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FORWARD

In a manner which I suppose will be familiar to anybody who has organized a mathematical conference,
FPSAC 2004 in Vancouver took gradual shape over the course of many previous conferences.

The idea of holding a FPSAC in British Columbia was first raised at the 2001 FPSAC in Arizona, when
Daniel Krob, then chair of the FPSAC permanent committee gave an informal endorsement to the project.
Some names were mentioned at a refreshment break in the lobby; more than one of these eventually did
become an invited speaker at FPSAC 2004.

It was at the banquet of the Summer meetings of the Canadian Mathematical Society at Laval University,
Quebec that Pierre Leroux and I sat down with Jon Borwein, and Jon agreed to be the chair of our scientific
committee. At that moment I realized the conference would be a success. Formal arrangements were made
later that summer at the FPSAC meeting in Melbourne, Australia.

In Linkoping, Sweden, last summer, the torch was passed to us, and our conference formally announced.
Finally, at the CMS winter meetings in Vancouver last December, Jon Borwein and I met with Klaus

Peters and began the discussions which led to the volume now in your hands.
At all of these gatherings, I received invaluable advice and encouragement from many colleagues. Nantel

Bergeron was a vital voice of experience and our link to the FPSAC permanent committee, and Christian
Krattenthaler helped advise on many decisions both mathematical and otherwise. I can thank without
listing all of the combinatorists who served on both the scientific and organizing committees, though I
should make special mention of Stephanie van Willigenburg, without whose presence at UBC many aspects
of the conference would not have been possible; Marni Mishna, who is responsible for the excellent quality
of both the electronic and the print proceedings; and Tom Roby, who put in far more than his share of work
and was the principal investigator on the conference’s NSA and NSF grants.

Finally, I wish to thank all the contributers to the volume, and all the participants, who are the life-blood
of any conference.

Julian West
Malaspina/ University of Victoria
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Chromatic Polynomials and Representations of the Symmetric Group

Norman Biggs

The chromatic polynomial P (G; k) is the function which gives the number of ways of colouring a graph
G when k colours are available. The fact that it is a polynomial function of k is essentially a consequence
of the fact that, when k exceeds the number of vertices of G, not all the colours can be used. Another
quite trivial property of the construction is that the names of the k colours are immaterial; in other words,
if we are given a colouring, then any permutation of the colours produces another colouring. In this talk I
shall outline some theoretical developments, based on these simple facts and some experimental observations
about the complex roots of chromatic polynomials of ‘bracelets’.

A ‘bracelet’ Gn = Gn(B,L) is formed by taking n copies of a graph B and joining each copy to the next
by a set of links L (with n+1 = 1 by convention). The chromatic polynomial of Gn can be expressed in the
form

P (Gn; k) =
∑

π

mB,π(k) tr(Nπ
L)n.

The sum is taken over all partitions π such that 0 ≤ |π| ≤ b, where b is the number of vertices of B. The
terms mB,π(k) are polynomials in k, and they are independent of L. When B is the complete graph Kb

the relevant polynomials mπ(k) are given by a remarkably simple formula, and when B is incomplete they
can be expressed in terms of the mπ(k) with |π| ≤ b. The entries of the matrices Nπ

L are also polynomials
in k, but they do depend on L. In order to calculate these entries we construct explicit bases for certain
irreducible modules, corresponding to the Specht modules of representation theory.

References

(1) N.L.Biggs: Equimodular curves, Discrete Math. 259 (2002) 37-57.
(2) N.L. Biggs, M.H. Klin, P. Reinfeld, Algebraic methods for chromatic polynomials, European J.

Combinatorics 25 (2004) 147-160.
(3) N.L. Biggs, Specht modules and chromatic polynomials, CDAM Research Report Series LSE-

CDAM-2003-06.

London School of Economics
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Decomposable Compositions and Ribbon Schur Functions

Louis J. Billera

Abstract. We describe recent results, obtained in collaboration with Hugh Thomas and Stephanie
van Willigenburg [1], which provide a complete description of when two ribbon Schur functions are
identical.
Résumé. Nous présentons des résultats récents, obtenus en collaboration avec Hugh Thomas et
Stephanie van Willigenburg [1], qui permettent de déterminer légalité de deux fonctions Schur ruban.

Extended Abstract

An important basis for the space of symmetric functions of degree n is the set of classical Schur functions
sλ, where λ runs over all partitions of n. For example, the skew Schur functions sλ/µ can be expressed in

terms of these by means of the Littlewood-Richardson coefficients cλ
µν by

sλ/µ =
∑

ν

cλµνsν .

These same coefficients give the expressions for the product of two Schur functions, as well as the multiplicity
of irreducible representations of the symmetric group in the tensor product of two irreducibles. Thus there
is some interest in determining relations among the cλµν .

A particular type of skew Schur functions are those corresponding to ribbon or border strip shapes λ/µ.
These are connected shapes with no 2× 2 square. The resulting skew Schur functions sλ/µ are called ribbon
Schur functions.

Ribbons of size n are in one-to-one correspondence with compositions β of size n by setting βi equal to
the number of boxes in the i-th row from the bottom. For example, the skew diagram 422/11

is a ribbon, corresponding to the composition 213. We will henceforth indicate ribbon Schur functions by
means of the compositions corresponding to their ribbon shapes. Thus s422/11 will be denoted s213.

We address the question of when two ribbon Schur functions are identical; that is, for compositions β
and γ of n, when is it true that sβ = sγ? When equality holds, we automatically get Littlewood-Richardson

1991 Mathematics Subject Classification. Primary 05E05, 05A17; Secondary 05A19, 05E10.
Key words and phrases. ribbon Schur function, Littlewood-Richardson coefficients, compositions, partitions.
Research partially supported by NSF grant DMS-0100323.
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8 DECOMPOSABLE COMPOSITIONS AND RIBBON SCHUR FUNCTIONS

coefficient identities of the form
cλµ,ν = cρη,ν

for all partitions ν of n, whenever ribbon skew shapes λ/µ and ρ/η correspond to β and γ.
To this end, we define an equivalence relation on the set of compositions of n. For β � n, let Fβ denote

the fundamental quasisymmetric function indexed by β. (In [2], these functions are denoted Lβ.) Since the
Fβ , β � n, form a basis for the quasisymmetric functions of degree n, any symmetric function, in particular,
can be written F =

∑
β�n cβFβ .

Definition 1.1. For compositions β, γ � n, we say β and γ are equivalent, denoted β ∼ γ, if for all symmetric
functions F =

∑
cαFα, cβ = cγ .

For a composition α, we denote by λ(α) the unique partition whose parts are the components of β in
weakly decreasing order. We write α ≥ β if α is a coarsening of β, that is, α is obtained from β by adding
consecutive components. If β � n then always n ≥ β. LetM(β) be the multiset of partitions determined by
all coarsenings of β, that is,

M(β) = {λ(α) | α ≥ β}.
It is easy to see that M(β) =M(β∗), where β∗ is the reversal of the composition β.

Finally, we define a way of composing two compositions as follows. If α � n and β � m, then we wish to
define α ◦ β � nm. Let β = β1β2 · · ·βk. For α = n, then α ◦ β = n ◦ β is the composition

β1 · · ·βk−1(βk + β1)β2 · · · (βk + β1)β2 · · ·βk︸ ︷︷ ︸
n times

which is nearly the concatenation of n copies of the composition β, except each pair of adjacent terms βkβ1

are added. For α = α1α2 · · ·αl, then α ◦ β is the usual concatenation of the l compositions αi ◦ β:

α ◦ β = α1 ◦ β · α2 ◦ β · · ·αl ◦ β.
For example 12 ◦ 12 = 12132.

Our main result is
Theorem 1.2. The following are equivalent for a pair of compositions β, γ � n:

(1) sβ = sγ,
(2) β ∼ γ
(3) M(β) =M(γ),
(4) for some k,

β = β1 ◦ β2 ◦ · · · ◦ βk and γ = γ1 ◦ γ2 ◦ · · · ◦ γk,

and, for each i, either γi = βi or γi = β∗i .

Thus, for example, s12132 = s13212 = s23121 = s21231, and these four equal no others.
The last condition shows that the size of the equivalence class of β is 2r, where r is the number of

nonpalindromic factors in the unique nontrivial irreducible factorization of β. We always have, for example,
that sβ = sβ∗ .

References

[1] L.J. Billera, H. Thomas and S. van Willigenburg, Decomposable Compositions, Symmetric Quasisymmetric Functions and
Equality of Ribbon Schur Functions, preprint, May 2004.

[2] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge Univer-
sity Press, Cambridge, UK, 1999.

Department of Mathematics, Cornell University, Ithaca, New York, 14853-4201 USA
E-mail address: billera@math.cornell.edu
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Intersecting Schubert Varieties

Sara Billey

In the late 1800’s, H. Schubert was studying classical intersections of linear subspace arrangements. A
typical Schubert problem asks how many lines in C3 generically meet 4 given lines? The generic answer, 2, can
be obtained by doing a computation in the cohomology ring of the Grassmannian variety of 2-dimensional
planes in C4. During the past century, the study of the Grassmannian has been generalized to the flag
manifold where one can ask similar questions in enumerative geometry.

The flag manifold Fn(Cn) consists of all complete flags Fi = F1 ⊂ F2 ⊂ · · · ⊂ Fn = Cn where Fi is a
vector space of dimension i. A modern Schubert problem asks how many flags have relative position u, v, w
to three fixed flags Xi, Yi and Zi. The solution to this problem used over the past twenty years, due to
Lascoux and Schützenberger, is to compute a product of Schubert polynomials and expand in the basis of
Schubert polynomials. The coefficient indexed by u, v, w is the solution. This represents a computation in
the cohomology ring of the flag variety. It has been a long standing open problem to give a combinatorial
rule for expanding these products proving the coefficients cu,v,w are nonnegative integers. It is known from
the geometry that these coefficients are nonnegative because they count the number of points in a triple
intersection of Schubert varieties with respect to three generic flags.

The main goal of this talk is to describe a method for directly identifying all flags in Xu(Fi)∩Xv(Gi)∩
Xw(Hi) when `(u) + `(v) + `(w) =

(
n
2

)
and Fi, Gi, Hi are generic, thereby computing cu,v,w explicitly.

In 2000, Eriksson and Linusson have shown that the rank tables of intersecting flags are determined by a
combinatorial structure they call permutation arrays. We prove there is a unique permutation array for each
nonempty 0-dimensional intersection of Schubert varieties with respect to flags in generic position. Then we
use the structure of this permutation array to solve a small subset of the rank equations previously needed
to identify flags in the given intersection. These equations are also useful for determining monodromy and
Galois groups on specified collections of flags. This is joint work with Ravi Vakil at Stanford University.

Department of Mathematics, University of Washington, Seattle, WA 98195-4350
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Alexander Duality in Combinatorics

Takayuki Hibi

Alexander duality theorem plays a vital role in [7] to show that the second Betti number of the minimal
graded resolution of the Stanley–Reisner ring K[∆] of a simplicial complex ∆ is independent of the base field
K. On the other hand, a beautiful theorem by Eagon and Reiner [2] guarantees that the Stanley–Reisner
ideal I∆ of ∆ has a linear resolution if and only if the Alexander dual ∆∨ of ∆ is Cohen–Macaulay.

With a survey of the recent papers [3], [4], [5] and [6], my talk will demonstrate how Alexander duality
is used in algebraic combinatorics. More precisely,

• Let L be a finite meet-semilattice, P the set of join-irreducible elements of L, and K[{xq , yq}q∈P ]
the polynomial ring over a field K. We associate each α ∈ L with the squarefree monomial
uα =

∏
q≤α xq

∏
q 6≤α yq . Let ∆L denote the simplicial complex on {xq , yq}q∈P whose Stanley–

Reisner ideal is generated by those monomials uα with α ∈ L. In the former part of my talk,
combinatorics and algebra on the Alexander dual ∆∨L of ∆L will be discussed.

• One of the fascinating results in classical graph theory is Dirac’s theorem on chordal graphs ([1]).
In the latter part of my talk, it will be shown that, via Hilbert–Burch theorem together with
Eagon–Reiner theorem, Alexander duality naturally yields a new and algebraic proof of Dirac’s
theorem.

No special knowledge is required to enjoy my talk.

References

[1] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71 – 76.
[2] J. A. Eagon and V. Reiner, Resolutions of Stanley–Reisner rings and Alexander duality, J. Pure and Appl. Algebra 130

(1998), 265 – 275.
[3] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, preprint, June 2003, math.AC/0307235.
[4] J. Herzog and T. Hibi, Level rings arising from meet-distributive meet-semilattices, preprint, March 2004,

math.AC/0403534.
[5] J. Herzog, T. Hibi and X. Zheng, Dirac’s theorem on chordal graphs and Alexander duality, Europ. J. Combin., to appear,

math.AC/0307224.
[6] J. Herzog, T. Hibi and X. Zheng, The monomial ideal of a finite meet-semilattice, preprint, November 2003,

math.AC/0311112.
[7] N. Terai and T. Hibi, Alexander duality theorem and second Betti numbers of Stanley–Reisner rings, Adv. Math. 124

(1996), 332 – 333.

Osaka University, Department of Pure and Applied Mathematics, Graduate School of Information Science
and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
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Sums of polynomials from degeneration in algebraic geometry

Allen Knutson

Many interesting polynomials with positive coefficients are the “multidegrees” of (irreducible) algebraic
varieties. We need to break these unbreakable objects, as we’d like to have formulae for these polynomials
as positive sums; this breakage can be achieved through degeneration of the defining polynomials (as of a
conic to the union of two lines, giving the degree formula 2=1+1).

I’ll give many examples related to Schubert varieties, and explain how the geometry of the degeneration
helps control the combinatorics, in suggesting shellings of related simplicial complexes. This work is joint
with Ezra Miller and Alex Yong.
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E-mail address: allenk@math.berkeley.edu

13





Formal Power Series and Algebraic Combinatorics
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Operads and combinatorics

Jean-Louis Loday

In some problems it is necessary to consider series indexed, not by integers, but by some other combina-
torial objects like trees for instance. In order to multiply and compose these series one needs to be able to
add trees and to multiply them. Most of the time the structure which unravel these constructions is a new
type of algebras, or, equivalently, an operad.

For instance, consider the algebras equipped with two binary operations ≺, called left, and �, called
right, satisfying the following relations





(x ≺ y) ≺ z = x ≺ (y ∗ z),
(x � y) ≺ z = x � (y ≺ z),
(x ∗ y) � z = x � (y � z),

where x ∗ y := x ≺ y + x � y. They are called dendriform algebras (cf. [L1]). It can be shown that the free
dendriform algebra on one generator is the vector space spanned by the planar binary rooted trees. The two
products are described by means of grafting. From this result we can construct a product and a composition
on the series

∑
t a(t)x

t, where the sum runs over the planar binary rooted trees (no constant term). For the
product we simply use the fact that the product ∗ in a dendriform algebra is associative (check it !). For the
composition we use the explicit description of the free dendriform algebra. In fact these series form a group
for composition. This is the renormalisation group of Quantum Electro-Dynamics.

There are several examples of this type, few of them have been studied so far.

There are many more problems where operads can help in combinatorics. Let me just mention two of
them. A free algebra of some sort is, in general, graded and one can form its generating series. In terms of
operads, when the space of n-ary operations P(n) is finite dimensional one defines

fP(x) :=
∑

n≥1

(−1)n dimP(n)

n!
xn .

An important theory in the operad framework is the Koszul duality. Well-known for associative algebras it
has been generalized to operads by Ginzburg and Kapranov (cf. [G-K], [F], see [L1] appendix 2 for a short
overview on operads and Koszul duality). One of the consequences is the following. To any quadratic operad
P one can associate its dual P ! and a certain chain complex, called the Koszul complex. When the Koszul
complex is acyclic, then the generating series of P and P ! are inverse to each other for composition:

fP(fP
!

(x)) = x .

This nice theorem has many applications. One of them is, in some instances, to provide a combinatorial
interpretation of some integer sequences (cf. [L2]).

15



16 OPERADS AND COMBINATORICS

Here is another application. The partition lattice gives rise to a chain complex whose homology is a
representation of the symmetric group. It is not that easy to compute. However there is an operadic way
of looking at it, which, by using Koszul duality, permits us to identify this homology group to the space
of operations of a dual operad (cf. [F]). This interpretation can be generalized to many variations of the
classical partition lattice provided that the operad involved is Koszul (cf. [V1]).

If, instead of looking only at operations, we want look at operations and co-operations, then the notion
of operad has to be replaced by the notion of prop. At this point there is a need for a Koszul duality theory
in the prop framework. This has recently been achieved in [V2].
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Asymptotics of multivariate generating functions

Robin Pemantle

Let F (x) =
∑

r arx
rr be the multivariate generating function encoding the coefficients r := (r1, . . . , rd).

We would like to find estimates for the coefficients {ar} that are asymptotically valid as r → ∞. In the
univariate case, there is a well known, powerful, elegant apparatus for deriving such asymptotics from the
analytic behavior of F near its minimal modulus singularity. In more than one variable, this problem is
nearly untouched. Writing F =

∑
gn(r1, . . . , rd−1)z

rd

d , if gn is asymptotically gn for some g, then theorems
by Bender, Richmond, Canfield and Gao yield Gaussian limit laws for ar. No other general results appear
to be known.

The present talk will focus on the case of rational generating functions. In the one variable case this class
is trivial to analyze, but in the multivariate case even this class poses many unsovled problems. Furthermore,
one finds numerous applications within this class. The approach is to write ar as a multivariate Cauchy
integral, and then to use topological techinques to replace this integral with one that is in stationary phase,
meaning that it looks locally like

∫
D
A(x) exp(−|r|Q(x)) dx for some (one hopes postivie definite) quadratic

form on a disk-like domain, D. Asymptotics can then be read off in a fairly automated way. It is our extreme
good fortune that existing results in Stratified Morse Theory are tailor-made to convert the Cauchy integral
to the stationary phase integral. A more complete outline of the steps is as follows. This outline is valid for
certain geometries of the pole set of F .

(1) Write ar as a Cauchy integral

(1) ar =

(
1

2πi

)d ∫

T

z−rF (z)
dz

z

where the torus T is a product of sufficiently small circles around the origin in each coordinate.
(2) The torus T may be replaced by an equivalent d-cycle in the homology of (C∗)d minus the poles

of F . Specifically, we denote by −∞ the set where the integrand in (1) is sufficiently small, and
represent T in the homology of (C∗)d minus the poles of F , relative to −∞.

(3) Stratified Morse theory identifies the other homology classes with saddles of the gradient r log z of
the function zr. Each such saddle lives in a stratum of dimension j < d and yields a contribution

which is an integral over a product of a cycle ßcyc‖ in the stratum with a cycle ßcyc⊥ in a transversal
to the stratum.

(4) A nonzero contribution at a saddle σ occurs when the vector r is in a certain positive cone deter-
mined by the geometry of the pole set of F near σ.

(5) The integral over ßcyc⊥ is equal to an easily computed spline, and the integral over ßcyc‖ is then
asymptotically evaluated by the saddle point method.
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Virtual Crystals and the X = M Conjecture

Anne Schilling

Abstract. This is an expository talk on virtual crystals and the X = M conjecture.
Résumé. C’est un entretien expositoire sur les cristaux virtuels et la conjecture X = M .

1. Extended Abstract

The quantized universal enveloping algebra Uq(g) associated with a symmetrizable Kac–Moody Lie
algebra g was introduced independently by Drinfeld [D] and Jimbo [J] in their study of two dimensional
solvable lattice models in statistical mechanics. The parameter q corresponds to the temperature of the
underlying model. Kashiwara [K] showed that at zero temperature or q = 0 the representations of Uq(g)
have bases, which he coined crystal bases, with a beautiful combinatorial structure and favorable properties
such as uniqueness and stability under tensor products.

The irreducible finite-dimensional U ′q(g)-modules were classified by
Chari and Pressley [CP1, CP2] in terms of Drinfeld polynomials. The Kirillov–Reshetikhin modules W r,s,
labeled by a Dynkin node r and a positive integer s, form a special class of these finite-dimensional modules.
They naturally correspond to the weight sΛr, where Λr is the r-th fundamental weight of g. Recently,
Hatayama et al. [HKOTY, HKOTT] conjectured that the Kirillov–Reshetikhin modules W r,s have a crys-
tal basis denoted by Br,s. The existence of such crystals allows the definition of one dimensional configuration
sums X , which play an important role in the study of phase transitions of two dimensional exactly solvable

lattice models. For g of type A
(1)
n , the existence of the crystal Br,s was settled in [KKMMNN], and the

one dimensional configuration sums contain the Kostka polynomials, which arise in the theory of symmetric
functions, combinatorics, the study of subgroups of finite abelian groups, and Kazhdan–Lusztig theory. In
certain limits they are branching functions of integrable highest weight modules.

In [HKOTY, HKOTT] fermionic formulas M for the one dimensional configuration sums were con-
jectured. Fermionic formulas originate in the Bethe Ansatz of the underlying exactly solvable lattice model.
The term fermionic formula was coined by the Stony Brook group [KKMM1, KKMM2], who interpreted
fermionic-type formulas for characters and branching functions of conformal field theory models as partition
functions of quasiparticle systems with “fractional” statistics obeying Pauli’s exclusion principle. For type

A
(1)
n the fermionic formulas were proven in [KSS] using a generalization of a bijection between crystals and

rigged configurations of Kirillov and Reshetikhin [KR]. In [OSS2] similar bijections were used to prove the
fermionic formula for nonexceptional types for crystals B1,1. Rigged configurations are combinatorial objects
which label the solutions to the Bethe equations. The bijection between crystals and rigged configurations

2000 Mathematics Subject Classification. Primary 05-06; Secondary 05A19, 17B37, 17B65, 81R10, 81R50, 82B23.
Key words and phrases. crystal bases, rigged configurations, fermionic formulas.
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20 VIRTUAL CRYSTALS

reflects two different methods to solve lattice models in statistical mechanics: the corner-transfer-matrix
method and the Bethe Ansatz.

The theory of virtual crystals [OSS1, OSS3] provides a realization of crystals of type X as crystals of
type Y , based on well-known natural embeddings X ↪→ Y of affine algebras:

C
(1)
n , A

(2)
2n , A

(2)†
2n , D

(2)
n+1 ↪→ A

(1)
2n−1

A
(2)
2n−1, B

(1)
n ↪→ D

(1)
n+1

E
(2)
6 , F

(1)
4 ↪→ E

(1)
6

D
(3)
4 , G

(1)
2 ↪→ D

(1)
4 .

Note that under these embeddings every affine Kac–Moody algebra is embedded into one of simply-laced

type A
(1)
n , D

(1)
n or E

(1)
6 . Hence, by the virtual crystal method the combinatorial structure of any finite-

dimensional affine crystal can be expressed in terms of the combinatorial crystal structure of the simply-laced

types. Whereas the affine crystals Br,s of type A
(1)
n are already well-understood [Sh], this is not the case for

Br,s of types D
(1)
n and E

(1)
6 .

