particular, it
follows from Theorem 2.6 (and genericity) that any other degree d polynomial f € R[z] giving rise to the
same set of cyclic resultant absolute values is determined by choosing a subset of the d/2 pairs of conjugate
roots of g and a sign. This gives us a count of 2%/2*1 distinct real polynomials. When d is odd, g will
have exactly one real root, and a similar counting argument gives us 292141 for the number of distinct real
polynomials in this case. This proves the corollary. O

A surprising consequence of this result is that the number of polynomials with equal sets of cyclic
resultant absolute values is significantly smaller than the number predicted in Corollary 2.3.
Example 2.9. Let g(z) = (v —2)(z+i+2)(z—i+2) = 2% +22% — 32 —10. Then, there are 2[3/21+1 —1 =7
other degree 3 real polynomials with the same set of cyclic resultant absolute values as g. They are:

—23 222 +32+10
+(—22° —~72% — 62 +5)
+(52% —62% — Tz —2)
+(-102® - 322 + 22 +1).
It is important to realize that while
fl@)y=1-22) 1+ (i +2)z)(z—i+2)
=(—4—-2i)2® — (10 —d)z? +(2+2i)x+2—i

has the same set of actual cyclic resultants (by Theorem 2.1), it does not appear in the count above since it
is not in R[z].
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As an illustration of the usefulness of Theorem 2.1, we prove a uniqueness result involving cyclic resultants
of reciprocal polynomials. Fried’s result also follows in the same way using Theorem 2.6 in place of Theorem
2.1.

Corollary 2.10. Let f and g be reciprocal polynomials with equal sets of nonzero cyclic resultants. Then,

=g

PRrROOF. Let f and g be reciprocal polynomials having the same set of nonzero cyclic resultants. Applying
Theorem 2.1, it follows that d = deg(f) = deg(g) and that

£(@) = v(@)u(a)aE
g9(z) = v(z)u(z)
(I3 = Iz = 0 since f(0),g(0) # 0). But then,

u(m_l)mdeg(u) — M
u(z) 9(x)
d

_ u(ﬁ) xfdeg(u)'

In particular, u(z) = £u(z™ ")z, If u(z) = u(z~ )z then f = g as desired. In the other case, it
follows that f = —g. But then Res(f,z — 1) = Res(g,x — 1) = —Res(f,z — 1) is a contradiction to f having
all nonzero cyclic resultants. This completes the proof. O

We now switch to the seemingly unrelated topic of binomial factorizations in semigroup algebras. The
relationship to cyclic resultants will become clear later. Let A be a finitely generated abelian group and let
ai, - ..,a, be distinguished generators of A. Let @ be the semigroup generated by a1, ...,a,. If k is a field,
the semigroup algebra k[Q)] is the k-algebra with vector space basis {s® : a € @} and multiplication defined
by s® - s = s%t?. Let L denote the kernel of the homomorphism Z" onto A. The lattice ideal associated
with L is the following ideal in S = k[z1,...,2y):

In = (" —2" : u,veN" withu—wv e L).

It is a well-known fact that k[Q] = S/IL (e.g. see [8]). We are primarily concerned here with certain
kinds of factorizations in k[Q)].
Question 2.11. When is a product of binomials in k[Q] equal to another product of binomials?

The answer to this question is turns out to be fundamental for the study of cyclic resultants. Our main
result in this direction is a certain kind of unique factorization of binomials in k[Q)].
Theorem 2.12. Let k be a field of characteristic zero and let o € k. Suppose that

e f
SaH (8% — §¥) = OéSbH (8% — s¥i)
=1 =1

are two factorizations of binomials in the ring k[Q]. Furthermore, suppose that for each i, u; — v; (x; — y;)
has infinite order as an element of A. Then, a = £1, e = f, and up to permutation, for each i, there are
elements ¢;,d; € Q such that s (s — %) = £sdi(s% — g¥).

Of course, when each side has a factor of zero, the theorem fails. There are other obstructions, however,
that make necessary the supplemental hypotheses concerning order. For example, take £ = Q, and let
A =17/27. Then, k[Q] = k[A] = Q[s]/(s*> — 1), and we have that

(1-9)(1—-5)=2(1-2s).

This theorem also fails when the characteristic is not 0.
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Example 2.13. L={0}, I, ={(0), A=Z,Q =N, k=17/3Z,
1-)=0-t)1—-t)(1—1).

One might wonder what happens when the binomials are not of the form s* —s”. The following example
exhibits some of the difficulty in formulating a general statement.
Example 2.14. L = {(0,b) € Z* : biseven}, I, = (s> — 1) C k[s,t], A= Z D Z/2Z, Q = N Z/2Z,
k = Q(¢). Then,
(1—tY) = (1 —st)(1 + st)(1 —ist)(1 +ist) = (1 — st?)(1 + st?)

are three different binomial factorizations of the same semigroup algebra element.
Example 2.15. L={0}, I, =(0), A=Z,Q=N,k=C. If

T S

(1—tm)=JJa—t")

1 i=1

3

for positive integers m;,n;, then r = s and up to permutation, m; = n; for all 4.
We now are in a position to outline our strategy for characterizing those polynomials f and g having the
same set of nonzero cyclic resultants (this strategy is similar to the one employed in [4]). Given a polynomial

M

f and its sequence of 7,,, we construct the generating function Ey(z) = exp (— D om>1 rmﬁ). This series
turns out to be rational with coefficients depending explicitly on the roots of f. Since f and ¢ are assumed
to have the same set of r,,, it follows that their corresponding rational functions Ey and E, are equal. Let G
be the (multiplicative) group of units in the algebraic closure of k. Then, the divisors of these two rational
functions are group ring elements in Z[G] and their equality forces a certain binomial group ring factorization
that is analyzed explicitly. The results above follow from this final analysis.

3. Binomial Factorizations in Semigroup Algebras

To prove our factorization result, we will pass to the full group algebra k[A]. As above, we represent
elements 7 € k[A] as 7 = >_" | ;8% , in which a; € k and g; € A. The following lemma is quite well-known.
Lemma 3.1. If o € k* and g € A has infinite order, then 1 — as? € k[A] is not a 0-divisor.

PROOF. Let a € k*, g€ Aand 7= " ;8% # 0 be such that

r=asI9r =as¥r =asT = .

Suppose that a; # 0. Then, the elements s9*,s91%9 591429 appear in 7 with nonzero coefficient, and
since g has infinite order, these elements are all distinct. It follows, therefore, that 7 cannot be a finite sum,
and this contradiction finishes the proof. O

Since the proof of the main theorem involves multiple steps, we record several facts that will be useful
later. The first result is a verification of the factorization theorem for a generalization of the situation in
Example 2.15.

Lemma 3.2. Let k be a field of characteristic zero and let C be an abelian group. Let k[C|] be the group algebra
with k-vector space basis given by {s®: ¢ € C} and set R = k[C|[t,t™]. Suppose that c1,...,ce,d1,...,ds,b €

C, my,...,me,n1,...,ny are nonzero integers, q € Z, and z € k are such that
e f
H (1 — s%t™) = 28"t9 H (1 — stigni)
i=1 i=1

holds in R. Then, e = f and after a permutation, for each i, either s¢it™: = sdit"i o s¢it™i = g~ dig=ni,
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PROOF. Let sgn : Z\ {0} — {—1,1} denote the standard sign map sgn(n) = n/|n| and set v = zs’t9.
Rewrite the left-hand side of the given equality as:

€ €

H (1 _ SCitmi) _ H _gCigmi H (1 _ Ssgn(mi)ciﬂmi\).

=1 sgn(m;)=—1 i=1
Similarly for the right-hand side, we have:
/ f

H (1 _ Sditm) _ H _Sditm H (1 o Ssgn(ni)dit\nd).

i=1 sgn(n;)=-—1 i=1

Next, set
n=r~ H g CipTm H _Sditni
sgn(m;)=—1 sgn(n;)=-—1

so that our original equation may be written as

e f
H (1 _ Ssgn(mi)cz’t\mﬂ) _ 77]i[ (1 _ Ssgn(ni)ditmi\).
=1

=1

Comparing the lowest degree term (with respect to t) on both sides, it follows that 7 = 1. It is enough,
therefore, to prove the claim in the case when

€

f
(3.1) [T —scemy =T (1 - s%tm)

i=1 i=1

and the m;, n; are positive. Without loss of generality, suppose the lowest degree nonconstant term on both
sides of (3.1) is t™ with coefficient —s® — .- — s° on the left and —s® — ... — s% on the right. Here, u
(v) corresponds to the number of m; (n;) with m; = my (n; = my).

Since the set of distinct monomials {s® : ¢ € C'} is a k-vector space basis for the ring k[C], equality of
the ™ coefficients above implies that © = v and that up to permutation, s = s% for j = 1,...,u (recall
that the characteristic of k is zero). Using Lemma 3.1 and induction completes the proof. (]

Lemma 3.3. Let P = (p;;) be a d-by-n integer matriz such that every row has at least one nonzero integer.
Then, there exists v € Z™ such that the vector Pv does not contain a zero entry.

PrOOF. Let P be a d-by-n integer matrix as in the hypothesis of the lemma, and for h € Z, let
vy = (1,h,h2,...,h" 1T, Assume, by way of contradiction, that Pv contains a zero entry for all v € Z".
Then, in particular, this is true for all v, as above. By the (infinite) pigeon-hole principle, there exists an
infinite set of h € Z such that (without loss of generality) the first entry of Pvy, is zero. But then,

f(h):=> puh™t =0
i=1

for infinitely many values of h. It follows, therefore, that f(h) is the zero polynomial, contradicting our
hypothesis and completing the proof. O

Lemma 3.3 will be useful in verifying the following fact.
Lemma 3.4. Let A be a finitely generated abelian group and ai,...,aq elements in A of infinite order.
Then, there exists a homomorphism ¢ : A — Z such that ¢(a;) # 0 for all i.
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ProOOF. Write A = B® C, in which C is a finite group and B is free of rank n. If n = 0, then there are
no elements of infinite order; therefore, we may assume that the rank of B is positive. Since aq,...,aq have
infinite order, their images in the natural projection 7 : A — B are nonzero. It follows that we may assume
that A is free and a; are nonzero elements of A.

Let eq,...,e, be a basis for A, and write

ar = pg1€1 + - + Pinn

for (unique) integers p;; € Z. To determine a homomorphism ¢ : A — Z as in the lemma, we must find
integers ¢(e1), ..., d(en) such that

0 7é p11¢(€1) + - +p1n¢(€n)
(32) ........................
0 7é pd1¢(€1) + - +pdn¢(en)

This, of course, is precisely the consequence of Lemma 3.3 applied to the matrix P = (p;;), finishing the
proof. O

Recall that a trivial unit in the group ring k[A] is an element of the form as® in which o € k* and a € A.
The main content of Theorem 2.12 is contained in the following result. The technique of embedding k[A]
into a Laurent polynomial ring is also used by Fried in [4].

Lemma 3.5. Let A be an abelian group and let k be a field of characteristic 0. Two factorizations in k[A],

e f

H(l—sgi):nH(l—shi),

i=1 =1

in which n is a trivial unit and g;, h; € A all have infinite order are equal if and only if e = f and there is
some nonnegative integer p such that, up to permutation,

(1) gi=hi fori=1,...,p
(2) gi=—h; fori=p+1,... e
(3) ’[7 = (—1)8_psgp+1+“'+gc'

PROOF. The if-direction of the claim is a straightforward calculation. Therefore, suppose that one has
two factorizations as in the lemma. It is clear we may assume that A is finitely generated. By Lemma 3.4,
there exists a homomorphism ¢ : A — Z such that ¢(g;), ¢(h;) # 0 for all i. The ring k[A] may be embedded
into the Laurent ring, R = k[A][t,t™'], by way of

m m
(S = S
i=1 =1

Write 7 = as®. Then, applying this homomorphism to the original factorization, we have

e f
I1 (1 _ Sgitgb(gi)) = as’t?O I (1 _ Shitas(hi)) .
i=1

i=1
Lemma 3.2 now applies to give us that e = f and there is an integer p such that up to permutation,

(1) gi=h;fori=1,....p
(2) gi=—hifori=p+1,... e
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We are therefore left with verifying statement (3) of the lemma. Using Lemma 3.1, we may cancel equal
terms in our original factorization, leaving us with the following equation:
e e
[T a-s=n ] a-s7)
1=p+1 i=p+1
e

=n(-1)¢7P H g 9 H (1—s%).

i=p+1 i=p+1
Finally, one more application of Lemma 3.1 gives us that n = (—1)¢"Pg9%+1++9 a5 desired. This finishes
the proof. O

We may now prove Theorem 2.12.

PROOF OF THEOREM 2.12. Let
f

st | (s% —s") =as® H (87t —s¥)

i=1 i=1

o

be two factorizations in the ring k[Q)]. View this expression in k[A] and factor each element of the form
(s* —sY) as s* (1 — s¥~"*). By assumption, each such v —u has infinite order. Now, apply Lemma 3.5, giving
us that « = 1, e = f, and that after a permutation, for each i either sVi=%i = g¥i=%i or gVi~%i = g%~ ¥i [t
easily follows from this that for each i, there are elements c¢;,d; € @ such that s (s% —s¥) = +s%i (s —s¥).
This completes the proof of the theorem. ([l

4. Cyclic Resultants and Rational Functions

We begin with some preliminaries concerning cyclic resultants. Let f(x) = agx? + a;29™t +--- +aq be
a degree d polynomial over k, and let the companion matrix for f be given by:

0 0 -~ 0 —ag/ap

1 0 --- 0 —ad,l/ao
A= 0 1 - 0 —ad_g/&o

0 : .o :

o 0 --- 1 —al/ao

Also, let I denote the d-by-d identity matrix. Then, we may write [1, p. 77]
(4.1) rm = ag'det (A™ —1I).

Extending to a splitting field of f, this equation can also be expressed as,

(4.2) = ag’ H

in which aq, ..., a4 are the roots of f(x).

Let e;(y1,...,ya) be the i-th elementary symmetric function in the variables y1,...,yq (we set eg = 1).
Then, we know that a; = (—1)%ape;(a1,...,aq) and that
(4.3) Tm = ag' Z Yeeq_i (", ..., o).

We first record an auxiliary result.
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Lemma 4.1. Let F,(z) = 11 (1 = apavy - -+ oy, z) with Fo(z) =1 — agz. Then,
1<iy < <ip <d
o0
F/
Z aer (a,...,a™) 2™ = —z - £
Ey,
m=1
in which F} denotes %Lk,

PrOOF. For k = 0, the equation is easily verified. When k > 0, the calculation is still fairly straightfor-
ward:

m=1 m=1 i1<---<ig

oo
— ao ail Ozlk -z

i1 <<t m=1

o Z agQj, « Oy 2
1—apoy, -0y, 2

11 <-+-<1
—z- 4 I Q-apay, - 2)
. i1 < <ip
[T (-aoqi - 2)
i1 < <ip
_ K
= o
d
We may now state and prove the rationality result mentioned in the introduction.
Lemma 4.2. Rs(z) = ano:l rmz™ s a rational function in z.
PRrROOF. We simply compute that
(o'} 00 d
Z rme™ = Z Z (=D ag'eq—i (af*, ..., ) - 2™
m=1 m=1 i=0
d 00
=Y (=" ) ageai(af, .., af) - 2"
=0 m=1
d
F/
- —z. _1)t. d—1
Z ( ) Fdfz
1=0
O

Let us remark at this point that Lemma 4.2 implies the following curious determinantal identity.
Corollary 4.3. Let d be a positive integer and set n = 2% 4+ 1. Then,

d . "
A= <l1:[1 (ozlJr ! _1)>m_1

has determinant 0.
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PRroOoOF. Let 1y, = H;i:l (g™ —1) for m € {1,2,...}. From above, Y ~_, 7,2™ is a rational function of
z with numerator and denominator each having degree at most 2¢. This implies a linear recurrence for the
T of length at most 24, and therefore it follows that det(A) = 0. O

Manipulating the expression for Ry(z) occurring in Lemma 4.2, we also have the following fact.

Corollary 4.4. Ifd is even, let G4 = % and if d is odd, let G4 = % Then,

oo
m Gy
E rm2t = —z=2.
Ga

m=1

In particular, it follows that

o0 Zm
44 — m— | = Ga.
Example 4.5. Let f(z) =22 — 52+ 6 = (z — 2)(z — 3). Then, rp,, = (2™ —1)(3™ — 1) and Fy(2) =1 — 2,
Fi(z) =(1—-22)(1 —3z2), Fa(2) =1 — 6z. Thus,
FE, F/ Fj 6z 2z 3z z
R — (2 _ 1420} _ _
1) Z(Fg F1+F0) 1-6: 1-2: 1-3: 1-2

> 2™ (1-62)(1-2)
exp (‘ 2 ’"mﬁ) “ 020 8y

m=1

and

Following [4], we discuss how to deal with absolute values in the k = R case. Let f € R[z] have degree

d such that the r,, as defined above are all nonzero. We examine the sign of r,, using equation (4.2).
First notice that a complex conjugate pair of roots of f does not affect the sign of r,,. A real root « of f
contributes a sign factor of +1if & > 1, —1if —1 < & < 1, and (—1)™ if @« < —1. Let E be the number of
zeroes of f in (—1,1) and let D be the number of zeroes in (—oo, —1). Also, set € = (—1)¥ and § = (—1)".
Then, it follows that

Tm m

— =€-0".

|7
In particular,

d
(4.5) |7 | = €(dag)™ H (" = 1).

i=1
In other words, the sequence of |r,,| is obtained by multiplying each cyclic resultant of the polynomial
f:=0f = dagx® + 6a1x?t 4 --- + day by €. Denoting by G4 the rational function determined by f as in
(4.4), it follows that

(4.6) exp (— i |7“m|%> = (éd)e.
m=1

5. Proofs of the Main Theorems

Let G be the multiplicative group generated by the nonzero roots aj,...,aq of f. Vector space basis
elements of the group ring k[G] will be represented by [a], @ € G. The divisor (in k[G]) of the rational
function G4 defined by Corollary 4.4 is

(5.1) (—1)d+1<z 3 [(aoail---aik)*l]—z > [(aoail'--aik)l}>

kodd 1< --<ig k even 11 <---<ig
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= oo T (o] - 1),

=1

Let us remark that for ease of presentation above, when k& = 0, we have assigned

> [(aoail "'Oéik)fl} =[ag "],

i1<"'<ik

which corresponds to the factor of Fy(z) = 1 — apz in G4. With this computation in hand, we now prove
our main theorems.

PROOF OF THEOREM 2.1. Examining the statement of the theorem, we may assume that k is alge-
braically closed. Let f and g be polynomials in k[z] such that the multiplicity of 0 as a root of f (g) is I3
(I2). Then, f(z) = z!*(agz® + - + aq,) and g(x) = 2'2(bgz?2 + -+ - + bg,) in which ag and by are not 0.
Let ay,...,aq, and (1, ..., B4, be the nonzero roots of f and g, respectively, and let G be the multiplicative
group generated by these elements. Since f(z) and g(z) both generate the same sequence of cyclic resultants,
it follows that the divisor (in the group ring k[G]) of their corresponding rational functions (see (4.4)) are
equal. By above, such divisors factor, giving us that

0%l T (00~ o) = (%0 T (0 - 137

Since we have assumed that f and g generate a set of nonzero cyclic resultants, neither of them can have
a root of unity as a zero. Therefore, Lemma 3.5 applies to give us that d := d; = ds and that up to a
permutation, there is a nonnegative integer p such that

(1) ay=p; fori=1,...,p

(2) a; =B fori=p+1,...,d

(3) (=1)4P =1, agby" = Bpt1--- fa-
Set u(z) = (x — Bpy1) - - - (x — Bq), which has even degree, and let v(z) = bo(x — (1) - - - (x — Bp) (note that if
p =0, then v(x) = by) so that g(x) = z'2v(z)u(r). Now,

u(x—l)xdeg(u) — (—l)d_p5p+1 o Byl — ﬂ;-:l) -~ ﬂ;l),
and thus
@) = a"agby Mo(@) (@ = B) - (v = 53 )
= 2" o(z)u(z™)zdes,

It remains only to argue that [y = Iy (mod 2). However, from formula (4.2) with m = 1, it is easily seen
that (—1)"* = (—1)!2. The converse is also straightforward from (4.2), and this completes the proof of the
theorem. O

The proof of Theorem 2.6 is similar, employing equation (4.6) in place of (4.4).

PRrROOF OF THEOREM 2.6. Since multiplication of a real polynomial by a power of x does not change
the absolute value of a cyclic resultant, we may assume f,g € R[z] have distinct roots. The result now
follows from (4.6) and the argument used to prove the if-direction of Theorem 2.1. O
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6. Algorithms Related to Cyclic Resultants

In the proof of Theorem 2.1, the multiplicative group generated by the roots of f played an important
role; which leads us to the following natural question. Given a polynomial f € Z[z] of degree d, can one
devise an algorithm to determine the structure of the group G generated by the roots of f? Of course, G
will be a direct sum of a free abelian group and a finite cyclic group, so one possible output would consist of
two numbers: the rank of the free part and the order of the cyclic component. Another description would
be to give generators for the lattice L, where L is the kernel of the homomorphism sending the generators
of Z¢ to the roots of f.

It turns out that an algorithm does indeed exist, however, it is exponential in d. The result is due to
Ge [5], although our question is a special case of a more general problem he studied. Given a finite list of
nonzero elements of an algebraic number field K, Ge has an algorithm that determines a generating set for
the group of all multiplicative relations between those elements (and therefore the structure of the subgroup
they generate). It would be nice to know if there is a better (polynomial) time procedure to solve our special
case, however, we do not know of any work in this direction.
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Rectangular Schur Functions and Fermions

Takeshi Tkeda, Hiroshi Mizukawa, Tatsuhiro Nakjima, and Hiro-Fumi Yamada

Abstract. We give an expression of the Schur function Sg(m,n), indezed by the rectangular parti-
tion O(m,n) = (n™) as a sum of products of certain Schur functions and Schur’s Q-functions.
Résumé. Nous donnons une expression de la fonction de Schur Sg(m,n), indezée par la partition
rectangulaire O(m,n) = (n™), comme une somme de produits de fonctions de Schur et de Q-
fonctions de Schur.

1. Introduction

Let A be a strict partition. Draw the Young diagram of A and fill each cell with 0 or 1 in such a way
that, in each row the sequence (0110) repeats from the left as long as possible. For a positive integer ¢,
set Ap = (40 —3,40—7,---,5,1). Let F*'(A¢) be the set of strict Young diagrams which are obtained by
appending n ’s to Ag. Our formula reads

> d(WQuro)(t) S, (t) = So(2e—n.m (1),

HEF(Ap)

where (1°[0], u[1]) is the 4-bar quotient of u, 6(u) is a sign, S, (t) and Q,(t) are the Schur function and
the Q-function, respectively, corresponding to the partition v, expressed as polynomials of the power sum
symmetric functions (or the so-called Sato variables) ¢ = (t1,to,ts, -+ ) and t' = (t2,t4,t6, - ).

We understand this formula from the viewpoint of the basic representation L(Ag) of the affine Lie algebra

of type Agl), or more suitably, type Dég). It is known that the weight vectors of the basic representation

of D;Q) are, in the principal picture, best described by means of the Q-functions ([6]). In particular the
maximal weight vectors are the Q-functions @ (t) with A = A, = (40 — 3,4 —7,--- ;5,1) or A = By =
(44 —-1,4¢—-5,---,7,3,00 (¢£=0,1,2,---). To give the intertwining operator between the principal and
homogeneous realizations we make use of 4-bar quotients of the strict partitions, which arise naturally from
the parting the neutral fermions into the neutral and charged fermions. Through this intertwining operator,
one sees that, in the homogeneous realization, fv (i =0,1,n =0,1,2,---) is expressed as a rectangular

(2
Schur function for any maximal weight vector v. For the identification we will employ some fermion calculus.

2. Combinatorics of strict partitions

Let P, denote the set of all partitions of n, SP,, the set of all strict partitions of n, and OP,, the set of
those partitions of n whose parts are odd numbers. For A € P,,, ¢(\) denotes the number of non-zero parts

1991 Mathematics Subject Classification. Primary 17B67, 05E05; Secondary 37K30.
Key words and phrases. Schur function, affine Lie algebra, fermion.
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of A\. We need the following ”4-bar abacus”:

0 @© 3
©)
4 5 7
®
8 ©® @
10
12 13 15

For a strict partition A we put a set of beads on the assigned positions. The above figure is the 4-bar
abacus representing the strict partition A = (11,9, 6,2, 1). From the 4-bar abacus of the given strict partition
A, we read off a triplet of partitions (A*¢, \’[0], A\°[1]) as follows: The strict partition A’[0] is obtained by
reading the halves of even positions of the beads. In the above example we see that A\’[0] = (3,1). For the
right two runners, horizontal levels are numbered as 0,1,2,--- from the top. We mark (by writing 1) the
levels of the beads on the central runner and unmark (by writing 0) the vacancies. In the above example
we get (1,0,1,0) = (1,0,1,0,0,---). Also we unmark the levels of the beads on the rightmost runner and
mark the vacancies. In the example we get (1,1,0,1) = (1,1,0,1,1,---). Arrange the two obtained infinite
(0, 1)-sequences:
1011/1010

On the right of the bar ”|”, the sequence of the central runner comes, and on the left the reversed sequence
of the rightmost runner comes. Counting the 0’s to the left of each 1, we get the partition A\’[1]. The above
(0, 1)-sequence shows that A\’[1] = (2,1,1,1). Finally, if £ € Z is the number of beads on the central runner
minus that on the rightmost runner, we set \** = Ay = (40 — 3,4 —7,--- ,5,1) for £ > 0 (Ap = (), and
A¢ = By = (4] — 1,4]¢] = 5,--- ,7,3,0) for £ < 0. In the above example we see that A’ = A4; = (1). Note
that [Ab¢| 4 2|A°[0]| +4|A’[1]| = |A|. The above procedure is invertible and the correspondence between SP,,
and the set {(A%¢, A[0], A°[1]); |A%¢| + 2|\®[0]] + 4|Ab[1]| = n} is shown to be one-to-one. The strict partition
Ab¢ is called the ”4-bar core” of A and the pair (A°[0], A\°[1]) is called the ”4-bar quotient” of A (cf. [7]).

For a strict partition A we draw the Young diagram and fill each cell with 0 or 1 in such a way that,
in each row the sequence (0110) repeats from the left as long as possible. Let F*()\) (i = 0,1) denote the
set of the strict partitions obtained by appending n 7s to the Young diagram A. It is easy to see that the
cardinality of FJ'(A,) is the coefficient of 2™ of (1 + x + 22)¢, and that of FJ(By) is the sum of coefficients
of 2 and 2"~ ! of the same polynomial.

Each strict partition p in Fj'(A4¢) or F(B¢) has its own sign 6'(u) = (—1)9, where g is, in the 4-bar
abacus of p, the number of beads on the central runner at the positions bigger than that of each bead on

the leftmost runner. For example, for u = (9,7,2) € F;(As3), whose 4-bar abacus looks
0o 1 3
©)
4 5 @
6
8§ ® 11
10
12 13 15

the sign is §’(p) = —1, since g = 1.

3. The formula

Let X;‘ be the irreducible character of the symmetric group S,,, indexed by A € P, and evaluated at
the conjugacy class p € P,. And let C;‘ be the irreducible negative character of the double cover S, of the
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symmetric group, indexed by A € SP, and evaluated at the conjugacy class p € OP,. In our context the
Schur function indexed by A € P, is defined, as a polynomial of u = (u1,u2,us, ), by

miy, m2

_ Z AUy Ug "
SA(U’)_ Xp | 1. 9
mimo:-
pEPy

where the summation runs over the partitions p = (1"™2™2...) € P, (cf. [5]). Schur’s Q-function indexed
by A € SP,, appears, as a polynomial of ¢t = (t1,t3,¢5,-- ), in the form

Z Qem Z<p>+e<>\t1 1ty '-~7

P | l.
m1-m,
peOP, 1-17es:

where the summation runs over the partitions p = (1™13™3...) € OF,, and ¢ = 0 or 1 according to that
n — £()\) is even or odd (cf. [2]). It is sometimes convenient to normalize Q-functions as

Py(t) =27 NQ, ().
These functions are called Schur’s P-functions. We can now state our formula.
Theorem 3.1. For non-negative integers £ and n, we have

Z 6" (1) Qv 10) (£)S o1y (t) = S (20—n,m) (1),

HEF(Ap)

> S (WQur o)) S, (t) = Son2e+1-m)(t),

HEFF(Be)
where t = (t1,t2,t3,---) and S, (t') = Sy (U)|ujists; -
4. Basic representation

In this section we connect our formula with the basic representation of the affine Lie algebra of type
Agl). It turns out to be that our formula describes certain weight vectors in the homogeneous realization of
the basic representation L(Ag).

2 =2
(@ij)ij=01 = ( 9 9 )

Associated with the Cartan matrix
the Lie algebra g of type A(l) is generated by e;, f;, h; and d subject to the relations

[hi, hj] =0, [hz‘aej] = aijej, (his £i] = —aij f,
lei, fi] = 0ij (ade;)' ~"e; = (adfi)' "9 f; =0 (i # j),
and
[d, hi] =0, [d, e;] = d;,0ej, [d, f;] = —dj0fj-

The Cartan subalgebra h of g is spanned by hg, h1 and d. Choose the basis {ag, a1, A} for the dual space
h* of h by the pairing

< hi, 05 > = ayj, < hi, Ao >=d; 0,

<d,a; > =0, <d,Ag >=0.
The fundamental imaginary root is § = ag + ;.

The basic representation L(Ag) of g is by definition the irreducible highest weight g-module with highest
weight Ag (cf. [4]). The weight system of L(Ag) is well-known:

P(Ao) = {Ao — pd + qa1;p,q € Z,p > ¢*}.
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A weight A on the parabola Ag — ¢?0 + qa; (g € Z) is said to be maximal in the sense that A + § is no
longer a weight.

We discuss a twisted version of the principal realization of L(Ag), or more suitably, the basic represen-
tation of the affine Lie algebra of type Déz), which is isomorphic to A:(Ll).

The basic representation in principal grading is realized on the space

V® =Clt;;§ > 1,0dd]

of the P-functions ([6]). In fact, the P-functions form a weight basis of L(Ag) = V(?). Given a strict partition
A, fill the Young diagram with 0 or 1 as in Section 2. If the number of ’S is m; (¢ =0,1), then the weight
of the corresponding P-function Py(t) equals Ag — moay — mia;. In particular the weight of Pa,(t) (resp.
Pg,(t)) equals Ag — €26 + Loy (resp. Ao — 25 — Lay), which is maximal for any ¢ > 0. The action of
fi€g (i=0,1) to the P-function Py(t) is easily described:

fiPx=Y_ P.
HEFL(N)
Strict partitions in F}*(A) occur in the expression of f]*Pj.
Another realization of the basic representation is known, one in the homogeneous grading. The rep-
resentation space turns out B = V ® Cl[g, ¢~ ], where V = C[t;;5 > 1]. Define the linear isomorphism ¥
by

v:v® B

£(P10)) ' m(\)
P)\(t) — 27 2 5(>\)PAb[O] (t)S)\b[l] (t ) & q

where m()\) is determined by drawing the 4-bar abacus of A:

m(A) = (number of beads on the central runner of \)

— (number of beads of the rightmost runner of \)
and §(\) is certain sign which is naturally determined by arranging the fermion operators corresponding to
A. Here we only remark that 6(\) coincides with §’(X) for A in Fj'(Ay).

The representation of g on B, which is induced by ¥, is the basic representation in the homogeneous
grading. In fact, if we define the degree in B by

deg(f(t) © q™) = degf(t) +m?,
then degW(Py) is equal to the number of @’S in A
Now our first formula can be translated into
1 n - —n
\Ij(ﬁ IPAE) =2 2SD(Ql—n,n) ®qé .

As for the second formula we need to extend ¥ to a superspace V(& @ V(4.

5. Fermionic Fock space

In this section we look at the formula from the fermionic point of view. Although we will not give a
proof of the formula in this extended abstract, we emphasize that the discussion of this section is essential
for our proof.

We first recall how to realize the basic representation of g in terms of free fermions. Let B be the
C-algebra generated by £, (n € Z) subject to the relations

BnBm + Bmfbn = (—1)n5n+m70 (TL, m e Z).
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Note that 2 = 1/2. These generators are often called the neutral free fermions. Define the degree on B by
degf,, = 1. If we let By (resp. B1) be the subspace consisting of the elements of even (resp. odd) degree, then
B = By ¢ B; has a structure of a superalgebra. Let F = Fo® F; = Bo|0) £B1|0) be the fermionic Fock space,
where the vacuum |0) is defined by 3,|0) =0 (n < 0). The vacuum expectation value (0|al0) (a € B) is
uniquely determined by putting (0[1|0) = 1, (0|80|0) = 0. The normal ordering for the quadratic elements is

defined by : B, Bm := BnBm — (08nLm|0).

Set
€0 =V2Y BunBosn-1, €1=V2> Pini2f-an-3
nez nez
_\/5 Z ﬂ4nﬁ—4n+la fl - _\/5 Z ﬂ4n+2ﬂ—4n—l
nez nez
hi=2Y : BantsBan-s:
neEZ

and hg = 1 — hy. These elements generate a Lie algebra inside By, which is known to be isomorphic to the
affine Lie algebra g of type Agl). The representation of g on F via the action of By turns out to be the direct
sum V2 @ V(24 of the basic representation, where 6 is a symbol satisfying #2 = 1. One often identifies 6
with v/28p. The isomorphism ®p from F to V(2 @ V@4 is given by
®p 2 al0) — (0[e?E2Ma|0) + (0]v/260e21a|0)  (a € B),
where Hp(t) = %ijmdd ez (1) 8, 8—n—j. This type of isomorphism is often called the boson-
fermion correspondence (cf [1] or [6]). A standard fermion calculus shows that, putting 3x|0) = By, - - - 5x,|0),
Bp(6r]0) = V2 'Qr(1)6¢ for a strict partition A = (A1,---,A) (AL > - > A¢ > 0), where € = 0 or 1
according to that ¢ is even or odd. In order to give a boson-fermion correspondence in the homogeneous
grading, we make parting of the neutral free fermions into three groups: {¢n;n € Z},{¢;n € Z} and
{¢n;n € Z}, where
Y = iBant1,V;, = i8-4n—1, P2n = Ban, P2n+1 = ifBany2 (i = V—1).

A product of ’s is rewritten as a word of 1, ¥* and ¢’s.
For an integer m and for e = 0,1, we set

(045 -+ a6 (m = 1)
(m, €|l = < (0]6¢ (m =0)
(01 Yt (m < —1).
The homogeneous boson-fermion correspondence
g:F— (VaeVve)eClgq ' 1=Bo B
is given by

u(al0)) = Y (m,ele2OTHWa)0)6° © " (a € B),
meZ,e=0,1

where Ha(t) = %Zj,nEZ taj 1 Ynibyy; o It is easily seen that
Cp(Fo) =V @Cle?, ¢ *] @ VO Clg*, g g,

Oy (F)=VORCle®, ¢ % eV eCq g
Both are isomorphic to V ® Clg, ¢~ ] = B.
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Here we give an example illustrating how to associate a polynomial with an element of the fermionic
Fock space F. Take A3 = (9,5,1) and F}(As) = {(10,5,1),(9,6,1),(9,5,2)}. For p = (9,5,2), we consider
ﬁu = ﬂgﬁ5ﬁ2|0> = ¢1¢2¢1|0> € F and see that

@1 (Bof5020)) = P (P19291]0))
= (2,1 O 20 14591 10)0 © ¢
= (0[50 V2o T OFIEO gy [0)6 © ¢°
= V2(0[e"2® h160|0)0(0]e D guiepay |0) © ¢
= \/5_1@(1)(’5)5(1,1)(t/)9 ® ¢
Likewise one computes

@y (B10056110)) = \/5_162(5) ()0 © ¢°,
B (BoBsBr|0) = —V2Z Qs (t)Swy ()0 ® ¢*.

A combinatorial calculation shows that, for a strict partition A,
D17 (BA]0) = cQ ooy () Saepy ()0 © ™V,

where e = 0 or 1, and ¢ = +v27 with g € Z. The sign (£) comes from the arranging the fermions to the
normal form, which we shall discuss in the next section. The action of the Lie algebra g on F (and on B® B6
via @) is best described in terms of the vertex operator. To prove the formula we employ a calculation of
the vertex operators (cf. [3]), which we shall omit here.

6. Determining the sign

We see that the sign which appears in our formula can be easily determined by looking at the 4-bar
abacuses. We explain this fact through an example. Take the partition

A= (35,31,25,23,18,15,11,6,1) € F{?(Ag)
and write the corresponding state
5>\|0> = ¢i9¢i8¢6¢i6¢9¢i4¢i3¢3¢0|0>'

We rewrite this state into the normal form as follows.

Step 1. Equate the number of ¢’s and 1*’s by ”shifting the vacuum”.

Step 2. Move ¢’s to the left of ¥’s and ¥*’s.

Step 3. Make pairs ¥*:

Vg gV 6P 41 3031]0)
- (_1)4¢i9¢i8¢6¢i6¢9¢i4¢3¢0¢71@/’72| -3)

ste_pl
won (= 1) hghsth™ g1b™ gheth™ 0™ 4hot_11b_o| — 3)
o DT 005 (07 g06) (7 500) (W61 )(Z49)| = 3),

where the shifted vacuum is, by definition,
U1 pl0)  (m>1)
Im) = { 10) (m =0)
Y- ]0) - (m< 1),
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We observe that step 1 does not change the sign. Therefore we only have to consider the sign change which
comes from step 2 and step 3. We express the state by the following (modified) 4-bar abacus and attach a
number to each bead:

(I (A
-3
o
Ck
© 1 -1 @ 1
1 ® =2 L ® w=3547192638 10,
205 stepl 2 b word number of inversions of w = 13
3.7 3T & '
4 ® -5 4 ©®, -5
5 11 5 11
® 15 -7 ®, 15 -7
7017 71T 3By
8 19 8 19

The numbering of the beads is given in the following way.

1. Number ¢’s from bottom to top.
2. Number ¥*’s and 1’s according to the layers.

We read the numbers by rows from bottom to top and count the inversions involved in the obtained word.
One can see that this inversion number gives the number a(= a’ +9) of the interchanges of fermions.
Next we consider the sign which comes from the boson-fermion correspondence, i.e.,

®H(¢9¢3 (U’iwﬁe)(¢i8¢0)(¢i6¢—1)(¢*—4¢—2)| - 3>)

1
= (_1)1+3+5+65@(9,3)5(10,53,3,2)'
We read 1, 3, 5,6 by renumbering beads on the rightmost runner.

<N
—5o

—(1,3,5,6) > b=1+3+5+6.
3
%

Finally we get the desired sign §(\) = (—1)%**. A more careful case-by-case check shows that §(\) = §’(\)(see
Section 2) for A € F'(A¢) U Fg(Be)-
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Bruhat Order on the Involutions of Classical Weyl Groups

Federico Incitti

Abstract. It is known that a Coxeter group W, partially ordered by the Bruhat order, is a graded
poset, with rank function given by the length, and that it is E L-shellable, hence Cohen-Macaulay,
and Eulerian. In this work we consider the subposet of W induced by the set of involutions of
W, denoted by Invol(W). Our main result is that, if W is a classical Weyl group, then the poset
Invol(W) is graded, with rank function given by the average between the length and the absolute
length, and that it is EL-shellable, hence Cohen-Macaulay, and FEulerian. In particular we obtain,
as new results, a combinatorial description of the covering relation in the Bruhat order of the
hyperoctahedral group and the even-signed permutation group, and a combinatorial description of
the absolute length of the involutions in classical Weyl groups.

Résumé. [l est bien connu qu’un groupe de Cozeter W, munis de l’ordre de Bruhat, est un
poset gradué, avec fonction rang donnée par la longueur, et qu’il est EL-shellable, donc de Cohen-
Macaulay, et Eulerien. Dans cet article on considére le sous-poset induit par ’ensemble des invo-
lutions de W, noté Invol(W). Nous montrons que, si W est un groupe de Weyl classique, alors le
poset Invol(W) est gradué, avec fonction rang égale a la moyenne entre la longueur et la longueur
absolue, et qu’il est EL-shellable, donc de Cohen-Macaulay, et Eulerien. Nous obtenons en partic-
ulier deux résultats nouveaux: une description combinatoire de la relation de couverture dans l’ordre
de Bruhat de By, et Dy, et une description combinatoire de la longueur absolue des involutions dans
les groupes de Weyl classiques.

1. Introduction

It is known that a Coxeter group W, partially ordered by the Bruhat order, is a graded poset, with rank
function given by the length, and that it is £ L-shellable, hence Cohen-Macaulay, and Eulerian. The aim of
this work is to investigate whether a particular subposet of W, namely that induced by the set of involutions
of W, which we denote by Invol(W), is endowed with similar properties.

The problem arises from a geometric question. It is known that the symmetric group, partially ordered
by the Bruhat order, encodes the cell decomposition of Schubert varieties. Richardson and Springer ([RS1],
[RS2]) introduced a vast generalization of this partial order, in relation to the cell decomposition of certain
symmetric varieties. In a particular case they obtained the poset Invol(S,,).

In this work the problem is completely solved for an important class of Coxeter groups, namely that of
classical Weyl groups. Our main result is that, if W is a classical Weyl group, then the poset Invol(W) is
graded, with rank function given by the average between the length and the absolute length, and that it is
E L-shellable, hence Cohen-Macaulay, and Eulerian.

1991 Mathematics Subject Classification. Primary 05E15; Secondary 06A07.
Key words and phrases. Bruhat order, involutions, classical Weyl groups, E L-shellability.
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The proofs (see [Incl], [Inc2], [Inc3] for details) are combinatorial and use the descriptions of classical
Weyl groups in terms of permutation groups: the symmetric group for type A,,, the hyperoctahedral group
for type B,, and the even-signed permutation group for type D,,.

In particular we obtain, as new results, a combinatorial description of the covering relation in the Bruhat
order of the hyperoctahedral group and the even-signed permutation group, and a combinatorial description
of the absolute length of the involutions in classical Weyl groups.

Finally it is conjectured that the result proved for classical Weyl groups actually holds for every Coxeter
group.

2. Notation and preliminaries

We let N = {1,2,3,...} and Z be the set of integers. For n,m € Z, with n < m, we let [n,m] =
{n,n+1,...,m}. For n € N, we let [n] =[1,n] and [£n] = [-n,n]\{0}.

2.1. Posets. We follow [Stal, Chapter 3] for poset notation and terminology. In particular we denote
by < the covering relation: x <y means that © < y and there is no z such that * < z < y. A poset is
bounded if it has a minimum and a maximum, denoted by 0 and 1 respectively. If z,y € P, with = < y, we
let [z,y] ={z € P:a <z <y}, and we call it an interval of P. If z,y € P, with = < y, a chain from z to y
of length k is a (k+ 1)-tuple (xg, 1, ...,x) such that z =z < 21 < ... < a2 =y. Achain xg < z1 < ... < T,
is said to be saturated if all the relations in it are covering relations (zo <1 < ... < xg).