In this talk we highlight the main results regarding the X = M conjecture of [HKOTY, HKOTT] and
virtual crystals [OSS1, OSS3], which can be summarized as follows:

• Refs. [HKOTY, HKOTT] conjecture the existence of Br,s and the identity X = M for general
affine Kac-Moody algebras.

• Refs. [OSS1, OSS3] introduce the virtual crystal method which yields a description of the com-

binatorial structure of the crystals Br,s in terms of the combinatorics of Br,s for types A
(1)
n , D

(1)
n

and E
(1)
6 . Similarly, the fermionic formulas and rigged configurations also exhibit this virtual em-

bedding structure. In [OSS3] this was used in particular to extend the Kleber algorithm, which
provides an efficient algorithm for calculating fermionic formulas, to nonsimply-laced algebras.

• In Ref. [KSS] the X = M conjecture was proven for type A
(1)
n using a bijection between crys-

tals/tableaux and rigged configurations. This was extended to other nonexceptional types in [OSS2]

for tensor products of B1,1 and in [SSh] for tensor products of B1,s. Type D
(1)
n for tensor products

of Br,1 was treated in [S].

• The combinatorial structure of the crystals B2,s of type D
(1)
n is studied in [SS]. This work is

presented by Philip Sternberg in form of a poster at this conference.
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The Phase Transition for Random Subgraphs of the n-cube

Gordon Slade

Abstract. We describe recent results, obtained in collaborations with C. Borgs, J.T. Chayes, R. van
der Hofstad and J. Spencer, which provide a detailed description of the phase transition for random
subgraphs of the n-cube.
Résumé. Nous présentons des résultats récents qui donnent une description détaillée de la tran-
sition de phase des sous-graphes aléatoires du n-cube. Ces résultats sont obtenus en collaboration
avec C. Borgs, J.T. Chayes, R. van der Hofstad et J. Spencer.

Extended Abstract

The phase transition for random subgraphs of the complete graph, or the random graph for short, was
first studied by Erdős and Rényi [7], and has been analyzed in considerable detail since then [2, 11]. Let KV

denote the complete graph on V vertices, so that there is an edge joining each of the (V
2 ) pairs of vertices.

In the random graph, edges of the complete graph are independently occupied with probability p and vacant
with probability 1−p, as in the bond percolation model. The occupied edges naturally determine connected
components, called clusters. There is a phase transition as p is varied, in the sense that there is an abrupt
change in the number of vertices |Cmax| in a cluster Cmax of maximal size, as p is varied through the critical
value pc = 1

V .
We will say that a sequence of events EV occurs with high probability, denoted w.h.p., if P(EV ) → 1

as V → ∞. The basic fact of the phase transition is that when p is scaled as (1 + ε)V −1, there is a phase
transition at ε = 0 in the sense that w.h.p.

(1) |Cmax| =





Θ(logV ) for ε < 0,

Θ(V 2/3) for ε = 0,
Θ(V ) for ε > 0.

The asymptotic results of (1) are valid for fixed ε, independent of V . These results have been substan-
tially strengthened to show that there is a scaling window of width V −1/3, in the sense that if p =
(1 + ΛV V

−1/3)V −1, then w.h.p.

(2) |Cmax|





lV 2/3 for ΛV → −∞,
= Θ(V 2/3) for ΛV uniformly bounded in V ,

� V 2/3 for ΛV → −∞.
Here, we are using the notation f(V )lg(V ) to mean that f(V )/g(V ) → 0 as V → ∞, while f(V ) � g(v)
means that f(V )/g(V )→∞ as V →∞. A great deal more is known, and can be found in [2, 11].
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24 THE PHASE TRANSITION FOR RANDOM SUBGRAPHS OF THE N-CUBE

Our goal is to understand how these results can be extended to apply to the n-cube Qn. This graph has
vertex set {0, 1}n, with an edge joining pairs of vertices which differ in exactly one coordinate. It has V = 2n

vertices, each of degree n. Edges are again independently occupied with probability p. If p = (1+ε)n−1 with
ε < 0 independent of n, then |Cmax| turns out to be Θ(logV ). On the other hand, for ε > 0 independent of
n, it was shown in [1] that |Cmax| = Θ(V ). Thus, a transition takes place at the value 1

n of p.
In [3], the results of [1] were extended to show that w.h.p.

(3) |Cmax| =
{

2ε−2 logV
(
1 + o(1)

)
for ε ≤ −(logn)2(log logn)−1n−1/2,

2εV for ε ≥ 60(logn)3n−1.

Thus, ε as in the first line of (3) gives a subcritical p, whereas in the second line p is supercritical. The gap
between these ranges of p is much bigger than the V −1/3 (here 2−n/3) seen above as the size of the scaling
window for the complete graph.

The following result from [9, 10], which builds on results of [4, 5, 6], gives bounds for ε on an arbitrary
scale that is polynomial in n−1.
Theorem 1.1. For the n-cube, there exists a sequence of rational numbers a1, a2, a3, . . ., with a1 = a2 = 1

and a3 = 7
2 , such that for any M ≥ 1, for p

(M)
c =

∑M
i=1 ain

−i, and for p = p
(M)
c + δn−M with δ independent

of n, the following bounds hold w.h.p.:

(4) |Cmax|
{
≤ 2(log 2)δ−2n2M−1[1 + o(1)] for δ < 0,
≥ const δn1−M2n for δ > 0.

More is proved in [9, 10], but (4) is highlighted here because it shows subcritical behaviour for negative
δ and supercritical behaviour for positive δ. Theorem 1.1 suggests that the critical value for the n-cube
should be

∑∞
i=1 ain

−i, but circumstantial evidence leads us to conjecture that this infinite series is divergent
(see [8] for a general discussion of such issues). If the conjecture is correct, the critical value cannot be
defined in this way. This difficulty was bypassed in [4], where the critical value for the phase transition on
a “high-dimensional” finite graph G was defined to be the value pc = pc(G, λ) for which

(5) χ(pc) = λV 1/3,

where χ(p) is by definition the expected number of vertices in the component of an arbitrary fixed vertex
(e.g., the origin of the n-cube), V is the number of vertices in the graph G, and λ is a fixed positive number.
This definition is by analogy with the random graph, where it is known that χ(1/V ) = Θ(V 1/3). The
parameter λ allows for some flexibility, associated with the fact that criticality corresponds to a scaling
window of finite width and not to a single point. The following theorem is proved in [10], building on results
in [4, 5, 6].
Theorem 1.1. For the n-cube, let M ≥ 1, fix constants c, c′ (independent of n but possibly depending on
M), and choose p such that χ(p) ∈ [cnM , c′n−2M2n]. Then for ai given by Theorem 1.1,

(6) p =

M∑

i=1

ain
−i +O(n−M−1) as n→∞.

The constant in the error term depends on M, c, c′, but does not depend otherwise on p.
Fix λ > 0 independent of n. Then χ(pc(Qn, λ)) = λ2n/3 is in an interval [cnM , c′n−2M2n] for every M ,

with c, c′ dependent on M and λ. By Theorem 1.1, (6) holds for p = pc(Qn, λ), for every fixed choice of λ
and for every M . Thus,

(7) pc(Qn, λ) ∼
∞∑

i=1

ain
−i

is an asymptotic expansion for pc(Qn, λ), for every positive λ.
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By analogy with the complete graph, we would like to prove that the critical scaling window for the
n-cube has size V −1/3 = 2−n/3. This exponential scale is not accessible using the asymptotic expansion of
Theorems 1.1–1.1. The following result from [6], which builds on the results of [4, 5], does not quite prove
that the scaling window has size 2−n/3, but does show that it is smaller than any inverse power of n.
Theorem 1.2. For the n-cube, let V = 2n, let λ0 be a fixed sufficiently small constant, and let p =
pc(Qn, λ0) + εn−1. If ε < 0 and εV 1/3 → −∞ as V →∞, then w.h.p.

(8) |Cmax| ≤ 2ε−2 log V
(
1 + o(1)

)
.

If |ε|V 1/3 ≤ B for some constant B, then there is a constant b (depending on B and λ0) such that, for any
ω ≥ 1,

(9) P
(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
.

Finally, there are positive constants c, c1 such that if e−cn1/3 ≤ ε ≤ 1 then w.h.p.

(10) |Cmax| ≥ c1εV.
Additional estimates can be found in [6], but those in Theorem 1.2 show that the critical window in ε

is of size V −1/3 = 2−n/3 on the subcritical side of pc(n), and has at most size e−cn1/3

on the supercritical
side. We expect that the window actually has size V −1/3 = 2−n/3 on both sides of pc(n), and that, more
generally, the scaling window in high-dimensional graphs has size V −1/3.

An interesting consequence of the above theorems is that the approximate critical values p
(M)
c =∑M

i=1 ain
−i will lie outside the critical window around pc(Qn, λ), for every M , unless the sequence ai is

eventually zero and the asymptotic series is actually a polynomial in n−1. We expect the series to be diver-
gent, and not a polynomial. We regard the definition (5) as superior to any definition based on the asymptotic
expansion. In particular, the coefficients ai are obtained from an asymptotic expansion for pc(Qn, λ), so the
latter contains all information contained in the former.

There are several ingredients in the proof of these theorems, most of which are more familiar in mathemat-
ical physics than in combinatorics. These include differential inequalities, the triangle condition, finite-size
scaling ideas, and the lace expansion. The method of [1], which we call sprinkling, is used in conjunction
with estimates obtained via these other methods to prove the lower bound (10). In [4, 5], other graphs
besides the n-cube are also treated, including finite periodic approximations to Zn for n large, with less
complete results.
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Utilizing Relationships Among Linear Systems

Generated by Zeilberger’s Algorithm

S. A. Abramov and H. Q. Le

Abstract. We show that the sequence of first order linear difference equations generated by Zeil-
berger’s algorithm can be described recursively. Each of these difference equations induces a system
of linear algebraic equations and the mentioned recurrent relations can be utilized so that the values
computed during the investigation of the J-th system can be used to accelerate the investigation of
the (J+1)-th system. An implementation of this result and an experimental comparison between
this implementation and an implementation of the original Zeilberger’s algorithm are also done.
Résumé. Nous montrons que la suite des équations linéaires aux différences du premier ordre pro-
duites par l’algorithme de Zeilberger peut être décrite de façon récursive. Chacune de ces équations
aux différences induit un système d’équations linéaires algébriques et lesdites relations de récurrence
peuvent être employées de façon à ce que les valeurs calculées pendant l’analyse du J-ème système
puissent être utilisées pour accélérer l’analyse du (J+1)-ème système. Nous faisons aussi une
implantation de ce résultat et une comparaison avec l’implantation originale de l’algorithme de
Zeilberger.

1. Introduction

Zeilberger’s algorithm, named hereafter as Z , has been shown to be a very useful tool in a wide range
of applications. These include finding closed forms of definite sums of hypergeometric terms, certifying large
classes of identities in combinatorics and in the theory of special functions [Z91, PWZ].

For a hypergeometric term (or simply a term) F (n, k), Z tries to find

(1.1) A0(n), . . . , AJ(n) ∈ K(n), AJ (n) 6= 0,

and a term S(n, k) such that

(1.2) AJ (n)F (n+J, k) + · · ·+A0(n)F (n, k) = S(n, k+1)− S(n, k).

The algorithm uses an item-by-item examination on the values of J . It starts with the value of 0 for
J , and keeps on incrementing J until it is successful in finding the A0, . . . , AJ and S(n, k) such that (1.2)
holds. For a particular value of J under investigation, Z constructs a system of linear algebraic equations
whose coefficients are in K(n), and its right hand side linearly depends on parameters A0, . . . , AJ . It then
checks for the existence of (1.1) such that the linear system is consistent (see [Z91, PWZ] for details). This
operation is expensive if the value of J is large.
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While the problem of applicability of Z to a term has been completely solved [A03], the issue of efficiency
is still an on-going work. For the case where the input term is also a rational function, there is a direct
algorithm [L03] which avoids the item-by-item examination strategy. For the non-rational hypergeometric
case, even though there is an algorithm which computes a non-trivial lower bound J0 for J [AL02], Z still
wastes resource on the fruitless examination at steps J0, J0 + 1, . . . , J − 1.

The examination done at each step is independent of that at other steps. However, there are relationships
between two consecutive steps, and it would be logical to try to utilize them. It is shown in this paper that
after we considered the system corresponding to step J and found that it is not consistent, we can use some
intermediate results of this step in order to either reduce the size of the linear system at step (J+1) or
simplify this system. In this context, “simplify” means the elimination of the parameters A0, . . . , AJ in a
number of equations of the (J+1)-th system.

Throughout the paper, K is a field of characteristic zero, N is the set of nonnegative integers. En, Ek

denote the shift operators w.r.t. n and k, respectively, defined by EnF (n, k) = F (n + 1, k), EkF (n, k) =
F (n, k + 1).

The basic idea of this work was presented in our poster at FPSAC 2003 [AL03]. In this paper, this idea is
further extended. The derivation of the relationships between two consecutive steps is significantly simplified.
A complete Maple implementation and an extensive experimental comparison with an implementation of
the original Zeilberger’s algorithm are added.

The Maple source code, the help page, and the test results reported in this paper are available, and can
be downloaded from

http://www.scg.uwaterloo.ca/~hqle/code/Linsys/Linsys.html.

2. Step-by-step examination in Z
2.1. Reduction to a linear algebra problem. For a term F (n, k) and for a particular value of J ∈ N,

set

(2.1) TJ(n, k) = AJ (n)F (n+ J, k) + · · ·+A1(n)F (n+ 1, k) +A0(n)F (n, k).

Z attempts to compute the Ai’s ∈ K(n) in (2.1) and a term S such that (1.2) holds. Since F is a term, TJ

is also a term [Z91]. This allows Z to use Gosper’s algorithm [G77] to attain its goal. Given the term TJ

in (2.1), Gosper’s algorithm determines if there exists a term SJ such that

(2.2) TJ = (Ek − 1)SJ ,

and computes SJ if it exists. The algorithm transforms (2.2) into the problem of computing a polynomial
solution of a first-order linear recurrence equation with polynomial coefficients and polynomial right hand
side (2.4). The process can be summarized as follows.

(1) Compute a PNFk (also known as Gosper form) of the rational k-certificate TJ(n, k + 1)/TJ(n, k).
This results in a triple (aJ , bJ , cJ), aJ , bJ , cJ ∈ K(n)[k] \ {0} such that

(2.3)
TJ(n, k + 1)

TJ(n, k)
=
aJ

bJ
· EkcJ
cJ

, gcd(aJ , E
h
k bJ) = 1 for all h ∈ N.

See [PWZ] for a description of such a construction.
(2) Find a polynomial solution y(k) of the linear recurrence

(2.4) aJ(k) y(k + 1)− bJ(k − 1) y(k) = cJ(k)

provided that such a solution exists.
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If it does, then set

LJ = AJ (n)EJ
n + · · ·+A1(n)En +A0(n),(2.5)

SJ =
bJ(k − 1) y(k)

cJ(k)
TJ .(2.6)

The computed Z-pair (LJ , SJ) defined in (2.5) and (2.6) is the output from Z . The recurrence operator LJ

is called a telescoper for the input term F .
The search for a polynomial solution y(k) of (2.4) can be done using the method of undetermined

coefficients. First one computes an upper bound d for the degree of the polynomial y(k). Then one substitutes
a generic polynomial of degree d for y(k) into (2.4), equates the coefficients of like powers in k. This results
in a system of linear algebraic equations. The problem is reduced to determining if this linear system is
consistent. If it is, then compute a solution of the system. Note that this enables one to compute not only
a polynomial solution y(k) in (2.4), but also the unknowns Ai’s in (2.1).

2.2. Simplificators and the J-increment of a system. The system of linear algebraic equations at
step J is of the form

(2.7) MJ xJ = uJ

where MJ is a ν × κ matrix whose entries are in the field K(n), and uJ is a column vector where each of its
ν entries is in the K(n)-linear space U and of the form

(2.8) R0A0 + · · ·+RJAJ , R0, . . . , RJ ∈ K(n).

We call the system (2.7) a J-parameterized system. If it is consistent, then the system is said to be J-solvable.
The following definition provides important concepts used in this paper.

Definition 2.1. For a J-parameterized system S of the form (2.7), a column vector yJ ∈ Uκ is a simplificator
of S if the first entry of uJ −MJ yJ is zero. The height of yJ is the number of all initial entries of uJ −MJ yJ

each of which equals zero. The J-increment of S is the number of all initial entries of uJ which do not
depend on A0, . . . , AJ−1.

Suppose the recognition of the J-solvability of system (2.7) is done by an elimination process. During
this process we can get an equation of the form

(2.9) 0 = R̃0A0 + R̃1A1 + · · ·+ R̃J−1AJ−1 + R̃JAJ , R̃i ∈ K(n).

Such an equation is called trivial if R̃0 = · · · = R̃J = 0; irregular if (R̃0 = · · · = R̃J−1 = 0 and R̃J 6= 0) or if

(R̃1 = · · · = R̃J = 0 and R̃0 6= 0); and regular otherwise. The existence of an irregular equation implies that
the system is not J-solvable.

Although the equations might change their orderings during the elimination process, we assign to each
equation a label which is the number of this equation in the original system, and hence are still able to
keep track of its position. The process results in two systems W and V : W is a trapezoidal system of
regular equations; and the equations of V are those obtained during the elimination process, but not of the
form (2.9).

If W is consistent with AJ 6= 0, A0 6= 0, then the original system is J-solvable. Otherwise, it is not
J-solvable, and we can construct a simplificator of the system as follows.

(i) Find the maximal N such that equations labeled 1, . . . , N are in V ;
(ii) For all i = 1, . . . , N , the unknown xi was eliminated by an equation with label j, 1 ≤ j ≤ N .

This results in a system V ′, a subsystem of V and consisting of equations labeled 1, . . . , N . The vector
(x1, . . . , xN , 0, . . . , 0)T is evidently a simplificator of height ≥ N of the original system.
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3. A simplification scheme

3.1. Relationships among J-parameterized systems. Let F (n, k) be the input term. At step J of
the item-by-item examination, Z tries to compute a telescoper LJ of the form (2.5) for F . The k-certificate
(EkTJ)/TJ of the term TJ(n, k) = LJ F can be written in the form

(3.1)
vJ (n, k)

wJ(n, k)
=
ϕJ (n, k)

ψJ (n, k)

pJ(A0, . . . , AJ , n, k + 1)

pJ(A0, . . . , AJ , n, k)

where vJ , wJ ∈ K[n, k]; ϕJ (n, k), ψJ (n, k) ∈ K[n, k] and do not depend on A0, . . . , AJ ; pJ is in the K(n, k)-
space of linear forms in A0, . . . , AJ .

Let s1(n, k), s2(n, k) be relatively prime polynomials such that

F (n, k)

F (n− 1, k)
=
s1(n, k)

s2(n, k)
.

Then we can derive the following recurrences:

pJ+1(A0, . . . , AJ+1, n, k) = pJ(A0, . . . , AJ , n, k) s2(n+ J + 1, k) +

AJ+1

J+1∏

i=1

s1(n+ i, k),(3.2)

ϕJ+1(n, k) = ϕJ (n, k) s2(n+ J + 1, k),(3.3)

ψJ+1(n, k) = ψJ(n, k) s2(n+ J + 1, k + 1).(3.4)

(They are similar to (6.3.6)–(6.3.8) in [PWZ].) Let

(3.5) PNFk

(
ϕJ

ψJ

)
=
aJ(k)

bJ(k)

ξJ (k + 1)

ξJ(k)
.

It follows from (3.3), (3.4) and (3.5) that

aJ(k) = a0(k)
s2(n+J, k) · · · s2(n+1, k)

s2(n+J, k + 1) · · · s2(n+1, k+1)

ξ0(k+1)

ξ0(k)

ξJ (k)

ξJ (k+1)

bJ(k)

b0(k)
.(3.6)

Let a, b be polynomials in k. Define

Ga(k),b(k) = a(k)Ek − b(k − 1).(3.7)

By (3.6) and (3.7), we obtain the following theorem which shows the relationsips between GaJ (k),bJ (k) and
GaJ+1(k),bJ+1(k).

Theorem 3.1. The operators GaJ (k),bJ (k) and GaJ+1(k),bJ+1(k) for J ∈ N are related by the following recur-
rence:

(3.8) GaJ (k),bJ (k) =

ξJ (k)

s2(n+J+1, k)ξJ+1(k)
GaJ+1(k),bJ+1(k) ◦

s2(n+J+1, k)ξJ+1(k)bJ(k−1)

ξJ (k)bJ+1(k−1)
.

3.2. Polynomial simplification. At step J of the item-by-item examination, it follows
from (2.4) and (3.7) that the recurrence

(3.9) GaJ (k),bJ (k)y(k) = cJ(k)

where cJ(k) = ξJ (k)pJ (k), J ∈ N, is considered. By (3.2)

(3.10) cJ+1(k) =
ξJ+1(k)

ξJ (k)
s2(n+ J + 1, k)cJ(k) + ξJ+1(k)AJ+1

J+1∏

i=1

s1(n+ i, k).
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If the right hand side cJ(k) of the J-th recurrence (3.9) is simplified by means of a polynomial fJ(k), then
it gets transformed to c′J(k) where

(3.11) c′J(k) = cJ (k)−GaJ (k),bJ (k)fJ(k), degk cJ > degk c
′
J .

It follows from (3.2), (3.8) and (3.11) that if we replace cJ(k) by c′J(k) in the right hand side of (3.10), then

the first term ξJ+1(k)
ξJ (k) s2(n+ J + 1, k)c′J(k) of this right hand side equals

ξJ+1(k)s2(n+J+1, k)pJ(k)−GaJ+1,bJ+1

s2(n+J+1, k)ξJ+1(k)bJ(k−1)

ξJ(k)bJ+1(k−1)
fJ(k).

This induces the change of cJ+1(k) by c̃J+1(k) where

(3.12) c̃J+1(k) = cJ+1(k)−GaJ+1,bJ+1

s2(n+ J + 1, k)ξJ+1(k)bJ (k − 1)

ξJ(k)bJ+1(k − 1)
fJ(k).

Once a polynomial gJ+1(k) is found such that for

c′J+1(k) = c̃J+1(k)−GaJ+1,bJ+1gJ+1(k),

we have degk c
′
J+1 < degk cJ+1. Then the right hand side cJ+1(k) of the (J+1)-th recurrenceGaJ+1(k),bJ+1(k)y(k) =

cJ+1(k) will be simplified by means of the polynomial fJ+1(k) where

fJ+1(k) =
s2(n+ J + 1, k)ξJ+1(k)bJ (k − 1)

ξJ(k)bJ+1(k − 1)
fJ(k) + gJ+1(k).

Let degk cJ − degk c
′
J = HJ > 0. Let the two terms in the right hand side of (3.10) be R and S, i.e.,

R =
ξJ+1(k)

ξJ(k)
s2(n+ J + 1, k)cJ(k), S = ξJ+1(k)AJ+1

J+1∏

i=1

s1(n+ i, k).

Note that S is independent of A0, . . . , AJ . By comparing the degrees of R and S in (3.10), we obtain the
following theorem which reflects changes to the (J+1)-system because of the replacement of cJ by c′J .
Theorem 3.2. Suppose it is recognized that the J-system of the
form (2.7) is not J-solvable, and that a simplificator yJ(k) of height HJ > 0 for this system is computed.

(1) degk S > degk R: let σJ , σJ+1 be the J-increment of the J-system, and the (J+1)-increment of the
(J+1)-system, respectively. Then

σJ+1 = degk S − degk R+ max{HJ , σJ},
i.e., if HJ > σJ then the (J+1)-increment of the (J+1)-system is increased, and we have a simpler
(J+1)-system;

(2) degk S ≤ degkR: the degree of cJ+1 w.r.t. k is decreased by min{HJ , degk R− degk S}. This leads
to a system of linear algebraic equations of smaller size to be solved.

4. Implementation

We implemented the result of this paper in the computer algebra system Maple [M], and performed
experiments of our program (calledM) on four different sets of data. A comparison between this implementa-
tion and the one of the originalZ (called Z) in Maple 9 (the function Zeilberger in the SumTools:-Hypergeometric
module) was also done. Note that the development of M is based on Z.

The result shows that it is worthwhile incorporating the simplification scheme presented in this paper
into Z .
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Experiment 4.1. The first set of input consists of seven hypergeometric terms

Ti(n, k) =

(
2n

2 k

)i

, 2 ≤ i ≤ 8.

Table 1 shows the time and space requirements1. ordLi indicates the order of the computed minimal
telescoper Li of the input term Ti.

Table 1. First experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

2 2 0.54 0.54 2,977 2,959
3 3 3.57 2.81 18,168 15,335
4 4 31.24 23.35 179,221 132,859
5 5 199.40 142.13 1,021,542 762,488
6 6 1,523.86 1,242.03 6,429,441 4,902,558
7 7 8,563.81 6,205.83 28,326,178 18,530,142
8 8 42,122.52 36,917.47 92,161,603 66,414,167
Total time 52,444.94 44,534.16

Each input term in the following three sets of data is an r-term [A03]. Since every hypergeometric term
is conjugate to an r-term, i.e., they share the same rational certificates, and since Z in principal only works
with the certificates of the input term, the sets of data we use can be considered to cover all possible forms
of input hypergeometric terms.
Experiment 4.2. The second set of tests consists of twenty randomly-generated hypergeometric terms each
of which is of the form

Ti(n, k) =
1

(ai n+ bi k + ci)!
, −15 ≤ ai, bi, ci ≤ 15, |bi| ≥ 6.

Table 2 shows the time and space requirements.
Experiment 4.3. The third set of tests consists of twenty randomly-generated hypergeometric terms each
of which is of the form

Ti(n, k) =
(ai1n+ bi1k + ci1)

(ai3n+ bi3k + ci3)

(ai2n+ bi2k + ci2)!

(ai4n+ bi4k + ci4)!

where −5 ≤ aij , bij , cij ≤ 5, 1 ≤ j ≤ 4. Table 3 shows the time and space requirements.
Experiment 4.4. The fourth set of tests consists of twenty randomly-generated hypergeometric terms each
of which is of the form

Ti(n, k) =
(ai1n+ bi1k + ci1)! (ai2n+ bi2k + ci2)!

(ai3n+ bi3k + ci3)! (ai4n+ bi4k + ci4)!

where −6 ≤ aij , bij , cij ≤ 6, 1 ≤ j ≤ 4. Table 4 shows the time and space requirements.
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Table 2. Second experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M
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6 6 15.23 14.45 79,553 70,003
7 8 34.68 16.30 173,941 105,203
8 3 1.99 1.46 10,592 9,270
9 10 3,163.60 1,369.30 7,799,715 5,418,995
10 6 79.05 65.70 342,584 287,447
11 15 14,558.05 4,568.70 23,774,518 14,933,116
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[PWZ] M. Petkovšek, H. Wilf, D. Zeilberger. A=B. A.K. Peters, Wellesley, Massachusetts, 1996.
[Z91] D. Zeilberger. The method of creative telescoping. Journal of Symbolic Computation 11 (1991) 195–204.

Dorodnicyn Computing Centre, Russian Academy of Sciences, Vavilova 40, 119991, Moscow, GSP-1, Russia
E-mail address: abramov@ccas.ru

Algorithms Project, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France
E-mail address: ha.le@inria.fr



36 SYSTEMS GENERATED BY ZEILBERGER’S ALGORITHM

Table 3. Third experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

1 7 251.94 213.26 1,149,488 1,105,805
2 6 362.69 259.91 1,744,877 1,258,468
3 2 0.89 0.78 4,529 4,184
4 6 41.57 31.33 214,770 180,945
5 4 21.26 13.89 106,702 72,569
6 8 261.54 185.26 1,426,237 902,509
7 6 87.39 49.76 449,139 285,798
8 5 98.97 63.83 527,146 308,765
9 9 740.47 708.66 3,580,681 3,488,491
10 5 5.36 4.39 24,382 22,782
11 2 0.70 0.58 3,661 3,380
12 5 61.74 48.81 301,470 251,228
13 4 14.08 11.54 76,225 67,605
14 8 1,191.93 1,098.12 5,615,755 5,450,072
15 8 2,424.06 2,157.03 9,813,850 9,280,051
16 8 1,470.97 1,185.56 7,071,945 5,827,483
17 7 1.60 1.51 7,987 7,864
18 1 0.71 0.52 3,966 3,093
19 6 180.37 145.82 778,584 673,263
20 5 7.88 7.74 43,221 39,400
Total time 7,226.12 6,188.30
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Table 4. Fourth experiment: time and space requirements of Z and M

i ordLi Timing (seconds) Memory (kilobytes)
Z M Z M

1 9 17.19 10.80 89,010 66,383
2 8 529.95 433.59 2,434,037 1,954,207
3 7 74.33 46.76 453,495 301,637
4 8 323.57 258.28 1,354,762 1,200,625
5 6 184.65 135.11 996,090 786,864
6 9 2,934.08 1,221.24 14,901,781 5,977,105
7 7 223.33 190.57 1,081,266 910,766
8 9 9,338.72 7,982.59 31,056,490 28,264,207
9 6 52.94 37.09 239,317 164,542
10 7 308.47 236.07 1,506,582 1,171,261
11 7 2,070.33 709.82 10,329,829 3,364,322
12 4 14.13 11.44 79,847 62,823
13 9 1,865.57 1,712.06 9,582,506 8,528,627
14 7 50.60 40.76 269,926 216,128
15 7 171.14 138.65 823,582 674,723
16 6 39.51 30.28 211,825 175,698
17 8 943.22 690.12 5,363,613 3,628,208
18 5 89.86 59.02 446,246 307,635
19 11 17,514.39 16,398.59 63,496,067 58,960,912
20 6 133.81 88.30 643,233 473,633
Total time 36,879.79 30,431.14
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Bounds For The Growth Rate Of Meander Numbers
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Abstract. We provide improvements on the best currently known upper and lower bounds for the
exponential growth rate of meanders. The method of proof for the upper bounds is to extend the
Goulden-Jackson cluster method.

Limites au taux de croissance des nombres de méandres

Résumé. Nous fournissons des améliorations aux meilleures bornes supérieures et inférieures
actuellement connues pour le taux de croissance exponentiel des méandres. La méthode de preuve des
bornes supérieures nécessite une extension de la méthode des “grappes” due à Goulden et Jackson.

1. Introduction

A meander of order n is a self-avoiding closed curve crossing a given line in the plane at 2n places,
[LZ93]. Two meanders are equivalent if one can be transformed into the other by smooth deformations of
the plane, which leave the line fixed (as a set). A number of authors have addressed the problem of exact
and asymptotic enumeration of the number Mn of meanders of order n (see for instance [FE02, Jen00] and
references therein). It is widely believed that an asymptotic formula

Mn ≈ CMnnα

applies, and some effort has been devoted to estimating the parameters M and α ([DF00, DFGG00,
DFGJ00, JG00]). Broadly, these methods have relied on extrapolation from exact values of Mn, currently
known for n ≤ 24 (see [JG00]). A careful estimate, using differential approximants based on these values,
yields [JG00] the approximate value

M ' 12.26287.

A presumed correspondence with certain field theories has yielded the amazing conjecture [DFGG00] that:

α =
√

29(
√

29 +
√

5)/12 = 3.42013288 . . . .

Our, less ambitious, aim will be to provide rigorous upper and lower bounds on the exponential growth rate
of Mn.

Consider the generating function:

M(t) =

∞∑

n=0

Mnt
2n.

It is easy to verify that Ma+b ≥ MaMb and so it is certainly the case that M := limn→∞M
1/n
n exists,

and is the square of the reciprocal of the radius of convergence of this series. We will prove:
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Figure 1. The meander URULDD.

Theorem 1.1. The following inequalities hold:

11.380 ≤M ≤ 12.901.

These bounds improve (on both sides) the best previous bounds due to Richard Stanley (M > 10.0)
[1995, private communication] and Jim Reeds and Larry Shepp (M ≤ 13.002) [1999, unpublished].

Our basic methodology is to represent meanders as a language over an alphabet consisting of four
symbols. The bounds are then obtained by producing suitable sublanguages and superlanguages for which
the growth rates can be computed explicitly. In principle our bounds could be improved by more detailed
construction of these languages, and we include some indication in the final section of how much further
progress might be possible by such means.

2. Definitions and notation

We begin by providing a combinatorial description of meanders which allows us to identify them with a
language over a four letter alphabet. This interpretation is similar to the description of meanders by means
of “configurations” in [Jen00].

Set the orientation of the line which the meander crosses as vertical. We allow a meander to evolve as
we move upwards along the line. Each step in this evolution is marked by a place where the meander crosses
the line, and we allow these crossings to be of four types: U where a new segment of the meander is created,
D where two previous segments are merged into one (or as a final step the meander is completed), and R or
L where a segment crosses the line from left to right, or right to left respectively. Figure 1 illustrates this
encoding of meanders.

The meander language, M, is the set of words in these four letters that represent meanders. It is
immediately clear that distinct words in the meander language represent distinct meanders, and only slightly
less clear that every meander is represented by a single word in the meander language.

We digress briefly to recapitulate some standard notation and terminology concerning words and lan-
guages. A word is simply a finite sequence of symbols from some alphabet Σ. This sequence may be empty,
and the empty word is denoted ε. The set of all words over Σ is denoted Σ∗ and can be identified with the
free monoid over Σ by considering juxtaposition as the monoid operation. So, a word v is said to be a factor
of a word w if w = xvy for some words x and y. If we can take x = ε then we say that v is a prefix of w while
if we can take y = ε then we say that v is a suffix of w. A language over Σ is simply a subset of Σ∗. The ()∗

notation is extended to languages, or even words, so that X∗ simply means the language which consists of
all possible juxtapositions (including the empty one) of elements of X . The length of a word w, that is, the
number of symbols in the sequence w, is denoted |w|. Hence Mn, the number of meanders with 2n crossings
is simply the number of words inM of length 2n (since each symbol in a meander word accounts for a single
crossing).
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U
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D

L

Figure 2. URDL has no effect on the environment

In our interpretation of meanders it makes sense to speak of the environment that exists as we scan
prefixes of a word. This environment is simply the collection of segments in their appropriate order on either
side of the line. Further, we adopt the convention that when two segments are merged, the newly merged
segment is identified in the environment with the older of the two (in a meander the only time we will merge
two segments of the same age is at the final D).

Sometimes it is useful to imagine that we have available an extended environment consisting initially
of an infinite family of labelled and completely unmatched segments on either side of the line. This allows
the effect of any word to be interpreted within this environment. For our purposes, words whose only effect
is to shift some segments from one side of the line to the other are particularly significant. In Figure 2 we
illustrate how the factor URDL has no effect on the surrounding environment. In particular this means that
if w = uv is a meander, and if the environment following u contains a segment to the left of the line, then
uURDLv is also a meander. On the other hand, it is also clear that no meander (aside from UD) can have
UD as a factor, and so neither can it have UURDLD as a factor. From observations of the former kind we
obtain sublanguages of M by building up words which must be meanders. From observations of the latter
kind we obtain superlanguages ofM by requiring words to avoid certain factors.

Throughout the remaining sections we identify languages over U , D, R, L with their generating function
in the power series ring over U , D, R, L. Generally we work in this context to obtain relationships between
(the generating functions of) various languages, and then specialize to a single variable t when we wish to
obtain numerical estimates.

3. Shifts and lower bounds

Consider a state of the extended meander environment, such as might be achieved after executing some
prefix p of a meander word. There are now various continuations which will have the same effect on the
environment as Rk would for some k. Trivially any sequence of R’s and L’s which has k more R’s than L’s
is such a continuation. However, it is also the case that URD has the same effect on the environment as R,
and UURRDD has the same effect as RR. Furthermore these constructions can be recursively combined
and therefore:

U(UURRDD)LD

has the same effect as URRLD, hence as URD and finally as R.
Definition 3.1. A shift is a word whose effect on the extended meander environment is the same as that of
Rk or Lk for some non-negative integer k. The displacement of a shift is k in the former case, and −k in the
latter. A jump is a shift having no proper shift prefix1. A shift whose only proper shift factors are in R∗ or
L∗ is called primitive.

1We apologize to the sensitive reader for using “shift” both as a noun and an adjective
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Figure 3. URUL3DRD is a jump of displacement −1.

The simplest jumps are R and L. Next simplest are URD and ULD. A rather more complicated
example is shown in Figure 3.

Every shift can be uniquely factored as a concatenation of jumps. In turn, every jump is created from
some (uniquely determined ) primitive shift by substitution of shifts for the blocks of R’s and L’s within the
primitive shift. For example UUURRDDLD is created from URD by substituting UURRDDL (a shift of
displacement 1 formed from a jump of displacement 2, and one of displacement −1) for R.

If J is the language of all jumps and S the language of all shifts, then of course

(3.1) S = J ∗ =
1

1−J .

Introducing a new indexing variable x which commutes with the symbols of the language, and letting Ji (or
Si) be the language of jumps (or shifts) of displacement i, we have slightly more generally that:

∞∑

i=−∞
Six

i =
1

1−∑∞i=−∞ Jixi
.

Suppose that J is some primitive jump. Then the set of all jumps with primitive form J is obtained by
replacing each (possibly null) block of L’s or R’s between consecutive occurrences of U or D by Sk where
k is the displacement of the block. Denote the result of this replacement by JS . Then Ji is the sum over
primitive jumps J of displacement i of the terms JS .

Let si(t) be the generating function obtained from Si by replacing all of U , D, L, and R by t. Since

t2is0 < tisi < s0

all of the functions si have the same radius of convergence.
Proposition 3.2. The radius of convergence of s0 is not greater than that for the meander language.

Proof. The result follows from the observation that M(t) ≤ t2s0, since every meander is of the form
USD where S is a shift of displacement 0. �

It seems clear that among all the shift words of length 2n only a vanishingly small proportion contain a
prefix with a difference of at least n3/4 between the numbers of R’s and L’s (here n3/4 is an arbitrary value
– larger than

√
n, by correspondence with a 1-dimensional drunkard’s walk). Any such shift could then be

built into a meander of 2n(1+ o(1)) crossings. This would establish that the shift language and the meander
language have the same radius of convergence. The proof of this result is too involved to present here, but
will appear in the full paper.

For our immediate computational purposes though it is superfluous as our shifts will be built up recur-
sively from a set of primitive shifts whose excursions to the left or the right are of bounded size. Since we
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work with a symmetric (in R and L) set of shifts, the argument above then applies correctly to this situation.
This observation is explained further at the end of subsection 6.1.

4. The cluster method

The cluster method is a method of enumerating words with a given finite set of forbidden factors. It was
introduced in this form in [GJ79] and is also discussed in [GJ83]. Extensions of the cluster method are
given in [NZ99] to handle certain cases where the forbidden set of factors is infinite. We need to supply a
similar extension in an even more general setting.

Let Σ be an alphabet, and B a subset of Σ+ (the non-empty words over Σ). We are concerned with
the language consisting of those words which have no factor from B, the B-factor-free words, that is the
complement in Σ∗ of Σ∗BΣ∗. If b is a factor of c and b does not occur as a factor of some word w, then of
course neither does c. So, for any B, the B-factor-free words are the same as the B′-factor-free words, where
B′ consists of the minimal elements of B in the factor ordering. Therefore we assume throughout that no
word b ∈ B is a proper factor of any other word in B.

Define the set of overlaps, Ov(B) to be the collection of all triples (b, w, c) such that b, c ∈ B, w ∈ Σ+,
such that b 6= c and for some bl and cr, b = blw and c = wcr. Note that, owing to the assumption above,
neither bl nor cr can be the empty word. The system of equations:

(4.1) vb = b−
∑{

blvc : (b, w, c) ∈ Ov(B), b = blw
}

for b ∈ B
has a unique solution in the power series ring Q[[Σ]].

The following theorem generalises (to the case of infinite B and non-commuting variables) a specialisation
(to the case of forbidding all occurrences of B rather than determining the type of the occurrences of B in a
word) of Theorem 2.86 in [GJ83], often called the Goulden-Jackson cluster method. In [Zei02] an informal
treatment of an equivalent method can also be found. A full generalisation of the original theorem could be
obtained by adding tagging variables yb (commuting with each other and with Σ) to the system (4.1), but
the version below is adequate for our purposes.
Theorem 4.1. The generating function over Q[[Σ]] of Σ∗ \ Σ∗BΣ∗ is:

(
1− Σ +

∑

b∈B
vb

)−1

where {vb : b ∈ B} are defined by (4.1).

Proof. The proof of this theorem can be read off from the proof of the theorem cited above. However,
at least in this form, it is really simply a restatement of the principle of inclusion/exclusion. Define a B-
marking of a word w in Σ∗ to be a specific identification of certain factors of w which belong to B (not
necessarily any or all such factors). If we assign the value (−1)kw to each B-marking of w in which k factors
from B are marked then the sum over all the B markings of a word w will be 0 if w contains a B-factor,
and w if it does not. By considering the expression above as a geometric series it is easy to see that the
coefficient of w is exactly this sum over B-markings of w, and hence the expression represents the generating
function of B-factor-free words. �

As remarked in [Zei02], in the case of infinite structureless B this does not give an equation for the
generating function in any usual sense. However, in our application below, the language B will carry sufficient
structure that we can make effective use of Theorem 4.1.

Note that if we turn to the ordinary generating function for the language of B-factor-free words, then
its radius of convergence is the smallest positive root of the equation:

1− |Σ|t+
∑

b∈B
vb(t)
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where we also have:

vb(t) = t|b| −
∑{

t|b
l|vc(t) : (b, w, c) ∈ Ov(B), b = blw

}
for b ∈ B.

Remark 4.2. In general it is not the case that the system of linear equations defined above has the required
property to allow an iterative solution after specializing to a single variable, even if the value chosen for the
variable lies inside the radius of convergence of the series which form its solution in Q[[t]]. This fails, for
example, in the case B = {aaa, aba} over the alphabet {a, b}.

5. Submeanders and upper bounds

We now apply the results of the preceding section in order to obtain upper bounds on the exponential
growth rate of the meander language M. Ideally, the language of forbidden words which we would like to
consider consists of all words which define some closed loop, or submeander. That is, a word is forbidden
if it is of the form U · · ·D where the final symbol closes off the pair of segments created by the initial one.
Let B be the language of such words. If an element of B occurs as a proper factor of a word m then m 6∈ M.
It is clear though that the growth rates for the languages of B-factor-free words and proper B-factor-free
words are the same, so we do not need to worry about that distinction. Henceforth we fix the alphabet
Σ = {U,D,R,L}.

The shortest word in B is UD. However, this single word is really a representative of a much wider family
of forbidden words. Among these are URLD, and UURDLD. Generally if S is any shift of displacement
0, then USD is a forbidden word. It is worth noting that there is no requirement that the words in B be
balanced with respect to U and D. For example, the word URULLD is in B, since the final D forms a
submeander with the original U , and so if this word occurs as a factor of some longer word w then w cannot
represent a meander.

There is an equivalence relation defined on words by taking the transitive closure of the relation obtained
by allowing the replacement of a shift, by any other shift of the same displacement. Each equivalence class of
this relation contains a representative with the property that any maximal shift factor lies in L∗ or R∗. Let
us call these representatives the standard representatives of their classes. Note also that B is closed under
this equivalence relation.
Lemma 5.1. Let a word w be given. Its standard representative is obtained by replacing the maximal shift
factors of w by blocks of L’s or R’s of the same displacement.

Proof. This follows immediately from the observation that two shift factors of w cannot overlap unless
their overlap is also a shift. This is because a proper suffix of a shift which is not a shift and begins with U
contains more D’s than U ’s, and no prefix of a shift word has this property. Since shifts are closed under
concatentation, the maximal shift factors of w are disjoint and properly separated, and so the standard
representative is obtained in the manner described. �

Using this result we obtain:
Proposition 5.2. Let b, c ∈ B have an overlap w. Then the standard representatives of b and c also have
an overlap, which is the image of w under the replacement described in Lemma 5.1.

Proof. The word w has the form UuD. Moreover in b the terminal D closes the segments formed by
the initial U of b so, interpreted in isolation, it does not close any segment created within u and so cannot
be part of any shift factor of w. The same idea applies to the observation that the initial U of c is matched
by its final D and so shows that the original U of w can also not be part of any shift factor of w. So the
shift factors of b and c which occur within w, occur within u. Therefore the reduction of Lemma 5.1 affects
w in the same way in both b and c. �
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Let Brep be the sublanguage of B consisting of the standard representatives of the elements of B. For
any word w let w̄ be the generating function of its equivalence class. Now consider a modification of the
system of equations (4.1)

(5.1) xb = b̄−
∑{

b̄lxc : (b, w, c) ∈ Ov(Brep), b = blw
}

for b ∈ Brep.

Then, it follows directly from Proposition 5.2 that:
∑

b∈B
vb =

∑

b∈Brep

xb

(where vb is defined by the system of equations (4.1)).
Thus we may use the latter form in computations arising from Theorem 4.1. For instance, we could

use a finite subset of the original language B, and also place some restrictions on the shift words used in
constructing w̄ from w.