A poset is said to be graded of rank n if it is finite, bounded and if all maximal chains of P have the
same length n. If P is a graded poset of rank n, then there is a unique rank function p : P — [0, n] such that
p(0) = 0, p(1) = n and p(y) = p(x) + 1 whenever y covers z in P. Conversely, if P is finite and bounded,
and if such a function exists, then P is graded of rank n.

Let P be a graded poset and let (Q be a totally ordered set. An FEL-labelling of P is a function
A:{(z,y) € P?: 2 <y} — Q such that for every x,y € P, with 2 < y, two properties hold:

1. there is exactly one saturated chain from z to y with non decreasing labels:

r=20<r1 <...2 =Y,
A1 A2 Ak

With)\l S)\Q S ...S)\k;
2. this chain has the lexicographically minimal labelling: if
T=yY <Yy1 <... 1Y =y
H1 M2 1223

is a saturated chain from x to y different from the previous one, then

()\17)‘27"'7)‘k) < (N17M27'~'7Mk)~

A graded poset P is said to be EL-shellable if it has an F L-labelling.

Connections between F L-shellable posets and shellable complexes, Cohen-Macaulay complexes and
Cohen-Macaulay rings can be found, for example, in [Bac], [BGS], [Bjd], [Gar], [Hoc], [Rei] and [Sta2].
Here we only recall the following important result, due to Bjérner.

Theorem 2.1. Let P be a graded poset. If P is EL-shellable then P is shellable and hence Cohen-Macaulay.

A graded poset P with rank function p is said to be Eulerian if

{z € [z,y] : p(2) is even}| = {z € [x,y] : p(2)]| is odd}],

for every z,y € P such that z < y.

In an FL-shellable poset there is a necessary and sufficient condition for the poset to be Eulerian. We
state it in the following form (see [Bjo, Theorem 2.7] and [Sta3, Theorem 1.2] for proofs of more general
results).
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Theorem 2.2. Let P be a graded E L-shellable poset and let \ be an EL-labelling of P. Then P is Eulerian
if and only if for every x,y € P, with x < y, there is exactly one saturated chain from x to y with decreasing
labels.

2.2. Coxeter groups. About Coxeter groups we recall some basic definitions. Let W be a Coxeter
group, with set of generators S. The length of an element w € W, denoted by I(w), is the minimal k& such
that w can be written as a product of k generators.

A reflection in a Coxeter group W is a conjugate of some element in S. The set of all reflections is
usually denoted by T

T={wsw?':5€8 weW}.

The absolute length of an element w € W, denoted by al(w), is the minimal & such that w can be written as
a product of k reflections.

2.3. Bruhat order. Let W be a Coxeter group with set of generators S. Let u,v € W. Then u — v
if and only if v = wt, with ¢t € T, and {(u) < l(v). The Bruhat order of W is the partial order relation so
defined: given u,v € W, then u < v if and only if there is a chain

U=up —>Uy U2 — ... > U = V.

The Bruhat order of Coxeter groups has been studied extensively (see, e.g., [BW], [Deo], [Ede], [Ful],
[Pro], [Rea], [Ver]). In particular it is known that it gives to W the structure of a graded poset, whose rank
function is the length. It has been also proved that this poset is FL-shellable, hence Cohen-Macaulay (see
[Ede], [Pro], [BW]), and Eulerian (see [Ver]).” The aim of this work is to investigate whether the induced
subposet Invol(W) is endowed with similar properties. The problem is solved for classical Weyl groups, to
which next subsection is dedicated.

2.4. Classical Weyl groups. The finite irreducible Coxeter groups have been completely classified
(see, e.g., [BB], [Hum]). Among them we find the classical Weyl groups, which have nice combinatorial
descriptions in terms of permutation groups: the symmetric group 5, is a representative for type A, _1, the
hyperoctahedral group B,, for type B,, and the even-signed permutation group D,, for type D,,.

2.4.1. The symmetric group. We denote by S,, the symmetric group, defined by

Sp = {0 :[n] — [n]: o is a bijection}

and we call its elements permutations. To denote a permutation o € S,, we often use the one-line notation:
we write 0 = 0103...0,, to mean that o(i) = o; for every i € [n]. We also write o in disjoint cycle form,
omitting to write the 1-cycles of o: for example, if o = 364152, then we also write o = (1, 3,4)(2,6). Given
o, 7 € Sy,, we let o7 = o o7 (composition of functions) so that, for example, (1,2)(2,3) = (1,2, 3). Given
o € Sy, the diagram of o is a square of n x n cells, with the cell (7, j) (that is, the cell in column i and row j,
with the convention that the first column is the leftmost one and the first row is the lowest one) filled with
a dot if and only if o (i) = j. For example, in Figure 1 the diagram of o = 35124 € S5 is represented.

=N W o Ot
[ ]

123 45

FIGURE 1. Diagram of o = 35124 € S;.
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The diagonal of the diagram is the set of cells {(i,4) : i € [n]}.

As a set of generators for Sy, we take S = {s1,2,...,8n—1}, where s; = (i,i + 1) for every i € [n — 1].
It is known that the symmetric group Sy, with this set of generators, is a Coxeter group of type A,,_1 (see,
e.g., [BB)).

The length of a permutation ¢ € S, is given by
l(o) =inv(o),

where
inv(o) = |{(i,7) € n)? i < 4, o(i) > a(4)}]

is the number of inversions of .
In the symmetric group the reflections are the transpositions:

T ={(i,5) € n)*:i < j}.
In order to give a characterization of the covering relation in the Bruhat order of the symmetric group,
we introduce the following definition.
Definition 2.1. Let 0 € S,,. A rise of o is a pair (i, ) € [n]? such that
1. i< j,
2. o(i) < o(j).
A rise (7,7) is said to be free if there is no k € [n] such that
1. i<k <y,
2. o(i) < o(k) < a(j).
For example, the rises of 0 = 35124 € Sj are (1,2), (1,5), (3,4), (3,5) and (4,5). They are all free
except (3,5). The following is a well-known result.
Proposition 2.2. Let 0,7 € S,,, with 0 < 7. Then ¢ < 7 in 5, if and only if

T =a(i,j),

where (4, 7) is a free rise of o.
2.4.2. The hyperoctahedral group. We denote by Si, the symmetric group on the set [£n]:

Stn = {0 [£n] — [£n] : 0 is a bijection}
(which is clearly isomorphic to Sa,,), and by B,, the hyperoctahedral group, defined by
B, ={0 € Sy, :0(—i) = —0(i) for every i € [n]}

and we call its elements signed permutations. To denote a signed permutation ¢ € B,, we use the window
notation: we write o = [01,02,...,0,], to mean that o(i) = o; for every i € [n] (the images of the negative
entries are then uniquely determined). We also denote o by the sequence |o1]| |o2] ... |oy|, with the negative
entries underlined. For example, 321 denotes the signed permutation [—3, —2,1]. We also write ¢ in disjoint
cycle form. Signed permutations are particular permutations of the set [£n], so they inherit the notion of
diagram. Note that the diagram of a signed permutation is symmetric with respect to the center. In Figure
2, the diagram of 0 = 321 € Bg is represented.

The (main) diagonal of the diagram is the set of cells {(,4) : ¢ € [£n]}, and the antidiagonal is the set
of cells {(i, —3) : ¢ € [£n]}.

As a set of generators for B, we take S = {so,81,...,8n,-1}, where sg = (1,—1) and s; = (i,i +
1)(—=i,—i — 1) for every ¢ € [n — 1]. It is known that the hyperoctahedral group B,, with this set of
generators, is a Coxeter group of type B, (see, e.g., [BB]).
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0 N = = N W
[ ]

FIGURE 2. Diagram of c =321 € Bs.

There are various known formulas for computing the length in B, (see, e.g., [BB]). In [Inc2] we
introduced a new one: the length of o € B,, is given by

(2.1) 5 (o) =

where

inv(o) + neg(o)
2 )

inv(o) = [{(i,j) € [£n]* 10 < j, o(i) > o (j)}|
(the length of o in the symmetric group S4,,), and
neg(o) = |{i € [n] : o(i) < 0}
For example, for 0 =321 € Bs, we have inv(c) = 8, neg(c) =2, so lg(o) = 5.
Finally, it is known (see, e.g., [BB]) that the set of reflections of B,, is
T ={(i,—i) =i € [n]} U{(i,5)(—i,—j) : 1 < i < |j| < n}.

2.4.3. The even-signed permutation group. We denote by D,, the even-signed permutation group, defined

by
D,, = {0 € B, : neg(o) is even}.

Notation and terminology are ineherited from the hyperoctahedral group. For example the signed
permutation 0 = 321, whose diagram is represented in Figure 2, is also in Ds.

As a set of generators for D,, we take S = {so,s1,...,8n—1}, where sop = (1,—-2)(—1,2) and s; =
(4,14+1)(—i,—i —1) for every i € [n — 1]. It is known that the even-signed permutation group D,,, with this
set of generators, is a Coxeter group of type D, (see, e.g., [BB]).

About the length function in D, it is known (see, e.g., [BB]) that

Ip(o) =1p(c) — neg(o).
Thus, by (2.1), the length of o € D,, is given by
inv(o) —neg(o
(o) = D) =gl

For example, for 0 =321 € D3, we have Ip(o) = 3.
Finally, it is known (see, e.g., [BB]) that the set of reflections of D, is

T =A{(i,j)(—i,—j) : 1 < i <|j| <n}.
3. The main problem

It is known that a Coxeter group W, partially ordered by the Bruhat order, is a graded poset, with rank
function given by the length, and that it is also EL-shellable, hence Cohen-Macaulay, and Eulerian.* The
aim of this work is to investigate whether a particular subposet of W, namely that induced by the set of
involutions of W, is endowed with similar properties.
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3.1. Motivation. The problem arises from a geometric question. It is known that the symmetric group,
partially ordered by the Bruhat order, encodes the cell decomposition of Schubert varieties (see [Ful]). In
1990 Richardson and Springer (see [RS1] and [RS2]) considered a vast generalization of this partial order,
in relation to the cell decomposition of certain symmetric varieties. In a particular case they obtained the
subposet of S, induced by the involutions.

3.2. An example. In Figure 3 the example of the poset Sy with the induced subposet Invol(Sy) is
illustrated. Even in this simple case it is not obvious why the poset Invol(S4) is graded and who the rank
function is. Note that, for example, the involutions 2143 and 4231 have distance 3 in the Hasse diagram of
S4, while they are in covering relation in Invol(Sy).

FIGURE 3. From Sy to Invol(Ss).
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3.3. The main result. The following is the main result of this work.

Theorem 3.1. Let W be a classical Weyl group. The poset Invol(W) is

1. graded, with rank function given by

p(w) = l(w) —&—20Ll(w)7

for every w € Invol(W);
2. EL-shellable, hence Cohen-Macaulay;

3. Eulerian.

We will give a sketch of the proof in Section 5.

4. Preliminary results

In this section we discuss some new results, which play a crucial role in the proof of the main result of
this work. Precisely, we describe the covering relation in the groups B, and D,,, and we give a combinatorial
description of the absolute length of the involutions in classical Weyl groups.

4.1. Covering relation in the Bruhat order of B, and D,,.
Definition 4.1. Let 0 € B,,. A rise (i,7) of o is central if

(0,0) € [i, 5] x [o(i), o (5)]-
A central rise (i, j) of o is symmetric if j = —1i.
The characterization of the covering relation in B, is then the following.
Theorem 4.1. Let o,7 € B,,. Then o <1 in By, if and only if either
1. 7=0(i,4)(—i,—j), where (i,]) is a not central free rise of o, or
2. 7 =o0(i,—1), where (i,—1) is a central symmetric free rise of o.
Theorem 4.1 is illustrated in Figure 4, where black dots and white dots denote respectively ¢ and T,
inside the gray areas there are no other dots of ¢ and 7 than those indicated, and the diagrams of the two
permutations are supposed to be the same anywhere else.

F1GURE 4. Covering relation in B,,.

For the even-signed permutation group we introduce the following definition.
Definition 4.2. Let 0 € D,,. A central rise (¢, j) is semifree if

{kelijl:ok)€lo@),0()]} = {i,—j. i}

An example of central semifree rise is illustrated in Figure 5 (3).
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Theorem 4.2. Let o,7 € D,,. Then o <7 in D, if and only if
7= o(i,J)(=i, =),
where (i,7) is either
1. a not central free rise of o, or

2. a central not symmetric free rise of o, or
3. a central semifree rise of o.

Theorem 4.2 is illustrated in Figure 5, with the same notation as in Figure 4.

F1GURE 5. Covering relation in D,,.

4.2. Absolute length of involutions in classical Weyl groups. In classical Weyl groups there is a
nice combinatorial description for the absolute length of the involutions. In the symmetric group it is simply
given by the number of excedances. Note that an involution of S,, has the diagram symmetric with respect

to the diagonal.
Proposition 4.3. Let o € Invol(Sy,). Then

al(o) = exc(o),
where
exc(o) =|{i € [n] : 0(3) > i}|
is the number of exzcedances of o.

For example, for o = 32154 € Invol(5), we have al(o) =

e
0= (173) ' (435)
N

t1 to

ze(o) = 2. In fact

is a minimal decomposition of ¢ as a product of reflections of Sj.

We now define a new statistic on a signed permutation o. N
Note that an involution of B,, has the diagram symmetric
with respect to both the diagonals.

Definition 4.4. Let ¢ € B,,. The number of deficiencies- .
not-antideficiencies of o is
dna(o) ={i € [n]: =i < o(i) <i}|

For example, consider c = 4731562 € Bz, whose diagram
is shown in Figure 6. Looking at the picture, dna(o) is the ,
number of dots which lie in the gray area. In this case

dna(o) = 4.

FIGURE 6.

The dna statistic.
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A surprising fact is that in the hyperoctahedral group and in the even-signed permutation group, the
combinatorial description for the absolute length of an involution is exactly the same: in both cases it is
given by the dna statistic. But the reasons are different.

Proposition 4.5. Let o € Invol(By). Then

alg(o) = dna(o).
For example, for the involution of Figure 6, we have alg(c) = dna(o) = 4. In fact
(41) 0 = (]-7 4)(_17 _4) ’ (77 _2)(_77 2) : (37 _3) ’ (67 _6)
S—— Y—

t1 to ts 2

is a minimal decomposition of ¢ as a product of reflections of B7.
Proposition 4.6. Let o € Invol(D,,). Then

alp(o) = dna(o).

For example, for the involution of Figure 6, which is also in Invol(D7), we have alp(c) = dna(o) = 4.
Note that the decomposition in (4.1) does not work in D7, since (3, —3) and (6, —6) are not elements of Ds.
But in general an involution o of D,, necessarily has an even number of antifixed points (that is, indices
i > 0 such that o(i) = —i), so we can consider them in pairs. In the example, o has the two antifixed points
3 and 6 and

o= (1,4)(-1,-4)-(7,-2)(-=7,2)-(3,6)(—3,—6) - (3,—6)(—3,6)

t1 t2 ts ty
is a minimal decomposition of ¢ as a product of reflections of D5.

5. Sketch of proofs

5.1. Gradedness. To prove that the posets Invol(S,), Invol(By) and Invol(D,,) are graded with rank
function p we follow two steps:
1. we first give a characterization of the covering relation in the poset (this is done starting from the
description of the covering relation in S, B,, and D,,);
2. then we prove that in every covering relation the variation of p is 1 (this is done using the combi-
natorial description of the absolute length of the involutions).
The following are the characterizations of the covering relations in the posets.
Theorem 5.1. Let o,7 € Invol(Sy,). Then o < 7 in Invol(Sy) if and only if there ezists a
rectangle R = [i,j] X [o(i),7(i)] such that o and T have the same diagram except for the dots in R, and
in its symmetric with respect to the diagonal, for which the situation, depending on the position of R with
respect to the diagonal, is described in Figure 7: black dots and white dots denote respectively o and T, and
the rectangle R (darker gray rectangle) contains no other dots of o and T than those indicated.

FIGURE 7. Covering relation in Invol(S,,).

Looking at the diagram of a signed permutation, with orbit of an object (which can be a dot, a cell or a
rectangle of cells), we mean the set made of that object and its symmetric with respect to the main diagonal,
to the antidiagonal and to the center.
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Theorem 5.2. Let 0,7 € Invol(By). Then o <7 in Invol(By,) if and only if there exists a rectangle
R = [i,j] x [0(i),7(¢)] such that ¢ and T have the same diagram except for the dots in R, and in the
rectangles of its orbit, for which the situation, depending on the position of R with respect to the antidiagonal
and to the main diagonal, is described in Figure 8, with the same notation as in Figure 7.

Al \\ A2 A3, Ad, A5. A6.

]

p Pt ' r
J i J i J

P—
. —
PO—
PO—
o, —
<.

<

0

M. A M2 Ms3. Ma. ws. e

} BRI ' '
J i J i J

P—
PO— -
PN

. —
o, —
<. N
<

FIGURE 8. Covering relation in Invol(By).

The case of (o,7) is (Ah, M k), with h,k € [6], where Ah and Mk refer to the cases of Figure 8. Note
that for geometrical reasons not all the 36 pairs are possible cases. In Figure 9 two examples are shown.

T 11

(A6, M3) (A4, M6)

FIGURE 9. Two examples of covering relation in Invol(B,,).

Theorem 5.3. Let 0,7 € Invol(D,). Then o <7 in Invol(D,) if and only if there exists a rectangle
R = [i,j] x [0(3),7(3)], either not central or central not symmetric, such that the same conditions as in
Theorem 5.2 are satisfied, with the exceptions, if R is central not symmetric, that:
1. in cases (A6, M 1) and (A6, M3), picture A6 is replaced by picture A6’, and in cases (A1, M6) and
(A3, M6), picture M6 is replaced by picture M6', as shown in Figure 10;

A6 | M6

FIGURE 10. Covering relation in Invol(D,,): new cases.
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2. in the remaining cases, (A3, M4), (A4, M3), (A4, M4), (A4, M6), (A6, M4), the presence in R of
one more dot either of o or of T, which is in the orbit of one of those indicated in the pictures, is
allowed.

In Figure 11 two examples are shown.

e

(A6, M3) (A4, M6)

FIGURE 11. Two examples of covering relation in Invol(D,,).

In the following the gradedness of the posets is stated.

Theorem 5.4. The poset Invol(Sy,) is graded, with rank function given by

o) = inv(o) —;—emc(o) ’

for every o € Invol(Sy,). In particular Invol(S,) has rank

p(Invol(S,)) = {”ﬂ .

Theorem 5.5. The poset Invol(B,,) is graded, with rank function given by

o(0) = inv(o) + negia) + 2dna(a)’

for every o € Invol(B,,). In particular Invol(B,,) has rank

2
p(Invol(B,,)) = I ;—n

Theorem 5.6. The poset Invol(D,,) is graded, with rank function given by

o(0) = inv(o) — negia) + 2dna(a)’

for every o € Invol(D,,). In particular Invol(D,,) has rank

p(Invol(Dy,)) = {”;J .
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5.2. FEL-shellability and Eulerianity. Let P be one of Invol(S,,), Invol(B,) or Invol(Dy,).

The characterization of the covering relation gives rise in a natural way to the definition of a “standard
labelling” of P. In fact, for every o, 7 € P, with o <7, we call main rectangle of the pair (o, 7) the rectangle
R = [i,j] x [0(i),7(7)], mentioned in each of the Theorems 5.1, 5.2 and 5.3. Note that this rectangle
necessarily is unique. Then we can give the following definition.

Definition 5.7. The standard labelling of P is the function

N:{(o,7) € P?P:o <t} —{(i,j) € I*:i < j}

(where I = [n] if P = Invol(S,), and I = [£n] otherwise) so defined: for every o,7 € P, with o < 7, if
R = [i,j] x [0(¢), 7(7)] is the main rectangle of (o, 7), then we set

Ao, ) = (i, ))-

To prove that the poset P is EL-shellable, we show that the standard labelling actually is an EL-
labelling. This is proved first describing the lexicographically minimal saturated chains, and then showing
that those are the unique with the property of having non decreasing labels.

Theorem 5.8. The poset P is EL-shellable, hence Cohen-Macaulay.

To prove that the poset P is Eulerian, we show that the standard labelling satisfies the condition of
Theorem 2.2, that is, for every o,7 € P, with ¢ < 7, there is a unique saturated chain from o to 7 with
decreasing labels. This is proved starting from the EL-shellability and considering the lexicographically
minimal descending chains.

Theorem 5.9. The poset P is Fulerian.

6. Conjecture

It is natural to conjecture that our main result actually holds for every Coxeter group.

Conjecture 7.1. Let W be a Cozeter group. The poset Invol(W) is

1. graded, with rank function given by

l(w) + al(w
o) = ) lw)
for every w € Invol(W);
2. EL-shellable, hence Cohen-Macaulay;

3. Eulerian.*

After a preliminary investigation on the affine Weyl groups (which also have nice combinatorial descrip-
tions), we feel that our techniques may be applied also to this class of Coxeter groups. There is another class
of Coxeter groups, which are not Weyl groups, for which the result is valid: the class of dihedral groups.

*In the infinite cases, we mean that every interval [0, x] of the poset has the mentioned properties.
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Alternating Sign Matrices With One —1 Under Vertical Reflection

Pierre Lalonde

Abstract. We define a bijection that transforms an alternating sign matriz A with one —1 into
a pair (N, E) where N is a (so called) neutral alternating sign matriz (with one —1) and E is an
integer. The bijection preserves the classical parameters of Mills, Robbins and Rumsey as well as
three new parameters (including E). It translates vertical reflection of A into vertical reflection of N.
A hidden symmetry allows the interchange of E with one of the remaining two new parameters. A
second bigection transforms (N, E) into a configuration of lattice paths called “mized configuration”.

RESUME. On définit une bijection qui transforme une matrice a signes alternants A ayant un
seul —1 en une paire (N, E) constituée d’une matrice a signes alternants dite neutre N (elle aussi
a un seul —1) et d’un paramétre entier E. La bijection préserve les paramétres classiques de Mills,
Robbins et Rumsey ainsi que trois nouveauzr paramétres (dont E). FElle transforme la réflexion
verticale de A en la réflexion verticale de N. Une symétrie cachée permet l’échange de E avec un
des deuz autres nouveaux paramétres. Une seconde bijection transforme (N, E) en une configuration
de chemins dite “configuration mixte”.

1. Introduction

Recall that a square matrix A = (ai;)1<i j<n i an order n alternating sign matriz if a;; € {1,0,—1}
and if, in each row and each column, the non-zero entries alternate in sign, beginning and ending with a 1.
Thus, the entries of each row and of each column add up to 1.

The entries in the first row of an alternating sign matrix are all 0 except for one, which must be a 1. It
will be called the first 1.

In their paper [MRR], Mills, Robbins and Rumsey defined the following parameters on order n alter-
nating sign matrices A = (a;;):
e 7(A) is the number of entries to the left of the first 1. We have 0 < r(A) <n — 1.
e 5(A) is the number of entries that are equal to —1.
o i(A) = Ek>i)€<j Qijake = Zi)j aij (Ek>i7é<j akg) is the number of inversions of A. If A is a
permutation matrix, i(A) reduces to the usual number of inversions.

We will use the following notation: A,, denotes the set of order n alternating sign matrices and A,, 5 the
set of order n alternating sign matrices A with s(A4) = s.
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One of the Mills, Robbins and Rumsey conjectures asserts that |A4,| is also the number of order n
descending plane partitions. In this form, the conjecture was solved by Zeilberger (see [Zel], [Ze2]) with
subsequent simplifications by Kuperberg (see [Ku]). Bressoud (see [Br]) gives an historical and mathematical
account of the whole subject.

Stronger forms of the conjectures involve the parameters (defined above), which should translate into
known combinatorially significant parameters on descending plane partitions. In that direction, only special
cases of the conjectures are solved. This is well known, of course, for A, o (permutation matrices). The
conjectures are also true for A, 1 (see [Lal]). This was done by encoding descending plane partitions into
configurations of non-intersecting paths (so called TB-configurations), which allows enumeration by a deter-
minant. After application of an algebraic transformation, the determinant is reinterpreted as enumerating
another kind of lattice paths (mixed configurations), the set of which follows the same recurrences that
describe A,, 1. Mixed configurations are seen to generalize inversion tables of permutations.

In the present paper, we will give a bijective version of the last step, transforming A € A,, ; into a pair
(N, E), where N € A, 1 is “neutral” (to be defined in the next section) and E is an integer (that can thus be
seen as a measure of the “difference” between A and N). A second bijection will transform the pair (N, E)
into a mixed configuration 2. The bijections translate the already defined parameters (as well as three new
ones) in a way that is coherent with the Mills, Robbins and Rumsey conjectures. Morover, the bijective link
A — Q generalizes the encoding of permutations into inversion tables.

Let A = (aij)1<ij<n € An. We write A = (ajnt+1-5)1<ij<n to denote the matrix obtained from A by
vertical reflection. The classical parameters r, i and s applied to A and to A are easily related (see [MRRY)):

. r(A)—i—r(_Z):n—l,
o 1) +iCH) = (3) + 5(4),
o 5(A) =s(4)

Vertical reflection can be included in the conjectures. It is then believed to correspond to an operation
that can be interpreted as a kind of “complementation” operation on descending plane partitions. In [La2],
it is shown that this operation takes a simple form in terms of Gessel-Viennot path duality (see [GV]) on
TB-configurations. (Krattenthaler (see [Kr|) has an even simpler interpretation in terms of rhombus tilings.)
Our bijections behave similarly: if A € A,, ;1 is sent to (N, E) and then to the mixed configuration €2, then
A is sent to (N, —F), which is sent to 2, the Gessel-Viennot dual of €.

This is of course a first step toward an eventual general bijection between unrestricted alternating sign
matrices and mixed configurations. The results suggest that the three new parameters will play an important
role in the general bijection. The natural guess is that each —1 of an alternating sign matrix will be associated
to three similar parameters collectively encoded into a second neutral alternating sign matrix. Moreover,
the bijections introduced here are, in some sense, the simplest possible and thus should appear in some form
in the general bijection.

A few words on the organization of the paper: In section 2, we will define the sign (positive, neutral,
negative) of an alternating sign matrix with one —1, define the new parameters and describe the various
parts of the matrix that intervene in the bijections. The first bijection (to neutral matrices) is introduced in
section 3. In section 4, the equivalence of two of the new parameters is shown. Section 5 describe the second
bijection (to mixed configurations). Finally, in section 6 we show the translation of vertical reflection (on
matrices) into path duality (on mixed configurations).



FIGURE 1. Schematic view of a positive matrix (left) and a neutral one (right), with some
of the related regions as defined in this section. Only the significant non-zero entries are
depicted. The 0 region contains only 0’s.

2. Three new parameters

In what follows, we will introduce the three new parameters defined for a matrix A € A, ;. These
parameters are related to various sub-matrices of A, which we describe below (see also figure 1).

e The opening column of A is the column of its (unique) —1. The highest 1 in this column is the
opening 1 and the corresponding row, the opening row. The closing row is the row of the —1. The
opening column divides A into a left side and a right side (both excluding the opening column).

e The closing row is the only row that contains two 1, one in each side. These 1 will be referred to
as the left 1 and the right 1.

e If any, the rows between the opening and the closing rows are the enclosed rows. If there are no
enclosed rows, A is said to be neutral; otherwise A is charged. In the latter case, define the charged
side to be the side (left or right) where we find the 1 of the lowest enclosed row, the other side
being the neutral side. If the charged side is the right side (respectively: left side), we say that A
is positive (respectively: negative).

In fact, we can define more generally A = (a;5) € A, to be neutral if a;; =1 when a;41; = —1.

Let Aj;l (respectively: A9 |, A, 1) be the set of positive (respectively: neutral, negative) matrices
A € An;. These sets are mutually disjoint and form a partition of A, 1. Moreover, A', and A, , are
mirror-images of one another: A € Af | iff A€ A .
We further define the following for A € A, U A9

n,l*

e The intersections of the enclosed rows with the right (respectively: left) side define the charged
(respectively: neutral) cell. The extended neutral cell includes the intersection of the opening and
of the closing rows with the left side. If A € A?le, the charged and the neutral cells are empty.

e The highest 1 in the left side below the opening row is the leading 1. Its column is the leading
column. The sub-matrix between the leading and the opening column and below the opening row
is the leading cell. The sum of the entries of the leading cell is denoted ¢(A).

e Finally, the right 1 (in the closing row) is also called the closing 1. Its column is the closing column.
The sub-matrix of A between the closing and the opening column and below the closing row is the



FIGURE 2. In each of the above matrices, the leading, charged and closing cells are em-
phasized. Matrix Ag is positive, with E(Ag) = 3, B(A4y) = —1 and J(Ap) = 7. Matrix
Np is neutral, with E(Ng) = 0, B(Np) = 2 and J(Ny) = 7. The classical parameters are:
r(Ap) = r(No) = 6 and i(Ag) = i(Ng) = 30.

closing cell. The extended closing cell includes the parts of opening and of the closing columns that
are below the closing row. The sum of the entries of the closing cell is denoted c¢(A).

Remark 2.1. It should be observed that £(A) = ¢(A) and ¢(A) = £(A) when A € A) ;.

We can now define the new parameters (see figure 2):

o If A€ Af;l, its electric charge, E(A), is the sum of the entries of the charged cell of A. In that
case, E(A) > 0. Define E(A) =0if A€ A) , and E(A) = —E(A) if A€ A, ;. Thus A is positive,
neutral or negative according to the sign of E(A).

o If Ac A UAY |, define its magnetic charge by B(A) = ¢(A) —£(A). If A € AS |, we clearly have
B(A) = —B(A). Extend this property to define B(A) for A € A

e IfAec AF  UA) ,, define J(A) = ¢(A) + £(A) + |E(A)| + 1. Notice that J(A) = J(A) if A e AY .
Extend this property to define J(A) for A € A, .

Clearly, with respect to vertical reflection, ' and B are anti-invariants, while J is invariant. Alge-
braically:

E(M)+EM)=0, BM)+BM)=0 and J(O) =J(M).

3. Neutralizing alternating sign matrices

Our first task will be to learn how to “neutralize” a given matrix A € Af{,l. This requires many steps
based on the horizontal/vertical displacement procedure, which applies to some of the entries of a (0,1)-
matrix.

Horizontal displacement (H): Let P = (p;j)1<i<m,1<j<n be a (0, 1)-matrix. Suppose that the non-zero
columns occupy positions j1 < jo < --- < ji with 71 =1 and ji < n.

Its horizontal displacement, H (P), is the matrix obtained from P by displacing column j; to column j; 1
(for 1 <i < k), where jx+1 = n. Column j; is replaced by a column of 0’s. Clearly, H(P) is a (0, 1)-matrix
of the same dimension as P, with non-zero columns in positions js < - jir < jr+1 = n. The procedure is
obviously injective.



FI1GURE 3. The rectangles in these matrices enclose the extended neutral cell, the charged
cell and the extended closing cell. The first matrix result from Ay (figure 2) after applying
the first three steps of §. The last matrix is Py = 6(Ap).

We define similarly the vertical displacement V (P) for (0, 1)-matrices P such that the first row is 0 and
the last, non-zero. (The rows are displaced from bottom to top.)

We will apply the horizontal/vertical displacement to some of the cells of a given matrix A € A;'{’l UAY |

(or to some modifications of A). This will give the discharging procedure which essentially transforms A into
a permutation matrix P of the same dimension. The opening column, closing cell,. .. of any transformation
of A refer to sub-matrices of the transformed matrix that occupies the same position as in A.

Definition 3.1. (Partial discharging procedure §) Let A € A:jl U A9 ;. We obtain §(A) from A by:

(1) Erasing the —1 and the closing 1 of A.

(2) Applying H to the extended closing cell of A.

(3) Applying V' to the extended neutral cell. (See figure 3 (left).)

(4) Lower the 1’s in the extended neutral and in the charged cells by one row (erasing or writing 0’s
when necessary). (See figure 3 (right).)

The resulting matrix is §(A).

Remark 3.2. Carefully keeping track of the number of 1’s in each row and each column after each step, we
see that the resulting matrix 0(A) is always a permutation matrix. It is clear that r(6(A)) = r(A) since the
procedure never affects (permanently) the first row. A fine analysis will show that £(6(A)) = ¢(A) and that
i(6(A)) = i(A) = 1 = (c(A) + E(A)).

Definition 3.3. (Complete discharging procedure A) Let A € A;'{!l U A . We define
A(A) = (k,0(A), c(A), E(A)),
where k is the position of the opening row of A (1 <k <n).

Example 3.4. For instance, referring to figure 2, we have A(4p) = (3, P, 1,3) and A(Ng) = (3, P, 4,0)
where Py is the last matrix of figure 3.

Notice that we can recover A from its image A(A) = (k,6(A),c(A), E(A)). In fact, we can apply &
backward to the permutation P = §(A) provided that:

(1) we can identify the opening column and the opening 1. (The latter being unaffected by 4.) This is
determined by k, the position of the opening row.
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(2) we determine the closing row. This is given by E(A): the closing row is the highest row below the
opening row such that the elements between (and including) these rows in the right side sum up
to E(A).

(3) we determine the closing column. But it is the leftmost column to the right of the opening column
such that the elements between (and including) these columns and below (strictly) the closing row
sum up to c(A) + 1.

It is always possible to do so since, by construction, §(A) contains at least F(A)+ ¢(A)+ 1 non-zero elements
below the opening row and to the right of the opening column.

This shows that J is injective. More generally, let A € .Af;l UAD | with A(4) = (k,6(A),c(A), E(A)
then, for any ¢, E > 0 such that ¢ + E < ¢(A) 4+ E(A), there is a unique B € A, UAY | such that A(B) =
(k,6(A),c, E) (we will write B = A~(k,0(A), ¢, E)). In particular, we can take N = A~1(k,5(A),c(A) +
E(A),0), which will be neutral by construction. In that case, N is quite easy to find from §(A) by applying
0 backward: steps 4 and 3 cancel each other.

Definition 3.5. (Neutralizing procedure A) Let A € A, ;.

(1) fAe AL, UAS | let (k, P,c, E) = A(A), define A(A) = (A~ (k,P,c+ E,0),E).
(2) If A€ A, ;, notice that Ae Ai’l. Writing (N, —FE) = A(A), define A(A) = (N, E).

Example 3.6. Referring to figures 2 (and 3), we have: A(Ag) = (Ny, 3).

Theorem 3.7. The neutralizing procedure is a bijection
A:Any — Noa:={(N,E)|N € A) |, E€Z,~{(N)<E<c(N)}.
Moreover, let A € A, 1 and A(A) = (N, E), then:
(1) Ac A), iff N = A.
(2) A(A) = (N,-E).
(3) The matrices A and N are the same, from the first row to the opening row (included).
(4) The following relations hold:

(a) (V) = r(A),
(b) i(N) = i(A),
(c) E = E(4),

(d) B(N) = B(A) + E(A),
(e) J(N) = J(A).
Indeed, if A is positive (or neutral), we have r(N) = r(A), {(N) = ¢(A) and i(N) = i(A), by remark 3.2.
By construction, ¢(N) = ¢(A) + E(A); thus B(N) = B(A) + E(A) and J(N) = J(A). In particular,
0 < E=FE(A) <c¢(N). If A is negative, use remark 2.1 and the formulae of section 1.

4. Exchanging the electric charge and the magnetic charge

Using the neutralizing procedure, we define an involution on A, ; that exchanges ' and B. Thus the
two charges play the same role and are completely interchangeable.
Lemma 4.1. Let Ac A, 1 and (N, E) = A(A). Then —¢(N) < B(A) < ¢(N).

Theorem 4.2. Let Z = A=t o &o A where € is defined by E(N,E) = (N,c(N) — {(N) — E). Then & is an
involution on Ny 1 and Z an involution on A, 1. Moreover, if A € A, 1 and Z(A) = A', we have:
(1) E(A) = A"

(2) The matrices A and A’ are the same, from the first row to the opening row (included).
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(3) The involution 2 exchanges the charges; namely: E(A") = B(A) and B(A') = E(A).
(4) All other defined parameters (r, i and J) take the same value on A as on A'.

Of course, this leads to another bijection, £ o A : A, 1 — N, 1, which focuses on the parameter B
instead of E. In fact £ 0o A(A) = (N, B(A)).

5. Encoding elements of N, ; into mixed configurations

It is well known that a permutation matrix P = (p;;) € A,,0 can be bijectively encoded by a sequence
(a;)?_; of non-negative integers called its inversion table. In fact, a; is the sum of the entries of P that are
below row n + 1 — 4 and to the left of the (unique) 1 in that row. With this convention, we have 0 < a; <
for 1 < i < n. The classical parameters are easily recovered: r(P) = a,, and i(P) = a1 + - - - + a,,. Moreover,
if (@;)"_, is the inversion table of P, then @ = i — 1 — a; (for 1 < i < n). We define a generalization of
inversion table that applies to A, 1.

Definition 5.1. Let (N, E) € NV, 1. Let n+1—k be the position of the opening row of N (thus the position
of the closing row is n 4+ 2 — k). For 1 < i < n, define a; as the sum of the entries of N that are below row
n+ 1 — 14 and to the left of the unique 1 (or the leftmost 1 if ¢ = k— 1) in row n + 1 —¢. Let b = ¢(N)
and 8 = E + £(N). The sequence of integers (k;aq,...,a,;b,3) is called the generalized inversion table of
(N,E).

Remark 5.2. Clearly, /(N) = ar, — 1 — ar_1, an observation that we will often use later.

Example 5.3. For instance, the generalized inversion table of (Ng,3) (from figure 2) is:
(10; 0,0,2,2,0,0,1,5,0,3,6,6; 4,5) .

Inversion tables are encoded as sequences of non-intersecting lattice paths called mized configuration
(introduced in [Lal]).

We consider lattice-paths on the strict half-grid G,, = {(k,£)|0 < k < ¢ <n}. (For more symmetry in
the figures, the grid will be slightly shifted so that its boundary forms a reversed equilateral triangle.) Mized
paths on G, are composed of two consecutive parts: Left and Right, where:

e the Left part is composed of South steps (S) and East steps (E).

e the Right part is composed of (another kind of) East steps (F) and North-East steps (N).
Notice that each path contains a vertex that belongs both to the Left part and to the Right part. Such
vertices are called junctions.

An order n mized configuration is a sequence of mixed paths Q = (w1,...,w,) on G, such that:

e There is a permutation o such that w; starts from (0,4) and ends at (o(i) — 1, 0(%)).

e The sub-configuration obtained by deleting the Right part of paths is non-intersecting (no common
vertex).

e The sub-configuration obtained by deleting the Left part of paths is non-intersecting.

Let M,, s be the set of order n mixed configurations with s N-steps.

Given a generalized inversion table (k; a1, ..., an;b, 3), we define the corresponding mixed configuration
Q= (w1,...,wn) € My1. In that case, Q has two consecutive special paths wy_1 (which contains the
N-step) and wy (which contains a S-step. The paths, written as sequences of steps, are:

o w; = E%F=17% for i such that 1 <4 <n and i # k — 1, k. This path joins (0,4) to (i — 1,4).
o w1 = Bu%-1FANFk=2=ar-1=6_ This path joins (0,k — 1) to (k — 1, k).



F1GURE 5. The combinatorial interpretations of the parameters E and J on mixed config-
urations.

o wy, = B SEYFF—2-ax=b_ Thig path joins (0, k) to (k — 2,k — 1).
(see figure 4 (right)). It is easy to check that this defines a mixed configuration.

Theorem 5.4. The encoding of the generalized inversion table of an element (N, E) € Ny 1 into a mized
configuration Q € M,, 1 defines a bijection ® : Njy1 — My, 1.
Moreover, let A € Ap1, (N,E) = A(A), (k;a1,...,an;b,0) its generalized inversion table and @ =
(Wiy...,wp) = ®(N,E). Then
(1) r(A) = r(N) is the number of E-steps of 2 that are at level n (all occurring in path w., ).
(2) i(A) = i(N) is the total number of E-steps and of N-steps of 2.
(3) E(A) = FE =ap_1+ B+ 1—ay is the signed distance from the beginning of the S-step to the end of
the N-step of Q0 (see figure 5).
(4) B(A)=B(N)—E=b-0.
(5) J(A) = J(N) = ap —ax—1 + b is the (non-signed) distance between the junctions of path wy_1 and
of path wy.

Corollary 5.5. Let A € A, 1, (k;aq,...,an;b, 8) the generalized inversion table of A(A) and Q = (w1, ...,wpn) =
D(A(A)). Let A = Z(A) then (k;ai,...,an;b,3) is the generalized inversion table of A(A’) (where 3 =
b—0B+ar— arp_1 —1).

Thus @ = (w],...,w),) = ®(A(A4")) is obtained from by replacing 8 by 4’ (this only changes the Right
part of wg_1).



FIGURE 7. Duality on M,, 1 (before the final reflection) and its relation with vertical re-
flection on matrices.

6. Duality and Mixed Configurations

First, we examine path duality for mixed configurations Q = (w1,...,wp) € Mypo. We saw how to
extract the inversion table (a;)"_;, (which then corresponds to a unique permutation matrix P). The dual
Q of Q is obtained by “complementing” the Left and the Right parts (separately) of each path, leading to
the sequence (@;)"_; = (i — 1 — a;)"_, which is the inversion table of P. Graphically, we obtain Q from by
starting from the right edge of the grid G,,, putting (reversed) E-steps until we reach a junction. We then
continue by putting (reversed) F-steps until we touch the left edge of the grid. We get a reversed mixed
configuration; a vertical reflection gives the (ordinary) mixed configuration Q (see figure 6).

For mixed configurations 2 = (wi,...,w,) € My 1 (or more generally M,, ;), the graphical procedure
is similar, with the added rules:
e replace every S-step by a reversed S-step with the same starting vertex.
e replace every N-step by a reversed N-step with the same ending vertex.

Figure 7 (left) shows how this is done. Observe that duality (before the final vertical reflection) preserves
the positions of the starting vertex of the S-step, of the ending vertex of the N-steps and of the junctions.
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Theorem 6.1. Let A€ A,1 and Q = (wy,...,w,) = ®(A(A)). Then Q = ®(A(A)).
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Strict Partitions and Discrete Dynamical Systems

LE Minh Ha and PHAN Thi Ha Duong

Abstract. We prove that the set of partitions with distinct parts of a given positive integer under
dominance ordering can be considered as a configuration space of a discrete dynamical model with
two transition rules and with initial configuration being the singleton partition. This allows us to
characterize its lattice structure, fixed point, longest chains as well as their length, using Chip Firing
Game theory. Finally, two extensions and their applications are discussed.

Résumé. Nous montrons que l’ensemble des partitions avec differents parts d’un entier donné
n muni de l'ordre de dominance peut étre considérecomm [’espace de configurations d’un systeme
dynamique discret avec deux régles de transitions et avec la configuration initialle étant la partition
(n). Cela nous permet de caractériser sa structure de treillis, son point fize, les chaines les plus
longues ainsi que leurs longueur, en utilisant la theorie de Chip Firing Game. Enfin, deux extensions
et leurs applications sont données.