For example, take as forbidden language B0, the single forbidden word UD, and its expansions USD
where S ∈ {R,L}∗ has displacement 0. Then the generating function for B0-factor-free words is:

1

1− 4t+ t2√
1−4t2

.

The radius of convergence of this generating function is the smallest positive solution of

65t4 − 32t3 − 12t2 + 8t− 1 = 0

whose approximate value is 0.272054. Since B0 represents a subset of the actual words forbidden to appear
as factors in a meander word, this gives an upper bound of 13.5111 on M .

In the next section we will describe in greater detail how these results can be used to provide bounds
for M in situations where we cannot analytically solve the equations for the radius of convergence.

6. Computational methodology

In this section we give an overview of the computational methods used to evaluate lower and upper
bounds on M .

6.1. Lower bounds. In computing lower bounds on the exponential growth rate for the meander
generating function, we attempt to construct a generating function based on a subset of the set of shifts, built
up from a subset of the primitive jumps. Generally, we make use of all the primitive jumps containing at most
some preset number of symbols. These are constructed by simulating the extended meander environment
and carrying out a depth-first search. The only extra information which must be maintained is a record of
the new segments present when each U occurs. This must then be compared to the D which eliminates the
segment created by the U in order to ensure that the only shift factors are in L∗ and R∗.

The results quoted below are for primitive jumps containing a maximum of 24 symbols. There are
875,938 such primitive jumps with non-negative displacement. On the other hand, there are only 25,264 of
length at most 20, and only the following 13 of length at most 10:

URD, UURRDD, UULLDRRD, UURRDLLD, ULLURRDD,

URRULLDD, UUURRRDDD, ULURRRDLD, ULUURRDRDD,

URRULLDRRD, UURURRDDLD, UULURRRDDD, UUURRRDLDD.

The basic computational scheme employed is a simple iterative one. We establish at the outset an
arbitrary bound on the number of jumps which will be concatenated to form a shift (in practice 50 is more
than adequate). Then we take an existing set of jumps and compute a new set of shifts by concatenating



46 GROWTH OF MEANDER NUMBERS

them in this way. These new shifts are in turn substituted into our supply of primitive jumps in order to
compute a new set of jumps and so on.

All of this is handled numerically by passing at the outset to generating functions in a single variable t
(which replaces each of the letters of the meander alphabet). For a fixed real value of t we can then carry out
the computation described above. If the value of t lies outside of the radius of convergence of the generating
function then the iteration will diverge. It is easy to establish strict divergence criteria for this iteration.
For example, the RHS of the equation defining s0 dominates the one which would define an ordinary one-
dimensional drunkard’s walk, that is, 1 + t2s20. In particular, if ever s0 > 1/t2 then each successive iteration
must increase s0 by at least 1, and hence divergence is established. We can make use of a loose convergence
criterion (no divergence through some fixed number of iterations), since lower bounds on M are determined
by upper bounds on the radius of convergence of the generating function. Then a simple binary search on t
allows us to determine rigorous upper bounds on the radius of convergence for s0(t).

Using jumps of length up to 24, we obtain an upper bound for the radius of convergence of s0(t) of
0.296431. This translates to a lower bound of 11.38 on M .

Given that our supply of primitive jumps is finite, there is a bound on the displacement of each jump.
Using this it is possible to compute exact values for shifts made up of arbitrarily many such jumps using
standard techniques from the enumeration of drunkard’s walks. In practice this scheme suffers from a number
of drawbacks. First, it is computationally much more expensive and complex than the simple iteration.
Second, the results obtained are not significantly better than those obtained by simple iteration since the
dominant terms for shifts will in any case be composed of relatively few jumps. Finally, allowing arbitrarily
many jumps per shift would require verification that almost all such shifts still remain within the meander
context. Since our primitive shifts are of bounded displacement, we can guarantee that the excursions away
from the original centre of the meander context are “not large” except in a vanishing proportion of cases,
and so almost all of the words which we (implicitly) enumerate through the recursive scheme are legitimate.

6.2. Upper bounds. In producing upper bounds for the growth rate of meander numbers we begin
from a set B of standard representatives of words creating a submeander. Again, the most straightforward
approach is simply to list all such words up to some predefined length. Doing this again involves a depth-first
search in the extended meander environment. This time we must check that the final D joins the segments
formed by the initial U , that no earlier D creates a sub-meander, and that no jumps occur as subwords other
than L and R. All these tests are easily implemented within the meander environment.

After passing to a single variable t we use equation (5.1) in order to compute the quantities xb. Rather
than solving this large (but relatively sparse) system exactly we may use a simple iterative scheme since it
is easily checked that for values of t in the range we are interested in there are no eigenvalues of the matrix
representing the summations on the RHS of this equation whose modulus is greater than or equal to 1.
Convergence is therefore guaranteed, with error bounds decreasing by a constant factor on each iteration.
Having computed the values xb, all that is necessary is to evaluate the sign of

1− 4t+
∑

b∈B
xb(t)

in order to determine whether t lies above or below the radius of convergence (below if the sign is positive,
above if it is negative). Again a simple binary search can now be used to estimate the radius of convergence,
and hence an upper bound on the exponential growth of the meander numbers.

Using the 20509 words of length 16 which are standard representatives of words creating a submeander
for B produces an estimate of 0.2784 for the radius of convergence of B-factor-free words, and hence an upper
bound of 12.901 on M .
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Lower bounds Upper bounds

10 10.749 6 13.171
12 10.928 8 13.086
14 11.023 10 13.018
16 11.114 12 12.970
18 11.188 14 12.931
20 11.249 16 12.901
22 11.301
24 11.380

Table 1. Lower and upper bounds on M based on maximum length of jumps, and submeanders.

7. Summary and conclusions

Obviously the methods which we have applied could be extended to obtain better bounds through
more extensive computation using longer words as primitive jumps, or as the standard representatives of
submeander words. Some indication of how far this might or might not progress is shown in Table 1.

A simple extrapolation based on this data suggests a limiting lower bound of approximately 11.6, and an
upper bound of approximately 12.8. However, the final lower bound which we have computed (from jumps
up to length 24) represents a better than expected improvement on the previous value. Put another way,
there are more jumps of length 24 than one would expect based on simple extrapolation of previous values.
So, it may be that better improvements on the lower bound are possible.
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Séries Formelles et Combinatoire Algébrique
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The Bergman Complex of a Matroid and Phylogenetic Trees

Federico Ardila and Caroline J. Klivans

Abstract. We study the Bergman complex B(M) of a matroid M : a polyhedral complex which
arises in algebraic geometry, but which we describe purely combinatorially. We prove that a natural
subdivision of the Bergman complex of M is a geometric realization of the order complex of its

lattice of flats. In addition, we show that the Bergman fan
�

B(Kn) of the graphical matroid of the
complete graph Kn is homeomorphic to the space of phylogenetic trees Tn.

1. Introduction

In [1], Bergman defined the logarithmic limit-set of an algebraic variety in order to study its exponential
behavior at infinity. We follow [15] in calling this set the Bergman complex of the variety. Bergman
conjectured that this set is a finite, pure polyhedral complex. He also posed the question of studying the
geometric structure of this set; e.g., its connectedness, homotopy, homology and cohomology. Bieri and
Groves first proved the conjecture in [2] using valuation theory.

Recently, Bergman complexes have received considerable attention in several areas, such as tropical
algebraic geometry and dynamical systems. They are the non-archimedean amoebas of [7] and the tropical
varieties of [15, 13]. In particular, Sturmfels [15] gave a new description of the Bergman complex and an
alternative proof of Bergman’s conjecture in the context of Gröbner basis theory. Moreover, when the variety
is a linear space, so the defining ideal I is generated by linear forms, he showed that the Bergman complex
can be described solely in terms of the matroid associated to the linear ideal.

Sturmfels used this description to define the Bergman complex of an arbitrary matroid, and suggested
studying its combinatorial, geometric and topological properties [15]. The goal of the paper is to undertake
this study.

In Section 2 we study the collection of bases of minimum weight of a matroid. We show that this
collection is itself the collection of bases of a matroid, and we give several descriptions of it.

In Section 3 we prove the main result of the paper. We show that, appropriately subdivided, the Bergman
complex of a matroid M is the order complex of the proper part of the lattice of flats LM of the matroid.
These order complexes are well-understood objects [4], and an immediate corollary of our result is an answer
to Bergman’s questions about the geometry of B(M) in this special case. The Bergman complex of an
arbitrary matroid M is a finite, pure polyhedral complex. In fact, it is homotopy equivalent to a wedge of
(r − 2)-dimensional spheres, where r is the rank of M .

In Section 4, we take a closer look at the Bergman complex of the graphical matroid of the complete graph

Kn. We show that the Bergman fan B̃(Kn) is exactly the space of ultrametrics on [n], which is homeomorphic
to the space of phylogenetic trees as in [3]. As a consequence, we show that the order complex of the partition
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lattice Πn is a subdivision of the link of the origin of this space. This provides a new explanation for the
known result that these two simplicial complexes are homotopy equivalent [11, 16, 17, 18, 19].

Finally, in the appendix, we review some matroid theory which we will use throughout the paper. For
a more thorough introduction, we refer the reader to [9].

2. The bases of minimum weight of a matroid

Let M be a matroid of rank r on the ground set [n] = {1, 2, . . . , n}, and let ω ∈ Rn. Regard ω as a weight
function on M , so that the weight of a basis B = {b1, . . . , br} of M is given by ωB = ωb1 + ωb2 + · · ·+ ωbr .

Let Mω be the collection of bases of M having minimum ω-weight. This is one of the central objects
of our study, and we wish to understand it from three different points of view: geometric, algorithmic and
matroid theoretic.

Geometrically, we can understand Mω in terms of the matroid polytope. We will use the following charac-
terization of matroid polytopes, due to Gelfand and Serganova:
Theorem 2.1. [6, Theorem 1.11.1] Let S be a collection of r-subsets of [n]. Let PS be the polytope in Rn

with vertex set {eb1 + · · · + ebr | {b1, . . . , br} ∈ S}, where ei is the i-th unit vector. Then S is the collection
of bases of a matroid if and only if every edge of PS is a translate of the vector ei − ej for some i, j ∈ [n].

Let PM be the matroid polytope of M . We can now think of ω as a linear functional in Rn. The bases
in Mω correspond to the vertices of PM which minimize the linear functional ω. Their convex hull is PMω ,
the face of PM where ω is minimized. It follows that the edges of PMω , being edges of PM also, are parallel
to vectors of the form ei − ej . Therefore Mω is the collection of bases of a matroid.

Algorithmically, matroids have the property that their ω-minimum bases are precisely the possible outputs
of the greedy algorithm: Start with B = ∅. At each stage, look for an ω-minimum element of [n] which can
be added to B without making it dependent, and add it. After r steps, output the basis B. [9, Theorem
1.8.5]
Definition 2.2. Given ω ∈ Rn, let F(ω) denote the unique flag of subsets

∅ =: F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ Fk+1 := E

for which ω is constant on each set Fi − Fi−1 and has ω|Fi−Fi−1 < ω|Fi+1−Fi . The weight class of a flag F
is the set of vectors ω such that F(ω) = F .

We can describe weight classes by their defining equalities and inequalities. For example, one of the
weight classes in R5 is the set of vectors ω such that ω1 = ω4 < ω2 < ω3 = ω5. It corresponds to the flag
{∅ ⊂ {1, 4} ⊂ {1, 2, 4} ⊂ {1, 2, 3, 4, 5}}.
Proposition 2.3. If ω is in the weight class of F = {∅ =: F0 ⊂ . . . ⊂ Fk+1 := E}, then the ω-minimum
bases of M are exactly those containing r(Fi)− r(Fi−1) elements of Fi−Fi−1, for each i. Consequently, Mω

depends only on F , and we call it MF .

Proof. The greedy algorithm picks r(F1) elements of the lowest weight, until it reaches a basis of F1;
then it picks r(F2) − r(F1) elements of the second lowest weight, until it reaches a basis of F2, and so on.
Therefore, the possible outputs of the algorithm are precisely the ones described.

�

Matroid theoretically, Mω can be constructed as a direct sum of minors of M , and its lattice of flats LMω

can be constructed from intervals of LM , as follows:
Proposition 2.4. If F = {∅ =: F0 ⊂ . . . ⊂ Fk+1 := E}, then

MF =
k+1⊕

i=1

(M |Fi)/Fi−1 and LMF
∼=

k+1∏

i=1

[Fi−1, Fi].
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Proof. After r(Fi−1) steps, the greedy algorithm has chosen a basis of Fi−1. In the following r(Fi)−
r(Fi−1) steps, it needs to choose elements which, when added to Fi−1, give a basis of Fi. The possible choices
are, precisely, the bases of (M |Fi)/Fi−1. The first equality follows, and the second one follows from it.

�

3. The Bergman complex

We now define the two main objects of study of this paper.
Definition 3.1. The Bergman fan of a matroid M with ground set [n] is the set

B̃(M) := {ω ∈ Rn : Mω has no loops}.
The Bergman complex of M is

B(M) := {ω ∈ Sn−2 : Mω has no loops},
where Sn−2 is the sphere {ω ∈ Rn : ω1 + · · ·+ ωn = 0 , ω2

1 + · · ·+ ω2
n = 1}.

For the moment, we are slightly abusing notation by calling these two objects a fan and a complex.
We will very soon see that they are a polyhedral fan and a spherical polyhedral complex, respectively; this
justifies their name. We will concentrate on the Bergman complex, but the same arguments apply to the
Bergman fan.
Definition 3.2. The weight class of a flag F is valid for M if MF has no loops.

Since the matroid Mω only depends on the weight class that ω is in, the Bergman complex of M is a
disjoint union of the following weight classes:
Definition 3.3. The weight class of a flag F is valid for M if MF has no loops.

We will study two polyhedral subdivisions of B(M), one of which is clearly finer than the other.
Definition 3.4. The fine subdivision of B(M) is the subdivision of B(M) into valid weight classes: two
vectors u and v of B(M) are in the same class if and only if F(u) = F(v).

The coarse subdivision of B(M) is the subdivision of B(M) into Mω-equivalence classes: two vectors u
and v of B(M) are in the same class if and only if Mu = Mv.
Theorem 3.5. The weight class of a flag F is valid for M if and only if F is a flag of flats of M . Therefore,
the fine subdivision of the Bergman complex B(M) is a geometric realization of ∆(LM − { 0̂ , 1̂ } ), the order
complex of the proper part of the lattice of flats of M .

Proof. Assume Fi in F is not a flat of M , so there exists some e ∈ Fi − Fi. By Proposition 2.3, any
basis B in MF contains r(Fi) elements of Fi; since e is dependent on them, it cannot be in B. Hence e is a
loop in MF , so the weight class of F is not valid.

Conversely, assume every Fi in F is a flat of M . Consider any e ∈ E, and find the value of i such that
e ∈ Fi − Fi−1. After r(Fi−1) steps the greedy algorithm produces a basis of Fi−1. Since Fi−1 is a flat, e is
not dependent on it, and in the next step of the algorithm we can choose e. In the end, this produces an
ω-minimum basis of M containing e. Therefore the weight class of F is valid. �

The order complex ∆(LM − { 0̂ , 1̂ } ) is a well understood object [4]. As an immediate consequence of
Theorem 3.5, we get the following result.
Corollary 3.6. The Bergman complex B(M) is homotopy equivalent to a wedge of µ̂(LM ) (r−2)-dimensional
spheres. Its subdivision into weight classes is a pure, shellable simplicial complex.

Here µ̂(LM ) = (−1)r(M)µLM (0̂, 1̂) is an evaluation of the Möbius function µLM of the lattice LM . The
Möbius function is an extremely useful combinatorial invariant of a poset; for more information, see [14,
Chapter 3].

Example: Let M be the graphical matroid of the complete graph on four nodes. The bases of this
matroid are given by spanning trees. The flats are complete subgraphs and vertex disjoint unions of complete
subgraphs (see Figure 1). Note that in this case, the flats are in correspondence with the partitions of the
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set {A,B,C,D}. In general, the flats of the graphical matroid of Kn are in bijection with partitions of the
set [n]. Furthermore, the lattice of flats is the partition lattice Πn, which orders partitions by refinement.
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Figure 1. The graph K4 and the lattice of flats of the corresponding matroid.

The Bergman complex B(K4) is shown in Figure 2. It is a wedge of six 1-spheres. More generally,
B(Kn) is a wedge of µ̂(Πn) = (n − 1)! spheres of dimension n − 3. The vertices of B(K4) are labeled with
the corresponding flats, and a few of the corresponding weight classes are shown. Notice that the ground
set of a matroid is always a flat, which corresponds to the weight class in which all weights are equal. We
removed this weight class when normalizing the Bergman complex to the sphere.
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Figure 2. The Bergman complex of the graphical matroid of K4.

The fine subdivision of the Bergman complex is almost the Petersen graph. The only difference is the
presence of the three extra vertices, 13, 24 and 56. In the coarse subdivision into Mω-equivalence classes,
these three vertices do not appear. For example, the weight class ω1 < ω3 < ω2 = ω4 = ω5 = ω6 induces the
same matroid Mω as ω1 = ω3 < ω2 = ω4 = ω5 = ω6 and ω3 < ω1 < ω2 = ω4 = ω5 = ω6. Next we describe
the relationship between these two subdivisions in general.

The coarse decomposition of B(M) into cells which induce the same Mω is also a pure, polyhedral com-
plex: it is a subcomplex of the spherical polar to the matroid polytope of M. To describe this decomposition,
it is enough to describe its full-dimensional cells.
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Therefore, we only need to determine when two full-dimensional weight classes give the same matroidMω.
It is clearly enough to answer this question when the two weight classes are adjacent ; i.e., the intersection
of their closures is a facet of both. This happens when the two corresponding flags, which have one flat in
each rank, are equal in all but one rank.

Let ♦ be the diamond poset ; i.e., the rank 2 poset consisting of a minimum element, a maximum element,
and two rank 1 elements.
Theorem 3.7. Suppose that the weight classes of two maximal flags F are F ′ are adjacent. Say F and F ′
only differ in rank i; that is, F − Fi = F ′ − F ′i . Then the following conditions are equivalent:

(i) MF = MF ′ .
(ii) MF = MF−Fi .
(iii) Fi ∪ F ′i = Fi+1.
(iv) The interval [Fi−1, Fi+1] of LM is a diamond poset.

Proof. Let Mj = (M |Fj)/Fj−1, M
′
j = (M |F ′j)/F ′j−1,

Ni = (M |Fi+1)/Fi−1, and N = M1 ⊕ · · · ⊕Mi−1 ⊕Mi+2 ⊕ · · · ⊕Mk+1. By Proposition 2.4,

MF = N ⊕Mi ⊕Mi+1, MF ′ = N ⊕M ′i ⊕M ′i+1, MF−Fi = N ⊕Ni.

Since Mi,Mi+1,M
′
i and Mi+1 have rank 1 and Ni has rank 2,

LMi⊕Mi+1 = {∅, Fi − Fi−1, Fi+1 − Fi, Fi+1 − Fi−1} ∼= ♦,
LM ′

i⊕M ′
i+1

= {∅, F ′i − Fi−1, Fi+1 − F ′i , Fi+1 − Fi−1} ∼= ♦,
LNi = {F − Fi−1 : F ∈ [Fi−1, Fi+1]} ∼= [Fi−1, Fi+1].

If (iv) does not hold, then we know immediately that LNi 6= LMi⊕Mi+1 . Also Fi ∪ F ′i 6= Fi+1, and
therefore LMi⊕Mi+1 6= LM ′

i⊕M ′
i+1

.

If (iv) holds, then Fi and F ′i are the only rank i flats of M in [Fi−1, Fi+1]. Since Ni has no loops, (iii)
holds; and therefore LMi⊕Mi+1 = LM ′

i⊕M ′
i+1

= LNi . �

4. The space of phylogenetic trees

In this section, we show that the Bergman fan B̃(Kn) of the matroid of the complete graph Kn is
homeomorphic to the space of phylogenetic trees Tn, as defined in [3]. To do so, we start by reviewing the
connection between phylogenetic trees and ultrametrics.
Definition 4.1. A dissimilarity map on [n] is a map δ : [n] × [n] → R such that δ(i, i) = 0 for all i ∈ [n],
and δ(i, j) = δ(j, i) for all i, j ∈ [n].
Definition 4.2. A dissimilarity map is an ultrametric if, for all i, j, k ∈ [n], two of the values δ(i, j), δ(j, k)
and δ(i, k) are equal and not less than the third.

Let T be a rooted metric n-tree; that is, a tree with n leaves labeled 1, 2, . . . , n, together with a length
assigned to each one of its edges. For each pair of leaves u, v of the tree, we define the distance dT (u, v) to be
the length of the unique path joining leaves u and v in T . This gives us a distance function dT : [n]× [n]→ R.
We will only consider equidistant n-trees. These are the rooted metric n-trees such that the distance between
the root and any leaf is equal to 1, and the lengths of the interior edges are positive. (For technical reasons,
the edges incident to a leaf are allowed to have negative lengths.)

We can think of equidistant trees as a model for the evolutionary relationships between a certain set
of species. The various species, represented by the leaves, descend from a single root. The descent from
the root to a leaf tells us the history of how a particular species branched off from the others. For more
information on the applications of this and other similar models, see for example [3] and [12].

The connection between equidistant trees and ultrametrics is given by the following theorem.
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Theorem 4.3. [12, Theorem 7.2.5] A map δ : [n]× [n]→ R is an ultrametric if and only if it is the distance
function of an equidistant n-tree.

We can think of a dissimilarity map δ : [n]× [n]→ R as a weight function ωδ on the edges of the complete
graph Kn. This leads us to the following result, which connects these ideas to the Bergman fan.
Theorem 4.4. A dissimilarity map δ : [n]× [n] → R is an ultrametric if and only if ωδ is in the Bergman

fan B̃(Kn).

Proof. We claim that the following three statements about a weight function on the edges of Kn are
equivalent.

(i) In any triangle, the largest weight is achieved (at least) twice.
(ii) In any cycle, the largest weight is achieved (at least) twice.

(iii) Every edge is in a spanning tree of minimum weight.

The theorem will follow from this claim, because ultrametrics are characterized by (i) and weight func-
tions in the Bergman complex are characterized by (iii).

The implication (ii)⇒ (i) is trivial. Conversely, assume that (i) holds and (ii) does not. Without loss of
generality, assume that the cycle v1v2 . . . vk has v1v2 as its unique edge of largest weight. The largest weight
in triangle v1v2v3 must be achieved at ω(v1v2) = ω(v1v3). The largest weight in triangle v1v3v4 must then
be achieved at ω(v1v3) = ω(v1v4). Continuing in this way we get that ω(v1v2) = ω(v1v3) = · · · = ω(v1vk),
and (ii) follows.

Now we prove (ii)⇒ (iii). Consider an arbitrary edge f . Let T be a spanning tree of minimum weight.
If f ∈ T we are done; otherwise, T ∪ f has a unique cycle. There is at least one edge e in this cycle with
ω(e) ≥ ω(f). Therefore, the weight of the spanning tree T\e ∪ f is not larger than the weight of T . This is
then a spanning tree of minimum weight containing f .

Finally, assume that (iii) holds and (i) does not. Assume that the triangle with edges e, f, g has
ω(e) > ω(f), ω(g), and consider a spanning tree T of minimum weight which contains edge e. If f is in T ,
then g cannot be in T , and replacing e with g will give a spanning tree of smaller weight. If neither f nor g
is in T , we can still replace e with one of them to obtain a spanning tree of smaller weight. If we could not,
that would imply that both f and g form a cycle when added to T\e. Call these cycles Cf and Cg . But
then (Cf\f) ∪ (Cg\g) ∪ e would contain a cycle in T , a contradiction. �

The previous two theorems give us a one-to-one correspondence between the vectors in the Bergman fan

B̃(Kn) and the equidistant n-trees: B̃(Kn) parameterizes equidistant n-trees by the distances between their
leaves. This leads us to consider the space of trees Tn of [3]. This space parameterizes equidistant n-trees in
a different way: it keeps track of their combinatorial type, and the lengths of their internal edges. We recall
the construction of the space Tn. Each maximal cell corresponds to a combinatorial type of rooted binary
tree on n labeled leaves; i.e., a rooted tree where each internal vertex has two descendants. Such trees have
n− 2 internal edges, and are parameterized by vectors in R n−2

>0 recording these edge lengths. Moving to a
lower dimensional face of a maximal cell corresponds to setting some of these edge lengths to 0, which gives
non-binary degenerate cases of the original tree. Maximal cells are glued along these lower-dimensional cells
when two trees specialize to the same degenerate tree.

Given a fixed combinatorial type of tree and the vector of internal edge lengths, we can recover the
pairwise distances of leaves as linear functions on the internal edge lengths. For example, consider the tree
type of Figure 3. We obtain (δ(A,B), δ(A,C), δ(A,D), δ(B,C), δ(B,D), δ(C,D)) ∈ B(K4) from (x, y) by
the map f : (x, y) 7→ (2(1 − x − y), 2(1− y), 2, 2(1− y), 2, 2). The converse is also true; given the pairwise
distances of leaves we can recover the internal edge lengths via linear relations on these distances [12].

In general, doing this for each type of tree, we get a map f : Tn → B̃(Kn). It follows from the previous

two theorems that f is a one-to-one correspondence between Tn and B̃(Kn). We will now see that, in fact,

Tn and B̃(Kn) have the same combinatorial structure.
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B C DA

x

y

1

Figure 3. Combinatorial type of tree with 4 leaves.

Proposition 4.5. The map f : Tn → B̃(Kn) is a piecewise linear homeomorphism. It identifies the decom-
position of the space of trees Tn into combinatorial tree types with the coarse decomposition of the Bergman

fan B̃(Kn).

Proof. Restricting to a maximal cell of Tn, corresponding to a fixed tree type, f is a linear map from
the lengths of internal edges (in the space of trees) to the pairwise distances of the leaves (in the space of
ultrametrics). Also, it is clear that when two maximal cells of Tn intersect, the linear restrictions of f to
these two cells agree on their intersection. The first claim follows.

Suppose we are given a combinatorial type of equidistant n-tree. From the branching order of each triple
of leaves (i.e., which, if any, of the three branched off first), we can recover which edges of each triangle of
Kn are maximum in the corresponding weight vector. In turn, this allows us to recover which edges of any
cycle are maximum: one can check that an edge is maximum in a cycle C if and only if it is maximum in each
triangle that it forms with a vertex of C. Knowing the maximum edges of each cycle of the graph, we can
determine Mω using the following version of the greedy algorithm. Start with the complete graph Kn and
break its cycles successively: at each step pick an existing cycle, and remove one of its maximum edges. The
trees which can result by applying this procedure are precisely the ω-minimum spanning trees [8]. Therefore
f maps a fixed tree type class of Tn to a fixed Mω-equivalence class; i.e., a fixed cell in the coarse subdivision

of B̃(Kn).
Conversely, suppose we are given Mω (which has no loops) and we want to determine the combinatorial

tree type of f−1(ω). Consider the edges {e, f, g} of any triangle in Kn; we can find out whether e is maximum
in this triangle as follows. Take a minimum spanning tree T containing e. Either T\e ∪ f or T\e ∪ g is a
spanning tree; assume it is the first. If T\e ∪ f is a minimum spanning tree, then ω(e) = ω(f), and e is
maximum in the triangle. Otherwise ω(e) < ω(f) and e is not maximum in the triangle. Determining this
information for each triangle tells us, for each triple of leaves, which one (if any) branched off first in the
corresponding tree. It is easy to reconstruct the combinatorial type of the tree from this data, in the same
way that one recovers an equidistant tree from its corresponding ultrametric [12, Theorem 7.2.5]. �

The link of the origin in the coarse subdivision of Tn, which we call Tn, is a simplicial complex which has
appeared in many different contexts. It was first considered by Boardman [5], and also studied by Readdy
[10], Robinson and Whitehouse [11], Sundaram [16], Trappmann and Ziegler [17], Vogtmann [18], and

Wachs [19], among others. By Theorem 3.5, the link of the origin in the fine subdivision of B̃(Kn) is the
order complex of the partition lattice Πn. We conclude the following result.
Corollary 4.6. The order complex of the partition lattice Πn is a subdivision of the complex Tn.

This provides a new explanation of the known result [10, 11, 16, 17, 18, 19] that these two simplicial
complexes are homotopy equivalent; namely, they have the homotopy type of a wedge of (n − 1)! (n − 3)-
dimensional spheres.

Let us now revisit the example of the last section. In Figure 4 we show the Bergman complex B(K4),
with some of the corresponding trees. We now know that this is a subdivision of T4, the link of the origin in
the space of phylogenetic trees with 4 leaves, which is the Petersen graph. The three extra vertices in the fine
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Figure 4. The fine subdivision of B(K4).
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Figure 5. A piece of the fine subdivision of B(K5).

subdivision are 13, 24 and 56. The tree corresponding to vertex 24 of the fine subdivision has the property
that the vertex joining the leaves C and D is at the same height as the vertex joining the leaves A and B.
This information is not captured by the combinatorial type of the tree; i.e., by the coarse subdivision.
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In Figure 5, we show a representative piece of the fine subdivision of the space of trees with 5 leaves,
with K5 labeled as shown.
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6. Appendix: Matroids

Definition 6.1. A matroid M on a finite ground set E is a collection of subsets I such that:
(1) ∅ ∈ I
(2) If I1 ∈ I and I2 ⊆ I1 then I2 ∈ I.
(3) If I1, I2 ∈ I and |I1| < |I2| then there exists an element x ∈ I2 − I1 such that I1 ∪ x ∈ I.

Elements of I are referred to as the independent sets of M
For example, let V be a finite set of vectors in Rn. Let I be the collection of all linearly independent

subsets of V . Then I is the collection of independent sets of a matroid on the ground set V . This fundamental
example motivates many concepts and results in matroid theory.

First we review some standard matroid concepts. A basis is a maximal independent set. A circuit is a
minimal dependent set and we call a one element dependent set a loop.
Definition 6.2. The rank of a subset X ⊂ E, r(X), is the size of the largest independent set in X . A set
X is a flat if for all elements e ∈ E −X , r(X ∪ e) > r(X). The closure X of a subset X of E is the minimal
flat that contains it. The poset of flats ordered by containment is a lattice, which we call the lattice of flats,
LM .
Definition 6.3. The order complex of a finite poset P is the simplicial complex ∆(P ) = {C ⊂ P |C is a
chain of P}.
Definition 6.4. The matroid polytope of M is the polytope PM in RE with vertex set {eb1+· · ·+ebr | {b1, . . . , br}
is a basis of M}, where ei is the i-th unit vector.
Definition 6.5. For a subset T ⊂ E, the restriction of M to T , or deletion of E−T from M , is the matroid
on the ground set T , whose rank function is rM |T (X) = rM (X) for X ⊆ T . This matroid is denoted M |T
or M\(E − T ).
Definition 6.6. For a subset T ⊂ E, the contraction of T from M is the matroid on the ground set E − T ,
whose rank function is rM/T (X) = rM (X ∪ T )− rM (T ). This matroid is denoted M/T .
Definition 6.7. Given two matroids M1 and M2 on disjoint sets E1 and E2, there is a matroid M1 ⊕M2

on the ground set E1 ∪ E2, called the direct sum of M1 and M2. Its bases are the sets of the form B1 ∪B2,
where B1 and B2 are bases of M1 and M2 respectively. Its flats are the sets of the form F1 ∪ F2, where F1

and F2 are flats of M1 and M2 respectively.
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On a Conjecture Concerning Littlewood-Richardson Coefficients

François Bergeron, Riccardo Biagioli, and Mercedes Rosas

Abstract. We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs

of partitions, holds for many infinite families of such pairs. We also show that the generic bounded

height case can be reduced to only checking that the conjecture holds for a finite number of pairs,

for any given height. Moreover, we propose a natural generalization of the conjecture to the case of

skew shapes.

Résumé. Nous démontrons qu’une conjecture de Fomin, Fulton, Li et Poon, associée aux couples

de partages, se vérifie pour plusieurs classes infinies de tels couples. Nous montrons aussi que le

cas générique, pour des partages de hauteurs bornés, se réduit à la vérification de la conjecture pour

un nombre fini de couples, et ce pour chaque hauteur. De plus, nous présentons une généralisation

naturelle de la conjecture au cas des couples de partages gauches.

1. Introduction

In [1], Fomin, Fulton, Li, and Poon state a very interesting conjecture concerning the Schur-positivity
of special differences of products of Schur functions of the form

sµ∗sν∗ − sµsν ,

where µ∗ and ν∗ are partitions constructed from an ordered pair of partitions µ and ν through a seemingly
strange procedure. In our presentation, their transformation (µ, ν) 7→ (µ∗, ν∗) on ordered pairs of partitions,
will rather be denoted

(1.1) (µ, ν) 7−→ (µ, ν)
∗

= (λ(µ, ν), ρ(µ, ν))

and will still be called the ∗-operation. As we shall see, this change of notation is essential in order to
simplify the presentation of the many nice combinatorial properties of this operation. On the other hand, it
makes clear that both entries, λ and ρ of the image (µ, ν)

∗
of (µ, ν), depend on µ and ν.

With this slight change of notation, the original definition of the ∗-operation is as follows. Let µ =
(µ1, µ2, . . . , µn) and ν = (ν1, ν2, . . . , νn) two partitions with the same number of parts, allowing zero parts.
From these, two new partitions

λ(µ, ν) = (λ1, λ2, . . . , λn) and ρ(µ, ν) = (ρ1, ρ2, . . . , ρn)

are constructed as follows

(1.2)
λk := µk − k + #{j | 1 ≤ j ≤ n, νj − j ≥ µk − k};
ρj := νj − j + 1 + #{k | 1 ≤ k ≤ n, µk − k > νj − j}.

59
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Although this definition does not make it immediately clear, both λ(µ, ν) and ρ(µ, ν) are truly partitions,
and they are such that

|λ(µ, ν)| + |ρ(µ, ν)| = |µ| + |ν|,
where as usual |µ| denotes the sum of the parts of µ.

Recall that the product of two Schur functions can always be expanded as a linear combination

sµsν =
∑

θ

cθµ νsθ,

of Schur functions indexed by partitions θ of the integer n = |µ|+ |ν|, since these Schur functions constitute
a linear basis of the homogeneous symmetric functions of degree n. It is a particularly nice feature of
this expansion that the coefficients cθµ ν are always non-negative integers. They are called the Littlewood-
Richardson coefficients. More generally, we say that a symmetric function is Schur positive whenever the
coefficients in its expansion, in the Schur function basis, are all non-negative integers. For more details on
symmetric function theory see Macdonald’s classical book [2], whose notations we will mostly follow. We
can then state the following:

Conjecture 1.1 (Fomin-Fulton-Li-Poon). For any pair of partitions (µ, ν), if

(µ, ν)
∗

= (λ, ρ),

then the symmetric function

(1.3) sλsρ − sµsν

is Schur-positive.
In other words, this says that cθµ ν ≤ cθλ ρ, for all θ such that sθ appears in the expansion of sµsν .

For an example of one of the simplest case of the ∗-operation, let µ = (a) and ν = (b), with a > b, be
two one-part partitions. In this case, we get

((a), (b))∗ = (a− 1, b+ 1),

so that Conjecture 1.1 corresponds exactly to an instance of the classical Jacobi-Trudi identity:

sa−1sb+1 − sasb = det

(
sa−1 sa

sb sb+1

)

= sa−1,b+1.

In this article we give a new recursive combinatorial description of the ∗-operation. This recursive
description allows us to prove many instances of Conjecture 1.1 and to show that it reduces to checking a
finite number of instances for any fixed ν, if we bound the number of parts of µ. Moreover we show how to
naturally generalize the conjecture to pairs of skew partitions.

2. Combinatorial description of the ∗-operation.

We first derive some nice combinatorial properties of the transformation “∗”. To help in the presentation
of these properties, let us introduce some further notations. We often identify a partition with its (Ferrers)
diagram. Diagrams are drawn here using the “French” convention of ordering parts in decreasing order from
bottom to top.

We write µ = −→α `
, if the partition µ is obtained from the partition α by adding one cell in line `; and

µ = α↑k, if µ is obtained from α by adding one cell in column k. In other words, µ = −→α i
means that µi = αi

for all i 6= `, and µ` = α` + 1. This is illustrated in Figure 1 in term of diagrams.
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−→2

=

x
2

=

Figure 1.

Observe that,

µ = −→α i
iff µ′ =

−→
α′

µi

iff µ = α↑µi

iff µ′ = α′↑i
We can now state our recursive description of the ∗-operation.

Proposition 2.1 (Recursive formula). For any partitions α and ν, if (λ, ρ) = (α, ν)
∗
, then we have

(2.1) (−→α i
, ν)
∗

=





(λ,−→ρ j
) where j is such that νj − j = αi − i, if any,

(
−→
λ

i
, ρ) otherwise.

Moreover, when in the first case, we have −→ρ j
= ρ↑µi . In a similar manner, for given µ and β, if (λ, ρ) =

(µ, β)
∗
, then

(2.2) (µ,
−→
β

i
)
∗

=





(
−→
λ

j
, ρ) where j is such that µj − j = νi − i, if any,

(λ,−→ρ i
) otherwise,

and, when in the first case, we have
−→
λ

j
= λ↑νi .

We can clearly use Proposition 2.1 to recursively compute λ(µ, ν) and ρ(µ, ν). Examples are given in Section
4. The computation of the ∗-operation can be simplified in view of the following property of the ∗-operation.
For any pair of partitions (µ, ν), we have

(µ, ν)
∗

= (λ, ρ) iff (ν′, µ′)
∗

= (λ′, ρ′),(2.3)

where, as usual, µ′ stands from the conjugate of µ. Using the fact that the involution ω (which is the linear
operator that maps sµ to sµ′) is multiplicative, it easily follows that

Proposition 2.2. Conjecture 1.1 holds for the pair (µ, ν) if and only if it holds for the pair (ν ′, µ′).
In practice, there are many ways to describe the ∗-operation recursively, since we can freely choose how

to make partitions grow. It is sometimes convenient to start from the pair (0, ν), whose image under the
∗-operation has a simple description.

Lemma 2.3. Let ν be any partition. Then

ρ(0, ν) = (ν1, ν2 − 1, · · · , νk − (k − 1))

λ′(0, ν) = (ν′1 − 1, ν′2 − 2, · · · , ν′k − k)
where k = max{i : νi − (i− 1) ≥ 1}.
We will sometimes denote respectively ν̄ and ν the partitions λ(0, ν) and ρ(0, ν). For example if ν =
(8, 6, 6, 5, 5, 4, 4, 2, 1), then

ν̄ = (4, 4, 4, 3, 2, 2, 1, 1) and ν = (8, 5, 4, 2, 1)

as is illustrated in Figure 2. In Section 4 we elaborate on the various ways that Proposition 2.1 can be used
to compute the ∗-operation. This gives rise to a ∗-operation on pairs of Young tableaux.
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ν ν̄ ν

∗−→

Figure 2.

Figure 3 illustrates the effect of the ∗-operation on some pairs of the form ((n), ν).

∗

∗

∗

∗

−→

−→

−→

−→

Figure 3.

Given partitions µ and ν, define the partition µ+ ν by

(µ+ ν)i := µi + νi.

and set

µ ∪ ν := (µ′ + ν′)′.
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For example, if µ = (3, 3, 2, 2, 1) and ν = (5, 3, 1, 0, 0), then µ ∪ ν = (5, 3, 3, 3, 2, 2, 1, 1) and µ + ν =
(8, 6, 3, 2, 1). As usual, for µ and ν two partitions of n, µ is said to be dominated by ν, in formula µ � ν, if
for all k ≥ 1:

µ1 + µ2 + · · ·+ µk ≤ ν1 + ν2 + · · ·+ νk.

Another remarkable property of the ∗-operation is that its image behaves nicely under the dominance order.
More precisely,

Lemma 2.4. For any pair of partitions (µ, ν), if (λ, ρ) = (µ, ν)
∗
, then we have

µ ∪ ν � λ ∪ ρ, and equivalently(2.4)

µ+ ν � λ+ ρ.(2.5)

Observe that when sθ appears in sµsν with a nonzero coefficient, then

µ ∪ ν � θ � µ+ ν,

thus (2.4) and (2.5) imply that

λ ∪ ρ � θ � λ+ ρ,

which is compatible with Conjecture 1.1.
Lemma 2.4 immediately implies a statement very similar to that of Conjecture 1.1.

Proposition 2.5. For any pair of partitions (µ, ν), if (λ, ρ) = (µ, ν)
∗
, then

hλhρ − hµhν

is Schur-positive.
Recalling that hµhν = hµ∪ν , this follows from the fact that a difference of two homogeneous symmetric
functions hα − hβ is Schur-positive, if and only if α � β (see [4, Chapter 2]). A clear link between this
proposition and Conjecture 1.1 is established through the classical identity:

hα = sα +
∑

β�α

Kβαsβ ,

where as usual Kβα, the Kostka numbers, count the number of semi-standard tableaux of shape β and
content α.

The following results, shows that the ∗-operation is also compatible with “inclusion” of partitions. Here,
we say that α is included in µ, if the diagram of α is included in the diagram of µ. We will simply write

(α, β) ⊆ (µ, ν), whenever α ⊆ µ and β ⊆ ν.
Lemma 2.6. Let α, β, µ and ν be partitions such that (α, β) ⊆ (µ, ν). Then λ(α, β) ⊆ λ(µ, ν) and ρ(α, β) ⊆
ρ(µ, ν).
An immediate, but interesting, consequence of this lemma is the following observation.

Observation 2.7. Let (α, β) and (γ, δ) be two fixed points such that (α, β) ⊆ (γ, δ). Writing simply λ for

λ(µ, ν) and ρ for ρ(µ, ν), we see (using Lemma 2.6) that

(α, β) ⊆ (µ, ν) ⊆ (γ, δ),

implies

(α, β) ⊆ (λ, ρ) ⊆ (γ, δ).

As is underlined in [1], a pair of partitions (α, β) is a fixed point of the ∗-operation if and only if

(2.6) β1 ≥ α1 ≥ β2 ≥ α2 ≥ · · · ≥ βn ≥ αn.

Let us underline here that, for any (µ, ν), it is easy to characterize the “largest” (resp. “smallest”) fixed
point contained in (resp. containing) the pair (µ, ν). We will see below how this observation can be used to
link properties of λ and ρ to properties of µ and ν. Recall that an horizontal strip is a skew shape µ/α with
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no two squares in the same column, and that a ribbon is a connected skew shape with no 2× 2 squares (see
[5, Chapter 7], for more details). If we drop the condition of being connected in this last definition, we say
that we have a weak ribbon.

Another striking consequence of Lemma 2.6 is that it allows a natural extension of the ∗-operation to
skew partitions. Denoting (µ, ν)/(α, β) the pair of skew shapes (µ/α, ν/β), we can simply define

(2.7) (µ/α, ν/β)
∗

:= (µ, ν)
∗
/(α, β)

∗
.

In other words, we have

(2.8) λ(µ/α, ν/β) := λ(µ, ν)/λ(α, β),

and

(2.9) ρ(µ/α, ν/β) := ρ(µ, ν)/ρ(α, β).

The ∗-operation, or its extension as above, preserves (among others) the following families of pairs of (skew)
shapes.

Proposition 2.8. The “∗” -operation preserves the families of

(1) pairs of hooks;

(2) pairs of two-rows partitions;

(3) pairs of horizontal strips;

(4) pairs of weak ribbon.

Note that (1) and (2) follow directly from observation 2.7, and that the statements (3) and (4) are made
possible in view of our extension of the ∗-operation.

∗−→

Figure 4. The effect of the ∗-operation on hooks.

Results outlined in the sequel, and extensive computer experimentations suggests that we have the following
extension of Conjecture 1.1.

Conjecture 2.9. For any skew partitions µ/α and ν/β, if

(λ, ρ) = (µ/α, ν/β)
∗
,

then the symmetric function

(2.10) sλsρ − sµ/αsν/β

is Schur-positive.
This has yet to be understood in geometrical terms. On the other hand, it is clear that Proposition 2.2
extends to skew partitions. Our last combinatorial observation concerning the ∗-operation is the following.
Let τ and ν be two fixed partitions, and consider all possible µ’s such that ρ(µ, ν) = τ . We claim that there
is a minimal such µ, if any, and we denote it θ(τ, ν). More precisely, we easily show that

Proposition 2.10. Given partitions τ and ν, for any µ such that ρ(µ, ν) = τ , then

θ(τ, ν) ⊆ µ.
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Furthermore, θ = θ(τ, ν) is exactly the partition

θ = ρb1
1 ρ

b2−b1
2 ρb3−b2

3 · · · ,

with bj = ρj − νj + j − 1.

3. Main results

In this section we state our results concerning the validity of Conjecture 1.1 for certain families of pairs,
as well as its reduction to a finite number of tests for other families. We show the following.

Theorem 3.1. Conjecture 1.1 (or 2.9) holds

(1) For any pair (µ, ν) of hook shapes.

(2) For pairs of two-line and two-column partitions.

(3) For skew pairs the form (µ/α, ν/β), with all of µ, ν, α and β are hooks.

(4) For skew pairs of the form (0, ν/β), with ν/β a weak ribbon.