1. Introduction

A partition of a positive integer n is a sequence of non-increasing positive integers a = (a1, ... a,,) such
that a1 + -+ + a,,, = n. The set of all such partitions of n is denoted by P(n). P(n) is equipped with
a partial order called dominance order as follows : a > b if its partial sums is greater than that of b, i.e.
> _ai > >7_, bi. This order has been showed to have many applications to problems in combinatorics
as well as group representation theory, among other fields. The structure of this poset was studied by
Brylawski [Bry73] who showed in particular that it is a lattice. Since then, other properties such as
maximal chains, fixed point have also been characterized in [Bry73, GK86, GK93|. In [LP01], Phan and
Latapy constructed its infinite extension and obtained a construction algorithm.

In this paper, we study the structure of an interesting class SP(n) of partitions of n called strict
partitions, or partitions with distinct parts, from the point of view of discrete dynamical systems. For any
strict partition a of n, one can apply on a the following transition rules so that the resulting partition is also
strict :

e Vertical transition (V-transition):
(al7'~'7ai7ai+17"'7an) - (a17'~'7ai - 17ai+1 + 17"'10‘71)7

if a; — Aj41 Z 3.

1991 Mathematics Subject Classification. Primary 06A07, 05C20, 05A17, 37E25; Secondary 05C85, 68Q45, 82C20.
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A ,
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FIGURE 1. Vertical transition and horizontal transition

e Horizontal transition (H-transition):
(a1,...,p+l+Lp+i-1,p+1-2,...;p+2,p+1,p—1,...,a,) —
(ala"'ap+l7p+l_17p+l_27"'7p+27p+1ap7"'aan)'

These rules then define a partial order on SP(n) by declaring that b <g a if b can be obtained from a
via a sequence of transitions. In particular, we will show that all strict partitions can be obtained in this
way if the initial configuration is the singleton partition (n). Moreover, the poset SP(n) which corresponds
to the above order and initial configuration (n) turns out to be the same as the poset SP(n) with dominance
order, so that the two orders can now be identified. We then show that SP(n) is also a lattice, but it is not
a sublattice of P(n). Furthermore, unlike P(n), SP(n) is not self-dual. Using the fact that our dynamical
model can be viewed as a “composition” of two Chip Firing Games in the sense of [BL92] (see also [LP01],
[GMPO02]), we are able to characterize explicitly the fixed point, longest chains as well as their length in
SP(n). Finally, we present two generalizations : We obtain similar results for the set of k-strict partitions,
i.e. partitions where two parts differ by at least k& > 0. We also obtain an infinite extension of SP(n) and
an algorithm to construct SP(n + 1) from SP(n) in linear time.

2. Lattice structure of SP(n)

Theorem 2.1. The set SP(n) is exactly the set of all strict partitions reachables from (n) by applying two
transitions rule V and H. .

PROOF. Let a = (a1,...,an) be a strict partition. It suffices to show that if a is different from (n)
itself, then there exist another strict partition a’ such that one can recover a by applying a transition on a’.

First of all, observe that if there is a subsequence (a;,aiy1,...,a;) of consecutive numbers in a, where
1 =1, or else a;—1 — a; > 2, similarly 7 =m or else a; — a;4+1 > 2. Then we can choose

!/
a = (ala' sy Qi—1, 04 + 17a'i+17" -5 Aj—1,05 — 17a'j+1a' e 7a'm)7

so that o’ is again strict. Furthermore, one recovers a from a’ by applying a H-transition.
On the other hand, if no such subsequence exists, then a; — as > 2 and either m = 2 or ag — a3 > 2. In
this case, we can simply choose
a'= (a1 +1,a0 —1,a3,...,am).
It is easy to check that a’ is a strict partition and that a V-transition applied on a’ at the first position gives
back a. The theorem is proved. O

Proposition 2.2. SP(n) is a subposet of P(n).

ProOF. It is sufficient to show that if a,b € SP(n) and a > b then a >g b, i.e. there exists a sequence
of transitions from a to b. For this purpose, it suffices to prove that one can apply a transition on a to obtain
a new strict partition a’ such that one still has a’ > b.
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Since a > b, we have >7_,a; > >1_ b; for all 1 < j < n. Let j be the smallest index where a; > b;.
Then let ¢ be the smallest index such that ¢ > j and Zé:l a; = Zli:1 b;. Such a number ¢ exists because
¢ = n satisfies both conditions above. It is clear that a; < b; because of the choice of £.

We claim that we can apply a transition on a at some positions between j and /¢, so that the newly
constructed partition a’ are identical with a outside this range . If this is possible, then we are done, because
it is easy to verify, using the definition of j and ¢,that a’ > b in P(n).

To construct a’, observe that if there is an index j < i < £ such that a; — a;11 > 3, then a V-transition
can be applied at position ¢ and we are done.

Suppose now that a; — a;11 < 2 for all j < ¢ < £. Since b is a strict partition and b; > 1 for all 7, we
have b, — b; > £ — j. But a; > b, and a;, b;, hence ap — a; > £ — j + 2. It follows that there exists at least
two indices j < r < s < £ such that a, — a,41 = as — as41 = 2. Furthermore, by choosing a different pair of
indices if necessary, we can even assume that a; —a;41 = 1 for all » < ¢ < s. But in this case, the subsequence
(ar,...,as) is of exactly the form where one can apply a H-transition. The proof is finished. O

Because of the above result, we can now write b < a instead of b <g a for any two strict partition a and
b.
Theorem 2.3. SP(n) is a lattice. Moreover, the meet operation in SP(n) is the same as that in P(n), i.e.
aAsb=aANb for any two strict partitions a and b.

PROOF. Since SP(n) contains a maximal element, it is enough to prove that any pair of element in
SP(n) has a greatest lower bound. Of course, their greatest lower bound ¢ = a A b in P(n) does exist, but is
it true that ¢ is again a strict partition? We will show that this is the case for any pair of strict partitions a
and b.

By definition, c is a partition defined by the formulae

m m m
E ¢i = min( E a;, E bi)
i=1 i=1 =1

for all 1 < m. Suppose that ¢,, > 0. Without loss of generality, assume that Y ", ¢; = > .=, a;. Then
Cm+1 < A1 while ap, < ¢y Thus ¢41 < ¢ because amy1 < anm,. Hence c is also a strict partition. The
proof above clearly also implies that the meet operation in SP(n) is the same as that in P(n). O

Remark 2.4. SP(n) is not a sublattice of P(n). In fact, the joint operations in SP(n) and P(n) are
different. For example, (8,4,3,1) V (7,5,4) = (8,4,4) which is not a strict partition. Nevertheless, we still
have a Vg b > a Vb for any a and b.

Since SP(n) is a lattice, it has an unique minimal element (or fixed point). We finish this section by
giving an explicit formula for this minimal partition. Let p be the unique number such that

%p(p—k )<n< %(er 1)(p+2).

Then let g =n — %p(p + 1). One verifies easily that ¢ < p. Now let II be the following partition

(2.1) I=(p+1).,p,.-...(p—q+2),(p—q),(p—q—1),...,2,1).

It is evident that II is a strict partition on which no transition can be applied. Thus we have the following
proposition:

Proposition 2.5. II is the fized point of the lattice SP(n).

3. Longest chains

In this section, we characterize longest chains in SP(n) as well as their length. The longest chains in
P(n) were characterized by Greene and Kleitman [GK86] where they introduced the notion of VH-chain
(i.e. a chain of V-transitions followed by a chain of H-transitions) and proved that all VH-chains are longest
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chains. It turns out that the same is true for strict partitions. Our proof, however, is different. The proof
in [GK86] makes use of a series of delicate lemmas which basically consider the differences of consecutive
parts of partitions. We believe that our proof, which is based on the theory of Chip Firing Game on directed
graph (CFG) [BL92], is simpler and probably can be adapted in other contexts.

3.1. V(H)-chain. Let us first introduce some definitions. A V(resp. H)-chain is a chain of V(resp.
H)-transitions, and a VH-chain is a concatenation of a V-chain and a H-chain. If there is a V-chain from a
strict partition a to another b, then we say that b is V-reachable from a. But a partition ¢ is H-reachable
from d means that there is an H-transitions from d back to ¢, or equivalently an inverse H-transition from c
to d.

We will also need the two functions V-weight wy (a) and H-weight wgr(a) on a strict partition a. From
the Ferrers diagram for a, let

(3.1) wy (a) = Z(z —1a;

and
(3.2) wH(a) = Z(k‘ - l)dk,

where ay, is the number of cells (i,j) on the segment i +j = k+ 1,4 > 0,5 > 0. It is easy to see that a
V-transition increases V-weight by 1, but decrease H-weight by at least 1. On the other hand, an H-transition
decreases H-weight by 1, and increases V-weight by at least 1. This simple observation shows that V-chains
(or H-chains) between two partitions are longest chains.

3.2. Chip Firing Game. We now give a brief overview of the theory of Chip Firing Game (CFG
for short). In particular, we show that the dynamical model consisting of only the V-transition (resp. H-
transition) are examples of CFG. For more details account of theory of Chip Firing Game, we refer to
[BLS91, BL92, LP01, GLM "ar].

A Chip Firing Game is a discrete dynamical system defined on a (directed) graph G = (V, E), where
each configuration consists of a partition of n chips on the vertices V', and obeys the following rule, called
firing rule: a vertex containing at least at many chips as its outgoing degree (i.e. the number of outgoing
edges) transfers one chip along each of its outgoing edges.

This rule defines a natural partial order on the space of configurations by declaring that a configuration
b is smaller than a if b can be obtained from a by iterating the firing rule. A fized point of a CFG is a
configuration where no firing is possible. The following is the fundamental result in the theory of CFG,
Theorem 3.1. [BL92, LPO01]| The set of all configurations reachable from the initial one of a CFG with
no closed component is a lattice.

A closed component of a graph is a strongly connected component without outgoing edge.

One can also characterize the natural order defined above using the notion of shot vector. If b < a, then
the shot vector k(a,b) is the vector in NIV whose entry k,(a, b) is the number of firings at vertex v to obtain
b from a. This vector depends only on a and b but not on a chosen sequence of firings. We then have:
Lemma 3.2. [LPO01] Let ¢ and d be two configurations reachable from the same initial configuration a in a
CFG. Then ¢ > d if and only if ky(a,c) < ky(a,d) for all vertices v € V.

Here are two important examples of CFG.

Example V: The dynamical model consisting to only the V-transition is a CFG. Indeed, consider the graph
G = (V, E) with n + 1 vertices defined pictorially as follows:

Vo V1 U2 Un
0«—o050...50

Thus each vertex of G, beside vy and v,, has outgoing degree 2. Now let a be a configuration i.e. a strict
partition of n, we put d; = a; — a;+1 — 1 chips at vertex v; for all ¢ > 1 and no chip at vg.
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The necessary condition to apply a V-transition at position ¢ on a is a; — a;41 > 3, or equivalently
d; > 2 which is the same as the condition to apply the CFG firing rule on v;. It is easy to see that the
space of reachable configurations of this CFG is exactly the set of partitions that are V-reachable from a.
In particular, the unique fixed point of this CFG corresponds to the smallest partition which is V-reachable
from a. In fact, in any interval b < a in SP(n) there exists a unique smallest strict partition |a], which is
V-reachable from a.

Example H: The inverse H-transition defines a CFG on the same graph as in previous example in a similar
way. For each initial configuration b, we put Ji = l;i — Ei+1 chips at vertex v; for all ¢ > 1 and no chip at vy.
Here b; is defined as in (3.1). One verifies again that the space of configurations of this game is the set of
H-reachable from b and the fixed point corresponds to unique greatest partition which is H-reachable from
b. Furthermore, there is a unique greatest strict partition [b]* which is H-reachable from b in any interval
b<a.

The reader of [GK86] may find it interesting to compare the definition of H-transition there and ours, as
in Example H. While an H-transition in the sense of [GK86] is dual to a V-transition in the usual sense (row
vs column), our H-transition is defined in terms of the “diagonal” in the Ferrers diagram of the corresponding
partition.

3.3. VH-chains are longest chains. First of all, it is not hard to show, as in [GK86, Lemma 3] that
any longest chain must be a VH-chain. The point is that any sequence of two transitions (H,V) (H follows
by V) equals sequence of the form either (V,H) or (V,V,H), proof by direct inspection. Thus for any chain
of transitions between two partitions, there is a VH-chain of at least the same length.

It remains to show that any VH-chain is a longest chain. We begin with the following key lemma which
explains the relevance of dominance order.

Lemma 3.3. Let ¢ and d be two partitions which are V-reachable from a. If d < ¢, then d is V-reachable
from c.

PRrROOF. We compute the shot vector k(a,c) and k(a,d) in the corresponding CFG. It is easy to see
that k;(a,c) = ki—1(a,c) + a; — ¢; for all 4 > 1, which implies that k;(a,c) = Z;Zl a; — Z;Zl ¢;. Similarly,
ki(a,d) = Y iy a; — Y 5_, d;. On the other hand, Y>'_jc; > Yi_ d; because ¢ > d. It follows that
ki(a,c) < k;(a,d) and so d is V-reachable from ¢ by Lemma 3.2. O

Lemma 3.4. If a > b, then |aly is H-reachable from b and [b]® is V-reachable from a.

PRrROOF. There is a VH-chain from |a|, to b. Since |a|p is the smallest strict partition which is V-
reachable from a in interval a < b, there can not be no V-transition in this chain and |a], is H-reachable
from b. Similar argument applied for [b]°. O

As an immediate corollary, we see that there is a VH-chain a — [b]* — b from a to b of length
wV(a7 I_b~|a) + wH(I_HIaﬂ b)'

We can now state the main result of this section:
Theorem 3.5. All VH-chains from a to b in SP(n) have the same length and this length is mazimal.

PROOF. Suppose that a Y, ¢ b is a VH-chain from a to b with length wy (¢) —wy (a) +wg (b) —wg (c).
We will show that it has the same length as that of the VH-chain a N [b] b, In particular, its length
only depends on a and b and is maximal.

It is clear from the definition of |a], and [b]® that |a], < ¢ < [b]®. Since both [b]* and ¢ are
V-reachable from a and [b]* > ¢, then there is a V-chain from [b]* to ¢ by Lemma 2. On the other
hand, there is also an H-chain from [b]® to ¢ because [b]® is the minimum element of the lattice of all
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H-reachable strict partitions from b which contains ¢. The two chains are both of maximal length, hence
wy (¢) — wy ([b]*) = wr ([b]*) — wr(c). The required result immediately follows from the equalities :

wy (¢) —wy (a) =wy ([b]*) —wy(a) + wy (c) —wy ([0]?)
wr (¢) = wr (b) =wr ([0]") — wa () — (wa ([6]*) — wa(c)).
O

3.4. The length of a longest chain. Once we know all VH-chains are longest chains, it is suffi-
cient to calculate the length of a well-chosen VH-chains from (n) to II. The VH-chain that we will use is
(n) Y, [(n) ] 2, 11. For the point P = |(n)]m, which is the fixed point of the CFG in Example V with
initial configuration (n), together with the length of the V-chain from (n) — [(n)]n was already computed
in [GMPO02]. Our model corresponds to the model named L(n,3) in that article. To describe P and
wy ((n), P), first write n in the form n = k(k + 1) + £(k + 1) + h, where 0 < £ < 1,0 < h < k. The integers
k, ¢, h are all uniquely determined from n. We have
Proposition 3.6.

(3.3) P=+2k{+2k—-1),....,04+2h¢+2h—-1)+1,....0+2+1,0+1),
and

kE—1Dk(k+1 k(k+1 2k —h+1
(3.4) w (P) = & )3(+)+€(2+)+h .

We can now state the following result:
Proposition 3.7. Let p,q the unique integers such that n = %p(p +1)4+4,0 < g <pand let k,l,h the
unique integers such that n =k(k+1)+40(k+ 1)+ h,0<¢<1,0<h < k. We have the following formula
for the length L of longest chains in SP(n):

k(k +1)(8k —5) (r—Dpp+1)
6 3
PrOOF. Since L = wy (P) + wg (P) — wa (II), we have from (2.1) and (3.2):

(p— 1)1;(1? +1) tap

L= +20k(k +1) + (2k 4+ 1)h — — ap.

wi (M) = (i —1)i+qp =
i=1

and from (3.3) and (3.2):

1 2k h—1
(i—1)i+> @k—i)i+1> i+ (k+l+1i)

i=k i=k =0

1
k(k+1)(2k — 1) + gek(k +1)+ 5 (2k+20+h = Dh.

wH(P) =

-

@
Il
-

DN | =

4. Infinite extension of SP(n)

It is natural to ask whether one can construct the lattice SP(n + 1) from SP(n). More generally, what
is the precise relationship between the lattices SP(n) for various n. Our solution to these questions is to
assemble them together into a lattice SP(c0) called lattice of strict partitions of infinity. Indeed, this lattice
is constructed in a similar way as SP(n) by pretending that n can be as large as needed. More precisely,
it is the lattice obtained from the dynamical system with two transitions rules as those for SP(n), and the
initial configuration is infinity. Equivalently, one can also define SP(c0) in terms of dominance order : A
strict partition of infinity is just a sequence of finitely many strictly decreasing positive integers, except the
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FIGURE 2. A longest chain in SP(23): P = (8,6,5,3,1) and IT = (7,6,4,3,2,1). A longest
chain in SP(23) is a chain containing a V-chain from (23) to P and an H-chain from P to
II, and its length is wg (8,6, 5,3,1) +wy(8,6,5,3,1) —wy(7,6,4,3,2,1) =29-0+85—-82 =
32.

first entry : (o0, a9, as,...ax). The partial order is defined by declaring that a >, b if ZiZj a; < ZiZj b;
for all j > 2. By convention, we put a,, = 0 for n > k.

Many results presented in this section are obtained initially in the case normal partitions in [LP99].
However, the proofs are not completely similar since we must be careful that our operations are within the
set of strict partition. In fact, even though SP(n) can be embedded in a P(n), the structure of the infinite
lattices or infinity trees are different.

4.1. Notations and definitions. If a = (a1, as, ..., ax) is a strict partition, then the partition obtained
from a by adding one grain on its i-th column is denoted by a':. Notice that a'i is not necessarily a strict

partition. If S is a set of strict partitions, then S'i denotes the set {a'ila € S}. We denote a S bif b
is obtained from a by applying a transition at position ¢ and by Succ(a) the set of configurations directly
reachable from a.

Write d;(a) = a; — a;+1 with the convention that apy1 = 0. We say that a has a cliff at position ¢ if
d;(a) > 3. If there exists an £ > 4 such that d;(a) = 1 for all ¢ < j < £ and d¢(a) = 2, then we say that a
has a slippery plateau at i with length (¢ — i). Likewise, a has a non-slippery plateau at ¢ if d;j(a) = 1 for
all i < j < £ and it has a cliff at . The integer £ — i is called the length of the non-slippery plateau at i.
The partition a has a (non)-slippery step at i if there is a strict partition b such that b'* = @ and b has a
(non)-slippery plateau at i. See Figure 3 for some illustrations. The set of elements of SP(n) that begin

1,

F1GURE 3. From left to right: a cliff, a slippery step, a non-slippery step, a slippery plateau
and a non-slippery plateau.

with a cliff, a slippery step, a non-slippery step, a slippery plateau of length [ and a non-slippery plateau of
length [ are denoted by C, SS,nSS, SP;,nSP, respectively.
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4.2. Constructing SP(n + 1) from SP(n). Let a = (a1,as,...,ax) be a strict partition. It is clear
that alt is again a strict partition. This define an embedding 7 : SP(n) — SP(n)"* € SP(n + 1) which can
be proved, by using infimum formula of SP(n) and SP(n + 1), as a lattice map.

Proposition 4.1. SP(n)'1 is a sublattice of SP(n + 1).

Our next result characterizes the remaining elements of SP(n + 1) that are not in SP(n)'1.

Theorem 4.2. For alln > 1, we have

SP(n+1)= S'P(n)ll LSSl unSsSte SPlll“.

PROOF. It is easy to check that each element in one of the sets SP(n)'*, §5%2, nSS!> and SPH*" is an
element of SP(n + 1), and that these sets are disjoint.

Now let us consider an element b of SP(n + 1). If b begins with a cliff or a step then b is in SP(n)!1.
If b begins with a slippery plateau of length 2 then b is in SS'2, if b begins with a non-slippery of length 2
then b is in n.SS'2. And if b begins with a plateau of length [ 4 1,1 > 2, then b is in SPl““. 0

Finally, we describe an algorithm to compute the successors of any given element of SP(n + 1), thus
giving a complete construction of SP(n + 1) from SP(n).
Proposition 4.3. Let x be an element of SP(n + 1).
(1) Suppose x = alr € SP(n)!1.
e Ifaisin C or nSP then Succ(a't) = Succ(a)'t,
e Ifa is in SP, then Succ(a't) = Succ(a)"r U {at+1},
o Ifa isin SS then let b be such that a L5 b. We have Succ(atr) = (Succ(a) \ {b})1* U {a'z}.

(2) If v = a'2 € SS'2 where a € SS: Let b be such that a L5 b, then Succ(a'?) = (Succ(a) \ {b})'2 U
{bh}.
(3) If v = a'2 € nSS2 with a € nSS, then Succ(a'?) = Succ(a)l2.
(4) Finally, if v = a‘++1 € SPZM+1 for some a € SP;, then
e Ifa has a cliff at 1+ 1 or a non-slippery step at I, then Succ(a‘+') = Succ(a)ti+1,

e Ifa has a slippery step at l, let b such that a b in SP(n), then Succ(at+1) = (Succ(a) \

Byl U ).

PrOOF. We will give the proof for the two most difficult cases (1) and (4). Consider x = a'! where
a € C : notice first that the transitions possible from a on columns other than the first one are still possible
from a!*, and on the other hand the addition of one grain on a cliff does not allow any new transition from
the first column, since such a transition was already possible.

In the last case: = at+ where a € SPll“rl and a has a slippery step of length I’ at . Then, a bin
SP(n). The possible transitions from alt+1 are the same as the possible ones from a, except the transition
on the column [. All the elements directly reachable from a except b have a slippery plateau at 1, therefore
the elements of (Suce(a) \ {b})"+1 € Suce(a'+1) The only one missing transition is: ali+1 5 glisrs1, But
we can verify that alt++1 = bl 0

Proposition 4.3 makes it possible to write an algorithm to construct the lattice SP(n + 1) in linear time
(with respect to its size).

4.3. The infinite lattice SP(oco). Imagine that (co) is the initial configuration where the first column
contains infinitely many grains and all the other columns contain no grain. Then the transitions V' and H
defined in the first section can be performed on (co0) just as if it is finite, and we call SP(c0) as the set of
all the configurations reachable from (co). A typical element a of SP(c0) has the form (00, a9,as, ..., ag).
As in the previous section, we find that the dominance ordering on SP(co0) (when the first component is
ignored) is equivalent to the order induced by the dynamical model. The first partitions in SP(oc0) are given
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FIGURE 4. The first elements and transitions of SP(0c). As shown on this figure for n = 10,
we will see two ways to find parts of SP(co) isomorphic to SP(n) for any n.

in Figure 4, along with their covering relations (the first component, equal to oo, is not represented on this
diagram).

We start by showing that SP(c0) is a lattice. We also obtain a formula for the minimum in SP(c0).
Furthermore, for any n, there are two different ways to find sublattices of SP(o0) isomorphic to SP(n). We
will also give a way to compute some other special sublattices of SP(c0), using its self-similarity.
Theorem 4.4. The set SP(c0) is a lattice. Moreover, for any two elements a = (00,az,...,a;) and
b= (00,ba,...,br) of SP(c0), then infsp(o(a,b) = c in SP(cc), where c is defined by:

¢ = maa:(z aj, Z b;) — Z ¢; for alli such that 2 <i < maz(k,l).

Jj=i Jj=i J>i

PROOF. One just needs to check that ¢ is an element of SP(c0), i.e. ¢1 = 00 and ¢; > ¢;41 for all i > 1.
O
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Now for any n > 1, there are two canonical embeddings of SP(n) in SP(c0), defined by

T SP(n) — SP(c0)
a=(a,az,...,ar) — 7w(a)=(co0,ag,...,a;)
X: SP(n) — SP(00)
a=(a1,az,...,ar) —  x(a)=(o0,a1,as,...,ax)

Theorem 4.5. Both w and x are embedding of lattices.

PrOOF. The first embedding 7 comes from our result in the Proposition 1. The second is clear by noting

that for all a,b € SP(n), a — b if and only if x(a) = x(b) in SP(c0). O

Corollary 4.6. Let
SP(<n) = || SP(i),

0<i<n
then SP(< n) is a sublattice of SP(c0) (by the embedding x).
So by using the embedding x, one can consider SP(o0) as the union disjoint of SP(n) for all n, SP(c0) =

L, >0 SP(n).

4.4. Self-reference property: the infinite binary tree Ts(c0). Observe that each element a of
SP(n + 1) can be obtained from an element b of SP(n) by addition of one grain at some position i; that
is a = b'. We will represent this relation by a tree where a € SP(n + 1) is a child of b € SP(n) if and
only if @ = b'* for some i > 0, and we label the edge b — a by i. We denote this tree by ST (c0). The
root of ST (c0) is the empty partition. We will describe two ways to compute all strict partitions of a given
positive integer n in S7 (c0). As an application, we derive an efficient and simple algorithm to compute
them. Moreover, this tree has a special property which we called ’self-reference’ from which we can deduce
a recursive formula for the cardinality of SP(n) and some special classes of strict partitions.

First of all, it is easy to see from the construction of SP(n + 1) from SP(n) that the each node a €
Ll,,>o SP(n) has at least one child, which is a't. Furthermore, if a begins with a slippery plateau of length
[, then it has another child which is the element al+1. It follows that S7 (c0) is a binary tree. We will call
left child the first of two children, and right child the other (if it exists). We call the level n of the tree the
set of elements of depth n. The first levels of S7 (c0) are shown in Figure 5.

By using the embedding x and 7 in Theorem 4.5, we have:

Proposition 4.7. The level n of ST (c0) is exactly the set of the elements of SP(n). Moreover the set
SP(n) is in a bijection with a subtree of ST (co0) having the same root.

We will now give a recursive description of ST'(c0). This will allow us to obtain a new recursive formula
to calculate the cardinality of SP(n), as well as for some special classes of strict partitions. We first define a
certain kind of subtrees of ST (c0). Afterward, we show how the whole structure of ST (co0) can be described
in terms of such subtrees.

We call X}, subtree any left subtree of an element beginning with a slippery plateau of length k. Moreover,
we define X as a simple node.

The next proposition shows that all the X}, subtrees are isomorphic (see Figure 6).

Proposition 4.8. A X}, subtree, with k > 1, is composed by a chain of k + 1 nodes (the rightmost chain)
whose edges are labeled 1, 2, ..., k and whose i-th node having an out going edge labeled with 1 to a X;
subtree for all i between 1 and k.

This recursive structure and the above propositions allows us to give a compact representation of the
tree ST (00) by a chain (see Figure 7).
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FIGURE 5. The first levels of the tree ST (00) (to clarify the picture, the labels are omitted).
As shown on this figure for n = 10, we will see two ways to find the elements of SP(n) in
ST (o) for any n.

FIGURE 6. Self-referencing structure of Xy subtrees.

Theorem 4.9. The tree ST (c0) can be represented by the infinite chain
(0,1,2,21,31,32,321,....,(n— 1L,n—2,...,1),(n,n—2,...,2,1),...,
(n,m—1,...,3,2),(n,n—1,...,3,2,1),... with corresponding edges
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1,1,2,1,2,3,...,1,2,...,n,...; each node before an edge k having an out going edge labeled with 1 to the

root of a Xg_1 subtree.
Moreover, we can prove a stronger property of each subtree in this chain:

Theorem 4.10. The subtree (of the form (k,k—1,...2,1) SN X ) of ST (00) contains exactly the partitions

of length k.

Different to the case of infinite tree of partitions, the distance of this root to the root of S7 (c0) is equal to

—k(kg_ Y We can now state our last result:
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1 421 2 431 3 432 4 43211

b 44 A

FIGURE 7. Representation of S7 (co) as a chain.

Theorem 4.11. Let ¢(l,k) denote the number of paths in a Xy, tree originating from the root and having
length . We have:
1 fl=0ork=1
(I,k) = inf(l,k) o .
Do e(l—i,4)  otherwise
-1

Moreover, |SP(n)| = Zogkg\/@n)ﬂ cn—% k) and the number of partitions of n with length exactly k

. k(k—
is c(n — %,k)
(|
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Counting Unrooted Loopless Planar Maps

Valery A. Liskovets and Timothy R. Walsh

Abstract. We present a formula for the number of n-edge unrooted loopless planar maps considered
up to orientation-preserving isomorphism. The only sum contained in this formula is over the
divisors of n.

RESUME. Nous présentons une formule pour le nombre de cartes planaires sans boucles avec n
arétes, a isomorphisme prés préservant l’orientation. La seule somme contenue dans cette formule
est prise parmi les diviseurs de n.

1. Introduction

At the end of the 1970s the first-named author developed a general method of counting planar maps
up to orientation-preserving isomorphism (“unrooted”) which is based on using quotient maps [Li81] (cf.
also [Li85, Li98]). It results in a formula which represents the number of unrooted planar n-edge maps
of a given class in terms of the numbers of rooted maps of the same class and of their quotient maps with
respect to orientation-preserving isomorphism. Based on Burnside’s (orbit counting) lemma, this reductive
formula contains a sum over the orders of automorphisms of the maps under consideration; as a rule, these
are the divisors of n. Generally the formula may contain other summations and need not be very simple
since quotient maps may form a fairly complicated class of maps.

Until now, this method was applied successfully to several natural classes of planar maps. Namely,
simple formulae have been obtained for counting all maps, homogeneous maps and so called strongly self-
dual maps; this last formula contains no sums [Li81]. (We add also that two related problems were solved
in [BoLLO00, B-MS00]. Moreover, a formula of this kind has been obtained for the first time in another way
in [Wk72] for plane trees. It is a particular case of the formula for homogeneous maps, and in [BnBLLO0O)]
it was generalized to planar m-ary cacti.) Later on, we applied this method to obtain similar formulae for
non-separable maps [LiW83] (see also [LiW87]) and for eulerian and unicursal planar maps [LiW02]. All
these classes have a remarkable property in common: the number of rooted maps in them is expressed by a
simple sum-free formula. This feature immediately implies a simple explicit form of the formula for counting
unrooted maps in the simplest cases when the class of quotient maps coincides, or almost coincides, with
the initial class. These cases include in particular the types of maps considered in [Li81]. However for non-
separable, eulerian and unicursal maps the quotient maps are not identical, or even nearly so, to the original
maps; so we cannot assume a priori that the corresponding rooted quotient maps are also enumerated by
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simple sum-free formulae which eliminate additional sums and auxiliary terms in the formula for unrooted
maps and simplify it significantly. Nevertheless, quite unexpectedly, this property is shared by all the cases
considered so far and we have found, for the corresponding unrooted maps, counting formulae that contain
only a sum over the divisors of n and a bounded number of additional terms.

The aim of the present article is to investigate one more natural class of maps, loopless maps, which
have the same property with respect to rooted enumeration and to establish the existence of a similar simple
formula for the number of unrooted maps in it. Again, we do not have any direct explanation for this
phenomenon.

Loopless maps have attracted much attention in enumerative combinatorics. Let L’(n) be the number of
rooted loopless planar maps with n edges. It was shown in [WIL75] and in several more recent publications
(see, in particular, [Wo80, BeW85]) that

Lo 21 2(4n +1) an
(1.1) L'(n) = (n+1)!(3n+2)! (n+1)(3n+1)(3n+2)< > n=t

Let L™(n) denote the number of unrooted loopless planar maps with n edges counted up to orientation-
preserving isomorphism. In this article we prove
Theorem 1.1. Forn > 1,

L) = [ PY (T D)

204t + 1)
t<n,tn
-1
(1.2) n? L’(n 5 ) if nis odd
+
dnn—1)2n—-1) ,/n—2 _ , ’
L
3030 +2) ( 5 ) if n is even

where ¢(n) is the Euler totient function.
Substituting (1.1) into formula (1.2) we can represent it in the following explicit form:
Corollary 1.2.

Lt(n) = % (n+1)?§in++1)1()3n—|—2< ) K;lf( )< )
(1.3) n2j:1 (g) if n is odd

2
(nn2) if n is even

2

The article is organized as follows. Section 2 contains a general description of planar maps, their
automorphisms and quotient maps. Section 3 contains a general “reductive” enumerative formula for loopless
planar maps and a description of their quotient maps. These quotient maps are enumerated in Section 4.
From these results, formula (1.2) is derived in Section 5, which also includes a table of values and some open
questions.

2. Maps and quotient maps

A map is a 2-cell imbedding of a connected planar graph in a closed orientable surface; if the surface
is a sphere, then the map is planar. A well-known combinatorial model of maps on an orientable surface
represents a map as a pair of permutations (o, «) acting on a finite set D of darts or edge-ends such that a
is a fixed-point-free involution and the group generated by ¢ and « is transitive on D. The vertices, edges
and faces are, respectively, the cycles of o, o and oa; o corresponds to counter-clockwise rotation around
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a vertex from one dart to the next, o corresponds to going from one end of an edge to the other, and o«
corresponds to walking clockwise from one edge to the next around the boundary of a face. A map is planar
if it satisfies Euler’s formula:

(2.1) #(vertices) + #(faces) — #(edges) = 2.

In what follows, a map is assumed to be planar. An automorphism of a combinatorial map is a permutation of
D that commutes with o and «; it corresponds to an orientation-preserving homeomorphism of a (topological)
map. Topological and combinatorial models of maps are known to be equivalent (see [JoS78]); we will need
them both.

A map is rooted by distinguishing a dart as the root. It was shown in [Tu63] (and follows easily from
the combinatorial model) that only the trivial automorphism of a planar map fixes the root. Consequently,
rooted maps can be counted without considering their symmetries. By counting unrooted maps we mean
counting isomorphism classes of maps (with respect to orientation-preserving isomorphism).

The method developed in [Li81, Li85] (and slightly simplified and modified by form in [Li98]) makes it
possible to count unrooted maps of classes more complex than plane trees. It relies on constructing and count-
ing quotient maps and uses significantly the familiar property that for any non-trivial orientation-preserving
automorphism p of a map I', the map can be drawn on the sphere so that p represents a (geometrical)
rotation of the sphere about a well-defined axis which intersects the map in two elements (vertices, edges or
faces) called azial, which, for the sake of brevity, we call the poles (see loc. cit. for the necessary references).
Geometrically, the points of intersection of the axis with edges and faces are their midpoints. On the other
hand, as follows from the combinatorial model (the transitivity property), any automorphism of a map is
reqular - all the dart-cycles are of the same length. There is a bijection between the maps fixed by an
automorphism and the isomorphic submaps into which the automorphism divides the maps, and this fact
provides a way for counting unrooted maps using Burnside’s lemma.

Given a map I' and a non-trivial (orientation-preserving) automorphism p of it which is presented
geometrically as a rotation and determined by the pair of poles, the order p > 2 (the period of rotation) and
the angle of rotation 27k/p (where k, 1 < k < p, is prime to p), the quotient map A of T’ with respect to
p is constructed by cutting the sphere into p identical sectors whose common edge is the axis of rotation,
choosing one of those sectors, expanding it into a sphere and closing it. In fact, A depends only on the
cyclic group generated by p. If a pole of I' is an edge, then it turns into a “half-edge” in A, that is into an
edge which contains a single dart; so an additional vertex of valency 1 (endpoint), called a singular vertez, is
created. A singular vertex contains no darts and it is identified with the corresponding pole. If A contains
one or two singular vertices, then p = 2. If I is rooted, then among the p sectors we choose the one that
contains the root, so that A is also rooted.

We define a g-map to be a planar map with 0, 1 or 2 vertices of valency 1 distinguished as singular
vertices and two elements distinguished as axial (poles) which are either vertices or faces and must include
all the singular vertices. Given a g-map A and an integer p > 2, the map I' and the pair of poles such that A
is the quotient map with respect to an automorphism of order p about an axis intersecting that pair of poles
can be retrieved by a process called lifting: a semicircular cut whose diameter intersects the two poles is
made in the sphere containing A, the sphere is then shrunk into a sector of dihedral angle 27 /p, any singular
vertex (if any for p = 2) is deleted leaving its incident edge with a single dart, and p copies of this sector are
pasted together to make a sphere containing I'. If A is rooted, then the root of one of these copies is chosen
to be the root of I'.

3. The quotient map of a loopless map

A map is called loopless if its graph does not contain loops. Below we give a construction for a quotient
map of a loopless map. Let L{(n), Li(n) and Li(n) be the number of rooted n-edge g-maps with 0, 1 or
2 singular vertices, respectively, whose liftings are rooted loopless maps. The following formula is a direct
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consequence of the general enumerative scheme of [Li81, Li85] described in the form presented in [Li98,
Sect. 8.7]:
Proposition 3.1.

(3.1) 2nLt(n) = L'(n)+ 3. ¢(%)L6(t)+

t<n,tln

{ Li((n+1)/2) ifnis odd
Ly((n/2)+1) ifnis even.

d

Each term in the sum in (3.1) is contributed by the automorphisms of order p = n/t and the factor ¢(n/t)
is the number of such automorphisms. Below we prove (1.2) by finding expressions for L}(n), i = 0,1,2,
which are sums of one or two terms, and substituting them into (3.1).

To evaluate L}(n), i = 0,1,2, we must consider two cases: either the quotient map has no loops or it
has at least one loop. The former case is easily tractable by adding 0, 1 or 2 singular vertices to a rooted
loopless map; the latter requires a characterization of a rooted g-map that has at least one loop but is lifted
into a rooted map with no loops.

Lemma 3.2. A loop ¢ in a g-map A is destroyed by lifting if and only if ¢ separates the poles of A.

PROOF. Suppose that the loop ¢ separates the poles. Then ¢ can be drawn as a circle that separates
the poles. The cut made as the first step in lifting A (see Section 2) will intersect £ and it can be arranged
not to intersect the vertex v incident to £. The sector will contain v with one dart of ¢ on either side of it.
When p such sectors are pasted together, each one will have a copy of v, and adjacent copies of v will be
joined by a link (non-loop edge) consisting of one dart of ¢ from one sector and the other dart of ¢ from the
adjacent sector. The loop ¢ will thus be replaced by p links.

Suppose that ¢ does not separate the poles. Then the cut can be arranged not to intersect £. The sector
will have the loop ¢ and the lifted map will have p loops. O

Lemma 3.3. Lifting a g-map A creates a loop if and only if one pole of A is a singular vertex v and the
other pole is the verter adjacent to v.

PROOF. Suppose that one pole is a singular vertex v and the other pole is the vertex adjacent to v. The
sector will contain v and a single dart d. Since v is a pole, the lifted map will have a single copy of v with
two copies of d joined together into a single edge, a loop incident to v.

Suppose that A has no singular vertex. Then each link of A is lifted into p links of I'. Now suppose that
A has a singular vertex, which must of necessity be a pole. If the adjacent vertex v is not the other pole,
then it will be lifted into two vertices joined together by the link whose darts are the two copies of the edge
joining v to the singular vertex of A. In either case, no loop will be created. O

Theorem 3.4. A map T lifted from a q-map A is loopless if and only if A satisfies the following two
conditions:

(1) if A has loops, each of them separates the poles, and
(2) if one pole is a singular vertex s, then the other pole is not the vertex adjacent to s.

PROOF. An easy consequence of Lemmas 3.2 and 3.3. |

Definition 3.5. An /-map is a g-map which has at least one loop but whose liftings have no loops.

We present a construction of an -map A, an analogue of the s-map of [LiW83] that consists of a chain
of blocks.

Suppose that A contains k — 1 loops, k > 1. Arbitrarily call one pole the outer pole and the other one
the inner pole. By Theorem 3.4, condition (1), the k£ — 1 loops are all nested one inside the other in linear
order ¢1,%s,...,0;_1, with the outer pole strictly outside the outermost loop ¢1, and therefore not the vertex
incident to £1 and the inner pole strictly inside the innermost loop £j_1, and therefore not the vertex incident
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to £x—1. The outer pole belongs to the submap M; of A that is outside of ¢; (if the outside of ¢; is empty,
then M is just the vertex-map). The inner pole belongs to the submap M) that is inside of ¢x_;. For
1=2,3,...,k—1 we denote by M; the submap that is inside of £;_1 but outside of ¢;. All the M; are loopless.
We call the M; the components of A; My and M}, are the extremal components and the other components
are the internal ones.

An example of a loopless map and its quotient map, which is an £-map, is depicted in Fig. 1.

\V( - 6

O O
B B

FIGURE 1. A loopless map (left) and its quotient map (right) with respect to rotations of
order 3 around the axis AB (where B is the midpoint of the outer face)

We construct A from the outside in. We begin with a loopless map M;. We insert an empty loop ¢;
into M7, at the one vertex of M; if M is a vertex-map or between two consecutive darts of a vertex of
M, otherwise. After this insertion, one of the darts d of ¢; will still have the property that o(d) = a(d) (a
counter-clockwise rotation about the vertex incident to ¢ starting at d traverses the empty inside of ¢; and
then encounters the other dart of the loop) - we call d the right dart of ¢; and «(d) its left dart. Then a
rooted loopless map Ms is inserted into ¢; so that the root of My (if Ms is not a vertex-map) becomes o(d).
If £ > 2, then another empty loop /5 is inserted into M5y and another rooted loopless map M3 inserted into
{5 and so on until the innermost loop £;_1 has been inserted into M}_; and the innermost rooted loopless
map My has been inserted into £_1. If A is not to have any singular vertices, then the outer pole is chosen
to be some vertex or face of M7 but not the vertex incident with ¢; and the inner pole is chosen to be some
vertex or face of M}, but not the vertex incident with ¢,_;. The modification of this construction to account
for singular vertices is discussed in Sections 4.3 and 4.4.

4. Enumeration of quotient maps of rooted loopless maps

4.1. Enumeration of rooted /-maps by the sizes of the extremal components. We now proceed to
enumerate rooted ¢-maps with n edges and no singular vertices such that M; has a edges, My has b edges,
and for 2 <i < k—1, M, has n; edges, so that no + -+ +ng_1 =n— (a+0b) — (k—1). For the moment we
distinguish the poles as outer and inner (to distinguish between M; and Mj) but in this subsection we do
not include the number of choices of poles in the enumeration formulae.

Suppose for the moment that the root of A belongs to M; (if M; is a vertex-map, then the root is the
left dart of ¢1). If M; is not a vertex-map, then there are 2a places to insert ¢1; otherwise there is one place.
For 2 < ¢ < k there is one place to insert M; into ¢;_1. For 2 < i < k — 1 there are 2n; + 1 places to insert
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¢; into M;: for any dart d of M;, ¢; can be inserted between d and o(d), or else ¢; can be inserted between
the root of M; and the right dart of ¢;_;. The number of /-maps whose root belongs to M; is thus

k—1 .
(4.1) L@ () I @i+ 1)L (ns) - { o pazo
1=2

Before continuing with the enumeration we formally state a folkloric lemma and provide two proofs,
special cases of which appear in numerous places in the literature.
Lemma 4.1 (the Little Labeling Lemma). Suppose that there are two sorts of labels for a combinatorial
object, each with the property that only the trivial automorphism preserves the labels. If the object can be
labeled in x ways with labels of the first sort and y ways with labels of the second sort, then the numbers z’
and y' of equivalence classes of labelings of the two sorts, where two labelings are equivalent if the object has
an automorphism taking one set of labels into the other, are in the same proportion x : y. This proportion
extends by summation to any set of objects with the same proportion x : y of ways of labeling them with labels
of the two sorts.