Other families for which we have partial results correspond to Stembridge’s (see [6]) classification of all
multiplicity-free products of Schur functions. More precisely, these are all products of two Schur functions
with Schur function expansion having no coefficient larger then 1. Thus, to show Conjecture 1.1 in these
cases, we need only show that the coefficient cθλρ of sθ in the product of sλ and sρ is nonzero, whenever

cθµν = 1.
Stembridge uses the following notions for his presentation. A rectangle is a partition with at most one

part size, i.e., empty, or of the form (cr) for suitable c, r > 0; a fat hook is a partition with exactly two
parts sizes, i.e., of the form (brcs) for suitable b > c > 0; and a near-rectangle is a fat hook such that it is
possible to obtain a rectangle from it by deleting a single row or column. He shows that the product sµsν

is multiplicity-free if and only if

(a) µ or ν is a one-line rectangle, or
(b) µ is a two-line rectangle and ν is a fat hook or vice-versa, or
(c) µ is rectangle and ν is a near rectangle or vice-versa, or
(d) µ and ν are both rectangles.

Although we currently have proofs of the conjecture for cases (a) and (d) of Stembridge’s pairs, proofs
for cases (b) and (c) are still in the process of being completed. Since all these share a common approach,
we have decide to postpone their presentation to an upcoming paper.

On another register, a careful study of the recursive construction of λ(µ, ν) and ρ(µ, ν) shows that, in
a sense, Conjecture 1.1 follows, under some conditions, from a finite number of cases when ν is fixed and µ
becomes large.

More precisely, we obtain the result below. As usual, the number of nonzero parts of µ is denoted by
`(µ) and called the height of µ.

Theorem 3.2. For any positive integer p, let ν be a fixed partition with at most p parts, i.e. `(ν) ≤ p.

Then, the validity of Conjecture 1.1 for the infinite set of all pairs (µ, ν), with `(µ) ≤ p, reduces to checking

the validity of the conjecture for the finite set of pairs (α, ν), with α having at most p parts, and largest part

bounded as follows

(3.1) α1 ≤ p (ν1 + p).

Theorem 3.2 can also be generalized in a straightforward manner to the set of skew shapes pairs (µ/α, ν/β)
of bounded height, with ν and α fixed.
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4. Final remarks

To study more consequences of the properties of “∗”, we consider the double Young lattice, D, which
is just the direct product of two copies of the usual Young lattice. This poset is naturally graded by
(µ, ν) 7→ |µ| + |ν|. A standard (tableau) pair of shape (µ, ν) is a maximal chain in this graded poset that
starts at (0, 0), the pair of empty partitions, and ends at (µ, ν). For example, we have

(4.1) (0, 0) ⊆ (0, 1) ⊆ (0, 2) ⊆ (1, 2) ⊆ (1 1, 2) ⊆ (2 1, 2) ⊆ (2 1, 3)

Clearly, as in the usual case, such a chain can be identified with a pair (t, r) of standard tableaux, of respective
shapes µ and ν, with non-repeated entries from the the set {1, 2, . . . , n}, n = |µ|+ |ν|. The number f(µ,ν) of
standard pairs of shape (µ, ν) is thus

(4.2) f(µ,ν) =

(|µ|+ |ν|
|µ|

)
fµ fν

where fµ and fν are both given by the usual hook formula.
In terms of tableaux, the standard pair (4.1) corresponds to:

(
4

3 5 , 1 2 6

)
.

The double Young lattice occurs naturally in the study of representations of the hyperoctahedral groups. This
suggests that there might be a link between that subject and the study of properties of the transformation
“∗”. A semi-standard pair is a chain

(0, 0) = π0 ⊆ π1 ⊆ · · · ⊆ πk = (µ, ν)

in D, such that πj+1/πj is an horizontal strip pair for each 1 ≤ j ≤ k − 1. For example, the pair of
semi-standard tableaux (

3

2 3 3 ,

2 3

1 1 3

)
,

corresponds to the path

(0, 0) ⊆ (0, 2) ⊆ (1, 21) ⊆ (31, 32).

Lemma 4.1. The function ∗ : D −→ D is a level preserving increasing transformation that preserves both

standard and semi-standard pairs.
For example, for the standard pair




26

22 23 24

16 17 18 19 20

9 10 11 12 13 ,

25

21

14 15

1 2 3 4 5 6 7 8




the corresponding result is



26

22 24

16 17 19 20

9 10 11 12 13 ,

25

21 23

14 15 18

1 2 3 4 5 6 7 8



.

Observe that, in this example, the original right tableau is contained in the resulting right tableau. This
is heavily dependent on the very particular labeling that has been chosen here in the original pair. Up to
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a careful choice of labeling this phenomenon becomes a frequent (but not systematic) occurrence. Fixed
points, for standard pairs, are easily characterized as follows.

Lemma 4.2. A standard pair (t, r), of shape (µ, ν), is fixed point of the ∗-operation, if and only if (µ, ν) is

fixed, and the tableau, obtained by alternating rows of r and rows of t, is standard.
We believe that to get a better understanding of the ∗-operation, the study of its effect on tableaux and

semi-standard tableaux will be crucial. For instance this should lead to a proof of a “monomial” versions
of Conjectures 1.1 and 2.9. More precisely, recall that the expansion of any Schur function in the basis of
monomial symmetric functions involves only positive integers. It would thus follow from the Conjectures
that the expansion of the difference of products considered have positive integer coefficients when expanded
in term of monomial symmetric function. In particular, using definition (4.2), one should have

(4.3) f(λ,ρ) ≥ f(µ,ν).

whenever (λ, ρ) = (µ, ν)
∗
. An independent proof of these facts would clearly lend support to the Conjectures.
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A Four-Parameter Partition Identity

Cilanne E. Boulet

Abstract. We present a new partition identity and give a combinatorial proof of our result. This

generalizes a result of Andrews’ in which he considers the generating function for partitions with

respect to size, number of odd parts, and number of parts of the conjugate.

Résumé. Nous présentons une nouvelle identité sur les partitions ainsi qu’une démonstration

combinatoire de notre résultat. Ceci généralise un résultat d’Andrews au sujet de la série généra-

trice des partitions relative à trois statistiques : la somme des parts, le nombre de parts impaires et

le nombre de parts impaires de la partition conjuguée.

1. Introduction

In [A], Andrews considers partitions with respect to size, number of odd parts, and number of odd parts
of the conjugate. He derives the following generating function

(1.1)
∑

λ∈Par

rθ(λ)sθ(λ′)q|λ| =
∞∏

j=1

(1 + rsq2j−1)

(1− q4j)(1− r2q4j−2)(1− s2q4j−2)

where Par denotes the set of all partitions, |λ| denotes the size (sum of the parts) of λ, θ(λ) denotes the
number of odd parts in the partition λ, and θ(λ′) denotes the number of odd parts in the conjugate of λ.
Combinatorial proofs of Andrews’ result have also been found by Sills in [Si] and by Yee in [Y].

We generalize this result and outline a combinatorial proof of our generalization. This gives a simpler
combinatorial proof of (1.1) than the ones found in [Si] and [Y].

2. Main Result

Let λ = (λ1, λ2, . . . ) be a partition of n, denoted λ ` n. Consider the following weight functions on the
set of all partitions:

α(λ) =
∑
dλ2i−1/2e

β(λ) =
∑
bλ2i−1/2c

γ(λ) =
∑
dλ2i/2e

δ(λ) =
∑
bλ2i/2c.
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Also, let a, b, c, d be (commuting) indeterminants, and define

w(λ) = aα(λ)bβ(λ)cγ(λ)dδ(λ).

For instance, if λ = (5, 4, 4, 3, 2) then α(λ) is the number of a’s in the following diagram for λ, β(λ) is the
number of b’s in the diagram, γ(λ) is the number of c’s in the diagram, and δ(λ) is the number of d’s in the
diagram. Moreover, w(λ) is the product of the entries of the diagram.

a b a b a
c d c d
a b a b
c d c
a b

These weights were first introduced by Stanley in [St].
Let Φ(a, b, c, d) =

∑
w(λ), where the sum is over all partitions λ, and let Ψ(a, b, c, d) =

∑
w(λ), where

the sum is over all partitions λ with distinct parts. We obtain the following product formulas for Φ(a, b, c, d)
and Ψ(a, b, c, d):

Theorem 2.1.

Φ(a, b, c, d) =

∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbjcj−1dj−1)(1− ajbj−1cjdj−1)

Corollary 2.2.

Ψ(a, b, c, d) =
∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcj−1dj−1)

If we transform Φ(a, b, c, d) by sending a 7→ rsq, b 7→ r−1sq, c 7→ rs−1q, and d 7→ r−1s−1q, a straightfor-
ward computation gives Andrews’ result (1.1).

Our main result is a generalization of Theorem 2.1 and Corollary 2.2. It is the corresponding product
formula in the case where we restrict the the parts to some congruence class (mod k) and we restrict the
number of times those parts can occur. Let R be a subset of positive integers congruent to i(mod k)
and let ρ be a map from R to the even positive integers. Let Par(i, k;R, ρ) be the set of all partitions
with parts congruent to i(mod k) such that if r ∈ R, then r appears as a part less than ρ(r) times. Let
Φi,k;R,ρ(a, b, c, d) =

∑
λ w(λ) where the sum is over all partitions in Par(i, k;R, ρ).

For example, Par(1, 1; ∅, ρ) is Par, the set of all partitions. Also, if we let R be the set of all positive
integers and ρ map every positive integer to 2, then Par(1, 1;R, ρ) is the set of all partitions with distinct
parts. These are the two cases found in Theorem 2.1 and Corollary 2.2.

Theorem 2.3.

Φi,k;R,ρ(a, b, c, d) = ST

where

S =

∞∏

j=1

(1 + ad
(j+1)k+i

2 ebb
(j+1)k+i

2 ccd
jk+i

2 edb
jk+i

2 c)

(1− ad jk+i
2 ebb

jk+i
2 ccd

jk+i
2 edb

jk+i
2 c)(1− ajkb(j−1)kcjkd(j−1)k)

and

T =
∏

r∈R

(1− ad r
2 e

ρ(r)
2 bb

r
2 c

ρ(r)
2 cd

r
2 e

ρ(r)
2 db

r
2 c

ρ(r)
2 )
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(6,5)

(9,9)

(2,1)

(1,0)

(5,5)

(5,5)

Figure 1. λ = (9, 9, 6, 5, 5, 5, 5, 5, 2, 1, 1) decomposes into blocks {(9, 9), (6, 5), (5, 5), (5, 5), (2, 1), (1, 0)}

λ = µ = ν  = ’ 

Figure 2. λ = (14, 11, 11, 6, 3, 3, 3, 1) and f(µ, ν ′) = λ where ν = (7, 7, 3, 3, 3, 3, 1, 1) and

µ = (6, 5, 5, 4, 1, 1, 1, 1)

3. Combinatorial Proof of these Results

The proof of Theorem 2.3 is a slight modification of the proof of Theorem 2.1 and Corollary 2.2. The
details of these proofs can be found in the complete version of the paper available at math.CO/0308012.

Sketched Proof of Theorem 2.1. Consider the following class of partitions:

R = {λ ∈ Par : λ2i−1 − λ2i ≤ 1}.
We are restricting the difference between a part of λ which is at an odd level and the following part of λ to

be at most 1.

To find the generating function for partitions in R under weight w(λ) we will decompose λ ∈ R into

blocks of height 2. Since the difference of parts is restricted to either 0 or 1 at odd levels, we can only get

two types of block: for any k ≥ 1, we can have a block with two parts of length k, and, for any k ≥ 1, we

can have a block with one part of length k and then other of length k − 1. Figure 1 shows an example of

such a decomposition.

By considering the weights of these parts, we obtain the following generating function:

∑

λ∈R
w(λ) =

∞∏

j=1

(1 + ajbj−1cj−1dj−1)(1 + ajbjcjdj−1)

(1− ajbjcjdj)(1− ajbj−1cjdj−1)
.

Let S be the set of partitions whose conjugates have only odd parts each of which is repeated an even

number of times. We give a bijection f : R× S → Par, such that S contributes exactly the missing terms.

The map f consists of taking the partition whose columns are the union of the columns of the partition from

R and the columns of the partition for S. An example is shown in Figure 2. The weight of the partition

from S does not change when f is applied and contributes
∞∏

j=1

1

1− ajbjcj−1dj−1
,

the terms missing in
∑

λ∈R w(λ).
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Sketched Proof of Corollary 2.2. To obtain this corollary, consider the following bijection. Let

D denote the set of partitions with distinct parts and let E denote the set of partitions whose parts appear

an even number of times. Then we have a bijection g : Par→ D × E with g(λ) = (µ, ν) defined as follows.

Suppose λ has k parts equal to i. If k is even then ν has k parts equal to i, and if k is odd then ν has k− 1

parts equal to i. The parts of λ which were not removed to form ν, at most one of each cardinality, give µ.

It is clear that under this bijection, w(λ) = w(µ)w(ν).

By considering the weights of partition in E we get that

Φ(a, b, c, d) = Ψ(a, b, c, d)

∞∏

j=1

1

(1− ajbjcjdj)(1− ajbj−1cjdj−1)

and the result follows. �
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Finite automata and pattern avoidance in words

Petter Brändén and Toufik Mansour

Abstract. We say that a word w on a totally ordered alphabet avoids the word v if there are no

subsequences in w order-equivalent to v. In this paper we suggest a new approach to the enumeration

of words on at most k letters avoiding a given pattern. By studying an automaton which for fixed k

generates the words avoiding a given pattern we derive several previously known results for problems

of this kind, as well as many new. In particular, we give a simple proof of the formula [21] for the

exact asymptotics for the number of words on k letters of length n that avoids the pattern 12 · · · (`+1).

Moreover, we give the first combinatorial proof of the exact formula [9] for the number of words on

k letters of length n avoiding a three letter permutation pattern.

Résumé. Soient v et w, deux mots sur un alphabet totalement ordonné. Le mot w évite le motif

v si aucun sous-mot de w n’est équivalent (au sens de l’ordre) à v. Dans ce papier, nous suggérons

une nouvelle approche pour énumérer les mots sur un alphabet d’au plus k lettres qui évitent un

motif donné. En étudiant un automate qui engendre, pour un k fixé, tous les mots évitant un motif

donné, nous obtenons des résultats nouveaux dans ce domaine, ainsi que d’autres déjà connus. En

particulier, nous donnons une preuve simple de la formule de Regev pour une estimation asympto-

tique précise du nombre de mots de longueur n sur k lettres qui évitent le motif 12 · · · (` + 1). De

plus, nous donnons pour la première fois une preuve combinatoire de la formule close de Burstein

pour le calcul du nombre de mots de longueur n sur un alphabet à k lettres qui évitent un motif de

permutation de 3 lettres.

1. Introduction

In this paper we study pattern avoidance in words. The subject of pattern avoidance in permutations
has thrived in the last decades, see [31] and the references there. Only very recently Alon and Friedgut [3]
studied pattern avoidance in words to achieve an upper bound on the number of permutations in Sn avoiding
a given pattern. We study pattern avoidance in words by defining a finite automaton that generates the
words avoiding a given pattern and use the transfer matrix method to count them. By this approach we
are able to find the asymptotics, as n → ∞, for the number of words on k letters of length n avoiding a
pattern p, as well as exact enumeration results. In particular we re-derive Regev’s [21] result on the exact
asymptotics for the number of words on k letters of length n avoiding a pattern 12 · · · (`+ 1), and give the
first combinatorial proof of a formula for the number of words on k letters of length n avoiding the pattern
123.

Let Sn denote the set of permutations of the set [n] := {1, 2, . . . , n}. If σ ∈ Sk and τ ∈ Sn, we say that
τ contains σ if there is a sequence 1 ≤ t1 < t2 < · · · < tk ≤ n of integers such that for all 1 ≤ i, j ≤ k we

2000 Mathematics Subject Classification. 05A05, 05A15, 68Q45.
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74 FINITE AUTOMATA AND PATTERN AVOIDANCE

have τ(ti) ≤ τ(tj) if and only if σ(i) ≤ σ(j). Here σ is called a pattern. If τ does not contain σ we say
that τ avoids σ. In the study of pattern avoidance the focus has been on enumerating and giving estimates
to the number of elements in the set Sn(σ), the set of permutations in Sn that avoids σ. Maybe the most
interesting open problem in the field is: Does there exists a constant c such that |Sn(τ)| < cn for all n ≥ 0?
This problem is equivalent to the seemingly stronger statement, see [4]:

Conjecture 1.1. (Stanley, Wilf) For any pattern τ ∈ S`, the limit lim
n→∞

|Sn(τ)| 1n , exists and is finite.

The conjecture has been verified for layered patterns [8], for all patterns which can be written as an
increasing subsequence followed by a decreasing [3]. Very recently Marcus and Tardos [19] announced that
they have a proof of Conjecture 1.1. In [3] Alon and Friedgut proved a weaker version of Conjecture 1.1,

namely: For any permutation σ there exists a constant c = c(σ) such that |Sn(σ)| ≤ cnγ?(n), where γ? is an
extremely slowly growing function, related to the Ackermann hierarchy. The method of proof in [3] was by
considering pattern avoidance in words. This is also the theme of this paper.

Denote by [k]∗ the set of all finite words with letters in [k]. If w = w1w2 · · ·ws ∈ [k]∗ and v = v1v2 · · · vr ∈
[m]∗ where r ≤ s, we say that w contains the pattern v if there is a sequence 1 ≤ t1 < t2 < · · · < tr ≤ s such
that for all 1 ≤ i, j ≤ s we have

wti ≤ wtj if and only if vi ≤ vj .

If w does not contain v we say that w avoids v. For example, the word w = 323122411 ∈ [4]9 avoids the
pattern 132 and contains the patterns 123, 212, 213, 231, 312, and 321. If S is any set of finite words we
denote the set of words in S that avoids v by S(v).

The history of pattern avoidance in words is not as rich as the one in permutations. We mention the
references [2, 3, 9, 10, 14, 21]. In [21] Regev gave a complete answer for the asymptotics for |[k]n(p`)|
when n→∞, where p` = 12 · · · (`+ 1) (see Theorem 4.3).

Theorem 1.2 (Regev). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn
`(k−`)`n (n→∞),

where

C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i+ j − 1).

1.1. Organization of the paper. The paper is organized as follows. In Section 2 we present the
relevant definitions and attain some preliminary results, and in Section 3 we use the transfer matrix method
to determine the asymptotic growth for the sequence n 7→ |[k]n(p)|. In Section 4.1 we study the special
features of the automaton, A(p`, k), which generates the words with letters in [k] that avoids the increasing
pattern 12 · · · (` + 1). Here we will give a simple proof of Theorem 4.3 using the transfer matrix method
and give a combinatorial proof for the formula [9] for |[k]n(p)|, where p is any permutation pattern of length
three. We also consider the diagonal sequence |[n]n(123)| and determine its asymptotic growth and we also
show that its generating function is transcendental. We conclude the paper by indicating further problems
connected to the work in this paper.

2. Definitions and preliminary results

Given a word-pattern p and an integer k > 0 we define an equivalence relation ∼p on [k]∗ as follows:
v ∼p w if for every r ∈ [k]∗ the word vr avoids p if and only if wr avoids p. For example, if p = 132, k ≥ 4,
v = 13 and w = 14, then v �p w, since 133 avoids p but 143 contains p. At first sight it may seem difficult
to determine if v ∼p w, since a priori there is an infinite number of right factors r to check. By the following
lemma we have to check only a finite number words r.
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Lemma 2.1. Let p be a pattern of length ` and let v, w ∈ [k]∗ be any two words. Then v ∼p w if and only

if for all words r ∈ [k]s, 0 ≤ s ≤ `− 1, we have

vr avoids p if and only if wr avoids p.

Proof. Define an equivalence relation ∼′p on [k]∗ by: v ∼′p w if for all words r ∈ [k]s, 0 ≤ s ≤ `, we

have vr avoids p if and only if wr avoids p. Clearly, v ∼p w implies v ∼′p w. On the other hand if v �p w

we may assume that there is an r ∈ [k]∗ such that vr contains p and wr avoids p. There is at least one

occurrence of p in vr that uses at most ` − 1 letters of r. Thus there is a subsequence r′ of r of length at

most `− 1 such that vr′ contains p and wr′ avoids p, i.e., v �′p w. �

Let E(p, k) be the set of equivalence classes of ∼p. By Lemma 2.1 the number e of equivalence classes is
finite. We denote the equivalence class of a word w by 〈w〉.
Definition 2.2. Given an positive integer k and a pattern p we define a finite automaton (For a definition

of a finite automaton, see [1] and references therein),

A(p, k) = (E(p, k), [k], δ, 〈ε〉, E(p, k) \ {〈p〉}),

by

(1) the states are, E(p, k), the equivalence-classes of ∼p,

(2) [k] is the input alphabet,

(3) δ : E(p, k) × [k] → E(p, k) is the transition function defined by δ(〈w〉, i) = 〈wi〉, where wi is w

concatenated with the letter i ∈ [k],

(4) 〈ε〉 is the initial state, where ε is the empty word,

(5) all states but 〈p〉 are final states.

We will identify A(p, k) with the (labelled) directed graph with vertices E(p, k) and with a (labelled)
edge −→i between 〈v〉 and 〈w〉 if vi ∼p w. Clearly, we may order the states as x1, x2, . . . , xe so that if i < j
there is no path from xj to xi. The transition matrix, T (p, k), of A(p, k) is the matrix of size e × e with
non-negative integer coefficients defined by:

[T (p, k)]ij = |{s ∈ [k] : δ(xi, s) = xj}|.
Thus [T (p, k)]ij counts the number of edges between xi and xj , and T (p, k) is triangular.

Example 2.3. If p = 2314 and k = 5, then it is easy to check (see [18]) that the states are 〈ε〉, 〈2〉, 〈3〉,
〈32〉, 〈34〉, 〈24〉, 〈23〉, 〈324〉, 〈341〉, 〈241〉, 〈234〉, 〈2342〉, 〈231〉, and 〈2314〉. Note that there are two edges

between the states 〈324〉 and 〈241〉, namely 〈324〉−→1〈241〉 and 〈324〉−→2〈241〉. Moreover, all final states

in A(2314, 5) have 3 loops, except 〈324〉 which has 2 loops.
The following simple lemma will be helpful in finding the asymptotic growth of the sequence |[n]k(p)|,

for fixed k.

Lemma 2.4. Let the automaton A(p, k) be given, let d be the number of distinct letters in p and suppose

that k ≥ d− 1. If 〈v〉 is any state different from 〈p〉, then the number of loops at 〈v〉 does not exceed d− 1.

Moreover, there are exactly d− 1 loops at 〈ε〉.

Proof. Suppose that there are more than d − 1 loops at 〈v〉. Then the loops use at least d different

labels. From these labels we can form a word w order-isomorphic to p. But then vw ∼p v which is a

contradiction.

We may assume that the letters of p are {1, 2, . . . , d}. Let p1 be the first letter of p. Then, if i < p1 or

i > k − d+ p1 we have i ∼p ε. But there are d− 1 such i’s, which proves the lemma. �
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Although pattern avoidance in words and pattern avoidance in permutations share many common fea-
tures, there are some important aspects in which they differ. For permutations there are three simple
operations, f , that respect pattern-avoidance in the sense that f(τ) avoids f(σ) if and only if τ avoids σ,
namely the reversal, the complement and the inverse of a permutation. The first two operations have obvious
generalizations to words, while the inverse does not. It has in fact been an open question to construct an
inverse for words possessing “the right” properties. Such an inverse was recently constructed by Hohlweg
and Reutenauer [13]. Unfortunately it is not possible to construct an inverse that respects pattern avoidance
in words, which would imply the identity |[k]n(p)| = |[k]n(p−1)|, for all k, n ≥ 0 and permutation patterns
p. The first counter example to this is |[5]7(1342)| = 67854 > 67853 = |[5]7(1423)|. If w ∈ [k]n let the
complement of w in [k]n be wc = (k+1−w1)(k+1−w2) · · · (k+1−wn). Then we have in fact that A(p, k)
and A(pc, k) are isomorphic as automata for any p ∈ [k]∗, since v ∼p w if and only if vc ∼pc wc.

Certainly w avoids p if and only if wr avoids pr, where r is the reversal operator and w and p are any
words. However A(p, k) and A(pr, k) are not in general isomorphic. Indeed, for p = 2314 and k = 5 we have
that |E(2314, 5)| = 13 and |E(4132, 5)| = 14.

3. Transfer matrix method

In this section we use the transfer matrix method (see [27, Theorem 4.7.2]) to obtain information about
the sequences |[k]n(p)|. Given a matrix A let (A; i, j) be the matrix with row i and column j deleted.

Theorem 3.1. Let k be a positive integer, p be a pattern and ek be the number of states in A(p, k). Let

T ′(p, k) = (T (p, k); ek − 1, ek − 1). Then the generating function for |[k]n(p)| is
∑

n≥0

|[k]n(p)|xn =

∑ek−1
j=1 (−1)j+1 det(I − xT ′, j, 1)

∏ek−1
i=1 (1− λix)

=
detB(x)∏ek−1

i=1 (1− λix)
,

where λi is the number of loops at state xi, and B(x) is the matrix obtained by replacing the first column in

I − xT ′ with a column of all ones.

Proof. The theorem follows from the transfer matrix method, see [27, Theorem 4.7.2], since we want

to count the number of paths of length n in A(p, k) from 〈ε〉 to any state other than 〈p〉 of length n in

A(p, k). �

Regev [21] computed the exact asymptotics for |[k]n(p`)|, where p` = 12 · · · (`+ 1) and n→∞. We will
next find the exact asymptotics (up to a constant) for |[k]n(p)| for all patterns p. Given two sequences {an}
and {bn} of real numbers, we denote an ' bn if limn→∞

an

bn
= 1. A path in A(p, k) is called simple if it starts

at 〈ε〉, does not use any loops, and does not end in 〈p〉.
Theorem 3.2. Let p be any pattern with d distinct letters and let k ≥ d − 1 be given. Then there is a

constant C > 0 such that

|[k]n(p)| ' CnM (d− 1)n (n→∞),

where M + 1 is the maximum number of states with d− 1 loops, in a simple path.

Proof. Let P := x1, x2, . . . , xj be a simple path in A(p, k). Moreover, let `j be the number of loops at

state xj . Then |[k]n(p)| =∑P N(P, n) where

N(P, n) =
∑

α1+···+αj=n−j+1

`α1
1 `α2

2 · · · `
αj

j ,

and the sum is over all weak compositions of n − j + 1 into at most j parts. Now, N(P, n) is equal to the

coefficient to tn−j+1 in (1 − `1t)−1 · · · (1 − `jt)−1. Let r be the number of i such that `i = d − 1. Note

that by Lemma 2.4 r is at least one. The dominant term of (1− `1t)−1 · · · (1− `jt)−1 is (by partial fraction
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decomposition) equal to f(t)
(1−(d−1)t)r , where f(t) is a polynomial of degree less than r and f((d− 1)−1) 6= 0.

By well known results it follows that N(P, n) ' C(P )(d− 1)nnr−1, where C(P ) > 0 is a constant depending

on P and k. Taking the greatest possible r yields the desired results. �

When there are exactly d−1 loops at every state except 〈p〉 in A(p, k), it follows from Theorem 3.1 that
|[k]n(p)| = (d− 1)nQ(n), where Q is a polynomial in n. We have in fact:

Corollary 3.3. Let A(p, k) be such that all states but 〈p〉 have exactly d− 1 loops. Then

|[k]n(p)| =
M∑

j=0

aj(d− 1)n−j

(
n

j

)
,

where aj counts the number of simple paths of length j in A(p, k). Moreover, if p is a pattern of length `+1

then aj = (k − d+ 1)j for all j = 0, 1, . . . , `.

Proof. The corollary follows from the proof of Theorem 3.2 since N(P, n) = (d − 1)n−j
(
n
j

)
. If p is a

pattern of length `+1 then we have that aj = (k−d+1)j where j = 0, 1, . . . , `, since kj =
∑j

i=0 ai(d−1)j−i
(
j
i

)

for all j = 0, 1, . . . , `. �

As an example of Corollary 3.3 we note that if p is any pattern of length `+ 1 with exactly d different

letters then |[d]n(p)| =∑`
j=0(d− 1)n−j

(
n
j

)
.

4. The increasing patterns

We will in this section investigate the properties of A(p`, k), where p` = 12 · · · (` + 1). The following
lemma describes the structure of A(p`, k):

Lemma 4.1. Let k ≥ ` be given. For any subset S of [k] of size ` let wS be the word consisting of the

elements of S listed in increasing order. Then the words wS together with p` constitute a complete set of

representatives for the equivalence-classes E(p`, k). In particular we have:

|E(p`, k)| =
(
k

`

)
+ 1.

If S = {s1 < · · · < s`} ⊆ [k] and j ∈ [k] let Sj = {s1 < · · · < si−1 < j < si+1 < · · · < s`}, where i is the

integer such that si−1 < j ≤ si (s0 := 0, s`+1 := k + 1). Then

δ(〈wS〉, j) =

{
〈wSj 〉 if j ≤ s`,

〈p`〉 otherwise .

In particular, the loops of wS are the elements of S.

Proof. It is clear that the words wS are representatives for different classes. Let v ∈ [k]∗(p`). We say

that an increasing subword x1x2 · · ·xj of v is extendible if xj ≤ k+j−`−1, i.e., if we may extend x1x2 · · ·xj

to an occurrence of p` using letters from [k]. Suppose that the maximum length of an extendible increasing

subsequence in v is equal to s, s ≤ `. For 1 ≤ j ≤ s let

rj(v) := min{xj : x1x2 · · ·xj is an extendible subword of v}.
Clearly r1(v) < r2(v) < · · · < rs(v). Let

S = {r1(v), r2(v), . . . , rs(v), k + s+ 1− `, k + s+ 2− `, . . . , k}.
Then we see that wS ∼ v. The statement about the transition function follows from the construction. �



78 FINITE AUTOMATA AND PATTERN AVOIDANCE

In the sequel we will use some standard notation from the theory of partitions and symmetric functions.
For undefined terminology we refer the reader to Chapter 7 of [28].

Theorem 4.2. Define a partial order on the final states in A(p`, k) as follows: x ≤ y if there exists a path

from x to y in A(p`, k). Then this partial order is isomorphic to J([`] × [k − `]), the lattice of order ideals

of the poset [`]× [k − `].

Proof. Let S = {s1 < s2 < · · · < s`} and T = {t1 < t2 < · · · < t`} be subsets of [k]. We claim

that there exists a path from 〈wS〉 to 〈wT 〉 if and only if si ≥ ti for all 1 ≤ i ≤ `. From this the theorem

follows since the latter poset is isomorphic to the interval [∅, λ`,k−`], in the Young’s lattice, where λ`,k−` :=

(k − `, k − `, . . . , k − `) is of length `. Indeed, consider the bijection defined by:

(s1, s2, . . . , s`) 7→ (s` − `, s`−1 − `+ 1, . . . , s1 − 1) ∈ [∅, λ`,k−`].

Then si ≥ ti for all 1 ≤ i ≤ j if and only if the image of S is greater than the image of T in [∅, λ`,k−`].

But [∅, λ`,k−`] is its own dual, so the statement follows from the simple fact that [∅, λ`,k−`] is isomorphic to

J([`]× [k − `]).
If there is an edge between 〈wS〉 and 〈wT 〉, we are done by Lemma 4.1. The “only if” direction thus

follows by induction on the length of the path.

Now, if si ≥ ti for all 1 ≤ i ≤ ` consider the path

〈wS〉−→t1〈wSt1〉−→t2〈wSt1t2〉−→t3 · · ·−→t`〈wSt1t2 · · · t`〉.

It is not hard to see that 〈wSt1t2 · · · t`〉 = 〈wT 〉, which completes the proof. �

We now have a different proof of the following theorem of Regev [21]:

Theorem 4.3 (Regev). Let C−1
`,k = ``(k−`)

∏̀

i=1

k−∏̀

j=1

(i+ j − 1). For all k ≥ ` we have

|[k]n(p`)| ' C`,kn
`(k−`)`n (n→∞).

Proof. By Corollary 3.3 and Theorem 4.2 we have that

|[k]n(p`)| ' aM `−M

(
n

M

)
`n ' aM

M !
`−MnM `n (n→∞),

where M = `(k− `) and aM is equal to the number of maximal chains in J([`]× [k− `]). By [28, Proposition

7.10.3] and the hook-length formula [28, Corollary 7.21.6] we have that

a`(k−`) = fλ`,k−` =
(`(k − `))!

∏`

i=1

∏k−`

j=1
(i+ j − 1)

,

from which the theorem follows. �

It should be clear from the correspondence in Theorem 4.2 that the simple paths of length r in A(p`, k+`)
are in a one-to-one correspondence with tableaux T of the following type:

(i) T is weakly increasing in rows and columns,
(ii) no integer appears in more than one row,
(iii) the entries of T are exactly [r],
(iv) the shape of T is contained in λ`,k.

Recall that the tableaux satisfying (i) and (ii) above are the border-strip tableaux (or rim-hook tableaux)
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of height zero. We call these tableaux segmented. Let a(`, k, r) denote the number of segmented tableaux
satisfying (iii) and (iv), so that:

|[k + `]n(p`)| =
`k∑

r=0

`n−ra(`, k, r)

(
n

r

)
. (4.1)

The function a(`, k, r) is actually a polynomial in k of degree r. To see this let us call a segmented tableau
inside [`]× [k] primitive if all columns are different, and let the set of such tableaux of length i with r different
entries be PR`,i,r. If we denote the number of elements in PR`,i,r by pr(`, i, r) we have

a(`, k, r) =
∑r

i=r/`
pr(`, i, r)

(
k

i

)
,

since for any such primitive tableaux of length i we may insert α1 copies of the first column before the first
column, α2 copies of the second column between the first and the second column, and so on. After the last
column we may insert αi+1 columns of all blanks, requiring that α1 + α2 + · · ·+ αi+1 = k − i. Thus there

are
(
k
i

)
segmented tableaux arising from a given primitive one. The numbers pr(`, i, r) are in general hard to

count, but there are two special cases which are nice, namely pr(`, r, r) and pr(2, i, r). We start by counting
pr(`, r, r).

Theorem 4.4. With definitions as above: pr(`, n, n) = |Sn(p`)|.

Proof. We will define a bijection between Sn and ∪`≥0PR`,n,n such that the height of the tableau

corresponds to the greatest increasing subsequence in the permutation. Recall the definition of ri(v) in the

proof of Lemma 4.1, and let r(v) = (r1(v), r2(v), . . . , r`(v)), where ` is the length of the longest increasing

subsequence in v. Let k be large enough so that all increasing subsequences in permutations in Sn are

considered extendible.

Now, if π = π1π2 · · ·πn is any permutation in Sn define T = T (π) as follows. Let the first column of T

be r(π), the second column be r(π1 · · ·πn−1), and so on. The image of the permutation 351462 is:

T (351462) =

1 1 1 1 3 3

2 4 4 5 5

6 6

.

By Lemma 4.1 we have that T (π) ∈ PR`,n,n. Moreover from Lemma 4.1 we also get that a tableau T is the

image of some π ∈ Sn if and only if

(a) T has n columns and entries 1, 2, . . . , n,

(b) Let T i denote the ith column. If i < j then T i is smaller than T j in the product order. (If T i and

T j have different size fill the empty slots of T j with n+ 1),

(c) Exactly one new entry appears every time you move from T i+1 to T i.

Now, if T ∈ ∪`≥0PR`,n,n condition (a) and (b) are trivially satisfied. At least one new entry appears every

time we move from T i+1 to T i, since otherwise T i = T i+1 and T fails to be primitive. On the other hand if

there appears more than one new entry in a transition then in a later transition there must appear no new

entry, since T has n columns and n distinct entries. This verifies condition (c) and the theorem follows. �

A special case of Theorem 4.4 is that pr(2, n, n) = Cn, the nth Catalan number. This is also a special case
of the next theorem. Note that Theorem 4.5 is what we need to have combinatorial proof of a closed formula,
see Theorem 4.7, for the numbers |[k]n(123)|. Burstein [9] achieved a different, but of course equivalent,
formula for |[k]n(123)|, but not in a bijective manner.

Theorem 4.5. With definitions as above: pr(2, i, r) = 1
i+1

(
2i
i

)(
i

r−i

)
.
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Before we give a proof of Theorem 4.5 we will need some definitions and a lemma. Let PR+(2, s, r)
be the tableaux in PR(2, s, r) that fill up the shape [2] × [r], and let pr+(2, s, r) := |PR+(2, s, r)|. Then
pr(2, s, r) = pr+(2, s, r) + pr+(2, s, r + 1) since we get the tableaux that do not fill up the shape by deleting
all entries r+1. To prove the theorem we will show that pr+(2, s, r) =

(
s−1
2s−r

)
Cs, where Cs is the sth Catalan

number.
We first define an operation + that takes tableaux with r different entries to tableaux with r+1 different

entries. Let T ∈ PR+(2, s, r). Suppose that j is an index such that Tij = Ti(j+1) for some i = 1, 2. Write
T as T = LR where L is the j first columns and R is the s − j last columns. Let R′ be the array order
equivalent to R with entries the same as R, add r+ 1, take away Ti(j+1) (two arrays A and B are said to be
order equivalent if Aij ≤ Ai′j′ if and only if Bij ≤ Bi′j′ for all i, j, i′, j′). We define T + j to be the tableaux
T + j := LR′. In T there are exactly t = 2s− r indices j ∈ [s− 1] such that Tij = Ti(j+1) for some i = 1, 2.

Let S = {s1 < s2 < · · · < st} be these indices and define a function Φ : PR+(2, s, r) →
(
[s−1]

t

)
× ST 2,s,

where ST 2,s is the set of standard tableaux of shape [2]× [s], by

Φ(T ) = (S, T + st + st−1 + · · ·+ s1).

The fact that Φ is a bijection will prove the theorem, since by the hook-length formula we have |ST 2,s| = Cs.
To find the inverse of Φ we need a kind of inverse operation to +.

Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s− 1 be such that T1b < T1(b+1) and T2b < T2(b+1). Define two arrays

T |b and T |b as follows. Write T = LR where L are the b first columns and R are the s − b last columns.
Define T |b := L′R′, to be the array where L = L′ and R′ is the unique array order equivalent to R, with
entries the same as R add T1b take away r. Similarly, let T |b := L′R′, be the array with L = L′ and where
R′ is the unique array order equivalent with R, with entries the same as R, add T2b take away r.

1 2 4 4

3 5 6 7

∣∣∣∣
2

=
1 2 2 2

3 5 4 6

1 2 4 4

3 5 6 7

∣∣∣∣
2

=
1 2 4 4

3 5 5 6

Note that exactly one of T |2 and T |2 above is a primitive segmented tableaux. This is no accident.

Lemma 4.6. Let T ∈ PR+(2, s, r) and 1 ≤ b ≤ s− 1 be such that T1b < T1(b+1) and T2b < T2(b+1). Then

T |b ∈ PR+(2, s, r − 1) ⇔ T |b /∈ PR+(2, s, r − 1) ⇔ T2(b+1) = T2b + 1.

Moreover, if B = T |b ∈ PR+(2, s, r − 1) then B1b = B1(b+1) and if A = T |b ∈ PR+(2, s, r − 1) then

A1b = A1(b+1).

Proof. Consider A := T |b. All entries in T that are smaller than T2b will be mapped onto themselves

and Aij = Tij − 1 for Aij > T2b. Therefore A ∈ PR+(2, s, r − 1) if and only if T2(b+1) = T2b + 1 (since

otherwise the entry T2b will appear in both the first and the second row).

Consider B := T |b. Let yi, i = 1, 2, . . . , h be the entries in T satisfying T2b < yi ≤ T2(b+1) ordered by

size. Then the entry y1 will be mapped to an element smaller than T2b and yi will be mapped to yi−1 for

i > 1. Thus B ∈ PR+(2, s, r − 1) if and only if T2(b+1) > T2b + 1 as claimed.

The last statement is a direct consequence of the above proof. �

We are now ready to give a proof of Theorem 4.5.

Proof of Theorem 4.5. If T ∈ PR+(2, s, r) and 1 ≤ b ≤ s − 1 are such that T1b < T1(b+1) and

T2b < T2(b+1) we define T − b to be the one of the arrays T |b and T |b which is in PR+(2, s, r − 1). By
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Lemma 4.6 we have that

(T + j)− j =T if Tij = Ti(j+1) for some i = 1, 2,

(T − j) + j =T if Tij < Ti(j+1) for both i = 1, 2.
(4.2)

Now, if S = {x1 < x2 < · · · < xt}, where t = 2s− r and P ∈ ST 2,s we let

Ψ(S, P ) := P − x1 − x2 − · · · − xt.

By 4.2 it follows that Ψ is the inverse to Φ and the theorem follows. �

We now have a combinatorial proof of the following theorem given in a different form in [9]:

Theorem 4.7. For all n, k ≥ 0 we have

|[k + 2]n(123)| =
∑

r,i

2n−rCi

(
i

r − i

)(
n

r

)(
k

i

)
,

where Ci is the ith Catalan number. The generating function

F (x, y) :=
∑

n,k

|[k + 2]n(123)|xkyn,

is given by

F (x, y) =
1

(1− x)(1− 2y)
C

(
xy(1− y)

(1− x)(1− 2y)2

)
,

where C(z) is the generating function for the Catalan numbers. Equivalently, F (x, y) is algebraic of degree

two and satisfies the equation:

x(1− x)y(1− y)F 2 − (1− x)(1− 2y)F + 1 = 0.

To complete the picture for permutation patterns of length 3 it remains to enumerate |[k]n(132)|. Simion
and Schmidt [25] introduced a simple bijection between Sn(123) and Sn(132) which fixes each element of
Sn(123)∪Sn(132). West [30] generalized this bijection to obtain a bijection between Sn(p) and Sn(q) where
p(`) = q(` − 1) = `, p(` − 1) = q(`) = `− 1, and p, q ∈ S`. This bijection, in turn, generalizes to words as
follows.

Theorem 4.8. Let p = p1p2 · · · p` be a pattern with greatest entry equal to d and p`−1 = d− 1, p` = d. If d

occurs exactly once in p then

|[k]n(p)| = |[k]n(p̃)|,
where p̃ = p1p2 · · · p`p`−1.

Proof. The proof is a straight forward generalization of West’s algorithm presented in [30, Sec. 3.2]. �

For example, if p = 132 then p̃ = 123. Hence, by Theorem 4.8 we get that if p and q are any permutation
patterns of length 3 then |[k]n(p)| = |[k]n(q)| for all n, k ≥ 0 (see [9] for an analytical proof). If p = 1232
then p̃ = 1223. Hence, Theorem 4.8 gives |[k]n(1232)| = |[k]n(1223)| for all n, k ≥ 0.

Since, Sn(p) ⊂ [n]n(p), the numbers |[n]n(p)| are interesting. A sequence f(n) is polynomially recursive

(P-recursive) if there is a finite number of polynomials Pi(n) such that
∑N

i=0 Pi(n)f(n + i) = 0, for all
integers n ≥ 0. For the case when p is permutation pattern of length 3 we have the following:

Theorem 4.9. Let p be a permutation pattern of length 3. Then the sequence f(n) := |[n]n(p)| is P -recursive

and satisfies the three term recurrence:

p(n)f(n− 2) + q(n)f(n− 1) + r(n)f(n) = 0,
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where
p(n) = 3(n− 3)(n− 1)(3n− 5)(3n− 4)(5n− 4),

q(n) = 288− 1440n+ 2780n2 − 2435n3 + 976n4 − 145n5, and

r(n) = 2(n− 2)2n(n+ 1)(5n− 9).

Proof. The fact that f(n) is P -recursive follows easily from the expansion of f(n) as a double sum

using Theorem 4.7 and the theory developed in [17]. The polynomials p, q and r were found using the

package MULTISUM (see [29]) developed by Wegschaider and Riese. �

Corollary 4.10. The asymptotics of f(n) = |[n]n(123)| is given by f(n) ∼ Cn−2
(

27
2

)n
, where C > 0 is a

constant.

Proof. his is a direct consequence of Theorem 4.9 and the theory of asymptotics for P -recursive se-

quences, see [32]. �

A consequence of this is that the generating function of f(n) is transcendent, since the exponent of n in
the asymptotic expansion of a sequence with an algebraic generating function is never a negative integer.

4.1. Generating function approach. In this section we will investigate the generating function that
enumerates the number of segmented tableaux according to size of rows and number of different entries. Let
A`(x1, x2, . . . , x`, t) be the generating function:

A` =
∑

T

x
λ1(T )
1 x

λ1(T )−λ2(T )
2 · · ·xλ`−1(T )−λ`(T )

` tN(T ),

where λi(T ) denotes the size of row i in T , N(T ) denotes the number of different entries in T and the sum
is over all segmented tableaux with at most ` rows. For i = 1, 2, . . . , ` let Ai

`(x1, . . . , x`, t) be the generating
function for those tableaux which have their maximal entry in row i. If F (x1, x2, . . . , xn) is a formal power-

series in n variables the divided difference of F with respect to the variable xi is ∆iF := F−F (xi=0)
xi

, where

F (xi = 0) is short for F (x1, x2, . . . , xi−1, 0, xi+1, . . . , xn).

Theorem 4.11. With definitions as above we have that A` satisfies the following system of equations:

A` = 1 +A1
` + · · ·+A`

`,

A1
` = x1x2tA` + x1x2A

1
` ,

A2
` = x3t∆2A` + x3∆2A

2
` ,

...