PROOF. Proof 1: Let A be the number of automorphisms of the object. Then 2’ = z/A and y' = y/A.
Proof 2: We count the number of inequivalent ways to apply labels of both sorts at once. Since either
sort of labeling destroys all non-trivial automorphisms, once labels of one sort have been applied, all the
ways of applying labels of the other sort are inequivalent. There are thus z’y inequivalent ways to apply
labels of the first sort followed by labels of the second sort and y’z ways to apply labels of the second sort
followed by labels of the first sort; so 2’y = y'x. O

Resuming the enumeration, suppose now that the root can be any dart of the map. Then the factor 2a
or 1 of (4.1) is replaced by 2n (here we are using Lemma 4.1, where one sort of labeling is a rooting in M;
and the other sort is a rooting anywhere in the map) provided that the poles are actually distinguished as
outer and inner. If a # b, we can call the outer pole the one that belongs to the component with more edges
by insisting that a > b. If @ = b, then the distinction between the poles remains arbitrary; removing it is
equivalent to dividing the number of rooted ¢-maps by 2 (here we are using Lemma 4.1, where one sort of
labeling includes distinguishing the poles as well as rooting the map and the other sort does not).

Let C’(a,b;n) be the number of rooted n-edge f-maps whose extremal components have a and b edges
(we no longer distinguish the poles as inner and outer). Applying to (4.1) the discussion of the previous
paragraph and then summing first over all sequences of na,...,n,_1 which add to n — (a +b) — (k — 1) and
then over k from 2 to n — 2 we obtain

n—2 k—1
/ L . , oy J 2 ifa#d
(4.2) C'(a,b;n) = nL'(a)L (b);2 ) +Zj [[2(27%4—1)L (ni) { L ifas.
=n—(a+b)—(k—1)

Let
(4.3) glx) =Y L'(n)z".
n=0
It was shown in [WIL75] that
(4.4) g(x) =1+2— 22— 2%,

where

(4.5) z=a(1+2)%
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We will use these formulae repeatedly. By differentiating (4.3) we find that
(4.6) Z(Zn + 1)L (n)x" = 2z4'(z) + g(x),
n=0
We evaluate ¢'(x) by differentiating (4.4) with respect to z and then dividing by dxz/dz as evaluated from
(4.5) and then we multiply by z, again from (4.5), and simplify to obtain

(4.7) zg () = 2(1+ 2)%
Substituting from (4.7) and (4.4) and simplifying, we obtain
(4.8) 2xg' (z) + g(x) = (1+ 2)>.

We denote by [z"] f the coefficient of 2™ in the power series f. Substituting from (4.8) and (4.6) we
find that the inner sum in (4.2) is [z7~ (@ T =(k=D] (1 4 2)3(k=2) = [gn—(e+b)=1]gk=2(1 4 2)3(]%2), so that
the outer sum is

(4.9) [27 (@071 (1 — (1 4 2)3) L,
Substituting from (4.5) for x into (4.9), simplifying and substituting into (4.2), we find that
(4.10) C'(a,bym) = nL/(@)L'(b) - [o"~@O=1] (1 4 2) - { Daaly

We could use Lagrange inversion [La81] to evaluate C’(a, b; n) explicitly but we do not need that formula
in what follows.

In the rest of Section 4 the choice of poles will be included in the enumeration formulae.
4.2. No singular vertices. A pole of an {-map can be any vertex or face of an extremal component except
the vertex the component shares with a loop. If the component has m edges, then by Euler’s formula (2.1)
there are a total of m + 1 vertices and faces, not counting the forbidden vertex; so the number of rooted
{-maps with n edges and no singular vertices is

(4.11) > (a+1)(b+1)C (a,b;n),

a>b>0
atb<n

which, by (4.10), is equal to
(4.12) n Y (a+ 1)L (@)(b+ 1)L (D) - 2" T (1 4 2).

a>b>0
a+b<n

In a manner similar to the derivation of (4.6) and (4.8) we find that

(4.13) Z (a+ 1)L (a)z® = zg'(x) + g(z) = (1 + 2)*.
a=0

Substituting from (4.13) into (4.12) and simplifying, we obtain
(4.14) n- 2" (14 2)°.
The derivative of (1 + z)® is 5(1 + z)*; so by Lagrange inversion (4.14) is equal to
_ 5n 4n 5n(4n)!
n—2 4n
1 +2) n—l(n—Z) (n—1)!1(3n + 2)!

Comparing the right side of (4.15) with (1.1), we express the number of rooted n-edge f-maps as a
multiple of L'(n):

(4.16) 5;;17? <"J2r 1).

(4.15) 5—

n—1




178 COUNTING LOOPLESS MAPS

The number of rooted loopless n-edge g-maps is

(417) ("3%) v

because by Euler’s formula (2.1) there are a total of n + 2 faces and vertices and any pair can be chosen to
be the poles.
Adding (4.16) and (4.17) we find that

(n+1)EBn+1)Bn+2) , [(4n
2(4n+1) L(n)_<n>

(4.18) Li(n) =

(the last equality is obtained by using (1.1)).

4.3. One singular vertex. We construct a rooted /-map with n edges and one singular vertex by taking
a rooted f-map with n — 1 edges and no singular vertices, inserting a singular vertex and its incident edge
into M (which has a edges) making the singular vertex the outer pole and choosing one of the b+ 1 possible
inner poles in M} which has b edges. There are 2a+ 1 slots into which to insert the dart opposite the singular
vertex: as o(d), where d can be either any dart of M; or else the right dart of ¢;. This augmented ¢-map
has 2n — 1 darts that can be the root, as opposed to 2n — 2 for the original /~-map. To get the number of
maps we substitute n — 1 for n in (4.10), multiply by (2n — 1)/(2n — 2) to account for the extra possible root
(by Lemma 4.1), by 2a + 1 to account for the insertions and by b+ 1 to account for the inner pole, and then
sum over a and b. We obtain

2n —1
(4.19) "2 3 a+ DL (a)b+D)L(b) - 2@ (1 2)
afl;bSZnEI
2n —1 n—2 / ’
(4.20) = =5 [a"7](22¢'(2) + g(2)) (zg"(2) + g(2)) (1 + 2).
Substituting from (4.8) and (4.13) into (4.20) and simplifying we obtain
(4.21) 2”2_ L @2 (14 2)°
The derivative of (1 + 2)° is 6(1 + 2)°; so by Lagrange inversion, (4.21) is equal to
3(2n—1) _3 an—3 3(2n—1) (4n—3
4.22 —— 2" 1 =7 .
( ) n—2 211 +2) n—2 n—3

Comparing the right side of (4.22) with (1.1), we find that the number of rooted ¢-maps with n edges and
one singular vertex is

(4.23) (n—1)(2n — 1)L'(n — 1).

We construct a rooted loopless ¢g-map with n edges and one singular vertex by taking a rooted loopless map
with n — 1 edges, inserting a vertex of valency 1 and its incident edge into one of the 2(n — 1) possible slots,
making the singular vertex one pole, choosing another pole and letting the set of possible roots include the
dart opposite the singular vertex. The number L’(n — 1) gets multiplied by 2n — 2 for the insertions, by
(2n —1)/(2n — 2) for the extra possible root (by Lemma 4.1), and by n for the choice of the second pole: by
Euler’s formula (2.1) there are a total of n+1 vertices and faces aside from the first pole, but by Theorem 3.4,
condition (2), the vertex adjacent to it is ineligible to be a pole. The number of rooted loopless g-maps with
n edges and one singular vertex is thus

(4.24) n(2n —1)L'(n —1).
By adding (4.23) and (4.24), we find that
(4.25) Li(n) = (2n—1)2L'(n —1).
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4.4. Two singular vertices. We construct a rooted ¢-map with two singular vertices by taking a rooted
£-map with n — 2 edges and no singular vertices, inserting a singular vertex and its incident edge into M;
(which has a edges) and another one into M}, (which has b edges), making each of these singular vertices
a pole and allowing the set of possible roots to include the darts opposite both singular vertices. There
are 2a + 1 possible insertions into M; and 2b + 1 possible insertions into Mj. To get the number of maps,
we substitute n — 2 for n in (4.10), multiply by (2a + 1)(2b 4 1) to account for the insertions, multiply by
(2n — 2)/(2n — 4) to account for the two extra possible roots (by Lemma 4.1) and sum over a and b. We
obtain

(4.26) (n=1) Y (a+1)L'(a)(2b+1)L'(b) - [a" I (1 + 2)
afbin-2

(4.27) = (n=1) [2"~°] (22g/(2) + 9(x))" (1 + 2).

Substituting from (4.8) into (4.27) and simplifying we obtain

(4.28) (n—1)-[z"% (14 2)".

The derivative of (1+ 2)7 is 7(1 + 2)%; so, by Lagrange inversion, (4.28) is equal to
T(n—1) 4 an—g ((n—1)/4n—6

4.2 S P 1 n—6 _ \"" 7 1) .

(4.29) 3 1A +2) 3 \ 4

We construct a rooted loopless ¢g-map with n edges and two singular vertices by taking a rooted loopless
map with n — 2 edges and inserting two singular vertices and their incident edges into 2n — 4 possible slots,
making both the singular vertices poles, and allowing the set of possible roots to include the darts opposite
the two singular vertices. The number L’'(n — 2) gets multiplied by (2n — 2)/(2n —4) to account for the two
extra possible roots (by Lemma 4.1); to account for the insertions it gets multiplied by (2n — 4)(2n — 3)/2
instead of (2n — 4)(2n — 5)/2 because both opposite darts can be inserted into the same slot. The number
of rooted loopless g-maps with n edges and two singular vertices is thus

(4.30) (n—1)(2n —3)L'(n — 2).
Adding (4.29) and (4.30) and comparing with (1.1) we get two expressions for L}(n):

(431 Ly = AR gy - (),

and we keep them both because the one that is not a multiple of L’(n — 2) is simpler.

5. The result. Discussion

Substituting from (4.18), (4.25) and (4.31) into (3.1) we obtain (1.2), thus proving Theorem 1.1. O

Table 1 contains the values of L'(n) and L™ (n) for 0 < n < 20. These latter values were verified for up
to 7 edges by comparison with the number of unrooted loopless maps generated by computer [W183].

We note here that there is another way to derive formula (1.2): we express an £-map as a chain of blocks,
at least one of which is a loop, whose extremal components contain the poles as internal elements, with a
rooted loopless map inserted between each pair of darts d, o(d).

An interesting open problem would be a proof of formulae (1.2) or (1.3) (and the analogous formulae for
unrooted non-separable, eulerian and unicursal maps) that involves natural bijections instead of Lagrange
inversion, thus possibly explaining the absence of a rational factor to be multiplied by (%) for ¢t < n in
(1.3), which is a special case of a general phenomenon discussed in more detail in [Li04]. Another open
problem is counting unrooted loopless maps (as well as eulerian and unicursal maps) by number of edges
and vertices. This problem is probably easier to solve than the previous one because it has already been
solved quite effectively for all maps and non-separable maps by the second-named author [W103]. In general,
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TABLE 1. The number of rooted and unrooted loopless planar maps

#(edges) #(rooted maps) | #(unrooted maps)
0 1 1
1 1 1
2 3 2
3 13 5
4 68 14
5 399 49
6 2530 240
7 16965 1259
8 118668 7570
9 857956 47996

10 6369883 319518
11 48336171 2199295
12 373537388 15571610
13 2931682810 112773478
14 23317105140 832809504
15 187606350645 6253763323
16 1524813969276 47650870538
17 12504654858828 376784975116
18 || 103367824774012 2871331929096
19 || 860593023907540 22647192990256
20 || 7211115497448720 | 180277915464664

there is no necessity to restrict oneself to classes of maps for which rooted maps are enumerated by sum-free
formulae. For instance, it would be interesting to count unrooted n-edge planar maps without either loops
or isthmuses; for counting such rooted maps see [WIL75].
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Descents, Major Indices, and Inversions in Permutation Groups

Anthony Mendes and Jeffrey Remmel

Abstract. We give a new proof of a multivariate generating function involving the descent, major
index, and inversion statistic due to Gessel. We then show how one can easily modify this proof to
give new generating functions involving these three statistics over Young’s hyperoctahedral group,
the Weyl group of type D, and multiples of permutations. All of our proofs are combinatorial in
nature and exploit fundamental relationships between the elementary and homogeneous symmetric
functions.

1. Introduction

Let 0 = 01 -+ -0, be an element of the symmetric group S,, written in one line notation. The descent,
major index, and inversion statistics are defined by

n—1 n—1
des(o) = Z X(oir1 < ), maj(o) = Zix(alqu <o0y), and inv(o)= ZX(@ < aj),
i=1 i=1 J<i

where for any statement A, x(A) is 1 if A is true and 0 if A is false. These definitions also hold for any finite
sequence. The past century has witnessed a beautiful theory develop from the study of these (and other)
permutation statistics. To this day, new generalizations and variations of these statistics are investigated. In
this work, we will create multivariate generating functions involving the three statistics defined above. They
will follow from the combinatorial manipulation of objects arising from fundamental relationships between
bases of symmetric functions.

Standard notation from hypergeometric function theory will be used. For n > 1, A F n, and an
indeterminate ¢, let

n} B [n]g!
A q [Al]q!"'[/\f]q!
be the g-analogues of n, n!, and (2), respectfully. Let (z;q), = (1 — 2¢°)--- (1 — 2z¢"!). Finally, define a

g-analogue of the exponential function such that

equ(x) = Z [::—]1;!(1(3),

n>0

[l =q"++q"7" [nlg! = [nlg - [y, and {

1991 Mathematics Subject Classification. 05A15, 05E05.
Key words and phrases. generating functions, symmetric group, symmetric functions.
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In Gessel’s thesis and in a paper by Garsia and Gessel [Ga, Ge], it was shown that

k
(1.1) > oAl

Z des(o) maj(o) znv(a) _ Z <
X = .
—+70) ... — ik
£ o0, (~170) - exp, (1)

xrn+1

This will be our starting point. Flrst, we give a new, combinatorial proof of 1.1. Then, we show how similar
proofs indicate a systematic approach to finding more generating functions for permutation statistics. To
this end, we highlight some basic facts about the ring of symmetric functions needed for the journey.

The n'" elementary symmetric function e,, and the n'" homogeneous symmetric function h,, are poly-

nomials in the variables x1,x2, ... defined to satisfy
n 1

> bt :Hl_ﬂ and > eat” = [J0+a).

n>0 n>0 7
Therefore,

1 -1
1.2 hot" = 1+ (- = en(—

" S =M = (Ienen) = (g

Multiply both sides of 1.2 by the reciprocal of the right hand side and then compare the coefficient of t™ on
both sides of the result to see that
(1.3) Z(—l)ieihn,i =0, or equivalently, h, = (=1)""'e, + Z(—l)iileihn,i.
i=0 i=1

For a partition A, ey is defined to be ey, - . It is well known that {ey : A a partition} is a basis for
the ring of symmetric functions [S]. A comblnatorlal interpretation of the expansion of h,, in terms of this
basis was first given by Egecioglu and Remmel [E]. It is now described as it will be of great use to us.

A rectangle of height 1 and length n chopped into “bricks” of lengths found in the partition A is known
as a brick tabloid of shape (n) and type A. For example, Figure 1 shows one brick tabloid of shape (12) and
type (2,3,7). Let By, be the number of such objects. Note that (—1)"" B, () = (=1)"~!. Furthermore,

FIGURE 1. A brick tabloid of shape (12) and type (2,3, 7).

sorting by the length of the first brick, it may be seen that

n—1

(—1)" By () = Z(—l)%l ((—1)(%1)7(6(”71)BA\i,(n—i))

i=1
where Bjy\; (n—i) is defined to be zero if A does not have a part of size i. These two facts completely determine
the numbers (—1)”4()‘)BA’(”) recursively. By using 1.3, the coefficient of ey in h,, may be shown to satisfy
the exact same recursions. Therefore,
(1.4) hn =Y (1" By ne.

Abn

We have now established enough terminology and basic facts to commence our discussion of methods to
find generating functions involving the descent, major index, and inversion statistics.
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2. A new proof of Gessel’s generating function

For k > 0, define a homomorphism & on the ring of symmetric functions such that

pOto+-+kiy io P
e = Y gt
iy >0 olaTT TR
w0+ Fip=n

for indeterminates ¢ and r. Since products of n** elementary symmetric functions form a basis, the definition
of & extends to all other elements in the ring of symmetric functions. In particular, we may apply &i to the
n*™ homogeneous symmetric function.

Theorem 2.1. For k,n >0,

1 . .
! hy) = § des(o),.maj(o) inv(o)
[n]q é-k( ) (x;r)n—i—l e € r q .

where expression|, denotes the coefficient of x in expression.

ProOOF. Expand h, in terms of the elementary symmetric functions by 1.4:

[nlg'ék(hn) = [nlg! > (=) "N By u8k(en)

AFn
£(N) Oijo+tkije ;
- it g PO e ()
[l > (=1 A H > ol laalg L *
AFn 15,0eyig >0 10N Jrla

ij,04 Jrl] PEDY
Rewriting g-analogues, the right hand side of the above is equal to
ey

(2.1) Z [)\:| (—1 E(A)B)\ H Z l:ij ) J i k] pOijot+k J,kq( BOY e ( J2k).
q 055 ikl

AFn 95,0, 0504,k >0

i, 0+ +l] PEDY
2.1 may be interpreted as a sum of signed, weighted brick tabloids. After combinatorial objects are described,
a sign-reversing, weight-preserving involution will be applied to leave only objects with positive sign. Then,
the fixed points will help count the number of permutations with k£ descents by the major index and inversion

statistics.

Start creating combinatorial objects from 2.1 by using the “> ", and the factor of B) , to give a brick
tabloid of shape (n) and type A for some \ - n. Let us call this brick tabloid 7. The factor of (—1)"~ ¢
allows for the labeling of each cell not terminating a brick in 7" with a “—1”. In each terminal cell in a brick,

7

place a “1”.
For each brick in T', choose nonnegative integers ig, . . ., 75 that sum to the total length of the brick. This
accounts for the product and second sum in 2.1. Using the power of r, these choices for ig,...,i; can be

recorded in T'. In each brick, place a power of r in each cell such that the powers weakly increase from left
to right such that the number of occurrences of 77 will be equal to ;. At this point, we have constructed T
which may look something like Figure 2 below.

-1:-1:1{-1 -1:-1:-1:-1 -1:11]-1:1
rioorli 3 0 y0 0 p0 8 g0 g2 3 3 pliopl

FIGURE 2. One possible T" when k = 3 and n = 12.
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The only components in 2.1 which have not been used involve powers of g. We will explain how these
powers of ¢ will fill the cells of T" with a permutation of n such that a decrease must occur between consecutive
cells labeled with the same power of r. Along with this permutation of n, a power of g will be recorded
in each cell counting the number of smaller integers in the permutation to the right (given an integer i in
a permutation, the number of smaller integers to the right of i is sometimes referred to as the number of
inversions caused by ).

In [C], Carlitz shows that if R(0%, ... k%) is the number of rearrangements of ig 0’s, i; 1’s, etc., then

n )
_ inv(r)
. | = E q )
LO,...,sz

reR(0%,...,kk)

Thus, the m . term in 2.1 gives a rearrangement of A\; 0’s, Ao 1’s, etc. We will use this to select which
integers in a permutation of n will appear in each brick. Start with a brick tabloid T of shape (n) such that
the size of the bricks read from left to right are by, ..., bg. For example, if T" is the brick tabloid in Figure 2,
then by = 3, by = 7 and by = 2. Then consider a rearrangement 7 of 0%, ..., kP and construct a permutation
o(r) by labeling the 0’s from left to right with 1,2,..., b, the 1’s from right to left with by + 1,...,bo + bs
and in general the i’s from right to left with 1 + Z;;ll bj,...,b; + Z;;ll b;. In this way, o(r)~! starts with
the positions of the 0’s in r increasing order, followed by the positions of the 1’s in r in increasing order, etc.
For example, for T pictured in Figure 2, one possible rearrangement to considerisr=10112012101 1.
Below we picture o(r) and o(r)~L.

r =10 1 1 101 2 1 0 1 1
o(r) =41 5 6 11 2 7 12 8 3 9 10
o(r)™ = 2 6 10 1 3 4 7 9 11 12 5 8

This tells us that when selecting a permutation of 12 to place in T, the integers 2, 6, 10 should appear in the
brick of size 3, the integers 1,3,4,7,9,11, 12 should appear in the brick of size 7, and the integers 5,8 should
appear in the brick of size 2. It is easy to see that inv(r) = inv(o(r)) and inv(o(r)) = inv(o(r)~!). Thus,
the theorem of Carlitz tells us that [’ﬂ . is the sum of the the number of inversions of all sequences that are
the result of placing a permutation of numbers 1,...,n in the cells of T such that the numbers in each brick
increase from left to right.

For each brick of length A; in 7', there is an unused term of the form [io AJ ik}qq@)*'“*(i&) where

19 + -+ + i = Aj. The theorem of Carlitz enables us to start with a rearrangement a of ig 0’s, i1 1’s, etc.
to use the g-multinomial coefficient. Record from right to left the 0’s in @ with 1,...,79. Then record the
1’s in a from right to left with o + 1,...,4;. Continue this process £ times to form a permutation of A;
from a, 7, . The inverse, 7,, records the places of the 0’s, 1’s, etc., and therefore must have decreasing
sequences of length 4o, ...,%;. Let 7, be the permutation 7, where the integers 1,...,\; have been replaced

with whatever integers the factor [’)\L]q dictates should appear in the j brick.

For example, if kK =3 and i9g =4, i1 =0, i = 1, and i3 = 2 as found in the second brick in Figure 2, a
permutation of 7 may be formed from 0 2 0 3 3 0 0. Continuing our example from above, the brick of size 7
should contain the integers 1,3,4,7,9,11, and 12. The permutations 7, !, 7,, and 7, can be found:

|1 2 3 456 7
a0 2 03 3 0 0
w4 5 376 2 1.
|7 6 3 1 2 5 4
12 11 4 1 3 9 7
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By construction, we have that
inv(7y) = inv(r,) = inv(r, 1) = inv(r) + (120) +--+ (sz>

Therefore, for each brick of size \;, we may associate a permutation of A; such that the permutation must
have a descent if two consecutive cells have the same power of r. By taking along a power of g (™) we

are able to account for the factors in 2.1 of the form [io A ik] q(lzo)*“'*(;k). Every term in 2.1 has now been
o]
used.
Let T be the set of all possible brick tabloids decorated in this way. Figure 3 gives one example of such

an object. We have shown how each T' € T has the following five properties:

-1 -1:1[|-1 -1 -1:-1:-1 -1:11]-1: 1
rtooploop3) r0 0 pO 0 g0 p0 p2 0 p3 0 p3 ) rloogl
® g ool g @ o P ¢ g|g q
0 2 6 ]12:11 4 .1 3.9 7|8 5

FIGURE 3. An object coming from 2.1 when k£ = 3 and n = 12.

(1) T is a brick tabloid of shape (n) and type A for some A F n,

(2) the cells in each brick contain —1 except for the final cell which contains 1,

(3) each cell contains a power of  such that the powers weakly increase within each brick,

(4) T contains a permutation of n which must have a decrease between consecutive cells within a brick

if the cells are marked with the same power of r, and
(5) each cell contains a power of ¢ recording the number of inversions caused by the integer entry.
Define the sign of T' € T, sgn(T), as the product of all —1 labels in T'. Define the weight of T € T, w(T),
as the product of all r, and ¢ labels. In this way, the T in Figure 3 has sign (—1)Y and weight r!5¢36. From
our development, we have
(0! (hn) = > sgn(T)w(T).
TeT
At this point, we will introduce a sign-reversing weight-preserving involution I on T to rid ourselves of

any T € T with sgn(T) = —1. Scan the cells of T' € T from left to right looking for the first of two situations:

(1) a cell containing a —1, or

(2) two consecutive cells ¢; and c¢o such that ¢; ends a brick and either the powers of r increase from

c1 to ¢ or the powers of r are the same and the permutation decreases from c; to cs.

If situation 1 is scanned first, let I(T") be T where the brick containing the —1 is broken into two immediately
after the violation and the —1 is changed to a 1. If situation 2 is scanned first, let I(T") be T where bricks
containing ¢; and ¢y are glued together and the 1 on c¢; is changed to —1. If when scanning from left to
right neither case happens, let I(T) = T. For example, the image of the element of T in Figure 3 under T is
displayed in Figure 4.

1 /-1:1[-1:-1:-1 -1 -1:-1:11]-1:1
rif rli 3 0 0 p0 i g0 g2 3 3 pliopl
¢l o g @ & ¢ ¢ q|g o
02 6]12:11 4 1 3 9 7

FIGURE 4. The image of Figure 3 under I.
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By definition, if T' # I(T), then sgn(I(T)) = —sgn(T"), w(I(T)) = w(T'), and I(I(T)) =T. Thus [ is a
sign-reversing weight-preserving involution on J. The fixed points under I have the properties that
(1) there are no bricks with —1 in them,
(2) the powers of r weakly decrease, and
(3) if two consecutive bricks have the same power of 7, then the permutation must increase there.
Since every brick of length greater than 1 contains a —1, a fixed point can only have bricks of length 1. One
example of a fixed point may be found in Figure 5. We now have

1717171
r3) 3| 3 r2 r2| r2| rd2| r2| rt| rl| rof ro
o I I S e S o R 0 K 0 R e e e EH I R
416|823 |5|7|9|112|12]1]10

FIGURE 5. A fixed point in T under I when £ = 3 and n = 12.

gt (hn) = ) sgn(T)w(T) = > w(T),

TeT TeTisa
fixed point under I

so counting fixed points is the only remaining task.

Suppose that the powers of r in a fixed point are P, ... rP» when read from left to right. It must be
the case that k > p; > --- > p,. Let ay,...,a, be the nonnegative numbers defined by a; = p; — p;+1 for
i=1,...,n—1and a, = p,. It follows that py + -+ p, = a1 +2a2+ -+ +nan, a1 + -+ a, = p1 <k,
and if o is the permutation in a fixed point, a; > x(0; > 0;41). In this way, we have the sum of weights over
all fixed points under I is equal to

Z qinv(a)rm ++pn

oeSy
k>p12>--2>pn2>0

E qinv(g) § part2azt-+nan

o€S, a1+ +an<k
a; >x(0i>0i41)
= § qm”(") E e E g1t tan part2az+tnan
oceSy a1>x(o1>02) an>x(op>n+1) o<k

where the notation expression|,<» means to sum the coefficients of 2 up to and including z* in expression.
Rewriting the above equation, we have

Z qinv(o—) Z ((ET‘)al . Z (xrn)an

ocES, a1 >x(o1>02) an>x(on>n+1) z<k
Ly gty ) o)
— e — n
= 1—ar)---(1—2ar) o

ZUES xdes(o’),’,maj(o)qinv((r)
T—=zr)y---(1—arm)

=<k

Dividing by (1 — z) allows for #<F to be changed to z* in the above expression, thereby arriving at the
statement of the theorem. (]
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1.1 is a corollary. We have

Z tTL Z xdes(a)rmaj(a)qinv(a)

2 Tl e 2

Z ka Z tr Z mdes(a),’,'m.aj(a) qinv(o)

(e
= S ld@nen S )

= Z xk Z tngk(hn)a

k>0  n>0

which by an application of 1.2 is equal to

—1

G0+ ki i :
S [ Senr] = e[S 3 T @) (h)
k>0 n>0 k>0 n>0 10yeeyin >0 [ZO](I! T [Zk]q!
to+-+ik=n
—1 . _1
_ el G0 KON IR (ol Gt 0 KN )
2\ L 2
:Ek
B é exp, (—tr0) - - - exp, (—trk)’

The proof we have given for 1.1, although elementary and combinatorial, is not any “easier” than that
given by Garsia and Gessel. However, there are at least two distinct advantages of our methods. First, the
techniques in the proof of theorem 2.1 may be slightly modified to give a wide swath of seemingly unrelated
generating functions for the permutation enumeration of the symmetric group, Weyl groups of type B and
D, subsets of the symmetric group, and more [M]. Second, the ideas in the proof of Theorem 2.1 may be
generalized to give new generating functions involving the descent, major index, and inversion statistics.

3. Generating functions for the Weyl groups of type B and D

Let us turn our attention to applying this machinery to the hyperoctahedral group B,, and its subgroup
D,,. The hyperoctahedral group B,, may be considered the set of permutations of n where each integer in
the permutation is assigned either a + or — sign. For o € B,,, let neg(c) count the total number of negative
signs in 0. The subgroup D,, of B,, contains those o € B,, with neg(c) an even number. These are Weyl
groups appearing in the study of root systems and Lie algebras.

Define a linear order © on {£1,...,£n} such that

l<g "<egn<g —n<e- <o —1
and define desg (o) on B, such that

desg(o) = x(n <o on) + ZX(Uz’—H <o 0;).
K3

This definition and the linear order © arises from an interpretation of B,, as a Coxeter group. For o € B,,,
let majp(o) and invg(c) be the major index and inversion statistics with respect to the linear order ©.

Using the methods of Garsia and Gessel and the study of upper binomial posets, Reiner found a gen-
eralization of 1.1 for B,, involving the statistic counting the number of negative signs in B,, and versions of
descents, inversions, and the major index [R]. In this Section we will indicate (without a formal proof) how
a simple modification of the method given in Section 2 to prove 1.1 can do the same.
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Define a homomorphism {p ;. on the ring of symmetric functions by defining it on e,, such that

rOio+---+Fkik

gB,k(en) = Z mq(§)++(é)[lo+l]y [ik + ]-]y
10,000y >0 & T
io(jr"'+§k:n
Then it may be proved that
1 . )
(3.1) ot k() = o5— S pesn(0)ymasn(e)ginvn () ynea(e)

oceB, zk

The proof of this fact may be found by first expanding h,, via 1.4 to form combinatorial objects like
Figure 6 below. The [ig + 1], - - [ix + 1], term in the definition of the ring homomorphism {p ;, allows for

-1 -1 -1 -1 1[-1 1]-1 -1 1]1
rO: r0 1l opl gl r2 0 3 o p3 0 3| r0f r?
¢t o ¢ o | g | g g | q|
2 1 10 9 2|4 3|6 7 5|11/ 8
y LYy Ly Ly LY y

FIGURE 6. An example of a combinatorial object coming from the application of £ 1 to [n]q!h,.

the bottom row of T" to contain some number of y’s in cells marked with the same power of r so that these
objects have the exact same properties as the T" found in Figures 3, 4, and 5 with the addition of powers of
y recorded in the bottom of the object. These powers of y will be interpreted to mean that the integer in
the permutation in the cell marked with y is negative.

Suppose we have j consecutive cells within a brick with the same power of r and marked with a y. Instead
of writing these integers in decreasing order as prescribed in the proof of Theorem 2.1, let us reverse the
order of these j integers in T so that they are in increasing order. An example of this may be found in Figure
7. This is done so that cells in a brick marked with the same power of r are in descending order according

-1 -1 -1:'-1:1[-1:1]-1:-1 1 1
PO r0 0 1oyl ol r2 0 3 o3 3| r0f gt
gt q® ¢ g 9| q | g g | g |
2 1 9 10 2|4 3|6 7 51|11 8
y Ly By Ly Ly y

FI1GURE 7. Reversing the order of two integers in Figure 6.

to the linear order ©. The same brick breaking/combining sign-reversing weight-preserving involution as in
Theorem 2.1 may be now applied to leave a set of fixed points which may be counted to yield 3.1.
A generating function may be found employing 1.2. We have

Z : tn Z xdesB(g)rmajB(g)qian(U)yneg(o)
n>0 [Tl]q.(x;T)7L+1 c€B,

pOio+---+FKig

PSP Ui mq@)+”'+@)[io+1]y"'[ik+1]y

k>0 n>0 10,000,020
G0+ tik=n
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which in turn may be simplified to look like

= (exp, (—tr0) — yexp, (—tyr?)) - - - (exp,(—trF) — yexp,(—tyrk))

Let A(t,z,r,q,y) denote the generating function in 3.2 above. Notice that A(t,z,r,¢,0) is equal to the
generating function in 1.1 as it should.
For any series f(z) = ano cpx™ for ¢; € C, we have

GRS CIN )

n>0
Therefore,
Z tn Z xdesB(o’)lrmajB(U)qian(U)yneg(o’) _ A(t7$77a7 q, y) + A(t7$7T7Qv _y)7
I R ) 3

giving a multivariate generating function for the Weyl group of type D.

4. A Generating function for pairs of permutations

Let us find a generating function for two copies of the symmetric group S,,. Given ol 02 € S, define
comdes(o',0?) as the number of times o/ > of 41 for all j = 1,2—this is known as the number of common
descents. Let commaj(ot,o?) register i for every time af > U{ 41 for j =1,2. These type of statistics have
been studied and a multivariate generating function for descents and inversions was found in [F] by Fedou
and Rawlings. In this Section, we will apply our methods to finding a generating function involving the
descent, major index, and inversion statistics by altering the ring homomorphism .

Define & 2 as a homomorphism on the ring of symmetric functions by defining it on the n'*® elementary
symmetric functions such that

Oig+-+kig . ; . ;
TRICH R — () () (),
i0rin >0 lio)q![i0]p! -+ - [ik]q! [ik]p!
G0+ tig=n

The difference between & and & o is that all the terms involving ¢ in & have written down twice in the
indeterminates ¢ and p. Using & 2, it may be shown that

Z [n] '[n] t;(lvr) » Z xcomdes(al,02)7,c0m7naj(a'1,oz)qinv(ol)pinv(az)
n>0 LRI

ol,02€S,
—1

,,,.O’Lg—‘r—‘rkzk

(4.1) = D | D> = Y (9)+-+(4) p(9)+-+(%)

k>0 n>0 ion o ola!liolpt - [inla!lixly!
- SR i e

The proof of 4.1 follows in the same way that we have proved 1.1. First, it may be shown that

1 1 _2 1 2y 1y 2
(42) [n]q'[n]plgkﬁ(hn) _ xcomdes(a o )Tcommaj(a' o )qznv(a )pznv(a )

(@i St "

This is analogous to our Theorem 2.1. The combinatorial objects we are able to create based on brick
tabloids are the same as those found in Figures 3, 4, and 5 with one slight change. The ¢ and p analogues
give rise to two different permutations in a brick tabloid instead of one. The powers of ¢ and p register the
inversions of each permutation.
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For example, one such combinatorial object which may be formed starting with 4.2 and using the
techniques in the proof of Theorem 2.1 is found in Figure 5 below. The combinatorial objects may be

-1:-1:-1:-1: 1 |-1:1]-1 -1:1 1 1
FPO: rO: pl ploopl 2 3 rloop3 p3 ) r0 rl
q11§ q° o q’ Q| gt Q| gt ql Q| qt| q
12 1 :10: 9 @ 2 4 : 3 6 07 5 |11 | 8
plo p3 pg p8 p3 pO pO pZ pZ pl pO pO
11 4 12 110 : 5 12 78 6 3 9

FIGURE 8. An example of T arising from 4.2

constructed to have the following properties:

(1) T is a brick tabloid of shape (n) and type A for some A F n,

(2) the cells not at the end of a brick are marked with —1 and cells at the end a brick are marked with
]-7

(3) each cell contains a power of  such that the powers weakly increase within each brick,

(4) T contains two permutations of n which both must have a decrease between consecutive cells within
a brick if the cells are marked with the same power of r, and

(5) each cell contains a power of ¢ and p recording the number of integers in each of the permutations
to the right which are smaller.

The sign of such an object is the product of the —1 signs in the objects and the weight is defined to be
the product of all indeterminates in the object. Once these combinatorial objects are defined, a very similar
sign-reversing weight-preserving involution I as given in the proof of Theorem 2.1 may be employed. That
is, to define I, scan the cells of T' € T from left to right looking for the first of two situations:

(1) a cell containing a —1, or
(2) two consecutive cells ¢; and c¢o such that ¢; ends a brick and either the powers of r increase from
c1 to cg or the powers of r are the same and the both permutations decrease from ¢y to cs.

If situation 1 is scanned first, let I(T") be T' where the brick containing the —1 is broken into two immediately
after the violation and the —1 is changed to a 1. If neither (1) or (2) applies, then we define I(T) = T.
By definition, if T # I(T), then sgn(I(T)) = —sgn(T), w(I(T)) = w(T), and I(I(T)) = T. Thus I is a
sign-reversing weight-preserving involution on J. The fixed points under I have the properties that

(1) there are no bricks with —1 in them,

(2) the powers of r weakly decrease, and

(3) if two consecutive bricks have the same power of r, then at least one of the permutations must
increase there.

Using the same techniques as in Section 2, one can show that the fixed points under this involution may then
be counted to prove 4.2. 4.1 follows by an application of the simple relationship between the elementary and
homogeneous symmetric functions in 1.2.

Instead of defining a “double” version of £ in & 2, one may define a “m-tuple” version of & to help
record generating functions for m copies of the symmetric group. The process is no more difficult than
the method we have outlined for two copies of the symmetric group except for the fact that there are m
indeterminates to keep track of instead of two.
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Furthermore, we can keep track of two elements in B,, or D,, using a combination of the ideas behind
the definitions of {p 1 and & 2. That is, by defining a homomorphism by mapping e,, to

D — (DTt (DD g 4 1, [io + 15 -+ [ig + 1y [ir + 1],
i0rrin >0 [t0)q![i0]p! - - - [ik]qlik]p!
o+ Fig=n

then we can find a generating function registering common B,, descents and major indices together with
inversions and the number of negative signs over pairs of signed permutations. This technique, in general,
can provide many different generating functions for permutation statistics.

References

[C] L. Carlitz, Sequences and inversions, Duke Math. J. 37 (1970) 193-198.

[E] 0. Egecioglu, J. Remmel, Brick tabloids and the connection matrices between bases of symmetric functions, Discrete Appl.
Math. 34 (1991) 107-120.

[F] J.-M. Fedou, D. Rawlings, Statistics on pairs of permutations, Discrete Math. 143 (1995) 31-45.

[Ga] A. Garsia, I. Gessel, Permutation statistics and partitions, Adv. in Math. 31 (1979) 288-305.

[Ge] I. Gessel, Generating functions and enumeration of sequences, Ph.D. Thesis, MIT (1977).

[M] A. Mendes, Building generating functions brick by brick, Ph.D. Thesis, University of California, San Diego (to appear in
2004).

[S] R. Stanley, Enumerative combinatorics, vol. 2, Cambridge Univ. Press. (1999).

[R] V. Reiner, Signed permutation statistics, Europ. J. Combinatorics 14 (1993), 553-567.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIiEGo, USA 92093
E-mail address: amendes@math.ucsd.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SAN DIiEGO, USA 92093
E-mail address: remmel@math.ucsd.edu






Formal Power Series and Algebraic Combinatorics
Séries Formelles et Combinatoire Algébrique
Vancouver 2004

A Solution to the Tennis Ball Problem

Anna de Mier and Marc Noy

Abstract. We present a complete solution to the so-called tennis ball problem, which is equivalent to
counting lattice paths in the plane that use North and Fast steps and lie between certain boundaries.
The solution takes the form of explicit expressions for the corresponding generating functions.

Our method is based on the properties of Tutte polynomials of matroids associated to lattice

paths. We also show how the same method provides a solution to a wide generalization of the
problem.
RESUME. Nous présentons une solution compléte au “probléme des balles de tennis”, pro-bléme
qui revient a compter des chemins, formés par des pas Nord et Est, dans une région délimitée
de N2, La solution se présente sous la forme d’expressions explicites pour les séries génératrices
correspondantes.

Notre méthode repose sur certaines propriétés des polynomes de Tutte des matroides associés a
des chemins de N?. Nous montrons aussi comment cette méthode permet de résoudre un probléme
beaucoup plus général.

1. Introduction

The statement of the tennis ball problem is the following. There are 2n balls numbered 1,2,3,...,2n.
In the first turn balls 1 and 2 are put into a basket and one of them is removed. In the second turn balls 3
and 4 are put into the basket and one of the three remaining balls is removed. Next balls 5 and 6 go in and
one of the four remaining balls is removed. The game is played n turns and at the end there are exactly n
balls outside the basket. The question is how many different sets of balls may we have at the end outside
the basket.

It is easy to reformulate the problem in terms of lattice paths in the plane that use steps E = (1,0)
and N = (0,1). It amounts to counting lattice paths from (0,0) to (n,n) that never go above the path
NE..--NE = (NE)". Indeed, if m = myma ... mop_172, is such a path, a moment’s thought shows that we
can identify the indices 7 such that me,_;11 is a N step with the labels of balls that end up outside the
basket. The number of such paths is well-known to be a Catalan number, and this is the answer obtained
in [GM].

The problem can be generalized as follows [MSV]. We are given positive integers t < s and sn labelled
balls. In the first turn balls 1,...,s go into the basket and ¢ of them are removed. In the second turn
balls s+ 1,...,2s go into the basket and ¢ among the remaining ones are removed. After n turns, tn balls
lie outside the basket, and again the question is how many different sets of balls may we have at the end.
Letting k = ¢,l = s — ¢, the problem is seen as before to be equivalent to counting lattice paths from (0, 0)
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to (In,kn) that use N and E steps and never go above the path N*E!... N¥E! = (N¥EY)™, This is the
version of the problem we solve in this paper.

From now on we concentrate on lattice paths that use N and FE steps. To our knowledge, the only cases
solved so far are k = 1 and k = [ = 2. The case k = 1 is straightforward, the answer being a generalized
Catalan number ﬁ ((Hnl)”). The case k = [ = 2 (corresponding to the original problem when s = 4,¢ = 2)
is solved in [MSV] using recurrence equations; here we include a direct solution. We say that a path is a
Catalan path of semilength n if it goes from (0, 0) to (n,n) and stays below the line x = y. The case k =1 =2
is illustrated in Fig. 1, to which we refer next. A path m not above (N2E?)" is “almost” a Catalan path,
in the sense that it can raise above the dashed diagonal line only through the dotted points. But clearly
between two consecutive dotted points hit by 7 we must have an E step, followed by a path isomorphic to a
Catalan path of odd semilength, followed by a IV step. Thus, 7 is essentially a sequence of Catalan paths of
odd semilength. If G(2) =), n-lu (27?) 2™ is the generating function for the Catalan numbers, take the odd
part Go(z) = (G(2) — G(—%))/2. Then expand 1/(1 — 2G,(z)) to obtain the sequence 1, 6,53, 554, 6363, .. .,
which agrees with the results in [MSV].

/

FIGURE 1. The path m = EENNNEEEENNNNNEE not above P = (N2E?)%. It has
i(m) = 3 and e(m) = 2, corresponding to the steps underlined.

Let P be a lattice path from (0,0) to (m,r), and let b(P) be the number of paths from (0,0) to (m,r)
that never go above P. If PN denotes the path obtained from P by adding a N step at the end of P, then
clearly b(P) = b(PN). However, it is not possible to express b(PFE) simply in terms of b(P), where PE
has the obvious meaning. As is often the case in counting problems, one has to enrich the objects under
enumeration with additional parameters that allow suitable recursive decompositions. This is precisely what
is done here: equations (2.2) and (2.3) in the next section contain variables x and y, corresponding to two
parameters that we define on lattice paths not above a given path P. These equations are the key to our
solution.

The basis of our approach is the connection between lattice paths and matroids established in [BMN],
where the link with the tennis ball problem was already remarked. For completeness, we recall the basic facts
needed from [BMN] in the next section. In Section 3 we present our solution to the tennis ball problem, in
the form of explicit expressions for the corresponding generating functions; see Theorem 3.1. In Section 4
we show how the same method can be applied to a more general problem. We conclude with some remarks.

2. Preliminaries

The contents of this section are taken mainly from [BMN], where the reader can find additional back-
ground and references on matroids, Tutte polynomials and lattice path enumeration.
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A matroid is a pair (F, B) consisting of a finite set E and a nonempty collection B of subsets of E, called
bases of the matroid, that satisfy the following conditions: (1) No set in B properly contains another set in
B, and (2) for each pair of distinct sets B, B’ in B and for each element 2 € B — B’, there is an element
y € B’ — B such that (B — ) Uy is in B.

Let P be a lattice path from (0,0) to (m,r). Associated to P there is a matroid M[P] on the set
{1,2,...,m + r} whose bases are in one-to-one correspondence with the paths from (0,0) to (m,r) that
never go above P. Given such a path 7 = myma ... 74, the basis corresponding to 7w consists of the indices
i such that m; is a N step. Hence, counting bases of M[P] is the same as counting lattice paths that never
go above P.

For any matroid M there is a two-variable polynomial with non-negative integer coefficients, the Tutte
polynomial t(M; x,y). It was introduced by Tutte [T1] and presently plays an important role in combinatorics
and related areas (see [W]). The key property in this context is that ¢(M;1,1) equals the number of bases
of M.

Given a path P as above, there is a direct combinatorial interpretation of the coefficients of ¢(M[P]; x,y).
For a path 7 not above P, let i(7) be the number of N steps that 7 has in common with P, and let e(7) be
the number of FE steps of m before the first NV step, which is 0 if 7 starts with a N step. This is illustrated in
Fig. 1, where the path P corresponds to the upper border of the diagram and hence a path 7 representing
a basis of M[P] corresponds to a path that stays in the region shown.

Then we have (see [BMN, Th. 5.4])

(2.1) HMIP)a,y) = 3 ai ™y,

s

where the sum is over all paths 7 not above P. A direct consequence is that ¢(M[P];1,1) is the number of
such paths.

Furthermore, for the matroids M[P] there is a rule for computing the Tutte polynomial that we use
repeatedly (see [BMN, Section 6]). If PN and PE denote the paths obtained from P by adding a N step
and an F step at the end of P, respectively, then

(2.2) tM[PN;z,y) = wt(M[P],z,y),

(2.3 MPEy) = Tt (M[Pay) + (y -

X

) MR L)

The right-hand side of (2.3) is actually a polynomial, since x — 1 divides t(M[P]; x,y) — t(M[P]; 1,y) (see
the expansion (2.4) below). The key observation here is that we cannot simply set x = y = 1 in (2.3) to
obtain an equation linking ¢(M[PE];1,1) and t(M[P];1,1).

For those familiar with matroid theory, we remark that the quantities i(7) and e(m) correspond to the
internal and external activities of the basis associated to m with respect to the order 1 <2 < --- <m+r
of the ground set of M[P]. Also, the matroids M[PN] and M[PE] are obtained from M[P] by adding
an isthmus and taking a free extension, respectively; it is known that formulas (2.2) and (2.3) correspond
precisely to the effect these two operations have on the Tutte polynomial of an arbitrary matroid.

From (2.1) and the definition of i(w) and e(w), equation (2.2) is clear, since any path associated to
M[PN] has to use the last N step. For completeness, we include a direct proof of equation (2.3).

We first rewrite the right-hand side of (2.3) as
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X
—— (HM[P2,y) = t(M[P]; 1,9)) + yt(M[P]; 1,y) =
T e(m)(,i(m) 1 e(m)+1 _
; ——y )+
(2.4) D v Pyt ta® 42,

s
where the sums are taken over all paths 7 that do not go above P.

To prove the formula, for each path 7 not above P we find i(7) 4+ 1 paths not above PE such that their
total contribution to t(M[PE];z,y) is y* (y + x + 22 4 - -- + (™). Consider first the path my = Em; it
clearly does not go above PE and its contribution to the Tutte polynomial is y*(™*!. Now for each j with
1 < j < i(m), define the path 7; as the path obtained from 7 by inserting an E step after the jth N step
that 7 has in common with P (see Fig. 2). The path 7; has exactly j N steps in common with PE, and
begins with e(7r) E steps. Observe also that, if the j-th N step of 7 is the k-th step, then 7 and 7; agree on
the first £ and on the last m + r — k steps.

PE PE PE

FIGURE 2. Tllustrating the combinatorial proof of formula (2.3): from a path 7 not above
P with i(7) = 2 we generate 3 paths not above PFE.

It remains only to show that each contribution to the Tutte polynomial of M[PE] arises as described
above. Let 7’ be a path that never goes above PE and consider the last N step that 7’ has in common with
PE:; clearly the next step must be E. Let 7 be the path obtained after removing this F step. Since 7’ had
no N steps in common with PE after the removed F step, the path 7 does not go above P. Thus the path
7' can be obtained from 7 by adding an E step after the i(7’)-th N step that 7 has in common with P, and
hence 7’ arises from 7 as above. By the remarks at the end of the previous paragraph, it is clear that =’
cannot be obtained in any other way by applying the procedure described above, and this finishes the proof.

3. Main result

Let k,l be fixed positive integers, and let P, = (N*E!)". Our goal is to count the number of lattice
paths from (0,0) to (In, kn) that never go above P,. From the considerations in the previous section, this is
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the same as computing t(M[P,];1,1). Let

By convention, Py is the empty path and Ay = 1.
In order to simplify the notation we introduce the following operator ® on two-variable polynomials:

Az, y) + (y - L) A(L,y).

PA(z,y) = 1

r—1
Then, by equations (2.2) and (2.3) we have
An+1 = q)l(kan)a
where ®* denotes the operator ® applied ¢ times.
For each n > 0 and i = 1,...,1, we define polynomials B; ,,(x,y) and C; »(y) as
B, = P’ (xkAn(x,y)) ,
Cin = Bin(l,y).
We also set Co n(y) = An(1,y). Notice that B, = Ap41, and Cp (1) = A,(1,1) is the quantity we wish to

compute.
Then, by the definition of ®, we have:

x T

Bl n = xkAn + Y- CO n;
’ r—1 z—1 '
X x
BQ,n = Bl,n + Yy — Ch ny
r—1 z—1 ’
X X
Bl7n = Blfl,n + y—- lelm;
r—1 z—1
An+1 - Bl7n~

In order to solve these equations, we introduce the following generating functions in the variable z (but
recall the coefficients are polynomials in z and y):

A=D"A,2",  Ci=) Cinz", i=0,...,1L
n>0 n>0

We start from the last equation A, ; = B, and substitute repeatedly the value of B;, from the previous
equation. Taking into account that ) A,i12" = (A —1)/z, a simple computation yields

A1 g 2!
= A —y— —C-.
. @1 + (yr—vy x)z @1y Ci

i=1
We now set y = 1 and obtain

l
(3.1) A -1 =z = (@ - 1) = 2> 2" @ - D) O,
i=1

where it is understood that from now on we have set y = 1 in the series A and C;.
By Puiseux’s theorem (see [S, Theorem 6.1.5]), the algebraic equation in w

(3.2) (w— 1) = zwkt =0
has k + [ solutions in the field CT2((2)) = 1D anz™ N} of fractional Laurent series. Proposition 6.1.8

in [S] tells us that exactly [ of them are fractional power series (without negative powers of z); let them be
w1 (2),. .., wi(2).
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We substitute * = w; in (3.1) for j = 1,...,[, so that the left-hand side vanishes, and obtain a system
of [ linear equations in Cy,C1, ..., Cj—1, whose coefficients are expressions in the w;, namely

(3.3) Zw wj — )20 = (w; — 1), j=1,...,1

Notice that, in order of the product in the left hand-side of (3.1) to be defined, the solutions of (3.2)
that we substitute cannot have negative powers of z, hence they must be wi,...,w;. We remark that this
technique is similar with the one devised by Tutte for counting rooted planar maps (see, for instance, [T2]).

It remains only to solve (3.3) to obtain the desired series Cp = >, Ay(1,1)2". The system (3.3) can we

written as

-1 W i

E < J ) ch,i,1:QUj—1, j:].,7l

— w —1
=0

The left-hand sides of the previous equations can be viewed as the result of evaluating the polynomial
Zi;é(zCl_i_l)Xi of degree | — 1 at X = w;/(w; — 1), for j with 1 < j <[. Using Lagrange’s interpolation
formulas, we get that the coefficient of X‘~! in this polynomial is

l

ZOO:Z (wij_l —
)

Jj=1 Hi;éj

By straightforward manipulation this last expression is equal to

wifl

l

wj—l !
_H wJZH '—Uh 1:[1—11}]

=1 1#]

where the last equality follows from an identity on symmetric functions (set r = 0 in Exercise 7.4 in [S]).
Thus we have proved the following result.

Theorem 3.1. Let k,l be positive integers. Let q,, be the number of lattice paths from (0,0) to (In,kn) that

never go above the path (N*EY)™, and let w1, ..., w; be the unique solutions of the equation

(w—1)! — zw**t =0
that are fractional power series. Then the generating function Q(z) = Y, <, qnz" is given by

Q) = (1 —wy) (1 - w).

z
Note that, by symmetry, the number of paths not above (N!E¥)" must be the same as in Theorem 3.1,
although the algebraic functions involved in the solution are roots of a different equation.
In the particular case k = [ the solution can be expressed directly in terms of the generating function
G(z) =3, =1 (*")z" for the Catalan numbers, which satisfies the quadratic equation G(z) = 1 + 2G(z)>.

n n+1
Indeed, (3.2) can be rewritten as

w=1+ zl/ka,
whose (fractional) power series solutions are G((72%/%), j =0,...,k — 1, where C is a primitive k-th root of
unity. For instance, for k = [ = 3 (corresponding to s = 6,¢ = 3 in the original problem), { = exp(27i/3)
and we obtain the solution
-1
— 1= G(z"%)(1 = G(¢?)(1 = G(¢P21?)) =

14 20z + 66222 + 267802 + 1205961 2% + 580502042° + - - - .
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In the same way, if | divides k and we set p = (k + 1)/, the solution can be expressed in terms of the
generating function ) m (”7 ’:) z" for generalized Catalan numbers; the details are left to the reader.
As an example, for k = 4, [ = 2, we obtain the series

- HE)( - (7)) =

14 152 + 36022 + 1046322 + 3372692 + 115996682° + - - - |

where H(z) = 3", 51+ (°") satisfies H(z) = 1+ zH(2)*.

4. A further generalization

In this section we solve a further generalization of the tennis ball problem. Given fixed positive integers
S1,81, ...y Spy by With t; < s; for all 4, let s =) s;,t = > t;. There are sn labelled balls. In the first turn we
do the following: balls 1,...,s; go into the basket and ¢; of them are removed; then balls s1 +1,...,s1 + s
go into the basket and among the remaining ones to are removed; this goes on until we introduce balls
s —s.+1,...,s, and remove t, balls. After n turns there are tn balls outside the basket and the question
is again how many different sets of ¢tn balls may we have at the end.

The equivalent path counting problem is: given k1,11, .., k., L, positive integers with k = > k;, I = > 1;,
count the number of lattice paths from (0, 0) to (In, kn) that never go above the path P, = (N*1 Bt ... Nkr plr)n,
The solution parallels the one presented in Section 3. We keep the notations and let A,, = t(M|[P,]; z,y), so
that

Appr =0l (zhr ..ol (zM 4,,) ).
As before, we introduce ! polynomials B; ,(z,y) and C; ,(y) = B;n(1,y), but the definition here is a bit
more involved:

Bi,n :(I)i(mklAn)a i:17---al1;
Biivin = ®i(z*2 By, ), i=1,...,12
(4.1) Bl1+12+i)n = @l(xk?’BllHQm), i=1,...,13;

— Bif ke .
Bit,4im = (2" Bi_y, n), i=1,...,1.

We also set Con(y) = An(1,y). Again, from the definition of ®, we obtain a set of equations involving A,,,
Apt1 = By, the B; , and C; ,,. We define generating functions A and C; (i =0,...,1) as in Section 3.

Starting with A,41 = By, we substitute repeatedly the values of the B; , from previous equations and
set y = 1. After a simple computation we arrive at

(4.2) A((x—1)' - zka) =(z—-D'+2U(z,Co,...,Cr_1),

where U is a polynomial in the variables z,Cy,...,Cj_1. Observe that the difference between (4.2) and
equation (3.1) is that now U is not a concrete expression but a certain polynomial that depends on the
particular values of the k; and ;.

Let w1, ..., w; be again the power series solutions of (3.2). Substituting z = w; in (4.2) for j =1,...,1,
we obtain a system of linear equations in the Cj;. Since the coeflicients are rational functions in the wj,
the solution consists also of rational functions; they are necessarily symmetric since the w;, being conjugate
roots of the same algebraic equation, are indistinguishable.

Thus we have proved the following result.

Theorem 4.1. Let k1,11, ..., k., 1 be positive integers, and let k = > k;, 1 = > 1;. Let q, be the number of
lattice paths from (0,0) to (In,kn) that never go above the path (N¥ EW ... N*+ Bl and let ws, ..., w; be
the unique solutions of the equation

(w—1)" = zw* =0
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that are fractional power series. Then the generating function Q(z) = ano gnz" is given by

Q) = L R(wi, . un),

where R is a computable symmetric rational function of wy, ..., wy.
As an example, let r = 2 and (k1,11 k2,l2) = (2,2,1,1), so that k =1 = 3. Solving the corresponding
linear system we obtain
(1 —w)(d —w)(1 —ws)
o 2w wows — (U}l’wg + wiws + U}g’wg),

and
1
Q(2) = ~R=1+16z+ 50322 + 199042 + 8855002% + 422989442° + - - - .

It should be clear that for any values of the k; and [; the rational function R can be computed effectively.

5. Concluding Remarks

It is possible to obtain an expression for the generating function of the full Tutte polynomials A, (z,y)
defined in Section 3. We have to find the values of Cy, C1, ..., Cj_; satisfying the system (3.3) and substitute
back into (3.1). After some algebraic manipulation, the final expression becomes

n_ —(z—wi) - (z—w)
%An(az,y)z - (z:CkJrl — (;y — 1)l)(y _ wl(y _ 1)) . (y _ wl(y — 1))

Taking x = y = 1 we recover the formula stated in Theorem 3.1.

On the other hand, references [MS] and [MSV] also study a different question on the tennis ball problem,
namely to compute the sum of the labels of the balls outside the basket for all possible configurations. For a
given lattice path P,, this amounts to computing the sum of all elements in all bases of the matroid M[P,].
We remark that this quantity does not appear to be computable from the corresponding Tutte polynomials
alone.

Finally, as already mentioned, the technique of forcing an expression to vanish by substituting algebraic
functions was introduced by Tutte in his landmark papers on the enumeration of planar maps. Thus the
present paper draws in more than one way on the work of the late William Tutte.
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Decomposition of Green polynomials of type A and
DeConcini-Procesi algebras of hook partitions

Hideaki Morita and Tatsuhiro Nakajima

Abstract. A Kraskiewicz- Weymann type theorem is obtained for the DeConcini-Procesi algebras
of hook partitions. The DeConcini-Procesi algebras are graded modules of the symmetric groups,
that gemeralize the coinvariant algebras. Defining the direct sums of the homogeneous components
of the algebra in some natural way, we show that these submodules are induced from representations
of the corresponding subgroup of the symmetric group. The Green polynomials of type A play an
essential role in our argument.

1. Introduction

Let R, = @dzo R? be the coinvariant algebra of the symmetric group S,. For each [ € {1,2,...,n}
and for each k =0,1,...,1 — 1, define a subspace R, (k;l) of R,, by

R, (k;l) = @ R% .
d=k mod !
In our previous work [MN], we have shown that all R, (k;l) (k = 0,...1 — 1) are S,-submodules of equal
dimension and induced by modules of the subgroup H,(l) of S,,. Here H,(I) indicates a direct product of a
cyclic group of order [ generated by

(1, ) +1,....20) - ((d=1)I+1,....d) .

and the symmetric group of order r, where r is a remainder of n divided by .

In this article we consider the “DeConcini-Procesi algebras” in place of the coinvariant algebras in the
preceding result. The DeConcini-Procesi algebra R, is a graded S,-module parameterized by a partition
of n. The algebra R, serves the generalization of R, since R, = R,, when p = (1").

From the geometric point of view, DeConcini-Procesi algebras are isomorphic to the cohomology ring
of the fixed point subvarieties of flag varieties. Namely, the coinvariant algebras are isomorphic to the
cohomology ring of the flag varieties. Since the fixed point subvarieties are singular, we generally cannot
expect nice combinatorial properties of the Betti numbers, such as unimodal symmetry. Hence we may face
some difficulty when we try to achieve the results similar to the case of the coinvariant algebras. In fact,
even if we collect the homogeneous components of R, whose degree is congruent to £ modulo n for each

k=0,...,n— 1, the dimensions of them do not coincide.
However, we find that there exists a positive integer M, for a partition u such that R, holds the above
mentioned property for the coinvariant algebras for [ = 1,..., M. Essential tools to prove our main result

1991 Mathematics Subject Classification. 05E05, 05E10, 20E30, 33D52.
Key words and phrases. Green polynomials, DeConcini-Procesi algebras, symmetric functions.
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are the “Green polynomials”. Green polynomials were introduced by J. A. Green [Gr] for the sake of
determining the irreducible characters of the general linear groups over finite fields. They also afford the
graded characters of the DeConcini-Procesi algebras. In this article, we construct the standard decomposition
for the Green polynomials. By applying this decomposition we prove the properties for the homogeneous
components of the DeConcini-Procesi algebras associated to the hook type partitions.

2. DeConcini-Procesi algebras

Let P, = Clz1,...,z,] denote the polynomial ring with n variables over C. Then S,, acts on P, from
the left as permutations of variables as follows:

(Uf)(xlv i .,ﬂin) = f(xo'(l)a S 7xa(n))7

where o € S, and f(x1,...,2,) € P,.

We introduce the homogeneous S,,-stable ideal of P, associated to a partition p = (u1, 2, .. -, fin) of n.
Let p/ = (u}, ph, . .. ) be the conjugate of u. Now we designate by I, the ideal generated by the collection of
symmetric functions

{em(fila s 7$in_k+1)

where €, (i, , ..., %;,_, ,) denotes the m-th elementary symmetric function in the variables x;,,..., z;, _, ..
For example, when p = (2,1) F 3, then

k:]-a"'vll’la
n—k+1—(up+pp ++tp,)<m<n—k+1 [’

I _ 63(581,962,1103),62($1,$279€3)761($179€279€3),
21 62(961, 1102), 62(x1, 1103), 62(x2, $3)

The DeConcini-Procesi algebra R,, associated to u is defined as a quotient algebra
R,:=P,/1,

[DP, GP, T|. It is apparent from the definition of I, that R, is a graded S,-module. We write its
homogeneous decomposition as
R, =R

d>0
Let chary R,, denote the graded S,,-character of R, defined by

chary R, := Z q? char RZ )
d>0

where char Rﬁ is the character of S,-submodule Rﬁ.

For k=0,...,l — 1, define
R.ksl):= & Ri.
d=k mod !

What we would like to know first is which ! makes all the dimensions of R,,(k;!) coincide. In order to answer
this question, we might consider the Poincaré polynomial of R,,, which is obtained by evaluating the graded
character at the identity. The graded characters are discussed in detail in the next section. In this section
we only state the following lemma that is useful for our purpose.
Lemma 2.1. Let g be an indeterminate and f(q) = Y. ,;50aiq" € Clg] a polynomial in q. Let £ > 2 be an
integer and Cp the primitive {-th root of unity. Then the following conditions are equivalent:

(a) f(CF)=0 for eachk=1,...,0—1,

(b) The partial sums ¢ =Y,y noae@ (K =0,1,...,£—1) of coefficients of the polynomial f(q) are

independent of the choice of k.
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3. Green polynomials

The graded characters of the DeConcini-Procesi algebras are known as the Green polynomials (of type
A). For pkn, let X} be the coefficient polynomials of the Hall-Littlewood symmetric functions P,(z;t) in
the power sum product p,(x), i.e.,

Po(@) =Y XF(t)Pu(a;t).

pukEn

The Green polynomials Q% (q) [Gr, Mc] are defined by
_.n —1
Q"(q) = "W Xk(q ),

where n(u) = Zi21(i = Dpi for pp = (pa, po, ...). ~
The Green polynomials have another expression using the modified Kostka polynomials K, (g). [Mc].
If we denote by X;‘ the value of an irreducible character xy* for S,, at the element of cycle-type p, then

Q4(q) = xpEKou(a).

AFn

Since the coefficient of ¢¢ in the polynomial Ky o is also known as the multiplicity of the irreducible component
VA in RZ (see e.g., [GP]), we find that the Green polynomial Q% (g) affords the value of the graded character
of R, at the element of cycle-type p, i.e.,

Q) (g) = charg R, (p).
In addition, applying the combinatorial expression of the Kostka polynomials [LS]
Rald) = > @,
TESSTab,, (A)
it immediately follows that
[R%: VA = #{T € SSTab,()) | coch(T) = d}.

Here SSTab,,(\) denotes the set of semistandard Young tableaux of shape A with weight i, and coch(T') the
cocharge of a tableau T'.

Some explicit forms of Q4(g) have been known when y takes some special partitions. Before we expose
them, we give some symbols that appear in the explicit expressions. For each partition p = (1™m12™2...p™Mn)
of n, we define

M, =max{mi,...,my},
bo(q) = H(l )1 —=¢*)---(1-q™),

ep(@) =(1—q)™ (1 =g (1—q")™ .

In the case of u = (1™), that corresponds to the graded character of the coinvariant algebra, len)(q)
can be expressed as follows (see e.g., [G]).
Proposition 3.1. Forpkn

1-g(d—¢*)---(1—¢")
ep(Q)
If = (2,1"72) F n (a hook type), then A. Morris gives Q4 explicitly [Mr].

chary R, (q) = Q%" (q) =
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Proposition 3.2 (Morris). For p= (1"2"2...n"),
1-q--(1-q¢"?
ep(Q)

In both of the cases above, we find that Green polynomial Qfo‘(q) can be decomposed into the rational
factor

QP g) = {(r1 = 1)q" —rig" " + 1},

(1—gq)- - (1—¢™)
ep(Q)
and the polynomial factor. This fact holds for the Green polynomial in general and we expose it in the
following theorem. Note that the theorem plays an important role to prove our main result.
Theorem 3.3. Let p and p be partitions of n. Then there exists a polynomial Gg(q) € Z[q] such that

b(lM#)(Q)
ep(Q)

The theorem is deduced from an expansion of the product of two Hall-Littlewood functions P F;-) by
P,’s, where r is the last part of ¢’ and g = (¢/\(r)) + n —r. Applying Lemma 2.1 to Theorem 3.3, we
obtain the answer to the question in the previous section.

Corollary 3.4. Let pu be a partition of n. For anyl € {2,...,M,} and for each k =0,1,...,1 -1, Clk 18
zero of Qé‘ln)(q). Hence the dimensions of R, (k;l) (k=0,...,1 —1) are equal each other.

When the partition p = n is of a hook type, we can obtain an explicit expression of G%(q), that generalizes
Morris’ formula in Proposition 3.2.

Proposition 3.5. Let u = (n — h,1") = n be a hook type partition. Then, for p = (171272 ... ™),

(1—q)---(1—¢")
ep(Q)

Qh(q) = Gh(q)-

Qb (q) = Gh(q) ,

where

Ghg) = (1—q") —ni_l > Ci) <Z:)qn_keT(Q)-

k=1 r=(1%1. -kt Fk

4. DeConcini-Procesi algebras of hook type

In this section we show that, for a hook partition y, the DeConcini-Proseci algebra R, holds the property
similar to the coinvariant algebra R,,, i.e., there is a subgroup of S,, and its modules with equal rank such
that all R, (k;!) are induced by the modules.

Let = (n — h,1") be a hook partition of n. We suppose n — h > 1 below, since R, is the coinvariant
algebra if n —h = 1. In this case M, = h and it follows from Corollary 3.4 that for each I € {(1,)2,...h}
the dimensions of R, (k;l) (k=0,...,1—1) coincide. When p = (n —h,1") and I € {2,...h}, we denote by
d and r the quotient and the remainder of h divided by I. Set fi = (n — h,17) and v = (1%).

Let C; be a cyclic subgroup of S,, generated by an element

a=(1,2,....00+L1+2,...,20)--- ((d=DI+1,(d— 1) +2,...,dl) ,
where (7,74 1,...,7+1) is a cyclic permutation of length I and S,,_4 a subgroup of S,, defined by
Sp—ai :={o € Sylo(@) =1 fori=1,2,...,dl}.

We should prove the following theorem to obtain the result mentioned above. This is our main result in
this article.



H. Morita and Tatsuhiro Nakajima 207

Theorem 4.1. Let = (n—h,1") (n—h > 1) be a hook type partition of n. For an integerl € {2,3,...,h},
leth=dl+r (0>r>1—-1). Weset i=(n—h,1"). Then there is an Sy x Cj-module isomorphism
R.=R,]"
n= p‘TSn—dl
In the theorem above, the S, x Cj-module structures are defined as follows. The algebra R, is regarded
as an S, X Cj-module. The group C; acts on R, by
ar = e (x € Rﬁ).
The induced module B
R, = R;
# Sn—di @ 78
€S /Sn—dal
is also regarded as an .S,, x C;-module. The action of Cj is defined by

alo®z)=ca ' ®ar=Cloa Tt @r (x¢ Rg).

Comparing the (f-eigenspaces of a € C; in both sides, we have the very thing that we would like to
prove.
Corollary 4.2. Let i = (n — h,1") (n — h > 1) be a hook type partition of n. If we choose an integer
1€{2,3,...,h}, then there is an Sy-module isomorphism

Ru(st) = Z,(ki))] "

H( ’ ): H( ’ )Tclxsnfdl

for each k =0,1,...,1 — 1. We define here the representation Z,,(k;1) of C; X Sp—ai by
Z, (ks 1) = @ @ k—coeh(T)) @ A

AFn—dl T€SSTabg ()

where Y1) : a — ¢f denotes an irreducible representation of C; = (a), and VA a irreducible representation
of Sn—ai associated to the partition A of n — dl.

5. Outline of the proof of Theorem 4.1
We will show that

. Sn .
char R, (w,a’) = char RQTS (w,a’)
n—dl

for each (w,a’) € S, x C.
Sn .
First we calculate the right-hand side of the above identity. If char RI—JS (w,a?) # 0, then there
n—dl

exists a basis element o ® x of char R;LTS (w, a’) such that (w,a’)(0 Q x)|sge # 0. Since (w,a?)(c @x) =
n—dl

. . . . . Sn )
woa !l @alr = Cldjwaa’] ® x, it should follow that woa™7 = o mod S,,_g; if char RQTS (w,a’) # 0. Thus
n—dl
we have the following lemma:

Sn ) .
Lemma 5.1. If charRﬁTS (w,a’) # 0, then w ~ a’v for some v € S,,_g
n—dl

If woa™ = 0 mod S,_g;, then woa™7 = o7 for some 7 € S,,_g;. Setting
SW(w) := {0 € Sn/Sn_ajwoa™ = o7}
SV (w) :={o € 8,/Sp_alwoa™ = o mod Sp_a},
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we have
Sn . .
char RQT (w,a’) = Z ﬁSﬁJ)(w) char Rﬂ(7)|q:gj
Sn—at TESh—dl
= Z 4SY) (w) char Ry (v )|q:<Lj
TESh_dl
= #SU) (w) char Rﬂ(’l})|q:<lj .

(Note that v ~ 7 if w = a/v and woa™7 = o7.) We can enumerate the permutations belonging to the set
S (w):

Proposition 5.2. For w = a’v € S,,,
1S9 (w) = pee! < " ) ,
e

where Aa?) = (p®), A\(v) = (171272 ...).
Let us summarize the above arguments:
Proposition 5.3. Suppose A(a’) = (p°®). Then

char R~ T (w,a9) = p°e! (*7¢) char, Rﬂ(U”q:Clj, if w~ alv for some v € S,_a
Sn—ar 0, otherwise.

On the other hand, for the left-hand side of the identity that we are now proving, it follows from Theorem
3.3 the following lemma:
Lemma 5.4. If Q)\(w)( ) £ 0 for some w € Sy, then w ~ a’v for some v € S,,_q.
Applying decomposition of the Green polynomials in Theorem 3.3 to some recursive relations of them, we
can obtain

. zpte
ctar, Ry (0)] __, = Q) = et )@@
1
We have thus shown the identity of two characters, thereby completing the proof of our main theorem.
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On Computing the Coefficients of Rational Formal Series

Paolo Massazza and Roberto Radicioni

Abstract. In this work we study the problem of computing the coefficients of rational formal
series in two commuting variables. Given a rational formal series ¢(x,y) = Zn’k>0 Cpx™yt =
P(z,y)/Q(z,y) with P,Q € Q[{x, y}] and Q(0,0) # 0, we show that the coefficient [x'y’|¢(x,y) can
be computed in time O(i + j) under the uniform cost criterion.

RESUME. Dans cet article, nous étudions le probléeme du calcul des coefficients de séries
formelles rationelles en deuz variables commutatives. Etant donné une série formelle rationnelle
o(z,y) = En,k>0 cnkm"yk = P(z,y)/Q(z,y) ou P,Q € Q[{x, y}] et Q(0,0) # 0, nous montrons que
le coefficient [x'y’)d(x,y) peut étre calculé en un temps O(i + j) sous le critére de cott uniforme.

1. Introduction

The problem of computing the coefficients of formal power series (known as the Coefficient Problem) is
of primarly interest in many different areas such as combinatorics and theory of languages. For example, the
problem of counting objects with a given property that belong to a combinatorial structure S can be easily
reduced to computing the coefficients of suitable formal power series: the property is codified into a weight
function w : S — N and the formal series )} __gw(s) s is considered. Then, the counting problem associated
with S and w consists of computing the function f(n) = #{s € S|w(s) = n}.

Another setting where the Coefficient Problem arises is the random generation of combinatorial structures
(see, for instance, [10]). Efficient algorithms for the random generation of strings in a language can also be
derived by exploiting the generating function associated with the language (see, for example, [7]).

A likewise important and (intuitively) more general version of the Coefficient Problem can be stated
considering a multivariate formal series in commutative variables. More precisely, the Coefficient Problem for
a class A of commutative formal series consists of computing, given a series in k variables f = > cpz™
€ A and a multi-index i € N*, the coefficient ¢; of f. When dealing with counting and random generation,
this generalization appears whenever a multiple output weight function w : S — N* is considered. Some
examples are the problem of counting and random sampling words with fixed occurrences of each letter of
the alphabet ([2],[8]) or the random generation through object grammars ([9]).

In this paper we consider the Coefficient Problem for the class Q[[{x, y}]]» of the rational formal series in
two commuting variables. These are power series expansions of functions of the form P(x,y)/Q(x,y) where
P, @ are polynomials with rational coefficients and @(0,0) # 0.

We show that given a couple of integers (i,j) and a couple of polynomials P,Q € Q[{z,y}], with
Q(0,0) # 0, the coefficient [z'y?|d(z, y) of ¢(x,y) = P(x,y)/Q(x,y) can be computed in time O(i + j) under

Key words and phrases. holonomic functions, shift algebra.
This work has been supported by the project M.I.U.R. COFIN “Formal Languages and Automata: Theory and
Applications”.
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212 ON COMPUTING THE COEFFICIENTS OF RATIONAL FORMAL SERIES

the uniform cost criterion. Our method is based on the theory of holonomic power series. We derive suitable
recurrence equations with polynomial coefficients from the holonomic system associated with ¢(x,y), then
we use them, together with a recurrence with constant coefficients, in order to compute [2¢y?|é(x,y) in an
efficient way. This is a significant improvement on a more general algorithm presented in [11], that let us to
compute [z¢y?|¢(x,y) in time O(i - 7).

2. Preliminaries

We denote by N (Q) the set of the natural (rational) numbers. A 2-dimensional sequence ¢ with values
in Q is a function ¢ : N? - Q, usually denoted by {c,1}. We denote by Q) the ring of 2-dimensional
sequences on Q with the operations of sum, {ank} + {bnk} = {ank + bni} and product, {ank}-{bnk} = {cni}

where ¢, = D t+m=n @;ibm;.
i+j=k

Moreover, we consider the following operators from Q) into Q(2):
e External product by e € Q: e {anr} = {eank}, e€Q
e Shift : En{ank} = {anflk}, Ek{ank} = {ankfl}
e Multiplication by n, k : n{ani} = {nant}, k{ank} = {kanr}
Then, the so called shift algebra Q(n,k, E,, E}) is a particular Ore algebra (see, for instance, [6]) and can
be interpreted as a (noncommutative) ring of linear operators on Q®@, with pseudo-commutative rules given
by:
' nk =kn, nEy=FEn, kE,=E,k,
nk, =E,n+ E,, kE;,=FE.k+ E}.
More simply, a polynomial in Q(n, k, E,,, Ei) represents a linear recurrence with polynomial coefficients.

2.1. Rational formal series and Holonomic functions. Let 3¢ be the commutative free monoid
generated by a finite alphabet ¥. Given a commutative ring K, a formal series v in commutative variables
¥ is a function ¢ : ¥¢ +— K, usually indicated by > s. ¥ (z)z; the support of ¢ is the set of monomials
{z € X¢|9y(z) # 0}). We denote by K[[X]] the ring of commutative formal series with coefficients in K
equipped with the usual operations of sum (+) and product (). Formal series with finite support belong
to the ring of polynomials K [X]. The ring of rational formal series K[[X]], can be defined as the smallest
subring of K[[X]] containing K [X] and rationally closed (i.e. closed with respect to *, +, - and the two
external products of K on K [[X]] — where * is the usual closure operation that is defined for proper series,
i.e. series ¥ s.t. ¥(e) = 0).

In the sequel we will consider the alphabet X = {z,y} and K = Q. A rational formal series ¢ € Q[[X]],
is then the power series expansion of a suitable rational function,

olar) = 32 e = Sl PQeQlY), Q.0 £

We often use the notation [z"y*]¢(x,y) to indicate the coefficient c,; of a formal series ¢. We refer to
[3] for a detailed analysis of the class of the rational series.
It is well known (see, for example, [14]) that the class of the rational functions is properly contained in the
class of the holonomic functions defined as follows.
Definition 2.1. A function ¢(z,y) is holonomic iff there exist some polynomials

pij € QX], 1<i<2, 0<j<di, pia, #0

such that
dl d2
> pdieo=0, > pydie=0.

J=0 J=0
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The above equations are said to be a holonomic system for ¢.

Holonomic systems were first introduced by I.N. Bernstein in the 1970s ([1]) and deeply investigated
by Stanley, Lipshitz, Zeilberger et al. (see [5], [11], [13] and [14]). In this setting, we are interested in the
following result:

Theorem 2.2. Let ¢(z,y) = Zn7k>0 Corx™y® be a holonomic function. Then the sequence of coefficients
{cnk} satisfies a system of linear recurrence equations with polynomial coefficients

| P(n,k,Ex){car} =0
2.1) S = { Q. k. E) e} = 0

where P(n,k, B,) = Y1_ pi(n, k)Ey" and Q(n, k, Ey) = > =0 4i(n, k)E. belong to Q(n, k, E,, Ey).
PROOF. See, for instance, [11]. O

A direct consequence of the previous theorem is that the sequence of the coefficients of a rational formal
series satisfies a system of recurrence equations of type (2.1): we give here an outline of how to compute
such a system.

In [14] it is shown how to compute a holonomic system {D;, Dy} associated with a rational function
¢(z,y). Then, given {D;, Dy}, we can obtain in two steps a system of recurrences S = {P,Q} of type
(2.1) satisfied by the sequence {cpx}. First, we compute two operators wy,ws € Q(n, k, E,, Ej) such that
wi(n, By, Ex){cn i} = walk, En, Ex){cn i} = 0. This is easily done by observing the following correspon-
dence between operators

i J
a"y 0.0 = (H (n—7+h) H (k—s+ h)) ElTE.
h=1 h=1
Then, we get the first recurrence P(n, k, E,,) by solving an elimination problem in Q(n, k, E,,, Ex). This can
be done, for example, by computing the Grobner basis associated with wi, we with respect to a suitable
ordering on Q(n, k, E,,, Ei). We proceed similarly in order to get the second recurrence Q(n, k, Ej). Useful
packages for such computations have been recently developed (see [6], [12]).

We recall that the coeflicients of a rational series satisfy a linear recurrence with constant coefficients.
More formally, we have the following:
Theorem 2.3. Let be ¢(z,y) = 3, 150 cnrr™y® = P(x,y)/Q(z,y) with P,Q € Q[X] and Q(0,0) # 0.
Then the sequence of coefficients {cni} satisfies a linear recurrence equation with constant coefficients

(2.2) B(Ey, Ex){cak} =0
where B(En, Ex) =31 o @i En'Bx’, qij € Q and qoo # 0.
PROOF. Let be P(z,y) = ;2 pija’y’ and Q(z,y) = 32;%7% qijz"y’. Then we have

71,81

& o
Qz, y)d(x,y) = Y > GigiCiga | Y =) pijaty’.
nk>0 \ i1tiz=n i,j=0
d1+i2=k
72,52 2,582
SO, for n > ry and k£ > s; it holds Z QijCn—ik—j = Z qijEnlEk‘]an =0. O
1,j=0 1,j=0

A naive method for computing the coefficient ¢;; of a rational series in time O(¢j) can be obtained as an
immediate application of the theorem above. Linear recurrences with constant coefficients have been deeply
studied in [4], where it is shown a necessary and sufficient condition that let us to define a well ordering
on the elements of the solution. Moreover, it is also shown that the solutions of such recurrences can have
generating functions that are not rational (they can be algebraic, holonomic or even non-holonomic).
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3. Computing the coefficient

Given a rational formal series ¢ = Zn kEN Cakxz™y*, by applying Theorem 2.3 we can easily obtain a
linear recurrence equation with constant coefficients satisfied by {c,r}. Then, we can use it for computing
an arbitrary coefficient c;; once a suitable set of initial conditions is known. On the other hand, because
in general both F,, and Ej appear in the recurrence, this technique requires O(ij) coefficients in order to
determine c;;.

As shown before, the theory of holonomic systems let us to obtain particular linear recurrence equations
with polynomial coefficients that are more suitable for computing coefficients. More precisely, we get two
operators in the shift algebra Q(n, k, E,,, E}) that depend on n, k and either E,, or E). So, we can efficiently
compute all the coefficients along a line n = @ or k = k if the leading and the least coefficients of the
recurrences do not vanish on that line.

Our approach takes advantage of both types of recurrences in order to get a method that efficiently
computes the coefficient ¢;; by starting with a suitable set of initial conditions and proceeding by choosing
at each step the “right” recurrence to use.

More formally, we consider the Coefficient Problem for rational series defined as follows.

Problem: to determine the coefficient ¢;; in the power series expansion of a rational series ¢(x,y).
Input: A tuple (NV,K,B,1,4,7) where:
-: N, K and B are three recurrence equations of type

(31) N(?’L, k7 En) = Zpi(na k)Enl pi(nv k) S Q[{TL, k}], pr(nv k) 7é 0
1=0

(3.2) K(n,k,Ex) = qu(m k)EY  qi(n,k) € Q{n, k}], qs(n,k) #0
j=0

(3.3) B(E,,E,) = Z hi; By By’ hij € Q, hoo #0
1,7=0

satisfied by the sequence {c,1}.
-: I is a suitable set of initial conditions for N, K, B, i.e. the set of coefficients

I={c;|(0<n<an0<k<e)V(0<n<eA0<k<p)}

with
e ¢ =max{r,s,re, S2}

e a =max{n € N|p,(n,k) =0Vpo(n,k)=0,0<k<e}
e f=max{k € N|gs(n,k) =0V qo(n, k) =0,0<n<e}
-2 (i,j) € N2

Output: the coefficient ¢;;.

3.1. Clusters and coefficients. In this section we give some definitions and prove some basic results
that are useful to describe the behaviour of the algorithm.
Definition 3.1 (R(®)(z,y)). Let be e,z,y € N. The square R®)(z,y) is the set of points

RO (z,y) = {(2/,y)| (@', y) eEN*z—e<a/ <a A y—e<y <y}

Note that each square is identified by the point on the right upper corner.
Definition 3.2 (SQ®). Let be e € N. Then

SQ@ = (RO (z,y) | (x,y) EN?, z>e, y > e}
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0

o4
—
(=)

0

FIGURE 1. The square R®)(8,5).

We give a notion of neighbor of a square introducing the following partial functions from SQ(E) to SQ(G):

NR®(z,y)) = R (z,y+e)
S(R(e) (z,y)) = R (z,y —e) (defined if y > 2e¢)
E(R(z,y)) = Rz +ey)
W(R(e) (33, y)) — R (x —e, y) (deﬁned if x> 26)

Let be T € {N, E, S, W}, then we often write T%(R) for T(T*~1(R)), T°(R) = R. Moreover, we also consider
the shortcuts SW(R) = S(W(R)), NW(R) = N(W(R)), SE(R) = S(E(R)) and NE(R) = N(E(R)).
Definition 3.3 (SQ“)(R), SQ%?(E)). Let be e € N and V C N2 Given R € SQ'® such that R =
Ne(WER® (e, e))) (c,d € N) we define

SQYR) = {R €5Q® | 3u,v e N2, R = W“(S”(}_%))}
SQY(R) = {ReSQYR)| RNV #0}

We introduce a reflexive and symmetric relation o € SQ(®) x SQ(©:
Definition 3.4 (o). Rge) is a neighbor of Rée), Rge) o Rée), if and only if

3T € {N,NE,E,SE,S,SW,W,NW} st. R =T(Rr\).

Particular sequences of squares will be of interest when considering the behaviour of the algorithm.
Definition 3.5. Let Seq = Ry, ..., R be a sequence of squares in SQ(E). Then, Seq is
8-connected iff for 1 <7 < k it holds R; © R4
4-connected iff for 1 <4 < k it holds R;11 = T;(R;) with T; € {N,E,S, W}
descending iff Seq is 8-connected or 4-connected and for 1 < i < k it holds R;y; = T;(R;) with
T, € {E,SE,S,SW,W}

e ascending iff Seq is 8-connected or 4-connected and for 1 < ¢ < k it holds R;y1 = T;(R;) with

T, € {W,NW,N,NE, E}

Henceforward, we fix an instance (N, K, B, I, 14, j) of the Coefficient Problem for a series ¢(z,y) € Q[ X]]»
and we associate with it the following values:
Z = Z(NJC) = {(x,y) e N? | pr(xay) =0V pO(xay) =0V QS(wvy) =0V QO(xay) = 0}
e =e(N,K) = max{r, s, ro, s2}
Ry=R©®(e—1,e—1)
R=R(1,7) = N (E%Ry)) with c = |j/e] d = |i/e].
Once we have fixed the values above, we can write R for R(®) and SQ for SQ(E) whenever the context is clear.
Note that SQ(R) consists of those squares in SQ(R) that contain at least one point (n, k) such that at least
one of the following methods fails:
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Computens(n, k) : use N to compute [27y*]¢ from the values [z"~!y*]¢ or [z"Ty*]p, 1 <1 <7
Computex(n, k) : use K to compute [2"y*]¢ from the values [x"y*~!|¢ or [2"yF*!]p, 1 <1< s

The next lemma will be frequently used in the sequel. .
Lemma 3.6. Let be R = R(1,]). Then the number of squares in SQ(R) containing at least one point for
which Computens(n, k) or Computex(n, k) fail is $5Q,(R) = O(1 + 7).

PROOF. We first note that if (z,y) € R with R € SQ,(R) then 0 < z < 7and 0 < y < J. Then,
consider the set Z; = {(z,y) € Z|0 < y < 7} and observe that $Z5 < [deg, (po(n, k)) + deg, (pr(n, k)) +
(deg, (qo(n, k)) + deg,, (¢s(n, k)](7+ 1) = O(7) = O@ +7). _

Since each square in SQ (R) contains at least one point in Zz, we have §SQ4(R) = O + 7). O

In the sequel, we will denote by Coeff,,(R) the set of the coefficients of ¢ associated with R, that is,
Coeffy(R) = {[z%y"|¢(z,y) | (a,b) € R}.

The following lemmas tell us how to compute the coefficients in Coeffy(R) from the knowledge of the
coeflicients in the neighborhood.

Lemma 3.7. Let be R € SQ(R) \ SQz(R). If there exists T € {N,W,S,E} such that Coeff,(T(R)) is
known, then Coeff,(R) can be computed in time O(1).

PROOF. Suppose that we know Coeffy(E(R)), that is, the set Coeffy(R(I —e,m)). Then it is immediate
to obtain Coeffy,(R(I—e+1,m)) by computing only e coefficients in Coeff,(R(I—e+1,m))\Coefl,(R(I—e,m)):
this can be easily done with e? arithmetical operations (in order to get ¢;_et1m—i+1 We use the recurrence N
and the values of the i-th row of Coefty (R(I—e,m))). Then, for ¢ = 2...e, we compute Coeffy,(R(I—e+1i,m))
from Coeff,(R(l — e +i—1,m)). Since there are e steps with cost O(e?), the overall computation requires
time O(e3) = O(1). The other cases are similar. O

Lemma 3.8. Let R = R(l,m) € SQ4(R). If Coeffs(W(R)), Coeffs(SW(R)) and Coeff,(S(R)) are known,
then Coeff,(R) can be computed in time O(1).

PROOF. We define an ordering < on the set Coeffy(R) as follows: cap < ¢y iff 5 < 6 or § =6 and
a < . Then, we can compute the coefficients according to the < ordering, starting with min(Coefty(R))
and using equation B of the instance (see Equation (3.3) in the Coefficient Problem definition). At each step
we compute one coefficient with e? arithmetical operations. Since we have e? coefficients, the total time is
O(e*) = 0(1). O

The transitive closure of ¢ defines an equivalence relation o* C SQ,(R)?, i.e. it defines a partition of SQ, (R)
into equivalence classes that we call clusters. More precisely, let be

op = © N (SQz(R) xSQz(R))

and consider the following: _
Definition 3.9 (Cluster). The cluster generated by R € SQ;(R)) is

CIf; = [Rl,, = {Q €5Q,(R)|Q o} R} .

It is then immediate to observe that it holds the following partition
p— k )
5Q,(B) = ci,
h=1

with Ry € SQZ(R) and Ry, ¢*§Rh2.
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Example 3.10. Let us consider the function ¢(z,y) = w and the recurrences

N = (4n®—4n’k—30n> — Tnk®+50n —5nk+25k +5k% — 2k%) E,° +
(27103 — 135n% — 27n%k + 90 nk + 150n + 9nk? — k* — 50k — 15k?) E,,°
K = (10n+nk+6n®>—k*+5k)E" — (4k* +4nk —5n —n® +10k) E;"

associated with it. Let be R = R®)(59,59) and R = R(®)(4,4). The graphical representation of the cluster
C1% is given in Figure 2.

604

504

40+

204

10—

FIGURE 2. A cluster associated with ¢(x,y) = —=z-——. Dots are elements of Z (N, K).

1—z2y—zy3 "

Given a cluster Clg we define its border as the set
B(C1E) = {R € SQ(R)\ SQ4(R)|3R" € CIE s.t. R o R"}.
It is immediate to observe that §B (Clg) = O(ﬁClg) =00 +7).
3.2. The algorithm. As shown in the previous section, an instance (N, K, B, I,1,7) univocally iden-

tifies a set Z, an integer e, a square Ry at the origin and a square R = NU/¢J(EL/¢l(Ry)) containing the
point (i,). We compute the coefficient [z°y?]¢(z,y) through a procedure that starts with Coeff,(Ro) C I

and halts having computed Coeffy(R) after O(i + j) steps.
Informally, the procedure works by computing a main sequence

Coeffs(E°(Ry)), Coeff,(EX(Ry)), . . ., Coeffy (EL/¢)(Ry)),
Coeff, (N (EL/el(Ry))), Coeft, (N2(EL/¢)(Ry))) . .., Coeffys (R).

The first |i/e| + 1 sets of coefficients are easily computed in time O(i). Then, we compute each set
Coeffs(N*(EL/}(Ry))) having as input Coeffs(N*~1(EL/¢)(Ry))) according to the following rule: if N*(EL/¢l(Ry)) €
SQ(R) \ SQz(R) then Coeff,(N*(EL/<I(Ry))) is computed as shown in Lemma 3.7, otherwise all the coef-

ficients associated with the cluster Clﬁk(Eu/eJ (Ro)) are computed in a suitable order.

In Figure 3 we define a procedure COEFF(¢, j) that has as input two positive integers 4, j and returns the
value [2'y’]¢(z,y). In the code a procedure COMPUTE,(Rout, Rin) is called. It takes as input two squares
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such that Royt = T'(Rin), with T € {N, E, S, W}, and computes the set Coeffy(Roy:) under the assumption
that Coeffy(R;y,) has been previously computed.

Procedure COEFF (i, j)
Begin
Ry:=R(e—1,e—1); c1:= li/e]; ca:= |j/el;
For k from 1 to ¢; do
compute Coeff,[E*(Ry)] from Coeff,[E*~1(Ry)]
by using the equation N and the initial conditions I;
For k from 1 to ¢y do
if N (B (Ro)) ¢ SQu(F)
then compute Coeff,[N*(E® (Ry))] by using equation K and Coeff,[N*~1(E° (Ry))];
else COMPUTE, (N*(E (Ro)), N*1(Et (Ry)));
return [y’ |é(z,y) from Coeffy[N2(E (Ry))];
End;

)

FIGURE 3. Procedure COEFF

Both procedures are supposed to use two global variables: a suitable data structure for the sets Coeff,(R)
and an integer variable e (the size of the edge of a square). As we note, the core of the algorithm consists of
the procedure COMPUTE ¢y (Rout, Rin). This procedure computes Coefty(Royt) starting from Coeffy(R;r)
and moving clockwise by using coefficients previously computed. In the code we find an indexed function
nextp, (R): this is used to identify the square R’ that is neighbor to R, and follows R (clockwise). More
formally:

NE(R,) i R=N(R
BRG if Re NE() ==L
Sﬁg%RS) l:j‘[ 15 :s%((l% )) i v
nextr, (R) SW(R,) ; ¥’ R— S(R,) Ry
W(Ry) if R=SW(Ry) \g D I%‘
NW(R,) if R=W(Rp)

N(R,) if R=NW(Rp) \jél:‘él:‘

Function next

As an example, suppose we call COMPUTE (R, S(R)), that is, we want to compute Coeffy(R) knowing
Coeff;(S(R)). So, if R € SQ4(R) then Coeff,(SW (R)) and Coeff,(W (R)) are needed, as shown in Lemma
3.8. Hence, the procedure advances clockwise around R, in order to get (recursively) Coefts(SW(R)) from
Coeffy(S(R)) and then Coeffy (W (R)) from Coeffy (SW(R)).

Figure 4 shows the procedure COMPUTE,; a simple example of computation is sketched in Figure 5, while

in Figure 6 a real computation is shown.

4. Complexity

It is straightforward to see that COEFF (4, j) computes [z'y?]¢(z, y) if and only if every call COMPUTE (N*(E“ (Ry)), N
terminates and computes Coeff;[N*(E°1 (Ry))].
Hence, the problem is to analyse which sets of coefficients are computed by the recursive procedure COMPUTE,,.
Note that a call COMPUTE(Rous,Rin) recursively calls itself if and only if Rou¢ € SQ(R). So, let be
Outg = N¥(E°(Ry)), Ing = N*~1(E°(Ry)) for a suitable integer k < ¢ and consider the sequence of calls

COMPUTE,(Outg, Ing), . . ., COMPUTE, (Out;, In;)
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Procedure COMPUTE(Rout, Rin)
Begin
While Undef(Coeff;[S(Rout)]) or Undef(Coefly[SW (Royt)]) or Undef(Coefly[W (Rou:)]) do
R :=nextg,,, (Rin);
if Undef(Coefty[R’]) then

if R ¢ SQ(R) then compute Coeffy[R'] by using N or K and Coeffy[R;y,];
else COMPUTE« (R', Rin);
Rin = RI;
EndWhile

compute Coeffy[Rout] by using B and Coeffy[S(Rout)], Coeffy[SW (Rout)], Coeffy[W (Rout)];
End;

FIGURE 4. Procedure COMPUTE,.

R R . R4 ‘ [11]

9 9 |10

N /LT |8 7I 8|7

O 6| B o 6

1 = = 1]2]3]4]5 1[2]3]4]5 1]2]3]4]5
(a) (b) (c) (d)

FIGURE 5. A run of COEFF. Squares are numbered with respect to the order of computa-
tion. The gray square is in SQ(R); in order to compute it, COMPUTE, moves clockwise
until South, West and South-West neighbors have been computed.

contained in the stack associated with the call COMPUTE,(Outg,Ing) (at the bottom).

For each 0 < p <, let Step,, = Ry, , ..., Rp, be the 4-connected sequence of squares adjacent to Out; such
that
R - In, : ¢=1
P | nextous, (Rp,_,) @ i>1

and h = min{j | nextous, (Rp,) = Inpy1}.

In the sequel, we consider three sequences Seq, é&/] and §e71, associated with the stack and defined as follows:

- Seq = Outy, ..., Out; is the 8-connected sequence of squares in SQ(R) such that Coeffy(Out;) is
not known (0 <14 <1).

- Seq = Ro, E(Ry),...,E(Ry), N(E®*(Ry)),. .., N*"1(E(Ry)) is the 4-connected ascending se-

quence of ¢; + k squares such that Coeffy(R) is known, R € Seq.
- §éa = Stepy, . . . , Step;_1, In; is the 4-connected sequence such that for all R € §e71, Coeffy(R) has
been computed by recursive calls to COMPUTEg,.
We analyse which sets of coefficients are computed by COMPUTE, by proving the following:

Lemma 4.1. Let COMPUTE, (N*(E“ (Ry)), N*=1(E°(Ry))) be a call occurring in COEFF. Then, for
all the calls COMPUTE¢(Rout, Rin) that are pushed onto the stack we have

N*(E°1(Ro))
Rout S ClN’C(Ecl (Rﬁ))'

PROOF. Let be Outg = N*(E°(Rp)) and let Seq, Seq and Seq be the sequences associated with the
stack having the call COMPUTE,(Outg, S(Outp))) at the bottom. We show that for all Out; in Seq we
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51

50

49

48

47

45 | 46

41| 42 | 43 | 44

36 | 37 [ 38 | 39 | 40 | 13
20—

3132|333 (34|35 15|14 |12

26 | 27 |28 | 29 | 30 | 18 | 17 | 16 11
10 —
22 | 23 |24 25| 21|20 |19 10

FIGURE 6. Running COEFF(59,59) for the function ¢(z,y) = —s—— (Example 3.10).

1—x2y—zy3
Squares that are not numbered belong to the set of initial conditions.

have Out; € Clgﬁzg, that is, Out; <>6uto Outg. Hence, since for 0 < i < [ it holds Out; ¢ Out, 41, it is sufficient
to prove that

(4.1) Out; € SQZ(Outo)

Observe that {Seq} N {S/ea} = {Seq} N {%} = () and note that we can univocally identify g sequences Seq;
(1 <4 < g) such that Seq = Seq, Seqy, . . ., Seq,, with

e Seq; is the longest descending sequence that appears at the beginning of Seq

e Seqy, is the longest ascending sequence after Seqq, Seqs, ...,Seqy;_1, 1 <2i <yg

e Seqy;, is the longest descending sequence after Seqy, Seqy,...,Seqy, 1 <2i+1<g

We prove Property (4.1) by induction on the number g of ascending or descending sequences in the decom-
position of Seq shown above.

BASIS: Seq consists of one descending sequence Outy, ..., Out;, where Out; = E¥i (W (S% (Outg))) and
either Out; = W (Outg) or Out; = SW(Outp). So, it trivially holds that Out; € SQ,(Outg) if v; > wy,
1 <i <. By absurd, let be 7 = min{i | v; < w;} (note that it must be v; # wy since {Seq} N {Seq} = 0). So,
we would have v;_1 > w;_1 and vy < wy: this would imply that Out;_; ¢ Outy.

INDUCTION: Seq = Seqy, Seqy, - - - , Seq,,_1, Seq,,. By induction we know that all the squares in Seq, Seqs, - -
satisfy Property (4.1). Let be Seq,, = Outs,...,Out; and let Outs_; be the last square of Seg,_1. We dis-
tinguish two cases.

n IS ODD: Seq,, is a descending sequence. By induction we know that Outs_; € SQ,(Outg), that
is, Outg_y = W*-1(§%-1(Outg)) with as_1,us—1 € N, ags_1 > 0. Since Outy = T(Outs_1) with T €
{SW, S, SE} it holds Outs = W (S%-1T1(Outg)) with a5 > 0. Again, as # 0 since {Seq} N {Seq} = 0.
Now, the same analysis done for the basis shows that Property 4.1 holds for the squares of Seq,,.

n IS EVEN: Seq,, is an ascending sequence, that is, Outs = T (Outs—1), T € {NW, N, NE}. We claim

B Seqn—l

that Outs = NE(Outs_1). In fact, recall that each sequence Step; of squares examined by COMPUTE, (Out;, In;)
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before calling COMPUTE, (Out;t1,In;41) is 4-connected. This means that the sequence Outs_1,Ing_; is 4-
connected, that is, Ing_; = T(Outs—1) with T'= {N, E, S, W}. In particular, note that Ing,_; = N(Outs_1)

since in the other three cases the call COMPUTE,(Outs_1,Ins_1) would compute Coeffy(Outs_1) without

any recursion.

Therefore, COMPUTE, (Outs_1,Ins_1) recursively calls COMPUTE (N E(Outs_1), In,) with In, = N(Outs—1) €
Seq.

Now, consider the 4-connected sequence §e71 obtained by joining 3';?_7 to §e\q7
Seq = Ro, E(Ro),. .., E®(Ro), N(E®(Ry)), ..., N*"1(E“ (Ry)), Stepy, . - . , Step,_, In.

We trivially have {@} N {Seq, } = 0. In fact, the value Coeffy[R] is defined if R € Seq and undefined if
R € Seq,,. Informally, this means that the squares of the ascending sequence Seg,, are restricted to lie in a

closed area (delimited by 5/’e\q) consisting of squares that satisfy Property (4.1).
g

An immediate consequence of the previous lemma s
Corollary 4.2. Let be R, = N*(E°(Rp)) € SQ,(R). If Coeff,(R) is computed by a call COMPUTE, (Ry, S(Ry))
occurring in COEFF then

R € B(Clk) U CIEE.
PRrROOF. By inspecting the code of COMPUTE, we note that for each computed set Coefts(R), either
R € SQ4(R) (and COMPUTE (R, R;»,) is a call generated by COMPUTE (R, S(Rk))) or R ¢ SQ,(R)
(and Coeffy(R) is computed by a recursive call COMPUTE ¢, (Rout, Q) generated by COMPUTE (R, S(Rx))
such that Ro Rout).
In the first case Lemma 4.1 states that R € Clg’; while in the second we have R € B(Clg’;). O

Lemma 4.3. Let St be the stack associated with a call COMPUTEq (R, S(R)) occurring in COEFF. Then,
St does not contain two identical calls.

PRrOOF. (By contradiction) Let COMPUTE, (Outy, Iny) be the first repeated occurrence of a call, that
is, h =min{0 < ¢ <136 > 0, Out; = Out;_5 A In; = In,_s}. Without loss of generality, we suppose that
Inj;, = W(Outy). Consider the 8-connected sequence S that is a subsequence of Seq,

S = Outp—s, Outp—sy1, - .., Outy,

together with the 4-connected subsequence of §e\q7

S = Step;,_s, Step,_s415- - -, Stepy, _1, Inp.

We recall that for R € S the set Coeffy(R) is known and that for each R € S (R € 8S) there exists Q € S
Q€ @) such that R¢ Q. Note that both sequences are “closed”, that is, their first and last squares coincide.
Moreover, we have {S} N {S} = 0.
Let be Rg = R(e — 1,e — 1) and for each closed sequence S denote by Inside(S) the set of all the squares in
SQ(R) that lie in the area surrounded by S. Then, it is immediate to observe that we have only two cases:
Sc Inside(S): This means that if R € S it is impossible to find a 4-connected sequence Tr = Ry, ..., R
such that {Tg} N {S} = 0. On the other hand, we know that for every R € S there exists a
4-connected sequence Tgr from Ry to R, consisting oﬁgluares in SQ(R), such that for @ in T'’g the

set Coeffy(Q) has been computed (see the sequence §é?1 in the proof of Lemma 4.1). Therefore, we
have S ¢ Inside(S).
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S C Inside(@): Let be k1, ko € N such that

NEL(E*2(Ry)) €
Nhl(EhQ(Ro)) €S= ki + ko <hi+ho

Let be Outy; = N (E* (Ry)). Since S C Inside(S), it is immediate to prove that S(Outy) and
W (Outy) belong to S. More precisely, because S is 4-connected, it follows that

S =Iny,...,S(Outy), SW(Outs), W(Outy), . .., Iny,.

Then, the call that computes Coeffy(SW (Out;;)) must be COMPUTE,(Outy;, In;). By observing

the code of COMPUTE,, we note that if COMPUTE, (Outy, In;;) computes Coeffy(SW (Outy,))

then it has previously computed Coeffy (S (Outy)) and it necessarely computes also Coeffy (W (Outy)).
So, this call would terminate without any recursion.

O

The following lemma states that we can develop a suitable data structure for storing all the coefficients
that are computed by the algorithm. More precisely, we have:
Lemma 4.4. The data structure Coeff,[| can be implemented in space O(i + j) and accessed in time O(1).

PROOF. Coeffy[] can be easily implemented as a dynamic data structure representing a graph. We give
here an outline for such implementation.
Let be

d= max{degn(pf’ (Tl, k))v degn(pO (nv k))? degn (qS (nv k))? degn (QO (nv k))}

the integer univocally associated with an instance (N, K, B, 1,1, j) and let be ( = 4d(e + 1). Note that for
every integer k we have f{N*(E"(R(e — 1,e — 1))) € SQ,(R)} < (. Since we have to consider also squares
that belong to the border of a cluster, for each k we have at most 9¢ squares Ry, = N¥(E"(R(e —1,e —1)))
such that Coeffy(Ryy) is computed. So, an immediate implementation for the sets Coeffy() is based on
a list of lists. More precisely, we have a primary double linked list whose length is |j/e] + 1. The k-th
node of this list contains a link to the list for the sets Coeffs(Rgp): this is a list whose length is less or
equal to 9¢. Then, it is immediate to note that we access to Coeffy[Ryp] in constant time if the procedure
COMPUTE(Rgp, In) is equipped with a suitable link to the k-th node of the main list. O

Theorem 4.5. The total number of calls to COMPUTE, during the execution of COEFF(i,j) is O(i + j).
PROOF. Recall that R = R(z,7) = NU/¢J(El/l(R(e — 1,e — 1))) and let
COMPUTE (Ry, S(Ry1)), ..., COMPUTE (R;, S(R;))
be the sequence of calls observed in COEFF(4,5) (t = O(j)). Moreover, let be
TOT = {COMPUTEx(R,T(R)) | R € SQz(R), T € {N,E,S,W}},
and, for 1 <k <t,
TOT) = {C € TOT|C is a recursive call originated by COMPUTE, (R, S(Rk))} -

Note that COMPUTE,(Ry, S(Rk)) recursively generates calls of type COMPUTE (R, Q) with R € Clgi,
such that Coeffy(R) has not been previously computed by COMPUTE,(R;, S(R;)) with 1 <[ < k. In other
words, TOT; N TOT,,, = 0, for [ # m.
Lemma 4.3 guarantees that the number of recursive calls generated by COMPUTE, (R, S(Rk)) is exactly
fTOTg. Hence, recalling Lemma 3.6, the total number of calls is

t ¢
D #TOT, = #|J TOT, < #TOT = 4-#8SQ4(R) = O@+7) = O(i+ )
k=1 k=1
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O

At last, we have:
Theorem 4.6. COEFF(i,j) runs in time O(i + j) and in space O(i + 7).

ProOOF. By Th. 5.4 we know that procedure COMPUTE,, is called O(i + j) times. By inspecting the
code we note that each call consists of a constant number of operations because the cost of accessing Coefty]]
is O(1) (see Lemma 5.3). Moreover, the space requirement is bounded by the sum of the maximum stack
size and the size of the data structure for Coeffy[]. So, we conclude that COEFF (i, j) runs in time O(i + j)
using O(i + j) space. O

5. Conclusions

In this paper we have presented an algorithm that computes the coefficient [ziy’]¢(x,y) of a rational
formal series ¢(x,y) working in time and space O(i + j) under the uniform cost criterion. If we adopt the
logarithmic cost criterion, we expect that the complexity of the algorithm becomes O((i + j)?), since the
growing of the coefficients [2"y*]é(x, y) is at most exponential (i.e. the cost of a single arithmetical operation
is at most linear).

Two remarks are worthwhile with respect to such algorithm: the first is related to the computation of
the recurrences, the second deals with the size e of the squares. We pointed out that the recurrences can
be obtained through an elimination process in a noncommutative algebra. Actually, in order to compute a
Groebner Basis in the shift algebra Q(n, k, E,,, E)), we took advantage of the package ‘Mgfun’, running under
Maple and implemented by Chyzak ([5]). This step can be quite expensive and so it would be interesting to
look for a method that directly computes the recurrences from the linear representation of a rational series.

With respect to the size e, let us show an upper bound for its value. Consider a rational function
¢ = Z@Y) anqd let d, (dy) be the degree of P-Q in z (y). A system of independent recurrence equations is

T Q=)
obtained by converting the holonomic system

{ (0:P Q — P 0,Q) 9,6 - 0
(0,P Q—P 9,Q) 9.6 + (0.P Q— P 9,Q) 0y 0

into operators of the shift algebra. The degree in E,, and Ej of such operators is respectively d, and d,,.
By applying the Zeilberger’s elimination algorithm ([14]), we obtain operators depending either on FE,, or on
E}. Their degrees in E,, and Ej are at most quadratic with respect to d, and d, (see Section 5.3 in [14]).
Then, we have e = O((max{d, dy})?).

Last but not least, it might be interesting to study whether the technique we have presented can be
modified in order to deal with a number of variables greater that two. We point out that the straightforward
extension of this method to the 3-D case does not work (in the 3-D case the set of the values that the
algorithm considers as initial conditions has not size O(1)). Moreover, as our method is related to the theory
of the holonomic series, it would be useful to generalize it in order to get an efficient algorithm for the
Coefficient Problem for holonomic series.
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An immediate consequence of the previous lemma, is:
Corollary 5.1. Let be R(7,ke) € SQz(R) and z,y € N such that the set Coeffy(x,y) is computed by a call
COMPUTE, (3, ke, 7, (k — 1)e) occurring in COEFF. Then

7,ke 7,ke

R(z,y) € B(CIG ) YU C1hs).

PrOOF. By inspecting the code of COMPUTE; we note that each recursive call occurs on input
(x,y,2,t) such that R(z,y) is either in the equivalence class of R(7, ke) (with respect to relation o*) or
in its border. Lemma 4.1 bounds x and y properly. O

Lemma 5.2. Let COMPUTE,(I,m,l,m—e) be a call in COEFF. Then, the stack that has COMPUTE (I, m,l,m—
e) at the bottom does not contain two identical calls.

PRroOOF. (By contradiction) Let us denote by C}, the call at level h in the stack. Without loss of generality,
let C;, = COMPUTE(Z,9,% — e, ) be the first occurrence of a call that appears twice in the stack. Then,
there exists § > 0 such that C;,_; = COMPUTE(%,9,% — e,9). The portion of stack C;,_5,Cj,_5.4,---,Cj,
identifies an 8-connected sequence

Seq = R(m07 y0)7 ) R(ir(Sa yé) (Wlth R(m07 yO) = R(x(Sa yé) = R(‘%v /g))
that has an associated 4-connected sequence
é;?] = R('iOa go)v sy R('%’Ya Z]’Y) (Wlth R(i‘()a ZjO) = R('%’Ya Z}’Y) = R('i - 67:&)))

such that Coeff(Z;,7;) is known, 0 < j < v. Note that Seq and Seq are closed path and that {Seq}nN {éga} =
(). Let Inside(P) denote the set of all the squares of SQ that lie in the area surrounded by a closed path P.
Then, it is immediate to observe that we have only two cases:
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Seq C Inside(Seq): This means that for each R(z,y) € Seq it is impossible to find a 4-connected
sequence T(, ) = R(e,e),..., R(x,y) such that {T(, )} N {Seq} = (). On the other hand, we know

that for every R(z,y) € Seq there is a 4-connected sequence of squares R(e,e),...,R(x,y) whose

P

associated coefficients have been computed (see the definition of the sequence §§1 in the proof of
Lemma 4.1). We have then the contradiction Seq Z Inside(Seq).

Seq C Inside(é;a): Since é&ll is a closed 4-connected sequence, there must be R(a,b) € é&ll such
that éga = R(Zo,%0),...,R(a,b), R(a —e,b),R(a —e,b+¢e),... R(Z,,7y) and R(a,b+ e) € Seq,
R(a,b+e) € SQg. This is impossible, because there would be in the stack a call COMPUTE,(a, b+
e, a, 3) that would halt the recursion.

O

The following lemma states that we can develop a suitable data structure for storing all the coefficients
that are computed by the algorithm. More precisely, we have:
Lemma 5.3. Let (N,K,B,1,i,5) be an instance of the Coefficient Problem associated with a rational series
@(z,y). Then, there exists a data structure G for the sets Coeffy(x,y) that are computed by COMPUTE(i, j)
such that G can be implemented in space O(i + j) and access time O(1).

PROOF. G can be easily implemented as a dynamic data structure representing a graph. We give here
an outline for such implementation.
Let us consider the system of recurrences { N, K} and let be

d= ma‘x{degn (pT (na k))? degn (po(na k))? degn (qs (nv k))? degn (qO (nv k))}

Note that for every integer k > e, k =, 0, there exists at most ¢ = 4d(e + 1) values xy, such that R(zy,, k) €
SQg(4,7), and Coeffy(zk,, k) is computed by the algorithm. Since we have to consider also squares that
belong to borders, we have at most £ = ¢ + 2¢ + 3 - 2¢ squares R(z, k) such that Coeffy(z, k) is computed.
So, an immediate implementation for the sets Coeff,(z,y) is based on a list of lists. More precisely, we have
a primary double linked list whose length is [j/e]. The h-th node of this list contain a link to the list for
the sets Coeffy(z, he): this is a list whose length is bounded by the constant {. Then, it is immediate to
note that the access to the sets Coeffy(z, be) requires constant time if the procedure COMPUTE(a, b, ¢, d)
is equipped with a suitable link to the b-th node of the main list. O

Theorem 5.4. The total number of calls to COMPUTE, during the execution of COEFF(i,j) is O(i + j).

Proor. Let COMP(z,y, z,t) be the number of recursive calls generated by COMPUTE(z,v, 2, t).
Define CALL = {(z,vy, 2,t) € N*| COEFF (4, j) calls COMPUTE,(z,y, 2,t)}. We obviously have fCALL =
O(i + j). Moreover, let be CALL; = {(z,y, z,t) € CALL | R(z,y) € SQg(¢,7)} and CALLy = {(z,y, 2,t) €
CALL | R(z,y) ¢ SQg(i,J)}-

We need to estimate

> COMP(a)= Y COMP(a) + >  COMP(a).
@ECALL @€ECALL, @ECALLy
We first note that > ccnp, COMP(a) = O(i + j), then we partition CALL; according to the partition of
SQg(4,7) in clusters, obtaining
k
CALL; = U CALL(I‘h, Yhy Zhs th)
h=1

where CALL(2h, Yn, 2n, tn) = {(2,y,2,1) € CALL1 | R(z,y) of; ;) R(2n,yn)} and for each 1 < r < s < h,
R(xr,yr) 4 5 R(@s,ys)-
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Since the sets Coeffy(a,b) are computed once, recalling Lemma 4.3 and Corollary 4.2 we have

k k
Z COMP(a) = Z Z COMP(a) = O <Z ﬁCl%’é)myh)) = 0(i+7).
h=1

a€CALLy h=1 «ECALL(Zp,Yn,2h,th)

Hence, we conclude that
> COMP(a) = O(i + j).

acCALL

At last, we have:
Theorem 5.5. COEFF(i,j) runs in time O(i + j) and in space O(i + 7).

PROOF. By Th. 5.4 we know that there are O(i+ j) calls to the procedure COMPUTE,,. By inspecting
the code we note that each instance consists of a constant number of operations if accessing Coeffy(z,y)
costs O(1). Moreover, the space requirement is bounded by the sum of the maximum stack size and the size
of the data structure for Coefty(x,y). Recalling Theoren ?? and Lemma 5.3 we conclude that COEFF (g, j)
runs in time O(i + j) using O(i + j) space. O
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Ribbon tilings of Ferrers diagrams, flips and the 0-Hecke algebra

Gilles Radenne

Abstract.

In this article we study how the 0-Hecke algebra H., (0) can be used to give an algebraic structure
to ribbon tilings of Ferrers diagrams. The key to this structure is the Stanton- White bijection, which
gives a bijection between n-ribbon tableauxr and n-upplets of Young tableaux. Restricting to standard
ribbon tableauz, we can define a natural action of Hm(0). Thus we can define local actions on ribbon
tableauzx, which we call flips or pseudo-flips, and which are generalisations of domino flips. Then
with some help from the Yang-Baxter relations we prove some properties about minimal flip chains,
properties which remain true for ribbon tilings.

Résumé. Le but de cet article est de montrer comment on peut utiliser la 0-algébre de Hecke
H,,(0) afin de donner une structure algébrique auzx pavages par rubans d’un diagramme de Ferrers
donné. Cette structure découle de la bijection de Stanton- White entre les tableaux de n-rubans et les
n-uplets de tableaux de Young. Si on se limite aux tableaux standards de rubans, cela nous donne
une action naturelle de H.,(0), qui nous permet alors de définir des modifications locales sur les
tableaur de rubans, que nous appellons flips et pseudo-flips. Ce sont des généralisations du flip
classique de dominos. Grace aux relations de Yang-Baxter on peut alors donner des invariants sur
les chaines minimales de flips, qui se conservent quand on passe aux pavages par rubans.

1. Introduction

The goal of this article is to study a class of tilings called ribbon tilings of a Ferrers diagram. The main
motivation for this study is to give a general, algebraic generalisation of domino tilings. In order to try and
give some order and algebraic structures to these tilings, we will use ribbon tableaux.

Ribbon tableaux originate from rim hook tableaux, introduced to study the representations of the
symetric group [dBR61, GJ81|. These tableaux have been studied from an algebraic point of view (see
[SW85, CL95, LLT97]). In particular, [SW85] gives us a bijection between Ferrers diagrams and n-tuples
of Ferrers diagrams, with interesting properties regarding ribbons. This bijection can be extended to a
bijection between ribbons tableaux and n-tuples of Young tableaux [Pak90].

Section 2 gives some definitions and notation, then recalls some existing results :

We first define ribbon tilings and tableaux, recall basic facts about them and define the Stanton-White
bijection. If we restrict our view to standard ribbon tableaux, we obtain from this bijection standard n-tuples
of Young tableaux, or equivalently skew standard Young tableaux, upon which there are classical algebraic
structures.

We then consider one such algebraic structure, the Hecke algebra for ¢ = 0, H,,(0), which is related to
posets (that is partially ordered sets). We recall its classical actions on permutations and Young tableaux.

227



228 RIBBON TILINGS OF FERRERS DIAGRAMS

In Section 3, we extend this action to standard ribbon tableaux, using the Stanton-White bijection. By
giving a H,,(0)-module structure to standard ribbon tableaux, we prove that it has a lattice structure, which
we study.

In Section 4 Having thus given a poset structure to standard ribbon tableaux, we study the covering
relation, using elementary generators of H,,(0). We obtain local actions called pseudo-flips and flips, the
latter being a generalisation of the flips encountered with domino tiling. After giving a geometric description
and classification of these flips, we prove an invariant results concerning minimum flip paths, the key of the
proof being the Yang-Baxter relations met by H,,(0).

2. Definitions and existing results

In this section we first define ribbon tilings, ribbon tableaux and define some conventions and notation.
We then give some basics facts about these objects, before recalling the Stanton-White bijection and the
induced bijection for ribbon tableaux.

2.1. Presentation of ribbon tilings and notation. All the geometric objects which we define will
be placed in the discrete plane N2, and we identify a unit square with its lower left corner.

A n-ribbon is a polyomino (that is a finite part of the discrete plane) formed by n squares, defining a
path composed only of left or up steps. (It is a simply connected polyomino.) Therefore we can define the
head of a ribbon as its bottom right square. An n-ribbon can thus be given be the coordinate of its head in
the discrete plane, and by a word in {0,1}"~! coding its shape, each 0 representing a left step, and each 1
a up step. Figure 1 gives two examples of 8-ribbons.

L1

1

FIGURE 1. Two 8-ribbons

Two particular cases of ribbons are 1-ribbons, which are elementary squares in the discrete planes, and
2-ribbons, which are the classical dominoes, upon which much litterature exists [CL95].

Given a partition A, that is a decreasing integer sequence of finite length, its Ferrers diagram is the
shape in N? whose length rows are givens by the terms of A. (We use the cartesian convention, and thus
rows lengths are decreasing upward.) We identify a partition and its Ferrers diagram, and call the set of all
partitions (or equivalently of all Ferrers diagrams) II.

IT is the set of all partitions, considering two partitions equals if we can obtain one from the other by
adding some zeros at its right. For a partition A its length I()), is its length as a finite sequence (the tail
zeros do not count in the length). The weight of A, denoted by ||, is the sum of its terms.

Since we are in the discrete plane, we can define the diagonal d as Ag = {(x, y) EN2 z —y= d}. The
content of a cell is the diagonal which it belongs to. The content of a ribbon is the content of its head.

Let us now define a ribbon tiling : We fix an integer n, and we tile A by removing n-ribbons from its
rim, in such a way that the remaining polyomino is still the Ferrers diagram associated with a partition, and
then we go on, until we cannot remove ribbons anymore. Is is a classical result that the remaining partition,
A(n) does not depend on how the ribbons were removed (see [dBR61, GJ81]), and is called the n-core of \.
Thus all the tilings we can define this way are tilings of the same part of the discrete plane, A\ A¢,. Figure
2 gives two ribbon tilings of the same Ferrers diagram.

General ribbon tiling have been studied in [She], where it was proved that the set of all tilings of a
given Ferrers diagram is in bijection with the set of all acyclics orientation of a particular graph. Reversing
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’

FIGURE 2. An example of rim 7-ribbon with its head and diagonal, and two 7-tiling of
(8,6,5,3,3,2) with the 7-core shaded.

an edge in a given orientation, when it is possible then gives an action on ribbon tilings. This action is a
local one called flip, for which the set of all tilings of a diagram is connex. But it does not give additional
structure. We will give an algebraic interpretation for these flips.

Ribbon tilings of Ferrers diagrams have been studied in [Pak90], which defines a family of functions on
ribbons. It is then proved that these function form a basis for the tiling invariant. That is to say that for a
giver Ferrers diagram A these functions are all invariant on the ribbon tilings of A, and every such invariant
can be obtained from these functions.

Given a Ferrers diagram A, a Young tableau of shape X is a filling of the cells of A with strictly positive
integers, in such a way that in each row the numbers are weakly increasing, and in each column they are
strictly increasing upward.

It is natural to extend this notion to ribbons, which gives ribbon tableaux. A n-ribbon tableau of shape
A\ Ay is a tiling of A\ A,y by n-ribbons to which we give integer numbers with the following growth
conditions : On each row and each colon, the numbers of the encoutered ribbons must be weakly increasing,
and the head of a ribbon cannot be above another ribbon with the same number. A young tableau is actually
a l-ribbon tableau, therefore definitions which apply to both will be given for ribbon tableaux.

We can define the weight of a ribbon tableau (thus of a Young tableau) as the sequence (w;); where w;
is the number of ribbon whose number is ¢, and a standard ribbon tableau will be a ribbon tableau of weigth
(1,1,1,1,0,0,...). A standard ribbon tableau can be seen as a ribbon tiling, together with in which order
the ribbons are added from the core. An example of standard ribbon tableau is given in figure 3. From now
on, all the ribbon tableaux considered will be standard.

FIGURE 3. A standard ribbon tableau of shape (8,6,5,3,3,2)\ (15)

The set of ribbon tableau and the set of standard ribbon tableaux of shape A\ A,y will be denoted
respectively by Tab, (A \ A¢n)), and STaby, (A \ An))-

2.2. The Stanton-White bijection.

Let us now recall here the classical Stanton-White bijection, which occurs for a given n-core pu between
all partitions whose n-core is  and all the n-tuples of partitions. This bijection can thus be considered as a
bijection between the set all partitions and the outer product of the set of all n-tuples of partitions and the
set of all n-cores. Let us define it algorithmically before giving an interpretation :

Given a partition A € II, first add to it the stair A,, = (m — 1,m — 2,...,2,1,0) with m such that
m > 1()\) and m = an with a € N*. We thus obtain a strict partition A\* of length m, which we decompose



230 RIBBON TILINGS OF FERRERS DIAGRAMS

modulo n into n partitions A*(0),..., A (n — 1) in the following way : For each term z of \, we make the
integer division by n, x = ng +r, and add the term ¢ (even if ¢ = 0) to A*(r). (By separating A* modulo n,
we actually separate A along its diagonals modulo n.) We set I; as the length of A*(i) (including a possible
0), and then substract A;, to A*(4), to obtain a partition A(™ (7). (A (1),...,A")(n—1)) is then an n-tuple
of partitions corresponding to A, called the n-quotient of A, and is denoted by A(™).

This function is surjective, as for any n-tuple of partitions A, the A (i) are simply obtained by adding
stairs, and then A\* by multiplying the terms A () by n and addlng i to them, and merging the resulting
partition into a strict partition A*. We then just have to substract a stair to A* to obtain a partition whose
image is A\(").

Let us illustrate this bijection by taking A = (5,5,3,2,1) and n = 3, we add (5,4,3,2,1,0) to A to get
A =(10,9,6,4,2,0), which we divide modulo 3 to obtain \*(0) = (3,2,0), A1) = (3,1) and M (2) = (0).
Substracting the corresponding stairs, we get A)(0) = (1,1,0), A®) (1) = (2,1) and \®(2) = (0). This is
illustred in figure 4

(5 Bm

AL (0) A (1) A (2)

i 5

A®) (0) ,\(3)(1) A®) (2)
FIGURE 4

This transformation also gives us a coding of A,), by setting w; = I; —I()). w is then an n-dimensional
vector with sum equal to 0, which depends only of A(,).

If we call Z{ the set of all n-dimensionals vectors with sum 0. We then can state the following result
(|[GJ81, SW85)) :
Theorem 2.1. The function A — (A", X)) is a bijection between I and II™ x Z§

For n = 1, AU = ()\), and A1) is empty, so the Stanton-White bijection is the canonical bijection
between II and II x {0}.

Note that if ; is obtained by removing an n-ribbon from X’s rim, then p® is obtained from A* by
substracting n to a term and sorting the remaining terms. This term is equal modulo n to the content of the
ribbon removed. Furthermore, each term of A* to which we can substract n (in such a way that p* remains
a strict partition) corresponds to a ribbon which can be removed from \’s rim, as can be seen in figure 5
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FIGURE 5. Removing a 5-ribbon from A%

g wnN

We then obtain p(™ from A by removing a square of diagonal d’ + ¢; from A, where d = nd’ + i is
the integer division of d by n ( the ¢; are offset parameters which depend on A(,)). So the squares of ()

correspond to ribbons, and the number of ribbons in a tiling of A\ A(,,) is given by ngol I\

This bijection translates to ribbon tableaux. The corresponding objects are then n-tuples of Young
tableaux, each square corresponding to a precise ribbon. (The growth condition on ribbon tableau gives
precisely classical growth condition of Young tableaux.) So, for a partition A we have a bijection between
Tabn (A \ A(ny) and all n-tuples of Young tableaux of shape A and this bijection preserves the weight.
Figure 6 gives an example for this bijection.

5
4
4

4

2|2 3
2 4 4 5
3 23 2 4
1]1 \T‘l 1 113 111 2

FIGURE 6

Moreover, we can arrange an n-tuple of Young tableau in such a way as to obtain a skew Young tableau.
Figure 7 shows how it is done for the example we took in figure 6. (There are 2"n! skew different Young

113
14 5
23 2 4] —> 2
113 111 2 111
5
4
2

FIGURE 7
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tableaux we can obtain this way, by taking the n Young tableaux in different orders and by transposing
some of them.)

So for a given shape A, we can obtain a skew Ferrers diagram p \ v such that we have a bijection
between Tab, (A \ A(;,)) and skew Young tableaux of shape p \ v, which leaves the weight invariant. If we
restrict ourselves to standard ribbon tableaux, we then have a bijection between standard ribbon tableaux
and standard Young tableaux, upon which we can define algebraic structures, which we are now going to do.

2.3. The 0-Hecke algebra H,,(0) and its actions.

In this section we define a classical combinatorics algebra, the 0-Hecke algebra ([KT97]) and explain
how it can be used to give en ordering structure on permutations and Young tableaux.

We define H,,(0), the Hecke algebra for ¢ = 0 (over the field of complex numvers), as the C-algebra

spanned by n — 1 generators T4, ...,T,,_1 with the following relations™ :
T2 =T, Vi<i<m-—1 (1)
T.T; = T,T, ifli-j>1 (2

Tl T =T TiTisr V1<i<m-—2 (3)

Actually, H,,(0) (and more generally H,,(q)) is a deformation of the symetric group, and such algebras
can be defined for all Coxeter groups. If we take ¢ = 1, H,,(1) is K&,,,, the symetric group algebra.

Let us first remark that (1) can can be rewritten as T3(7; — 1) = 0, and thus 0 and 1 are possible
eigenvalues for T; seen as an operator. The fact that 0 is a possible eigenvalue is an important aspect of
Hp,(0), as we will see later.

Given a permutation o € &,,, let us define T, in the following way : starting from a elementary
decomposition of o, 04,04, ...0,, where o; = (3,4 + 1), we set T, = T3, T, ... T;,. Ty does not depend on
the elementary decomposition chosen, as all such decomposition are congruent by the braid relation in the
symetric group, and thus the corresponding products of T; are congruent by (3).

Let us now define two natural actions of H,,(0) on the symetric group algebra K&,,, the left action L
and the right action R. L is also called the action on values and R the action on places.
R(T)o=0 ifo(i)<o(i+1)
R(T;)o = 0o; otherwise
L(T)o=0 ifo l(i)<o l(i+1)
L(T;)o = 0,0 otherwise
These action are in duality, by L(T;)o = 132R(Ti)a’1_1. From now on, we will only consider the right
action of H,,(0), which is shown in figure 8 for n = 3.

o 321 g

FIGURE 8. The right action of H3(0) on &3

*Note that this is not the usual presentation of Hp,(0). The Hecke algebra for g given is usually defined by the quadratic
relation (T; — 1)(T; + q) = 0, or equivalently T;? = (1 — q)T1 + ¢, hence for ¢ = 0 T;2 = —T;. What we define here is a
renormalisation obtained by replacing T; with —T;, which is more convenient in the present case.
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Actually, H,,(0) is linked with bubble sort : The action of a T; is exactly an elementary step of bubble
sort, and if we take the maximal permutation wo = (m,m —1,...,2,1) = 010901030207 ...
Om—10m—2 . ..02071, then T, corresponds to the whole bubble sort.

Moreover, if we define a partial ordering on &,, by setting o < ¢’ when there exists a permutation w
such that o = T,,0’ or ¢ = ¢’, then we find the classical weak order of &,,. The graph whose vertices are
the permutations of &,, and the edges are the action of the T; minus the loops is the right n-permutaedron.
The poset whose Hasse diagram is the permutaedron is a graded lattice ([GR63, Bj684]), its maximum
element is the trivial permutation 1 and its minimum element the permutation wg. (If we take the left action
instead of the right action, we obtain another poset structure on &,,, isomorph to the one defined by the
right action.) Note that this lattice is not distributive for n > 3.

(We recall that a lattice is a poset in which every pair of elements admits a supremum and infimum,
noted by V and A. A lattice is distributive if V and A are each distributive over the other, and a lattice
P is graded if it admits a graduation, that is a function f : P — Z such that if a covers b in P, then
f(a) = f(b) + 1. See [DP90])

This action can easily be extended to space spanned by all the standard Young tableau of a given shape
A with |[A\| = m : Given a standard Young tableau ¢, we call o; the permutation given by its line reading,
and inversely ¢, is the tableau of shape A whose line reading is o.
Tit =tr(1,)o, ifiandi+ 1 are not adjacent in ¢
T;t=0 otherwise
If 4 and 7 + 1 are not adjacent, they cannot be on the same line as t is standard, and so the action of
T; is to reorder them so that ¢ + 1 is higher than ¢. Thus T,,, reorders t into the line filling of A\. This is
illustrated in figure 9 for the tableaux of shape (3,2).

FIGURE 9. The action of H5(0) on standard Young tableaux of shape (3,2)

This defines what is called a Specht module structure on the vector space spanned by standard Young
tableaux of shape A. It also gives an ordered structure on standard Young tableaux : Given two standard
Young tableaux of same shape, ¢t and t/, we set t < t’' if there exists a permutation w such that ¢t = Tt
(including the cas t = t’). The same kind of results hold as for the permutation group :
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Theorem 2.2. Take A € II, and m = |\|. The poset defined by the action of H,,(0) on the set of all
standard Young tableauz of shape X is a lattice. The mazimum element of the lattice is the row filling of A
and the minimum element is the column filing of \.

This lattice is usually not distributive. (For example the lattice of all standard Young tableaux of shape
(3,2,1) admits the 3-permutaedron as a sub-lattice.)

3. The lattice structure on standard ribbon tableaux

Having recalled all these results, we can now extend them to standard ribbon tableaux. This action of
H,,(0) on standard Young tableaux naturally extends in the same way to skew Young tableaux, and it keeps
all its properties, including the lattice structure it defines.

As the Stanton White bijection induces a bijection between standard ribbon tableaux and standard
skew Young tableaux, we naturally have an action of H,,(0) on the vector space spanned by ST'ab,(A\ A¢,))
(where m is the number of n-ribbons in a tiling of A\ A(;), that is > A (7)]), and the following result :
Theorem 3.1. H,,(0) induces a graded structure lattice on STab,(A\ A(n))

Figure 10 gives this structure for STabs132(4%), and figure 11 gives the isomorphic structure for the
corresponding triplet of Ferrers diagrams, which is 132(2), (1), (1). Note that in this case different standard
ribbons tableaux give different ribbons tilings, but this is not always the case.

—

o
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/N 7N
1% 1;&4 %4
1 | 1
13\;4 213 \;24

~

/wﬂ\ -

FIGURE 10

Depending on the way we build the skew Ferrers diagram on which H,,(0) acts, we can obtain up to
2"n! different action of H,,(0), which will define as many different lattice structures (some of them will
often coincide), but the non-oriented graph underlying the Hasse diagram will remain the same, as the edge
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FIGURE 11

are given by switchs between consecutive numbers in the n-tuples of Young diagram corresponding to the
standard ribbon tableaux.

4. Flips, pseudo-flips and the Yang-Baxter relation

In a first part we define flips and pseudo-flips, which are local actions given by the action of the generators
of H,,,(0). This definition allows us in a second subpart to classify and count the possible flips. We then use
the classical Yang-Baxter relations to give invariants on minimum flip paths.

4.1. Local action of the T;.

We have in the previous section defined a bipartite graph whose vertices set is ST'ab, (A \ A(,)), and
whose edges are given by the covering relation of one the lattice defined by the actions of H,,(0), the graph
itself being independant of the chosen action of H,,(0). It is natural to study this covering relation, more
specifically the action of a T; on the ribbon tableaux themselves.

This covering relation is given by the action of a T}, that is the switching of ¢ and 7 + 1 in the n-tuple
of Young tableaux. A standard ribbon tableau can be constructed from the corresponding Young tableaux
by adding ribbons with increasing or decreasing number, or both. Thus if we have two standard n-tuples
of Young tableaux, (¢j)o>;j>t—1 and (t;')OEjZkfl which can be obtained from the other by switching ¢ and
i+ 1, we can construct the associated ribbon tableaux by placing the ribbons 1 to ¢ — 1 and then the ribbons
n downto 7 + 2 on the border of A\, and these will be the same in the two ribbons tableaux.

So the action of T; is a local one, which only acts on the ribbons ¢ and i 4+ 1, leaving all the others
unchanged. Its effects depend on the difference Ad between the diagonals of the two ribbons, d; and d;11,
and whether it’s bigger or lesser than n. A, cannot be equal to n, because then ¢ and 7 + 1 would be in the
same t;, and they would be on adjacent diagonals, thus they would be adjacents, in which case they could
not be switched.
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If Ad > n, then the two ribbons are disjoint, so switching ¢ and i + 1 in ¢ amounts to switching the
numbers of the ribbons. We call this transformation a n-pseudo-flip (or just pseudo-flip) of genus Ad. A
pseudo-flip changes the standard ribbon tableau, but leaves the underlying ribbon tiling invariant.

If Ad < n, then the two ribbons overlap, and by switching i and i + 1 we change the ribbon which
overlaps the other, and then we have a n-flip of genus Ad.

FIGURE 12. A pseudo-flip and a flip of 4-ribbons

Figure 12 gives examples of flip and pseudo-flip for 4-ribbons. If we only consider the underlaying ribbon
tiling, a flip between standard ribbon tableaux defines a flip between two tilings. This is the same flip as
was defined in [She], even tough it was apparently differently defined. For n = 2, we find the usual domino
flip.

4.2. Geometric classification and enumeration of flips.

The genus of a flip describes the geometry of this flip it is the difference between the diagnoals of the
two ribbons involved, and so it tells the length along which the two ribbons overlap. In a flip of genus d
between n-ribbons, the ribbons overlap on n — d + 1 cells. This gives a geometric classification of flips, and
will allow us to count the possible flips :

Theorem 4.1. There is (2"~ — 1)27~2 different possible geometries for flips of n-ribbons.

ProoF. We will call Fy(n) the number of geometrically differents n-flips of genus d, and F(n) the
number of all n-flips.

When d > 1, as only these n —d + 1 cells are involved in the flip, the geometry of this flip is the same as
for a flip of genus 1 between ribbons of length n —d + 1. So an n-flip of genus d geometrically consis tof two
parts : First, the overlapping part, where the flip occur, which is a flip of genus 1 of (n — d + 1)-ribbouns, and
then the remaining part of the ribbons, which can be seen as two d — 1 ribbons starting from the overlapping
part. From this we can derive the relation Fy(n) = 22~V F(n —d + 1).

In order to compute Fy(n) let us see what exactly is a flip of genus 1, which we will call a maximal flip.

o

FIGURE 13

In such a flip, the ribbons’ heads are adjacent, and the ribbons overlap on their whole length. In one of
the two configurations involved in the flip, the ribbon’s head will be side to side, and so the one with the
greater diagonal (that is the one whose head is on the right) will have a "up” as its first step, as can be seen
in figure 13. Now, if we take such a ribbon with an upper first step, we can put a ribbon immediatly to its
left, such that these two ribbons overlap on their whole length, and it is possible to do a maximal flip on
these ribbons. So a flip of genus 1 can be coded by a ribbon whose first step is imposed, thus by a word of
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{0, 1}"_1. This word can also be seen as coding the intersection of the common boundaries of the ribbons
in the two configurations of the flip, as shown in figure 14

FIGURE 14. A 12-flip of genus 1, whose coding is (0,1,0,0,1,1,0,1,0,0)

This gives us F(n) = 2”2, and so :
Fd(n) — 22(d71)2n7d71 _ 2n+d73

k—1
F(n) — 271—3 Z 2d — (2?1—1 _ 1)277,—2
d=1
O

For n = 3, we have F1(3) = 2, F»(3) = 4 and F(3) = 6. These six flips of 3-ribbons are given in figure
15 and 16.

]

H<_.

F1GURE 15. The 3-flips with genus 1

L=
Ut

FIGURE 16. The 3-flips with genus 2

Remark that taking n = 2, we have F'(2) = 1, so this is consistent with the trivial fact on domino tilings
that there exists only one kind of flip.
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4.3. Minimal flip paths and Yang-Baxter relations.

We will now prove the following result :
Theorem 4.2. Given t and t' two standard ribbon tableauz of same shape, the set of the genus (with
multiplicity) of the flips and pseudo-flips in a path between t and t' is invariant for minimal length paths.

PROOF. Let’s consider two standard ribbons tableaux ¢ and t' of same shape A \ A(,), and minimal
length paths of flips and pseudo-flips between these paths. By chosing a way to rearrange A in a skew
partition, we can see t and ¢’ as the permutations o; and o4 corresponding to the line-readings of the skew
Young tableaux associated. Flips and pseudo-flips paths then are chains of elementary transpoition from o
to o;. As these paths are minimal, the corresponding chains of transpositions are congruent by the braid
relation, and so we can use following result for Coxeter groups :

An elementary transposition, o;, switches ¢ and i + 1 in 0. We will associate to this transposition a
factor (v5-1(i11) — To-1(;)), where z1,..., 2, is a set of independant variables. This gives the places of the
switched terms in o. For a chain of transposition oy, 0y, . .. 05, from o; to oy, let us take the product

(%rl(i1+1) - ﬂfofl(il))(ﬂf(otail)*1(12) - m(otail)’l(i2+1)) e

which gives all the places of the switched elements in the path from o; to ;. Then this product is invariant
for all chains of transposition from ¢ to ¢’ which are congruent by the braid relation.

Now let us specialize the x; into another set y; by setting x; = yq(;) where d(j) is the diagonal of a
ribbon corresponding to the element at place j in oy. (xj, — ;,) becomes (y;, — y1,) where [; and [y are
the diagonals of the ribbon involved in the flip or pseudo-flip. (y;, — yl2) then gives the genus of the flip or
pseudo-flip, and so the multiset of genus is invariant for all minimal paths between ¢ and t'. O

Two such minimal paths are given in figure 17 for 4-ribbons.
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FI1GURE 17. Two minimal flip paths between two 4-tilings, with the genuses of the flips shown

5. Conclusion and perspective

Up to this day, ribbon tilings and ribbon tableaux have been considered two completly different kinds
of combinatorics objects, studied by different people with different methods. This paper is intended as an
attempt to link these domains, altough the link is somewhat tenuous.

One important question relative to this topic is to know whether the different lattice structures thus
defined on ST'ab,(A\ A(;)) induce lattice structures on the set of n-ribbon tillings of A\ A¢,y. Actually, the
present study was motivated by this problem. Alas several unsolved related questions remain unsolved.

In particular, we meet the following problem : given two standard n-tuples of Young tableaux of same
shape, is there a simple way to determine if the associated ribbon tableaux have the same underlying ribbon
tilings, without having to compute these ribbon tableaux ?
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On Inversions in Standard Young Tableaux

Michael Shynar

Abstract. In this work, we present the inversion number of a standard Young tableau, and de-
termine its distribution over certain sets of standard Young tableaux. Specifically, the work deter-
mines the distribution of the inversion number over hook-shaped tableauz and over tableauz of shape
(n,n). We also study the parity (also referred to as ‘sign balance’) of the inversion number over
hook-shaped tableauzr and over (n — k, k)-shaped tableauz. The latter results resemble results in the
field of pattern-avoiding permutations, achieved by Adin, Roichman and Reifegerste.

1. Preliminaries

Definition 1.1. Let n € N (N denotes the set of positive integers). A partition of n is a vector of positive
integer numbers A = (A1, Ag, ..., A\g) such that Ay > Ao > -+ > A\ > 0and Ay + Ao+ -+ Ay = n. We write
A n. We denote by X = (A}, ..., A}) the conjugate partition, where X} is the number of parts in A greater
or equal to i. We define | A |=n.

Definition 1.2. The set {(i,7) | i, € N, i <k, j < X\;} is called the Young diagram of shape A (notice
that ‘English notation’ is used).

Definition 1.3. A standard Young tableau of shape A consists of inserting the integers 1,2,...,n as entries
in the cells of the Young diagram of A, allowing no repetitions and having entries increase along rows and
columns. A is normally denoted Sh(T).

Definition 1.4. A descent in a standard Young tableau T, is an entry i, such that i+1 is strictly south
(and weakly west) of i. Denote the set of all descents in T' by D(T"). We define two statistics on a standard
Young tableau:

(a) The descent number of T des(T) =3 ;c p(r) 1.
(b) The major index of T. maj(T) =3 ;c p(r) -

Stanley has found a generalization of the hook formula, giving the generating function for maj(T) when
T is of shape A.
Theorem 1.5 (Stanley’s g-analogue of the hook formula, see [ST2]).

j e [k]q
(11) Z qma](T) _ _Mlg=2Mg
shape(T)=\ H(i,j)e)\ [hi,j]q

where [m]q:1—|—q+q2+...+qul'
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(n.n)=(6,6)

(0.0)

F1curE 1. A Dyck path. The area of this Dyck path is shaded in gray.

Seeing how natural the generating function of the major index turns out to be, it is surprising that there
is no similar result for the descent number. However, Adin and Roichman ina joint study, and Héast6 in a
parallel study, managed to establish the expected value and variance of des(T') for a random standard Young
tableau of a given shape (see [AR1, H]).

One can also think of defining the inversion number of a tableau. Not much is known regarding the
distribution of the inversion number over tableaux of a fixed shape, and that is in fact the primary goal of
this research.

Remark 1.6. The convention within this paper is that (Z) =0 when k < 0.

Definition 1.7. A lattice path in the plane is defined to be a sequence L = (v1,...v;) where v; € N? and
viy1 — v; € {(1,0),(0,1)}. The last condition indicates that when moving from v; to v;+1, we move either
one unit north, or one unit east.

Definition 1.8. A Dyck path of order n is a lattice paths starting at (0,0) and ending at (n,n), which
always remain above or on the line x = y. A Dyck path can be encoded by a sequence (a1, ...as,) where
a; € {1,—1} with a; = 1 indicating a north move at the i-th step, and a; = —1 indicating an east move at
the i-th step.

The area above a dyck path D (denoted: area(D)) is the area between D and the dyck path encoded by
{1,1,...,1,-1,-1,...,—1}.

~—_—— —
n n
Example 1.9. The Dyck path corresponding to the series {1,1,-1,1,-1,—-1,1,1,—1,1, -1, -1} is drawn
in figure 1 with its area shaded in gray.

Recall that the number of Dyck paths of order n is called the n-th Catalan number, and is denoted C,,.

Recall the following well-known corollary of the g-binomial theorem (see [GR, page 7]):

Theorem 1.10. (The Cauchy binomial theorem|GR, page 7])

n

3 (") m
m=0 q

[T +vd") =
k=1

Definition 1.11. The n-th Carlitz-Riordan ¢g-Catalan number is defined as follows: C,,(¢q) = ZDeDyck(n) qoreaD)

where Dyck(n) is the set of all Dyck paths of order n.

This ¢-Catalan number was studied by Carlitz and Riordan (see [C, CR]), and further studied by
Fiirlinger and Hofbauer in 1985 (see [FH], which also includes further references within). There is no known
generating function for this ¢-Catalan number, however Fiirlinger and Hofbauer expressed it as a term within
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a generating function, and several determinant formulas were provided, the most recent one by Loehr (see
[L, Theorem 16]).
Lemma 1.12. [FH, Eq. 2.2] The Carlitz-Riordan q-Catalan numbers abide to the recursion:

Cut1(@) = Y Cel@)Croi(q) - ¢*+D—H)
k=0

with starting condition Cy(q) = 1.

Remark 1.13. Some authors define the Carlitz-Riordan g-Catalan as C,(q) = q(g)Cn(q). These num-
bers describe the distribution of the area between Dyck paths of order n, and the “diagonal Dyck path”
(1,-1,1,-1,1,-1,...,1,-1).

We cite the following “common knowledge” result:
Lemma 1.14. For any two positive integers k < n,

0 n even
m k odd
klg= (L J) otherwise

Corollary 1.15.

2n+1 n
2n+1 n )
> [ L ] ¢ =01+q)) (k)q“
k=0 g=-1 k=0
2n 2n " /n
Z k_ Z 2.k
k=0 g=-1 k=0

2. Inversions in Tableaux and Signs of Tableaux

This chapter presents the most fundamental concept of the work.

As we saw in definition , there is a meaningful way to define the descent set of a tableau. The definitions
of the descent number and the major index follow naturally. The following definition of an inversion in a
standard Young tableau is natural as an extension of the descent definition. It is a variant of the definition
given by Stanley (see [ST3, page 15]).
Definition 2.1. An inversion in a standard Young tableau is a pair (i,j) such that ¢ < j and the entry
for j appears strictly south and strictly west of the entry for 7. The inversion number of a standard Young
tableau T' (denoted: inv(T")) is the number of inversions in this standard Young tableau.
Definition 2.2. A weak inversion in a standard Young tableau T is a pair of integers (¢, j) such that i < j
and j is weakly south and weakly west of i. The number of weak inversions in 7 is called the weak inversion
number of T and denoted winv(T).

There is a simple connection between the inversion and the weak inversion numbers: Let T" be a standard
Young tableau with sh(T) = A = (A1,...,A), and denote A" = (A7,..., A} ) to be the conjugate partition,

then winv(T) = inv(T) + E?:ll ()5/)
Definition 2.3. Let T be a standard Young tableau. The sign of T is defined: sign(T) = (—1)"v(T),

3. Hook Shaped Tableaux

Definition 3.1. A hook-shaped tableauz is a tableaux with one row and one column. Alternatively, it is a
tableaux T with shape A = (k,1,1,...,1) with kK > 1. The column length of T (denoted col(T)) is defined
as A] — 1, or equivalently, the number of parts in A, reducing 1. The row length of T is defined as A1 — 1.
Definition 3.2. Write sh(T") € hook(n) if T' is a hook-shaped standard Young tableau of order n. Write
sh(T') € hook(n, k) if T is a hook-shaped standard Young tableau of order n with column length k.
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Lemma 3.3.

(3.1) Faile) = > g = m ¢

sh(T)€hook(n+1,k)
PrROOF. This proposition may be proved using the recursion F, (¢) = Fr—1,%(q) +q”‘an_1,k_1 (9. O

Using Cauchy’s binomial theorem (Theorem 1.10) we deduce that

n

Z qwinv(T) _ H(l + qk)

sh(T)ehook(n+1) k=1

for a detailed proof see [SH].

4. Tableaux of Two Rows

4.1. Counting Inversions.
Definition 4.1. Let T be a standard Young tableau. If sh(T) = (n — k, k) with n — k, k > 0, we say T is a
two-rowed tableau, and write T' € tworows(n). If n —k =k we say T is equal-rowed.
Lemma 4.2. Let (x1,x2,...,%2,) be an encoding of a Dyck path (see definition 1.8). In each Dyck path of
order n there are exactly n 1’s, call them x4, , ..., zq,. Then area(D) =>""_ (a; —1).

The proof of this proposition is left to the reader.
Theorem 4.3. Recall the definition of Cy,(q) in note 1.13.

(4.1) > ™M =Culg)

sh(T)=(n,n)

PROOF. There is a well known bijection between Dyck paths of order n, and standard Young tableaux
of shape (n,n): Take a standard Young tableaux T of shape (n,n). The corresponding Dyck path encoding
is given by a; = 1 if the entry ¢ lies within the first row of T, and a; = —1 if the entry i lies within the
second row of 7T'.

Now, observe that the entry values in T" are uniquely determined by choosing the entries in the first row,
since there is only one unique way to arrange the remainder “unused” entries in the second row. Moreover,
the sum of entries in the first row uniquely determines the number of inversions.

To prove this, write:

ay a2 ... Qp

=y 0 .. b,

Notice that from the definition of an inversion, it must follow that any two entries i, j creating an inversion,
must reside in two different rows. Thus, to calculate the number of inversions for our given tableau, it is
sufficient to determine the number of inversions involving one element a,; and one element b; (j < ¢). Thus,
we need to determine the number of elements b; < a; with j < i. We know there are a; — 1 values smaller
than a;, and @ — 1 of them are in the first row (all the entries to before the i-th entry), so there are a; — i
entries smaller than a; in the second row, and they all must appear in smaller column indices than ¢. That
leaves room for exactly ¢ — 1 — (a; — i) = 2i — a; — 1 entries larger than a; in the second row, with a smaller
column index, and hence that is also the number of inversions in which a; participates. The number of total
inversions in the tableau would be Y"1 | (2i —a; — 1) = (";rl) —n+ Y. (i —a;). By proposition 4.2 we get

n 1 inv nt_p n A
>ici(i—a;) = —area(D). Thus, - 5 ) —xx) (T) = q( 2) Cn(%) = q(2)Cn(%) = Ch(q). O
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T R S
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—= —=

2 4 35 Rotate 2 4 4 2 1 & Glue 2417 910

FI1GURE 2. Gluing together equal-shaped tableaux. Notice that all inversions in the tableau

R are preserved. The entry couple (2,3) is an inversion. It is highlighted throughout the
process. At the end it corresponds with the entry couple (8,9) which is an inversion in S.

ol

/A

FIGURE 3. In this illustration, there are exactly 3 inversions involving exactly one entry
from each of the two merged tableaux. The specific values within the tableaux do not make
any difference here.

Corollary 4.4. Let G_j 1(q) = Esh(T):(nfk,k) ¢ (T Then

|5

[I—

q(” 2%) Gn—k,k(Q)Q = On(Q)
=0

PRrROOF. Let T and R be tableaux of shape (n — k, k) (0 < 2k < n with n > 0). Any two tableaux of
the same shape may be “glued” together in a certain fashion we shall describe, to obtain a standard Young
tableau of shape (n,n), which we denote S. From there we use 4.1 to conclude the result.

Let T, R be standard Young tableaux of shape (n — k, k). Take the second row of R. Reverse the order
of elements in it, and then replace each element a by 2n — a — 1. Add the result to the end of T"s first row.
This is the first row of S. The second row is acquired from applying the same transformation on R’s first
row, and adding it to T’s second row. It is required to verify that S is indeed a standard Young tableau,
which is left as an exercise for the reader. Notice that all elements originating from R are bigger than all
elements in T'. See Figure 2 for an illustration of the process.

Now we look at the relation between inversions of 7' and R, and those of S. First notice that for any two
entries ¢ < j in R, with j strictly southwest of ¢ the corresponding entries in S would be 2n—i—1 > 2n—j—1
and 2n — i — 1would be strictly southwest of 2n — j — 1. Thus, these entries would form an inversion in S.
All inversions in T' are obviously preserved in S. Furthermore: any inversion in S not derived from R or
T would have to consist of one element from 7" and one element from R (else the inversion would have to
appear either in R or S). The only inversions in S consisting of one element from T" and one element from R
could be found in the “middle region” of S, i.e. in column indices ranging from k + 1 to n — k. All elements
in R are bigger than those in 7', thus we can calculate exactly this number of inversions: it is the number of
matchings of elements from the first row within this “middle region”, and elements of the second row, also
in this “middle region”. This gives us exactly (”7%) extra inversions. See Figure 3 for an example.

2
This transformation is a bijection from standard Young tableaux of shapes (n — k, k) with 0 < k < | %]

x>

n—2k

to (n,n)-shaped tableaux. Thus, the inversions over q( 2 )Gn_k,k(q)2 distribute exactly as they do over
(n,n)-shaped tableaux. O

4.2. Sign Balance. When addressing standard Young tableaux of shape (n — k, k), we can give an
explicit formula for the sign distribution.
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Definition 4.5. rows(T') will denote the length of the second row of T'. i.e. if T is of shape (n — k, k) then
rows(T) = k.
Theorem 4.6. Recall that we defined (Z) = 0 whenever k is negative. Then:

13]
. rows _ n n
s = St [() - ()]
Tetworows(2n+1) k=0

> sign(T)g ™ = (1+q) L (—1)* Kn;l) - <Z: D] o

Tetworows(2n) k=0

wl3
| I

PRrROOF. Denote Sum(n, k) = 3= (n—p) sign(T). Then it is sufficient to prove that for 0 < 2k < n:

(a) Sum(2n +1,2k) = (=1)* [ }
(b) Sum(2n+ 1,2k —|— 1) =0. (2k 75 n)
(c) Sum(2n,2k) = (—1)F [(" h - ]

()Sum(2n2k+1) (—1)* [( ) (- )](%;én)

The proof is done by induction on n. It is clear that Sum(1,0) = 1. We give the induction step for the first
case. The other three cases are very similar.

Take a tableau of shape (2n + 1 — 2k, 2k) with n > 2k > 0. Each such tableaux is uniquely achieved
either by a (2n + 1 — 2k, 2k — 1)-shaped tableaux with the entry 2n + 1 added to its second row, or by a
(2n — 2k, 2k)-shaped tableaux with the entry 2n + 1 added to its first row. If the entry 2n + 1 resides in the
first row, it would participate in no inversions, and thus its removal would not alter the sign. If it resides in
the second row, it would participate in 2n + 1 — 4k inversions (the number of elements in the first row with
greater column index), and its removal would flip the sign. Thus,

Sum(2n+1,2k) = Sum(2n,2k) — Sum(2n,2(k —1) + 1) =
(L)) ) ()
() ()6 )
o))

Notice that this result would be true also for k£ = 0 since then we would look only at Sum(2n,2-0) =
(—1)° [(”) — (Ofl)} = (§), which is also what we would get by substituting & = 0 in the formula for

0
Sum(2n +1,0). O
5. The “% Phenomenon”

The following results are corollaries of previous theorems in this work.
Theorem 5.1. Let sh(T) = (N,..., ). Denote col(T) =N, — 1. Then

Z Sign(T)qwl(T) — Z q2~col(T)

Tehook(2n—1) Tehook(n)
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> st = (14q) Y gD

Te€hook(2n) Tehook(n)
Theorem 5.2.
Z Sign(T)qrowg(T) _ Z (_q2)row2 (T)
Tetworows(2n+1) Tetworows(n)
Z sign(T)qmwg(T) =(1+9q) Z (—qz)mwQ(T)
Tetworows(2n+2) Tetworows(n)

Remark 5.3. As a special case of Theorem 5.2, we see that for the Carlitz-Riordan ¢-Catalan numbers:

iqn . Cvn(_l) _ tinJrl Cvn
n=1 n=1

These results resemble recent results of Adin and Roichman (see [AR2]) and Reifegerste (see [R])
regarding 321-avoiding permutations, which are brought hereby.
Definition 5.4. Let T}, := {m € S,, | Ai < j < k such that 7 (i) > w(j) > w(k)} be the set of all 321-avoiding
permutations. Define ldes(w) := max{1 <i<n—1]|n(i) > n(i + 1)} and define ldes(id) = 0.
Theorem 5.5. [AR2)]

Z SZgTL(ﬂ') . qldes(fr) _ Z q2»ldes(ﬂ')

m€T2n 41 €Ty
Z sign(w) . qldes(fr) _ (1 o CI) Z q2»ldes(ﬂ')
TETon wely,

Definition 5.6. Define lis(m) as the longest increasing subsequence in 7.

Theorem 5.7. [R]
Z sign(m) ghe(m) = Z g2 lis(m+1

mET2n 41 reTy,
> sign(m) - = (g—1) Y P
TE€Tan 42 el

Theorem 5.8. [R]
Z sign(ﬂ) X qlis(ﬂ')tldes(ﬂ') _ Z q2»lis(7r)+lt2»ldes(7r)

meTs, 7€Tn
(1+CI) Z Sign(ﬂ,)qlis(ﬂ')tldes(ﬂ') — Z q2-lis(7r)+1t2.ldes(7r)
rETY, TE€Tn

A fuller understanding of such results would require additional research.
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Finite-Dimensional Crystals for Quantum Affine Algebras of type DY

Philip Sternberg

Abstract. The combinatorial structure of the crystal basis B2 for the Uj($02n)-module w22
is given, and a conjecture is presented for the combinatorial structure of the crystal basis B for
the U, (§02n)-module W 2%,

Résumé. Nous donnons la structure combinatoire de la base cristalline B(>?)

pour le U; (602,)-
module W(2,2), et nous conjecturons la structure combinatoire de la base cristalline B(2:9) pour le
Ué(gfbn)-module W29

1. Introduction

While studying representations of quantum groups, Kashiwara developed the theory of crystal bases,
which allow modules over quantum groups to be studied in terms of a crystal graph, a purely combinatorial
object [5]. An open question in the area of crystal basis theory is to determine for which irreducible
representations of quantum affine algebras a crystal basis exists, and when they exist, what combinorial
structure the crystals have. It is conjectured [3, 4] that there is a family of irreducible finite-dimensional
U, (g)-modules W) called Kirillov-Reshetikhin modules, which have crystal bases B®*-%) where k is a
Dynkin node and s is a positive integer; furthermore, it is expected that all irreducible finite-dimensional
Ué(g)—modules which have crystal bases are tensor products of the modules W®*-%). A first step towards
understanding these crystals is to determine their combinatorial structure.

For type A,(ll), the existence of the modules W (*:*) has been established [8], and the explicit combinatorial
structure is also well-known [14]. For non-simply laced types, the following well-known algebra embeddings
are conjectured to apply to crystals as well [12], which would yield the combinatorial structure of the
corresponding crystals in terms of the crystal structure for the simply-laced types.:

oM, A2 AP D) Al

Agi)—lv BS) - D1(114)-1
2 1 1
ED D o p
3 1 1
D6 D
Therefore, the next step in developing a general theory of affine crystals is to explore crystals of types
DY (n >4) and EY (n =6,7,8). In this paper, we concentrate on type DY, For irreducible representa-
tions corresponding to multiples of the first fundamental weight (indexed by a one-row Young diagram) or
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any single fundamental weight (indexed by a one-column Young diagram) the crystals are known to exist
and the structure is known [8, 7]. It is conjectured in [3, 4] that as U, (g7 0} )-crystals, the crystal B*:*)

decomposes as
54— BB
A

where the direct sum is taken over all partitions which result from removing any number of 2 x 1 vertical
dominoes from a k X s rectangle, whenever k < n — 2. In the sequel, we consider the case k = 2, for which
the above direct sum specializes to

B®*) = B(iA,).
=0

First, we will use tableaux of shape (s,s) to define a U,(502,)-crystal whose vertices are in bijection with
the classical tableaux from the above direct sum decomposition. Because of the way we define our tableaux,
we will be able to combinatorially define the unique action of fo which makes this crystal into a connected
perfect crystal of level s. Finally, we present a conjecture for an explicit construction of the representation
W29 which is compatible with the crystal basis B(>*) as constructed. Full details of our results will be
forthcoming [13].

2. Review of quantum groups and crystal bases

For n € Z and a formal parameter ¢, we use the notations

= Lt = [T o ] =

a-q- Pt [n]q![m — nlg!

These are all elements of Q(q), called the g-integers, g-factorials, and g-binomial coefficients, respectively.
Let g be a Lie algebra with Cartan datum (A,IT1, 11V, P, PV), a Dynkin diagram indexed by I, and let

{si|i € I} be the entries of the diagonal symmetrizing matrix of A. Let ¢; = ¢* and K; = ¢*. We may
then construct the quantum enveloping algebra Uy, (g) as the associative Q(g)-algebra generated by e; and f;
for i € I, and ¢" for h € PV, with the following relations:

(a) ¢° =1, ¢"¢" = " for all h, W' € PV,

() qteiqg™ = q*MWe; for all h € PV,

(c) ¢"fig™" =q* M f; for all h € PV,

L —1
(d) eifj — fjei = 5ij Izl_;(ll for i7j S L

@ S 0| drd o rani 4
q

K3

i

(f) Ypsb? (—1)* [15 ] FT T f g =0 for all i # .
qi

We can view U,(g) as a g¢-deformation of U(g). Similarly, a U,(g)-module V may be seen as a g-
deformation of a U(g)-module. The representation theory of Uy(g) does not depend on ¢, provided ¢ # 0
and ¢* # 1 for all k € Z. Furthermore, through appropriate tensoring and factoring, we may “take the limit
as g goes to zero” in Uy(g) and V. This process makes V' very simple, so that we may study it using a colored
directed graph whose vertices correspond to a canonical basis of V. In the solvable lattice models which
provided the original motivation for quantum groups, ¢ parameterized temperature, so letting ¢ approach
0 in the quantum group corresponds to the temperature approaching absolute zero in the physical models.
Thus, the graph described above is called a crystal graph, and its vertices are a crystal basis B for V' [5].
The edges are colored by the index set I, which indicates the action of the Kashiwara operators €; and ﬁ
on B. The Kashiwara operators are a “crystal version” of the Chevalley generators of g.
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We are particularly interested in a class of crystals called perfect crystals, since they allow us to construct
infinite-dimensional highest weight modules over U,(g), where g is of affine type [9]. To define them, we
need a few preliminary definitions.

Let P be the weight lattice of an affine Lie algebra g. Define Py = P/Zd, P = {\ € Py|(hi,\) >
0 for all i € I'}, and U/ (g) to be the quantum enveloping algebra with the Cartan datum (A, II,I1V, Py, PY).

A crystal pseudobase for a module V is a set B such that there is a crystal base B’ for V such that
B=B U-B.

Denote by ¢ the canonical central element of g. In the sequel, we only consider g of type D
case

,(11) , in which

c:AO+A1+2A2+"'+2An72+An71+An'
Define the set of level £ weights to be (P;}), = {\ € P¥|(c, \) = £}. For a crystal basis element b € B, define
gi(b) = max{n > 0|} (b) € B}, and £(b) = »_,.; €i(b)Ai, and similarly, ¢;(b) = max{n > 0|f(b) € B}, and
@(b) = > ,cr wi(b)A;. Finally, for a crystal basis B, we define B, to be the set of crystal basis elements b
such that {(c,e(b)) is minimal over b € B.
A crystal B is a perfect crystal of level £ if:

(a) B ® B is connected;

(b) there exists A € Py such that wt(B) C A+ 3_, 5 Z<oa; and #(Bx) = 1;

(c) there is a finite-dimensional irreducible U} (g)-module V' with a crystal pseudobase of which B is
an associated crystal;

(d) for any b € B, we have (c,e(b)) > ¢;

(e) the maps ¢ and ¢ from By, to (P.), are bijective.

We may now state the main result of this paper.
Theorem 2.1. Suppose that the U, (§02,,)-module W ?2) has a crystal basis B*?) as conjectured in [3]. Then

B®2) ~ B(22) yhere B2 s the affine crystal given explicitly by the construction below. Furthermore, we
conjecture that the construction of B3 below explicitly gives the crystal graph associated to the U(;(ﬁ/bgn)-
module W (29,

Specifically, we will construct a Uy (§02,)-crystal B(2:9) with the conjectured classical decomposition, and
then show that it is the only perfect crystal which can admit such a decomposition. This is the first step in
confirming Conjecture 2.1 of [4], which states that as modules over the embedded classical quantum group,
W 25) decomposes as @;_, V(iA2), where V(A) is the classical module with highest weight A, W(**) has a
crystal basis, and this is a perfect crystal of level s.

3. Decomposition of B

Let B(kA2) denote the crystal basis of the irreducible representation of Ug(s02,) with highest weight
kAg for k € Z>o. We may associate with each crystal element a tableau of shape A = (k, k) on the partially
ordered alphabet

1<2<---<n—1<7f<n—1<---2<1
n

such that [2, page 202]

(a) if ab is in the filling, then a < b;
(b) if § is in the filling, then b £ a;

(¢) no configuration of the form “? or ¢ _ appears;
lll a a 1 .

. n— n n— .

(d) no configuration of the form "~ "+ or "~ 5 appears;

(e) no configuration of the form % appears.

Note that for k > 2, condition 5 follows from conditions 1 and 3.
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Consider the set 7 of tableaux of shape (s, s) which violate only condition 3. We will construct a bijection
between 7 and the vertices of @f;ol B(iAs), so that 7 U B(sA2) may be viewed as a Uy(s02,)-crystal with
the conjectured classical decomposition of B(>*), In section 4 we will define fo on 7 U B(sA3) to give it the
structure of a perfect U (809, )-crystal. This will be the crystal B(2*) mentioned in Theorem 2.1. For proofs
of all claims, see [13].
Let T € 7, and define i=7ifor 1 <i<mn. Then there is a unique a € {1,...,n,7}, m € Zsq such that

T has exactly one configuration of one of the following forms:

a?---?cl, where by # a, and ¢1 # a or dy # a;

b1 a a dl

~——

b d
ga“_a?’ where ds # a, and bs # a or ¢y # a;

b3 a a d3
e T, where b # a and e3 # a.
C3 a a €3
——
m—+1

To find the corresponding element of @f;& B(iA2), remove ? e SL from T'. The result will be a tableau in
a a
——

m

B((s —m)Az). Denote the image of T' under this map by D2(T). We call Dy the height-two drop map. For
example, we have

11233 1133
=z PO =[aen
Let t € B(iA2). The map F5 (the height-two fill map) which inverts D is given by finding a configuration
- d
Z; in t such that either ¢ < a < d or a < d < b, and filling with ? . ? or PR respectively. If more
a a
——

than one such configuration exists, or if both pairs of inequalities are satisfied, then F5(t) is independent of
any of these choices. For example,

1|2
t=rr3

3 11223
7 BO=gEe

While we could choose either column two or column three as the filling location, either choice results in the
same tableau. )

The action of the Kashiwara operators é;, f; for i € {1,...,n} on T U B(sA3) can be defined by direct
combinatorial construction, but for the sake of simplicity, we describe them in terms of the above bijection.
Let T € T U B(sAz). We define

&(T) = F(&(D2AT)))

fi(T) = F(fi(D2(T))),

where the & and f; on the right are the standard Kashiwara operators on U, (s02y,)-crystals [10].

4. Affine Kashiwara operators

~ WeNknow that once B2 is determined, there will be a map o : B35 — B(25) guch that &y = &0 and
fo = o f10, corresponding to the automorphism of Uy (502,,) which interchanges nodes 0 and 1 of the Dynkin
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F1GURE 1. The branching component graph 36(3(2’2))

diagram. With this in mind, suppose we have defined fy on 7 U B(sAsz) to produce B2 and consider
the following operations on B25): 1et J C I, and denote by By the graph which results from removing all
j-colored edges from B2:3) for j € J. Then as directed graphs, we expect Bygy to be isomorphic to Byiy,
otherwise, B2*) and B2* will not be isomorphic. We can gain some information about ¢ by considering
B 0,1}

{ I‘g is easy to see that the connected components of By 1y will be U, (s02,,—2)-crystals, indexed by parti-
tions as described below. This decomposition produces a “branching component graph” for B®9) which we
denote BC(B**). Tt suffices to describe the decomposition of the component of B(>*) with classical highest
weight kAy into Uy(sog,—2)-crystals. Denote this branching component subgraph by BC(kA2). Each vertex
vy of this graph will be labeled by a partition indicating the classical highest weight A of the corresponding
Uqg(5095,—2)-crystal. Let B(vy) denote the set of tableaux in B(kAg) contained in the Ug(s02,—2)-crystal
indexed by vy. Then BC(kA2) has a 1-colored edge from vy to v, if there is a tableau b € B(vy) such that
f1(b) € B(uy).

We can give an explicit combinatorial description of BC(kA2) as follows. The “highest weight” component
of BC(kA2) is a 1 x k rectangle; call this vertex vg. The function

ri(v) = d(v,vg) = Pr(nin )(number of edges in P (v, vy))
U,V
is a rank function on BC(kAs), where P(v,vy) is the set of all paths from v to v in BC(kA3). For any
partition A, in each rank no more than one vertex may be indexed by A. Let vy € BC(kA2) have rank less
than k; then there is a 1-edge from vy to v,, where ri(v,) = ri(va) + 1 and there is an edge between A and
p in the Young lattice. Also note that if vy € BC(kAz), then A C (k, k).

If vy € BC(kA2) has rank p, there is a vertex v}, called the complementary vertex of vy, with rank 2k —p.
Let vy have a 1-edge to v,. Then there is also a 1-edge from v, to v}. Combined with the above description
of the first k + 1 ranks, this completely characterizes BC(kAs).

Observe that BC(B®*)) = | J5_, BC(iAs). Let vy € BC(iAz) C BC(B®*)). Define R(vy) = r;(vy) +s—i.
This puts a rank on all of BC(B?*)). Note that BC(iA2) C BC((i + 1)As), and this inclusion is compatable
with R. Also note that if R(vy) = p, then v}, the complementary vertex to vy, is now defined to be the
vertex of rank 2s — p with the same shape and in the same component as v).

To illustrate, BC(B(272)) is given in Figure 1, with rank 0 in the first line, rank 1 in the second, etc.

Since we know that Bygy and By, are isomorphic as directed graphs, it is clear that we can put 0-colored
edges in the branching component graph in such a way that interchanging the 1-edges and the 0-edges



254  FINITE-DIMENSIONAL CRYSTALS OF TYPE Dg\})

FIGURE 2. Definition of & on BC(B?2?)

and applying some shape-preserving bijection & (defined below) to the vertices will produce an isomorphic
colored directed graph. Such a bijection can be naturally extended to o : B@s) — B2:5) a5 follows. Let
be B(vy) C B®9) for some supercrystal vertex vy, and let uy denote the Uy(s02,—2) highest weight vector
of B(vy). Then for some finite sequence i1, ..., of integers in {2,...,n}, we know that f;, --- fi, ux = b.
Let v} = 6(va), and let u} be the highest Welght vector of B(v}). We may define o(b) = fi, - - - fi, u}. This
involution of B(®*) will satisfy fo = crflcr

We will define 6(vy) for R(vy) < s, and observe that 6(v}) = &(vy)’, where v’ denotes the complementary
vertex of v. Let vy € BC(kA2), and R(vx) = p. Then by the inclusion BC(iAg) C BC((i + 1)A2), there are
p + 1 vertices of the same shape as vy of rank p in BC(B®#®)), one in each BC(jAsz) for j = {s—p,...,s}.
We define &(vy) to be the vertex of the same shape as vy of rank 2s — p in BC((2s —p — k)A2).

The action of & on BC(B?)) is given in Figure 2.

The observant reader will note that there are other permutations of the set of vertices of BC(B(?*))
which respect the shape of the associated partitions. First, note that if a tableau T is in a vertex of rank
p, we expect fo(T) = ofio(T) to be in a vertex with rank p — 1; otherwise there will be some T for which
fo(T) = f1(T), which must not be the case. Even this does not completely specify &, since (for instance) we
might permute the three empty partitions in any manner and still satisfy all the above requirements. Note,
however, that 9 depends entirely on the definition of o, and the perfectness of a crystal depends on the
function eg. (Recall the definitions from section 2.) For a detailed proof of the following theorem, see [13].
Theorem 4.1. The above deﬁmtwn ofo interpreted as a permutation of the vertices of @;_, B(ilz), is
the only map such that defining fo = crflcr produces a perfect crystal of level s for s = 2. We conjecture that
this is true for all s.

5. Perfectness of B>, Part 1

We must show that B(%#) satisfies conditions 1-5 from Section 2 with ¢ = s. Condition 1 is verified by
showing that each vertex of B>*) @ B(®%) is connected to ug @ ug, where ug € B(2#) is the unique vector of
the Ugy(s09,)-crystal B(0) [13]. Condition 2 is satisfied by A = sAy — 2sAg. We discuss a conjecture which
satisfies Condition 3 in section 7. Conditions 4 and 5 can be dealt with simultaneously, and have been proved
for s = 2 as described below. For proofs of all claims, see [13].

Given a weight A € (P}),, we can construct a tableau Ty € B(3*) such that e(Tx) = ¢(Tx) = A. First,
observe the following. Let T € B(kAy) € B®%) and let T* = (T, where ¢/ : B(iAy) — B(jAz) is the
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natural inclusion map which is compatible with the inclusion BC(iA2) — BC(jAz2). Assume T to be such
that T* € 15_,(B((s — 1)A2)). Let Tp, = (¢5,) "1 (T*) for m = s,s — 1,..., k, where k is the smallest number
such that T} ¢ ¥ | (B((k — 1)Az)). Then we have

(e(Ts), Ao+ A1) = (e(Ts—1), Ao+ A1) = -+ = (e(T), Ao+ A1) #0,
and for i =2,...,n,
(e(T5), M) = (e(To—1), M) = -+ = (e(Th), M)

This allows us to temporarily restrict our attention to those level s weights A which satisfy (A, Ag) =
(XA, A1) = 0; i.e., which can be expressed as A = Z?:z a;\;. These weights correspond to tableaux T €
Binin N B(sA2) \ 5_1(B((s — 1)A2)). We will later recursively construct the tableaux corresponding to all
other level s weights.

First, let A = kA,—1 + (s — k)A,. If sis even and k > s/2, the corresponding tableau is

n—2 n—2n-—1 n—1 n n n—2 n—2

T\ =

n—lun—l n n n—luin—ln—luin—l

s—k k—s/2 k—s/2 s—k
If s is odd and k > s/2, we have

n—2 n—2n-—1 n—1n n n n—2 n—2
T\ = ..

n—1. n—1 n 7 ﬁn—lnin—ln—luin—l

s—k k—s/2 k—s/2 s—k

In either case, if k < s/2, interchange n and 7 in T).

Next, we describe how to construct T recursively when A = >"" , a;A; and (A\,A,_1 + A,) < s. Let
Jj be the minimal index for which (A, A;) =k # 0, let ' = A — kA;, and let T/ be the tableaux such that
e(Tx) = N. We then set

j—1 j—l- J J
TA: . e . T)\’.—"'-—7
J J j—1 -1

k k

which is simply the result of inserting T, between the two 2 x k tableaux on either side.

We now consider level s weights A such that (A, A1) = k1 # 0 or (A\,Ag) = ko # 0 (or both). Let
N = A= kiAy — koAg, let ky = (¢, )), and once again, let T\, be such that ¢(Ty) = XN. It follows
that Ty is a tableau of shape (kx,kx). If k1 < ky, then change T\ into a skew tableau Sy of shape
(kx + k1, kx )/ (k1) by Lecouvey D-equivalence [11], then fill the northwest boxes with 1’s and the southeast
boxes with 1’s to get a tableau of shape (kx + k1, ka + k1). If k1 > ky/, change Ty into a skew tableau Sy
of shape (2ky/, ka)/(kx) by Lecouvey D-equivalence, fill the northwest and southwest boxes as above, and
insert a tableau of the form

1 12 2 . .
5511 if k1 — k) is even;
—_—
ki—ky
1 122 2

CL.o ooz ol — kv i .
5 55 1 i if k1 — ky is odd;
|y
ki—ky
between the first ky columns and the last k) columns to get a tableau T~ of shape (kx + k1, kx + k1).
Observe that e(Th») = X' = X — koAyp.
Finally, use the filling map of section 3 to add ko columns to Ty, yielding T with (7)) = A.
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6. Perfectness of B2, Part II

We must now show that the tableaux constructed in section 5 are in bijection with (P;lr )s. Once again,
for proofs of the following Lemmas, see [13].

Lemma 6.1. Let ¢ be the crystal endomorphism of B(2:3) defined by 1 = @f;& LEH, and let T € B2 be a
tableaw in the range of v. Then e(v(T)) = e(T) + A1 — Ao.

This means that given a weight A = koAg + k1 A1 + A/, where (A, Ag) = (A’; A1) = 0, it suffices
to search for tableaux which correspond to the weight A’. Furthermore, such a tableau will appear in
the “new” part of B(sAg), where s is the level of A’. We may thus restrict our attention to tableaux
T € B(sA2) \ 5_1(B((s — 1)A2)).

Lemma 6.2. Letv) € BC(B@’S)) with complimentary vertez v\ . (Recall the definitions of the complimentary
vertex of vy and B(vy) from section 4.) If B(vy) contains no minimal tableauz, then neither does B(vY).

Therefore, we need only consider tableaux in the upper half (including the middle row) of the branching
component graph.

Lemma 6.3. Let k> s/2. If T has k or more 1’s in the first row and no 1’s, then T is not minimal.

This eliminates many tableaux. In particular, in B22) we only need to check the middle vertices of the
branching component graph with shape (2,2) and (2). Exhaustion shows the conjectured tableaux to be the
only tableaux of level 2 in those sets.

7. Construction of W2

In [9], Kang et al. discuss the relationship between an arbitrary finite-dimen-sional U;(g)-module M
(where g is of affine type) and Aff(M), the infinite-dimensional U,(g)-module constructed by “affinizing”
M. Loosely speaking, Aff(M) ~ @, ., T" M, where eq and fo respectively raise and lower the degree of T
in addition to their ordinary action on M. To make the weight spaces of Aff(M) finite-dimensional, we add
nd to the weight of a vector in 7™M, where 4 is the null root of g. Kang et al. also construct Aff(B) for
any U, (g)-crystal B, and state that if (L, B) is a crystal base of M, then (Aff(L), Aff(B)) is a crystal base
of Aff(M).

The inverse of this process for level zero extremal weight modules generated by a basic weight vector is
given in [6] as follows: given a fundamental infinite-dimensional U,(g)-module V' (w;), there is a Uy (g)-linear
automorphism z; of V(w;) of weight d;0, where d; is an integer constant determined by the root system of
g. The finite-dimensional Uy (g)-module W (w;) is given by W (w;) = V(w;)/(2; — 1)V (w;), and V(w;) can
be naturally embedded in Aff(W (w;)).

Later, Kashiwara also conjecturally gives an embedding for V/(\) C @ V (w;)®™, where A = Y m;w;
is a level zero extremal weight. This conjecture is verified in [1] for symmetric untwisted affine Lie algebras,
using Schur functions in the operators z;,,, which correspond to z; as above acting on the ¢, v-th component
of the tensor product.

We conjecture that the U/ (502, )-module W(25) = W (swy) can be constructed as the quotient V (sws) /(22—
1)V (swz), where 2a, is the Uy (502, )-linear automorphism of V (sws) of weight 250. Such a construction would
be compatible with B(>) as constructed here, and would give an embedding of V (swy) in Aff(W (sww2))
similar to the embedding in [6] for fundamental representations.

Acknowledgements. The author would like to thank Anne Schilling for suggesting this problem and
for many helpful conversations and suggestions; the author is also grateful to the referees for their helpful
comments.
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Rook Numbers and the Normal Ordering Problem

Anna Varvak

Abstract. For an element w in the Weyl algebra generated by D and U with relation DU = UD+1,
the normally ordered form is w = ¢ ; U'D’. We demonstrate that the normal order coefficients
¢i,j of a word w are rook numbers on a Ferrers board. We use this interpretation to give a new proof
of the rook factorization theorem, which we use to provide an explicit formula for the coefficients
cij. We calculate the Weyl binomial coefficients: normal order coefficients of the element (D+U)"™
in the Weyl algebra. We extend some of these results to the q-analogue of the Weyl algebra.

Résumé. Pour un élément dans l'algebre du Weyl généré par D et U avec de relation DU =
UD +1, la forme d’ordre normal est w =), ¢; ; U'D’. Nous démontrons que les coefficients d’ordre
normal ¢; j sont des nombres de tours sur d’amier de Ferrers. Nous employons cette interprétation
pour fournir une nouvelle preuve de théoréme de factorisation de tours, a la laquelle nous mene
une formule explicite pour les coefficients c;,j. Nous calculons les coefficients binomiaur du Weyl:
les coefficients d’ordre normal d’élément (D + U)™ de ’algébre du Weyl. Nous prolongeons quelque
de ces résultats a q-analogue d’algébre du Weyl.

1. Introduction

For an element w in the Weyl algebra generated by D and U with relation DU = UD + 1, the normally

ordered form is w = ) ¢; ;U iDJ. For example, in the algebra of differential operators where D = % and
U acts as multiplication by x, the operator w, applied to the polynomial f(z), is expressed in the normally

ordered form as

I
w(f(x)) = Zci)j x' %(x) .

The problem of finding explicit formulae for the normal order coefficients c; ; appears more frequently
in the context where the Weyl algebra is the algebra of boson operators [BPS, Ka, Ma, Mil, Mi2, Sc],
generated by the creation and annihilation operators typically denoted as a' and a. A boson is a type of
particle like the light particle, the photon. According to the theory of quantum mechanics, the possible
amount of energy that a particle can have is not continuous but quantized, so there is the smallest amount
of energy—the zeroth state, frequently referred to as the ground state; there is the first state, which is the
next smallest amount of energy allowed, and so on. The boson operators change the energy state of the
particle like the differential operators change the power of . While the machanics of it are fascinating, for
our purposes the assurance of the commutation relation aa® — ata = 1 is sufficient.

As a hint of combinatorial interest in the problem of normal ordering, it has long been known that the
normal order coefficients of (UD)™ are the Stirling numbers S(n, k) of the second kind. These numbers can

1991 Mathematics Subject Classification. Primary 05A10, 05A30; Secondary 12HO05.
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be defined algebraically by the formula
2" =Y Smk)z(x—1)- (x—k+1),
k=0

and they also have a combinatorial interpretation of counting the number of ways to partition a set of n
elements into k subsets.

Mikhailov and Katriel [Ka, Mil, Mi2| have extended the definition of the Stirling numbers, finding
explicit formulas for the normal ordered form of operators such as (D + U")", and (UD + U")™. Recently,
Blasiak, Penson, and Solomon [BPS] have generalized the Stirling numbers even further to address the
normal ordering problem for operators of the form (U"D?®)™.

The interpretation of the normal order coefficients of a word as rook numbers on a Ferrers board was
given by Navon [Na] in 1973, but it requires the power of the rook factorization theorem, presented two
years later by Goldman, Joichi, and White [GIJW] to give an explicit formula. Interestingly enough, the
interpretation provides a proof of the rook factorization theorem.

Here is an outline of the article. In section 2, we cover the basic definitions concerning Ferrers boards
and rook numbers. We demonstrate that the normal order coefficents of a word are rook numbers on a
Ferrers board in section 3, and give an explicit formula for them in section 4, together with a new proof of
the rook factorization theorem. We discuss the Weyl binomial coefficients in section 5. Finally, we extend
the interpretation of the normal order coefficients to the g-analogue in section 6.

2. Definitions concerning rook numbers and Ferrers boards

For n a positive integer, we denote by [n] the set {1,2,...,n}. A board is a subset of [n] X [m], where
n and m are positive integers. Intuitively, we think of a board as an array of squares arranged in rows and
columns. An element (i,5) € B is then represented by a square in the ith column and jth row. It will be
convenient to consider columns numbered from left to right, and rows numbered from top to bottom, so that
the square (1,1) appears in the top left corner.

A board B is a Ferrers board if there is a non-increasing sequence of positive integers h(B) = (h1, ha, ..., hy)
such that B = {(¢,7) | ¢ < n and j < h;}. Intuitively, a Ferrers board is a board made up of adjacent solid
columns with a common upper edge, such that the heights of the columns from left to right form a non-
increasing sequence.

Example 2.1. A Ferrers board with height sequence (4,4, 3,1,1) can be visually represented as

The connection between Ferrers boards and words composed of two letters is as follows. We represent
the letter D as a step to the right, and the letter U as a step up. The resulting path outlines a Ferrers board.
Example 2.2. The word w = DDUDUUDDU outlines the Ferrers board in example 2.1. This is easy to
see from the path representing w:

Note that a word w’ = U’wD’ outlines the same Ferrers board for any nonnegative integers i and j. If
the Ferrers board B is contained in a rectangle with n columns and m rows, then there is a unique word
with n D’s and m U’s that outlines B.
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We denote the Ferrers board outlined by the word w by B,,.

For a board B, let r(B) denote the number of ways of marking k squares of the board B, no two in the
same row or column. In chess terminology, we are placing k£ rook pieces on the board B in non-attacking
positions. The number 7 (B) is called the kth rook number of B.

3. Normal order coefficients of a word

Recall that the Weyl algebra is the algebra generated by D and U, with the commutation relation
DU =UD +1.
Definition 3.1. For w an element in the Weyl algebra, the normally ordered form of w is the sum

w = Z Ci’jUiDj,
4,J
where in each term the D’s appear to the right of the U’s. The numbers c; ; are the normal order coefficients
of w.

We call w a word if w has a representation w = wjwsz...w,, where w; € {D,U}. We demonstrate
that the normal order coefficients of a word w are rook numbers on the Ferrers board outlined by w. This
combinatorial interpretation was originally given by Navon [Na].

Theorem 3.2. Normally Ordered Word
Let the element w in the Weyl algebra be a word composed of n D’s and m U’s. Then
n
w=> re(Bu)U™FD"F,
k=0

PROOF. It is easy to see that the terms in the normally ordered form of w are U™ *D" % where
k=0,1,...,min(m,n). Every time we replace DU with UD + 1 and expand the result, one of the new
terms retains the same number of D’s and U’s as before, and the other term has one fewer of each.

By definition, the normal order coefficient ¢, ., is the number of terms U™~*D"~* in the normally
ordered form of w, which is obtained by successively replacing DU with UD + 1 and expanding. For the
sake of consistency, we always choose to replace the rightmost DU.

We can regard the terms as words. Then the normal order coefficient ¢,,— —x is the number of ways
to get the word U™ *D"~* from the word w, by successively replacing the rightmost DU with either UD
or 1 (that is, deleting it), choosing to do the latter & times.

We now can consider the substitutions in terms of the outlined Ferrers boards. The rightmost DU
outlines the rightmost inner corner square of the board. Replacing DU with UD amounts to deleting that
square, whereas deleting the DU amounts to deleting the square together with its row and column. Therefore
the normal order coefficient ¢,,—j n—j is the number of ways to reduce the Ferrers board B,, outlined by w
to the trivial board by successively deleting the rightmost inner corner square either alone, or together with
its row and column, choosing to do the latter k times.

The k squares that are deleted together with their rows and columns cannot share either a row or a
column. So the normal order coefficient ¢,,—k n— is the number of ways to mark k squares on the Ferrers
board B,, outlined by the word w, no two in the same row or column. This is exactly the kth rook number
Tk (Bw).

Finally, since ri(By) = 0 for £ > min(m,n), we let the sum range from 1 to n. O

Remark 3.3. As mentioned in the introduction, the Stirling numbers S(n, k) of the second kind are the
normal order coefficients of the word (UD)™. Mikhailov [Mil] defined, in a purely algebraic way, a more
generalized version of the Stirling numbers to find the normal ordered form of operators of the form (U"+D)™.
In a recent paper unrelated to the normal ordering problem, Lang [La] studied a similar generalization of the
Stirling numbers, finding combinatorial interpretations for certain particular cases. Recently Blasiak, Penson,
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and Solomon [BPS] introduced the generalized Stirling numbers of the second kind, denoted S, s(n, k) for
r > s > 0, defined by the relation

(U D" =U™= NS, ((n, k)U* D*.
k=s
The standard Stirling numbers of the second kind are Si1(n, k), and the generalized Stirling numbers of
Mikhailov are Sy 1(n, k).
We define the staircase board J, s to be the Ferrers board outlined by the word (U"D?)™.
Corollary 3.4.
Sr,s(na k) = Tns—k (Jr,s,n) .

Remark 3.5. We can easily adapt the proof of Theorem 3.2 to work in the case where the algebra generated
by D and U has the commutation relation DU = UD + c¢. For a word w, we get the normal ordering form of
w by successively replacing DU by UD + ¢, and expanding. Just as before, we consider w as a word in the
letters D, U, and the substitution as a choice of either replacing the rightmost DU by U D or deleting it, but
the choice of deleting is weighted by c¢. In terms of the associated Ferrers board, we weight each placement
of a rook by ¢. So we get

w = Z cFry, (Bw)Um_kD”_k.
k=0

We should note that this algebra is isomorphic to the Weyl algebra, because if DU —UD = 1, then D(cU) —
(cU)D =c.

We can also assign a weight to the choice of replacing DU by U D, and thus extend the result to algebra
with the relation DU = qUD + 1. The algebra with this relation is know as the g-Weyl algebra, and is of
interest both to combinatorialists and to physicists. To the latter, because such algebras are models for ¢-
degenerate bosonic operators [Sc|. To the former, because it involves the g-analogue of rook numbers [GR)].
We discuss this case in detail in section 6.

First, we show how Theorem 3.2 allows for a new proof of the Rook Factorization Theorem [GIW],
which in turn leads to an explicit formula for computing the normal order coefficients of a word.

4. Computing the normal order coefficients

For a general board B, rook numbers can be computed recursively [Ri]. Choose a square of B, and let
B be the board obtained from B by deleting that square, and let By be the board obtained from B by
deleting the square together with its row and column. Then 7y (B) = r1(B1) + 1k—1(Bs2), reflecting the fact
we may or may not mark the square in question.

There are better methods for calculating rook numbers on Ferrers boards, owing to the fact that the
generating function of rook numbers on a Ferrers board, expressed in terms of falling factorials, completely
factors.

We define the kth falling factorial of x by

=z -1)---(z—k+1).

Goldman et al. [GIJW] show that the factorial rook polynomial r(B,z) := > ,_, re(B) 2=~ of a Ferrers
board is a product of linear factors.
Theorem 4.1. Rook Factorization Theorem

For a Ferrers board B with column heights h(B) = (h1,...,hy),

n n

ZTk(B)J}M: H(l‘—i-}h —n+i)

k=0 i=1
We provide a new proof the Rook Factorization Theorem, using Theorem 3.2.
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PROOF. Let w be the word with n D’s and h; U’s that outlines the Ferrers board B. By Theorem 3.2,
n
w=">r(By) UM FD"F,
k=0
as an element in the Weyl algebra.
We consider a particular manifestation of the Weyl algebra as the algebra of operators generated by
D= % and U= multiplication by t, acting on functions in the variable t. So

n d n—Fk
= Btk — .
w kgork( ) (dt)

We apply both sides of the equation to t*, where x is a real number.
Since (%)nik(ﬂ) =a(x—1)(x — (n—k)+ 1)t* "k = gn=k gz=n+k the right hand side is
Z rp(B) an=k ¢rnthy
k=0

On the left-hand side we get the product of the following factors. The jth application of D gives the factor
of x + ay — ap, where ay the number of times U was previously applied, and ap the number of times D
was previously applied. There are j — 1 D’s to the right of the jth D, so ap = j — 1. The jth D from the
right is the (n — j + 1)st D from the left, so ay = hy,—j4+1. Therefore the left-hand side is

n

tm—n+h1 H(x + hn,ijl -7+ ].)
j=1
If we let i = n — j 4+ 1, then the left-hand side is

n

(4 hi = n+ ).

=1

Now we set t = 1 to get the desired result. (Il
Example 4.2. For w = DDUUUDDUD, by Theorem 3.2,

d d dd, d, . < wn (ANTF
5
m-(x—!—l)-(x—l)-x-x-(twfl):Zrk(Bw)xﬂ-(twfl)
k=0
5

x-(x+1)~(m—1)-x-x:Zrk(Bw)xﬂ.
k=0

The left hand side is the complete factorization of the factorial rook polynomial of B,,.
The falling factorials 1,z,z(x — 1),... form a basis of polynomials in z. If P(z) = > ;_,pr 2, it is

well known that the coeflicients are p, = %AkP(x)} o where A is the difference operator defined by
AP(z) = P(z + 1) — P(z). Explicitly [St], the coefficients are

pr = %g(—l)k—i (’;) P(i) .
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Corollary 4.3. Computing the Normal Order Coefficients of a Word
For w a word in the Weyl algebra composed of n D’s and m U’s, let P(x) = [[;—, (x +h; —n+1i), where
hi,ha, ..., hy, are the column heights of the Ferrers board outlined by w. Then

n
w = E rkUm*kD"*k,
k=0

where

T = ﬁ g(—l)""“‘i (n B k) P(i) .

i=0

5. Weyl binomial coefficients

The Weyl binomial coefficient ("), is the coefficient of the term U™~™~*D™=k in (D +U)", where the
commutation relation is DU = UD + 1. The binomial product (D + U)™ is the sum of all words in letters
D and U of length n, and the normally ordered term U"~™~*D™~* comes from all words with n —m U’s
and m D’s, where k paris of D and U are deleted during the normal ordering. Each of these words outlines
a unique Ferrers board with at most m columns of height at most (n — m). Therefore the Weyl binomial
coeflicient (:1) , can be expressed as the sum of the kth rook numbers over all Ferrers boards contained in
the m-by-(n — m) rectangle.

The classical binomial coefficient (:1), and its g-analogue [:1], can be similarly expressed in terms of
Ferrers boards. The binomial coefficient () is the coefficient of the term U™~ D™ in (D + U)", where the
commutation relation is DU = UD. The term U"~™D™ is the normally ordered form of any word w with
n—m U’s and m D’s. Since all the letters commute, there is only one way to normally order a word, so the
binomial coefficient (:1) counts the words with n —m U’s and m D’s. Since there is a bijection between the
set of such words and the set of Ferrers boards contained in m-by-(n —m) rectange, (7’;) counts such Ferrers

boards. Therefore
< n ) B 1 .
m
BC[m]x[n—m]

Similarly, the g-binomial coefficient ] is the coefficient of the term U™~™D™ in (D + U)", where the
commutation relation is DU = qUD. Again, the term U™~™D™ comes from any word w with n —m U’s
and m D’s, which outlines the Ferrers board B, contained in the rectangle [m] x [n — m]. The relation

DU = qU D specifies that each square of B, has weight ¢, so w = ¢/B=|U"=™ D™ In other words,
n
— |B]
HEND

Theorem 5.1. Let k < m be an integer. Then

n n!
(m)k: Z rk(B):Zkk!(m—k)!(n—m—k)!

BC[m]x[n—m]

PROOF. Any Ferrers board B in [m] X [n —m] is B, for a particular word w with n —m U’s and m D’s.
From the proof of Theorem 3.2, the number 71 (B,,) is the number of ways to get the word U"~m—kpm—F
from the word w, by successively either replacing DU with UD or deleting it, choosing to do the latter k&
times. Equivalently, 7 (B,,) is the number of ways to mark k pairs of the letters D and U in the word w,
such that in each pair the D appears to the left of the U. The marked pairs are deleted, and the rest of the
letters commute into the normally ordered form.
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We therefore count the number of ways to construct words with n — m U’s and m D’s, with & marked
pairs of the letters D and U, the former to the left of the latter. We begin with n spaces for the letters in
w. Choose n —m — k of these to be U, and m — k to be D. There are

<n—m—n}€, m—k) B (n—m—k)!rz!m—k)!(%)!

ways to do so. For the 2k remaining spaces, we pair them, forming & pairs. There are (2k—1)-(2k—3)---5-3-1
ways to do this. For each pair, let the space on the left be D, and the space on the right be U.

By this construction, the sum of the kth rook numbers over all Ferrers boards contained in the m-by-
(n —m) rectangle is

2k —1)-(2k—3)---5-3-1 nl B n!
(2k)! (n—m—k)!'(m—Fk)! 28kl (m—k)!(n—m— k)’

O

Since (D 4 U)™ is the sum of all words composed of letters D and U of length n, we have a formula for
normal ordering of (D + U)™, as shown by Mikhailov in [Mil].
Corollary 5.2.

n  min(m,n—m)
n!

(D+U)" =2, g T Ty LA

m=0

Remark 5.3. The Weyl binomial coeflicients obey the recursive formula

o ) R G R ey

with boundary conditions ((1))0 = G)o =1, (:1)1@71 = 0. Consider the pairs (B, C), where B is a Ferrers
board in [m] x [n —m] and C is a placement of k rooks on B. The Weyl binomial coefficient counts the
number of such pairs. The set of such pairs is a disjoint union of three sets: one where the height iy of the
first column B is strictly less than n — m, one where hy = m and C' doesn’t place a rook in the first column,
and one where h; = m and C places a rook in the first column. The recursive formula follows.

The first two terms in the recursive formula are the same as for the classical binomial coefficients. In
fact, the Weyl binomial coeflicients can be expressed in terms of classical coefficients as follows.

k

Corollary 5.4. Let C(y) = Z <Z> % be the exponential generating function of the binomial coefficients.
k>0 ’

Then the ordinary generating function of the Weyl binomial coefficients is

PRrROOF.
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@) w-xt)w

SO

therefore

n!
_kzmﬁk'(m %)l (n—m—k)!xk'

6. The ¢-analogue

We extend the combinatorial interpretation of the normal order coefficients to the g-Weyl algebra: the
algebra with two generators D and U, and the relation DU = qUD + 1.

The commutation relation twisted by ¢ comes up in physics as the relation obeyed by the creation and
annihilation operators of g-deformed bosons [Sc]. The problem of normally ordering these operators has
been studied by Katriel [Ka], and recently by Schork [Sc].

The basic idea of the g-analogue of numbers is that the polynomial ¢ 4+ ¢' + ¢? + --- 4 ¢" ! plays the

role of the positive integer n. We denote the g-analogue of n by [n]. Since 1 +q+¢*> +---+ ¢! = %,
we can extend the definition of the g-analogue to all numbers ¢ by defining
1—4¢'
[t] := Ta
q
The g-analogue of the derivative % acting on the ring of polynomials in = is defined as
flgz) — f(=)
Dy f(z) = =
(¢— 1)z

and it is easy to check that D,(z") = [n]Jz"~1. For a good exposition of the g-analogue of the derivative, we
refer the reader to “Quantum Calculus” by Kac and Cheung [KC].

If we let D = Dy, and let U be the operator acting by multiplication by x, then the algebra generated
by D and U has the relation DU = qU D + 1, and is therefore the g-Weyl algebra.

Let the element w in the ¢-Weyl algebra be a word composed of the letters D and U. We adapt the
proof of Theorem 3.2 to find the normal order coefficients of w.

In terms of algebraic operations, we get the normal ordering form of w by successively replacing DU by
qUD + 1, and expanding. As before, we can consider w as a formal word in the letters D and U, and the
substitution as a choice of either replacing the rightmost DU by U D, weighting this choice by ¢, or deleting
the rightmost DU. In terms of the Ferrers board B,, outlined by w, we assign the weight ¢ to each square
that doesn’t have a rook either on it, below it in the same column, or to the right of it in the same row. If
we consider the weight of a rook placement to be the product of the weights of all squares of the board, such
weights of rook placements describe exactly the g-rook numbers of Garsia and Remmel [GRY].

Definition 6.1. Let B be a board, and denote by Cx(B) the collection of all placements of k marked squares
(rooks) on B, no two in the same row or column. We define the kth q—rook number of B to be

Rk B q Z qznva
CeCk(B)

where inv(o)(C) is the number of squares in the placement C that do not have a rook either on them, below
them in the same column, or to the right of them in the same row.
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Remark 6.2. To clarify the statistic inv(o)(C), we demonstrate by an example. Suppose B is a Ferrers
board with column heights h(B) = (4,4, 3,1), and we have the following placement C' of two rooks

If we mark with a dot the squares above or to the left of a rook, and with a circle the rest of the squares,
we get

ol-1-]o]

-Ixlo
olo

Then inv(o)(C) is the number of squares marked with a circle, which in this example is 5.

The statistic inv(o)(C) is a generalization of the inversion statistic on permutations. Given a permuta-
tion o = (01,...,0,), we get a placement C of n rooks on an n-by-n board where the rook in column i is
placed in row o;. Then each square marked with a circle has a rook to the left of it and a rook above it, so
the square corresponds to an inversion pair ¢ < j such that o; > o;. So in this case, inv(o)(C) is the number
of inversions of o.

Analogous to Theorem 3.2, the normal order coefficients of a word w are the g-rook numbers of the
Ferrers board outlined by w.

Theorem 6.3. Let the element w in the q- Weyl algebra be a word composed of n D’s and m U’s. Then

w =" Ri(Bu, U™ *D"*.
k=0
The Factorization Theorem for g-rook numbers [GR] can be proved as a corollary.

Theorem 6.4. Factorization Theorem for ¢g-Rook Numbers
For a Ferrers board B with column heights h(B) = (h1,...,hy),

n

ZRk(B,q)[x][ac—l]~-~[ac—(n—k)+1]:H[x+hi—n+i]

The proof is exactly the same as for Theorem 4.1, replacing the real numbers, the falling factorials, and
the derivative with their g-analogue.
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Sheared Tableaux and bases for the symmetric functions

Benjamin Young

Abstract.

We study the operation of shearing Schur functions, which yields a new family of bases for the
space of symmetric functions. In the course of this study, we derive some interesting combinatorial
results and inequalities on the Littlewood-Richardson coefficients of sheared Schur functions.
Résumé. Nous étudions l'opération de trancher les fonctions de Schur, qui nous donne une nou-
velle famille de bases pour l’espace des fonctions symétriques. Pendent cette étude, nous dérivons
des résultats et des inégalités combinatoires intéressants. Ces résultats décrivant les coefficients
Littlewood-Richardson des fonctions Schur tranchées.

1. Introduction

Suppose n is a positive integer and A = (A > A2 > ... > A\ > 0) is a partition of n, denoted \ - n.
The (Young) diagram associated to A is a diagram made of rows of boxes, in which the kth row has A
boxes. If m < n and p is a partition of m such that the Young diagram of p is contained within the Young
diagram of A\, we define the skew diagram A/u to be the set of all boxes contained in the diagram of A, but
not contained in the diagram of u. For emphasis, we shall refer to Young diagrams which are not skew as
normal diagrams.

A Young tableau T is a Young diagram in which the boxes have been filled with positive integers. If
the rows of T' are weakly increasing and the columns of T are strictly increasing, then 7' is said to be
semistandard. The content ¢(T') of T is the weak composition of nonnegative integers (v1,. .., ¥m) for which
v; is the number of i’s in T'.

Let A denote the graded algebra of symmetric functions. A has a well-known basis consisting of Schur
functions, denoted sy and indexed by normal Young diagrams A F n, for all positive integers n. We define

S) as
Sy = g 20
T

where T runs over all semistandard tableaux with shape A, and 7 = z]'23?---. We can also define the
skew Schur function sy, in precisely the same fashion.

A=421; =10 A=1432; =11 A=533; =22

F1Gure 1. Normal, skew, and ribbon diagrams
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o = 322 Shear of a by p =11 Shear of a by ez = 21
A =432 A= Mnaz = 532

FIGURE 2. Shearings of a partition «

A diagram )\ is said to be connected if any two adjacent rows of \ share a common horizontal edge.
We define a ribbon diagram to be a connected diagram which does not contain a two-by-two sub-diagram,
and define ribbon tableaux and ribbon Schur functions accordingly. Please refer to Figure 1 for examples of
normal, skew, and ribbon diagrams.

Ribbons are of particular interest as they play a fundamental rule in the Murnaghan-Nakayama rule
(see [4], chapter 7). In addition, the recent papers [1] and [2] link ribbons to the Fock space representation

o~

of Uy (sly,).

In this paper, we provide a new basis of the symmetric functions which consists of ribbon Schur functions.
This basis is obtained from the normal Schur functions by the process of shearing. Moreover, the change-of-
basis matrix from the normal Schur functions to the shear basis has some interesting combinatorial properties.
In particular, the entries of this matrix are Littlewood-Richardson coefficients, some of which are explicitly
computed to be 0 or 1. Further results on symmetric functions and Littlewood-Richardson coefficients can
be found in [4].

2. Shearing

Suppose o = (aq,...,ax) b n. Define the maximal shear of a to be the ribbon diagram with rows of
length aq, ..., an,.

If the maximal shear of « is the skew diagram Aj,uz/tmaz, and g is any diagram contained in fimaz,
consider the skew diagram \/u, where A = p+a = (a1 + p1,. .., — 1+ pr — 1, ). If A/u is a connected
diagram, we say that p is a shearing diagram for \. We define the shear of o by p, denoted Shear, (), to
be the skew diagram \/pu.

While the maximal shears of normal diagrams « are the primary objects of interest, our main theorem
works for any shearing of «. For an example of sheared Young diagrams, see Figure 2.

Let P(n) be the set of all partitions of n. For the remainder of this section, fix a function M : P(n) —
Ui= P(i) which maps each a F n to a shearing diagram u for a. To simplify the notation, for a fixed
partition o of n, we will abuse notation and write Shear(a) or sy, in place of sSgheary(a)-

We will prove the following:

Theorem 1. The set of skew Schur functions
{Shear(\)|n € Z*, A+ n},

forms a basis for A.
Applying Theorem 1 using maximal shears gives the following:

Corollary. The set of ribbon Schur functions in which the rows are weakly decreasing in length form a
basis of A.
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FIGURE 3. An ill-fated attempt to create a tableau T of shape 521/21 and content 43

To prove this theorem, we shall restrict ourselves to the set of symmetric functions of a fixed degree n,
denoted A™. The Schur functions of degree n, {sx|A F n}, form a basis for A", and represent the trivial
shear M = 0. We shall demonstrate that the set of Schur functions

{Shear()) |)\ Fn}

also form a basis for A™, by creating a change-of-basis matrix from the Schur function basis to {Shear(\)}.
The theorem follows immediately, since A = @;c, A
We express A/ in terms of the Schur function basis using Littlewood-Richardson coefficients:

Shear(a) = Z cﬁus,,

Following [3], we say that a word ajas...a, is a reverse lattice partition if, in any of the suffixes
akQk41 - - - G, the number of I’s is at least as large as the number of (I +1)’s. By the Littlewood-Richardson
rule, the coefficient cf;u counts the number of semistandard tableaux 1" for which

(a) T has shape A/u and content v,
(b) the row word of T is a reverse lattice partition.

In particular, if v = «, the first row of T must end with a 1 by condition (2), and must be weakly
increasing by condition (1). Therefore, the first row of T" is made up of a; ones. However, the content of T' is
equal to a — that is, there are only «; ones in T'. Hence, the rest of T must be filled with integers greater or
equal to 2. Repeating this argument for the rest of the rows in A/u, we find that the only way to construct
T is to fill the ith row with the number i. We have proven

Lemma 1. cf‘ta =1.
Now, suppose that o A v, where =< is the dominance ordering of partitions: (81,...,0k) < (71,---,7;)

means Zle Bi < Zle ~; for each t < max{k,j}. Suppose further that we have constructed a tableau T" of
shape Shear(«) satisfying conditions (1) and (2) above.

Observe that row ¢t of T' contains only numbers which are less than or equal to ¢. This can be seen by
induction on ¢t. The base case asserts that the first row of T' contains only ones, which has already been
shown in the context of Lemma 1. Now suppose that the first ¢ — 1 rows contain only numbers which are
less than or equal to t — 1. The largest element ¢; of row ¢ must occur at the right end of row ¢; in order to
satisfy the requirement that the row word of T" be a reverse lattice partition, ¢; = ¢ (otherwise, the number
of t1’s leads the number of ¢’s at the right end of row ¢). See Figure 3 for an example.

Let tg be the first ¢ for which Zle o > 22:1 v;. The sum on the left side of the inequality counts the
boxes in the first ¢y rows of A\/u, whereas the sum on the right side of the inequality counts the boxes in the
first tg rows of v.

Let t1 be the largest element of row tg in the diagram A/u. Since T is to be filled with the content of v,
it follows that ¢; > tg, a contradiction. So such a tableau 1" cannot exist after all. We have proven

Lemma 2. If o A v, then cf;l, =0.
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FIGURE 4. The change—of-basis matrix M for maximal shears of sy, n =7

Proof of Theorem 1: Let us write cls,hear(a) for cf;w

v. Let M be the matrix [cfhear(o‘)] in which the rows are ordered lexicographically by «, and the columns

are ordered lexicographically by v. Observe that M gives the coordinates of each Shear(a) in terms of the
normal Schur function basis s, .

Since the dominance ordering is a strengthening of the lexicographic ordering, Lemma 2 implies that M
is upper triangular, while Lemma 1 implies that M has ones on its main diagonal (for a concrete example of
M, see Figure 4). Therefore, M is invertible, so the chosen set of sheared Schur functions must form a basis
for A™. O

in order to emphasize the connection between a and

3. Shears of a single diagram «

Let us now fix a partition o of n. Suppose p and 7 are two shearing diagrams for « such that p is
contained in 7. We say that Shear,(a) is a relative shearing of Shear,()) if the skew diagram n/u is a
shearing of some normal diagram — that is, if the rows of /u are weakly decreasing in length. We have the
following theorem:

Theorem 2. If Shear, («) is a relative shearing of Shear,(c), then

CEhearu () < cghearn(a) )

Proof. In order to prove the theorem, suppose we have constructed a Young tableau 7}, with shape
Shear,, () and content v which meets conditions (1) and (2) of the Littlewood-Richardson rule. Let T}, be
the Young tableau with shape Shear, (a) such that the ith row of T, is equal to the ith row of T},. If we show
that T;, also satisfies conditions (1) and (2), then the Littlewood-Richardson rule will imply the theorem.

Observe that the row word of T}, is equal to the row word of T}, and thus the rows of T}, are weakly
increasing. So we need only check that T}, has strictly increasing columns.

Let A = (0, — i) — (Pr41 — 1) be the number of boxes that row r moves with respect to row r+ 1 as
we pass from Shear,, (a) to Shear, (o). Because Shear, (c) is a relative shearing of Shear,(a), we know that
A>0.

Suppose the element a lies in row r of T}, and b lies directly below a in row r + 1 of T},. There are at
least A elements to the left of b; take the rightmost of these and label them by, ..., ba. Observe that a lies
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bi|[ba| b bi|ba| b

FIGURE 5. Two adjacent rows of T}, and T;; A =2

above by in T),. Because T}, is semistandard, we have that a < b1 < --- < ba < b (see Figure 5). Thus the
columns of T}, are strictly increasing. [J

4. Vertical shearing

In the preceeding development, all of our shears have been horizontal, in the sense that we have obtained
a shear of the tableau « by shifting some of the rows of a to the right. We could equally well shift some of
the columns of a downward, to obtain a vertical shearing of .

A proof similar to that of Theorem 1 can be employed to show that any set of vertical shears of the
normal Schur functions also yields a new basis for A. In the proof, the change of basis matrix M becomes
lower triangular. Likewise, Theorem 2 also holds with relative shears being replaced with relative vertical
shears.

5. Further work

Aside from exploring connections to the active ribbon-based research areas mentioned, the most pressing
issue which arises from this work is to study the change-of-basis matrix M in greater detail. The author has
computed M for n < 8, using an algorithm for computing Littlewood-Richardson coefficents. These small
matrices M are fairly sparse and have small entries. It seems likely that the best way to obtain further
information about shearing is to sharpen these observations.

Computations of M grow quickly intractable as n increases, so it would also be worthwhile to look
for shear-specific algorithms for computing Littlewood-Richardson coefficients of sheared Schur functions.
Theorem 2, in particular, suggests that to compute M for Shear,(a), we could proceed iteratively. First,
one would find shearing functions pg =0 C uy C ... C ux = 1, where each p; is a relative shearing of p;_1.
Then, one would compute the corresponding matrices M; for Shear,, (). Hopefully, if enough intermediary
u; are used, the changes between M; and M;,1 will be small. Of course, in order for this to work, we would
need to sharpen Theorem 2 considerably, providing at least an upper bound for the Littlewood-Richardson
coefficients in question.
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