A`−1
` = x`t∆`−1A` + x`∆`−1A

`−1
` ,

A`
` = t∆`A` + ∆`A

`
`.

Proof. The theorem follows by treating two separate cases. Let n be the greatest entry in the tableau

T . The case when there is one n in a row corresponds to the first summand and the case when there are

more than one n in a row corresponds to the second summand. �

When ` = 2, A = A2, the system boils down to:
(

(1− x−1
2 )(1− x1x2t

1− x1x2
)− x−1

2 t

)
A = 1− x−1

2 (1 + t)A(x2 = 0). (4.3)
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This equation can be solved using the so called kernel method as described in [5]. If we let

x2 =
1 + x1(1 + 2t)−

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)
,

then the parenthesis in front of A in 4.3 cancels, and we get:

A(x2 = 0) =
1 + x1(1 + 2t)−

√
(1 + x1(1 + 2t))2 − 4x1(1 + t)2

2x1(1 + t)2
.

By the interpretation of a(`, k, r), we have that the bi-variate generating function for a(2, k, r) is (1 +
x1)
−1A2(x1, 1, t). From this and 4.1 one may derive an analytic proof of Theorem 4.7.

5. Further results and open problems

5.1. Further directions. Recall that the Stanley-Wilf Conjecture asserts that for any permutation π
the limit limn→∞ |Sn(π)|1/n exists and is finite. What about the sequence |[n]n(π)|?
Problem 5.1. Let π be a permutation. Is there a constant 0 < C <∞ such |[n]n(π)| ≤ Cn for all n ≥ 0 ?

Note that the answer to Problem 5.1 is no when π is not a permutation, since then Sn = Sn(π) ⊆ [n]n(π).
Again, Problem 5.1 is equivalent to the statement that

lim
n→∞

|[n]n(π)|1/n,

exists and is finite. This is because for all m,n ≥ 0 we have

|[n+m]n+m(π)| ≥ |[n]n(π)| · |[m]m(π)|,
so we may apply Fekete’s Lemma on sub-additive sequences. See [4, Theorem 1] for details (the proof extends
to words word for word). For permutations π ∈ S3 we have by Corollary 4.10 that limn→∞ |[n]n(π)|1/n = 27/2
as opposed to limn→∞ |Sn(π)|1/n = 4.

For which permutations do we know Problem 5.1 holds? It follows from the work in [3] Problem 5.1
holds for all permutations which can be written as an increasing sequence followed by a decreasing. Also,
with no great effort Bóna’s proof [8] of the Stanley-Wilf conjecture for layered patterns may be extended to
this setting. Thus for all classes that the Stanley-Wilf conjecture is known to hold, the seemingly stronger
Problem 5.1 holds. The following conjecture therefore seems plausible:

Conjecture 5.2. For all permutations π we have:

∃C∀n(|[n]n(p)| ≤ Cn)⇔ ∃D∀n(|Sn(p)| ≤ Dn).

There are several problems concerning the automatons associated to a pattern that has connections to
the above problems. One problem is to give an estimate to the number of simple paths in A(p, k), another
is to estimate the number of equivalence classes in A(p, k). Yet another problem is to give an estimate to
the maximum size of an equivalence class.

5.2. Formula for |[k]n(p)|. Our algorithm (see Theorem 3.1) for finding a formula for |[k]n(p)| is
implemented in C++ and Maple, see [18]. The first with input p and k and output the automaton A(p, k)
and the second with input the automaton A(p, k) and output the exact formula for |[k]n(p)|. This algorithm
allows us to get an explicit formula for |[k]n(p)| where p ∈ Sk and k ≥ 1 are given. For example, an output
for the algorithm for p ∈ S4 and k = 3, 4, 5, 6 is given by [18].

Finally we remark that our method can be generalized as follows. Given a set of patterns T we define
an equivalence relation ∼T on [k]∗ by: v ∼T w if for all words r ∈ [k]∗ we have vr avoids T if and only if
wr avoids T , where a word u avoids T if u avoids all patterns in T . As in Section 2 we define an automaton
A(T, k) with the equivalence classes of ∼T as states. With minor changes in the proof, Theorem 3.1 can be
extended to avoidance of a set of patterns. For example, if T = {1234, 2134} and k = 6, then by [18] we get
that
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|[6]n(T )| = 4 · 3n + 12

(
n

2

)
3n−2 + 24

(
n

3

)
3n−3 + 54

(
n

4

)
3n−4(5.1)

+ 60

(
n

5

)
3n−5 + 40

(
n

6

)
3n−6 − 3 · 2n.(5.2)
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E-mail address: branden@math.chalmers.se

Department of Mathematics, Haifa University, 31905 Haifa, Israel.

E-mail address: toufik@math.haifa.ac.il





Formal Power Series and Algebraic Combinatorics
Séries Formelles et Combinatoire Algébrique
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Height Arrow Model

Arnaud Dartois and Dominique Rossin

Abstract. We study in this article the characteristics of the so-called Height-Arrow Model (HAM),

introduced by physicists as an extension of the Abelian Sandpile Model and the Eulerian Walker. We

show that recurrent configurations of this model form an Abelian group and that classical algorithms

such as the recurrence criterion or the burning algorithm for the ASM could be extended to the

HAM.

Résumé. Dans cet article, nous étudions le modèle dit hauteur-orientation introduit par des physi-

ciens comme une généralisa-tion du modèle du Tas de Sable Abélien et du Marcheur Eulérien.

Nous montrons que les configurations récurrentes du système forment un groupe Abélien dont le

cardinal est lié aux arbres couvrants du graphe sous-jacent. De plus, nous généralisons quelques al-

gorithmes classiques connus pour le modèle du Tas de Sable Abélien comme le critère de récurrence

ou l’algorithme de mise à feu.

Introduction

Bak, Tang and Wiesenfeld [BTW87] introduced in 1987 a simple model based on a cellular automaton
which depicted the critical behaviour of self-organized systems. This model has been extensively studied by
physicists [DM91], [DRSV95], and combinatorists [Big99], [Big96],
[CR00], [CGB02].

This system presents two different aspects:

• A dynamical approach. Starting from a given configuration, we let the system evolve and the series
of configurations it reaches under the action of the evolution rules describes its dynamic.

• The second aspect was pointed out by Dhar, Ruelle, Sen and Verma [DRSV95]. The space of
recurrent configurations -i.e. those which can appear after a long evolution of the system- is an
Abelian group.

The Eulerian Walkers Model (EWM) was introduced by Priezzhev, Dhar and al. in [PDDK02]. This
model shares with the Abelian Sandpile Model (ASM) the Abelian group property. Both models involve a
rooted map G, where some particles (also called grains or walkers sometimes) could be put on every vertex
except the sink. Then the system evolves according to a toppling rule. At the end of [PDDK02] a general
model is proposed which generalizes EWM and ASM. This paper is a detailled analysis of this model called
Height Arrow Model (HAM).

In the first part we give basic definitions of the model and the underlying structure of combinatorial
map. Then, we study the configurations of the system and show that some of them, called recurrent ones,
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are closely related to the recurrent of the ASM. In the last part we study the group associated to each of
the different model and point out correlations between them.

1. Definition of the model

1.1. Configurations of the HAM. The HAM is usually described with respect to an order for the
edges around a vertex. Hence, the natural structure to define the HAM is a combinatorial map. This is the
embedding of a graph on a surface.

Definition 1.1. A combinatorial map on a (finite) set B is a pair of permutations (σ, α) of B such that:

(1) α is a fixed-point free involution,

(2) the group < σ, α > generated by the two permutations is transitive.

Figure 1. A combinatorial map (σ, α)

The elements of B are called the half-edges (also called brins). The cycles of σ are the vertices and those
of α are the edges. The pair of partitions (V,E) of B induced by the vertices and the edges constitutes the
underlying graph of the map. In particular |B| = 2|E|. Property (2) implies that the underlying graph of a
combinatorial map is connected. We say that a combinatorial map is simple if its underlying graph is simple
i.e., it contains neither parallel edges nor loops. For more details on maps, see [CM92].

Such a map can be seen as a graph where the edges around each vertex are ordered.
A τ -map is a pairMτ = (M, τ) whereM is a combinatorial map and τ ∈ NV a vector of integers such

that τi is an attribute of vertex i satisfying 0 ≤ τi ≤ di, where di is the degree of vertex i (the size of the
orbit of σ for half-edges adjacent to i). A τq-map is a τ -map where a vertex q is distinguished and verifies
τq = dq . This vertex will be called the sink.

Definition 1.2. Given a τq-map, a configuration of the HAM is a pair u = (h, ω) where:

∀i 6= q,

{
h(i) ∈ Z
w(i) is an half-edge adjacent to i

The application h is called the height configuration of u and ω the arrow configuration or orientation of u.
For example, figure 2 shows a configuration on a τq-map. The attribute τ is represented by integers

outside each vertex. Height h is represented by integers inside vertices and ω by an arrow going out each
vertex.
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Figure 2. A τq-map and a configuration on it

A configuration is stable if h(i) < τi for all vertices i except q. Otherwise, it is called unstable. In this
case, as in figure 2, a vertex can topple. In this example vertices with height 2 and 5 are unstable and can
topple.
Toppling rule If a vertex i is unstable then repeat τi times the following operations:

(1) change the arrow from ω(i) to σ(ω(i)),
(2) send a grain along the new arrow ω(i) towards half-edge α(ω(i)) till the next vertex j. Then,

h(i)← h(i)− 1 and h(j)← h(j) + 1.

In this process we say that half-edges σ(ω(i)), σ2(ω(i)), . . . , στi(ω(i)) are visited.

i

τi = 2

+1

+1

0

0

1

1

3 2 1 2

Figure 3. Toppling rule

We retrieve the Eulerian Walker Model when τi = 1 for every vertex and the Abelian Sandpile Model
when τi = di.

1.2. Relaxation of a configuration. Let u be a configuration such that vertex i is unstable, and let

u′ be the configuration obtained from u by toppling vertex i. We will note by u
i
 u′ this toppling operation,

and more generally by u
s
 u′ if u′ is obtained from u by the sequence s of topplings.

Definition 1.3. If u is an unstable configuration of the HAM on a τq-map Mτ
q then we call relaxation of

the configuration u every sequence s of topplings that transforms u into a stable configuration u′.
The relaxation process is not unique. In fact in an unstable configuration, more than one vertex could

be unstable. Thus, the choice of the vertex which will topple at a time step leads to several relaxations.
As mentioned in the article of Priezzhev, Dhar and al. [PDDK02], the topplings could be made in every
possible order and it always leads to the same stable configuration. The relaxation process is confluent. Thus
we will denote by û the unique stable configuration that can be reached from u performing only topplings.
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Starting from a configuration u we can draw the digraph G = (V,E) where V are labeled by configu-
rations and there exists an edge (v, w) if w can be reached from v with only one toppling. If we define a
partial order ≤ on the set of configurations such that u1 ≤ u2 if and only if there exists a sequence s such

that u2
s
 u1.

Figure 4. LLD lattice for  operator.

Proposition 1.4. The graph G is in fact a lower locally distributive (LLD) lattice whose cover relation is

the toppling relation.

Proof. Let u be a configuration. The shot-vector of a configuration u′ such that u
s
 u′, is the set

of topplings involved in the sequence s. If we denote by E the set of configurations lower than u, i.e.

E = {u′, u′ ≤ u}, then it is straightforward to show that E ordered by ≥ is isomorphic to the set of shot-

vectors of configurations in E ordered by inclusion. Since this ordered set is an upper locally distributive

lattice, the graph G which corresponds to (E,≥) is a lower distributive lattice. �

Figure 4 is an example of the lower locally distributive (LLD) lattice associated to the relaxation of an
unstable configuration.

Note that a toppling is a vectorial addition but you cannot perform it on all configurations. Toppling
vertex i is allowed only if i is unstable. Thus, we define a more general toppling operation, called forced
toppling which corresponds to the same operation but without any condition of stability. We note the
repetition of this new operation by #. Thus u# v means that we can obtain v from u with some (forced)
topplings -see figure 5-.
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0
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2 21 −1

Figure 5. Example of a forced toppling of a stable vertex

2. Recurrent configurations of the HAM

2.1. Recurrent configurations.

Definition 2.1. Let Cω be the following Markov chain:

• (0, ω) is the initial state.

• A transition is made of two steps:

– Addition of a grain which increases the height by one on a random vertex.

– Relaxation of the configuration.

We will denote by Eω the set of recurrent configurations (states) of Cω and by E the set of all recurrent

configurations for all possible starting orientations.
Note that the initial state of the Markov chain is (0, ω). If we choose any other initial height configuration

h, then the recurrent configurations associated to the Markov chain would have remained Eω . Indeed the
stable configuration obtained after relaxation of (Max(h, 0), ω) belongs to both Markov chains.

2.2. Extended recurrence criterion. In the model, for each vertex i, a natural quantity depending
on τi and di is meaningful: the multiplicity factor. The multiplicity factor λi is defined for each vertex i by:

λi =
lcm(τi, di)

di
=

τi
gcd(τi, di)

Then the multiplicity factor of the map is defined as λ = lcmi∈V {λi}.
The factor λi corresponds for each vertex to the smallest number of times any half-edge adjacent to

i is visited in order to return in the same arrow state by toppling operations. In figure 6, τi = 2 for the
considered vertex. We must topple this vertex at least 5 times in order to return to the same orientation
state. During these topplings each adjacent half-edge has been visited twice.
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σ

i

τi = 2

λi = 2

Figure 6. Graphical interpretation of the multiplicity factor of a vertex

Lemma 2.2. Let u = (h, ω) be a configuration of the system. Let s = s1s2 . . . sk be a series of topplings

of any vertices (sink included) starting from u such that after performing toppling sk, the system returns in

configuration u. Then, in this process, each half-edge of the map is visited mλ times with m ∈ N.

Proof. Notice that when a vertex topples, its first edge is visited, then its second one and so on, so

that no edge could be visited twice before all the other ones are visited once.

Then, as the orientation of a vertex i is the same between the beginning and the end of the process, this

means that each half-edge adjacent to i is visited the same number of times miλi.

Suppose now that there exist i, j such that i 6= j and miλi 6= mjλj . Let i0 be a strict minimum for

miλi; there is no j such that mjλj < mi0λi0 and there exists vertex j adjacent to vertex i0 such that

mjλj > mi0λi0 . This vertex received
∑

i adjacent to i0

miλi grains but sends di0mi0 grains. So it topples strictly

less grains than it receives which contradicts the conservation law of grains. Finally, all miλi are equal and

so miλi = mλ. �

Theorem 2.3. Let Mτ
q be a τq-map. Let u be a stable configuration. Suppose that we topple k times the

sink and that the relaxation of this new configuration is u. Then, the relaxation of the configuration obtained

by toppling the sink λ times in u is u.

Proof. Since τq = dq , by preceeding lemma, k = mλ. We must show that in fact taking m = 1 is also

possible.

Consider the following process:

Repeat m times the following two-steps operation:

(1) Topple the sink λ times.

(2) Relax the new configuration.

At the end of the process, the resulting configuration is u because of the confluence of the relaxation.

In this process we look at the series of half-edges si, 1 ≤ i ≤ m which appear in (a), (b) of the time step

i. Suppose that one half-edge appears stricly more than λ times. Take the first one that does so. Then, it

means that the corresponding vertex i received stricly more than λdi grains. Hence it received stricly more

than λ grains along at least one half-edge. This contradicts the fact that we take the first half-edge which

appears twice. Therefore each half-edge appears at most λ times. As at the end of the mth series, every

half-edge appears mλ times, each half-edge appears exactly λ times in each series si. Hence it is easy to

check that if every half-edge appears λ times, the configuration obtained is the same. �
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From this theorem we can now generalize Dhar’s criterion [Dha90] for characterizing recurrent config-
urations.

Theorem 2.4. [Extended recurrence criterion] A configuration u is recurrent if and only if when toppling

λ times the sink in u, the relaxation of the new configuration gives u.

Proof. The proof is very straightforward.

First we can show that if there is a recurrent configuration that verifies the conditions of Theorem 2.3,

then any recurrent configuration of the same orbit verifies them. Now, let consider the process of toppling

the sink and relaxing. If we repeat this process starting from a recurrent configuration, we eventually find a

recurrent configuration of the same orbit that verifies the condition of Theorem 2.3. Hence, any recurrent

configuration satisfies the criterion.

The reciprocity is immediate by definition of recurrence. �

3. HAM group of recurrent configurations

3.1. Arrow equivalent configurations. We now classify the recurrent configurations into different
classes. This classification comes from the following observations:

• In the Abelian Sandpile Model, the orientations are irrelevant. In fact τi = di for each vertex.
Thus, when you topple a vertex, the arrow makes one turn and return in the same position.

• In the Eulerian Walker problem, heights are irrelevant as they are all equal to 0 (τi = 1 for all
vertices).

For the HAM model, we try to separate the influence and the correlation between height and orientations.

Definition 3.1. Let ω1 and ω2 be two different orientations. We say that ω1 is equivalent to ω2 and we

write ω1 ∼o ω2 if and only if Eω1 = Eω2 .
By extension, we say that two configurations u1 = (h1, ω1), u2 = (h2, ω2) are arrow equivalent and we

write u1 ∼o u2 if ω1 ∼o ω2. Note that ∼o is an equivalence relation.

Lemma 3.2. Two configurations u1 = (h1, ω1) and u2 = (h2, ω2) are arrow equivalent on a τq-map Mτ
q if

and only if:

∀i 6= q, ∃ki ∈ N, ω1,i = σkiτi(ω2,i)

Proof. If u1 and u2 are arrow equivalent, we can get from u1 and u2 a common configuration by

additions of grains and toppling operations. When adding a grain, the orientations stay the same and when

toppling a vertex i , the orientation rotates by στi . Thus ω1 and ω2 respect the above property (see figure

7).

Conversly, if two configurations u1 and u2 satisfy the above property, then the stable configuration of (kτ, ω2)

obvioulsy belongs to the Markov chain initiated by (0, ω2), but also by the one initiated by (0, ω1). Hence

u1 and u2 are arrow equivalent. �
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σ

∼o 6∼o h′′
a

τb = 2

τc = 2τa = 1

ha

hb h′
b

h′
a

h′′
b

h′′
c

q q q

hc h′
c

Figure 7. Example of arrow equivalent configurations

3.2. HAM Abelian group. In this part, we show how the Abelian Sandpile Group can be generalized
in this new model.

Definition 3.3. For all vertices i 6= q, we define the set of operators ai as the addition of a grain on vertex

i followed by the relaxation.
Those operations form obviously a semigroup acting on any class of arrow equivalent configurations.

Lemma 3.4. The operators commute:

∀i, j 6= q, [ai, aj ] = 0

Proof. This comes from the confluence property of topplings. If there are two different unstable vertices

at a given time, then you can make the topplings in any order and the resulting stable configurations are

the same. �

Theorem 3.5. Let ω be an orientation, the operators {ai}i6=q form an Abelian group called HAM group

acting on Eω. We have the following relations:

∀i, aλidi

i =
∏

{i,j}∈E

aλi

j

Proof. By Theorem 2.4 and the extended recurrence criterion, it is clear that ai is inversible when

acting on Eω .

If ∆ is the Laplacian matrix of the graph (V,E) associated to the map, then:

∀i 6= q,
∏

j 6=q

a
λi∆i,j

j = I [ri].

Moreover, any relations between operators can be expressed in terms of ri. Each one corresponds to the

toppling of a vertex.

�

Now, we study the repartition of the recurrent configurations between classes Eω . Thus, we define the
graph W to be the directed graph where:

• Vertices are recurrent configurations.
• Edges are the application of operator ai or a−1

i .

Lemma 3.6. The graph W is the graph whose connected components are the equivalence classes of the

relation ∼o restricted to E.
The above lemma is the direct consequence of the following one.
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Lemma 3.7. Let u and u′ two recurrent configurations. They are connected within W (i.e., there is a

sequence of ai’s, such that (
∏

i∈I ai)u = u′) if and only if there is an orientation ω such that u and u′ are

in Eω.

Proof. Since G =< ai, ri > is a group acting on E , the connected components of W are the same as

the ones of the graph obtained from W by deleting the edges a−1
i . Hence we restrict ourselves to this graph.

Since u is recurrent, there is an orientation ω such that u is in Eω.

Suppose that u and u′ are connected within W . Then we can write u′ = (
∏

i∈I ai)u. Hence u′ can be

obtained by beginning the Markov chain by the configuration (0, ω) i.e., u′ ∈ Eω .

Suppose that both u and u′ are in Eω . Then they are recurrent in the Markov chain beginning by (0, ω).

Thus, there is a vector g such that when we add gi grains to each vertex i of configuration u and relax, we

get u′. It means that (
∏

i a
gi

i )u = u′ i.e., u is connected to u′ in W . By inversibility, we get the fact that u′

is connected to u in W . �

Theorem 3.8. Let ω be an orientation. Then the recurrent configurations in Eω are equiprobable.

Proof. The transition matrix of the associated Markov chain is irreducible by Lemma 3.6. Hence there

exits a unique stationnary probability. Since the equiprobability is obviously valid, it is the solution. �

Eulerian Walker : In the Eulerian Walker, τi = 1 for all vertices. Thus there is only one possible height
function which is 0 everywhere. In this case, there is only one equivalence class -one connected component
in W - for ∼o.
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Figure 8. Equivalence classes for ∼o in the EWM.

Abelian Sandpile Model (ASM) : In the ASM, τi = di for all vertices. Thus all configurations in a class
have the same orientations for the vertices.
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Figure 9. Equivalence classes of ∼o for the ASM.

Notice that all classes have equal cardinality. We denote by ∆ the Laplacian matrix of the underlying
graph, and by ∆q its q-minor, i.e. where row and column q are removed.

Proposition 3.9. The HAM group G =< ai; ri > is the one associated to the matrix (λi∆
q
i )i with i 6= q.

Then |Eω | = |G| = (
∏

i λi)|det(∆q)|. The number of spanning trees of the underlying graph is |det(∆q)|.
Moreover, |E| = ξ|G| where ξ =

∏
i6=q gcd(τi, di) i.e.

|E| = (
∏

i

di)|det(∆q)| = ξ|G|.

Proof. From the above remarks, (λi∆
q
i )i with i 6= q is the matrix of the group G. Hence |G| =

det(λi∆
q
i ), i 6= q, and we get the result by multilinearity of the determinant.

We can also directly guess that every Eω have the same cardinality because such a set is the result of

the action of a group on a configuration.

The fact that |det(∆q)| is the number of spanning trees of the underlying graph comes from the matrix-

tree theorem [WVL92].

�

4. Extended properties

We saw in the last section an equivalence relation among configurations. The relation helps us to
determine the cardinality of the set of recurrent configurations. We now define some other relations in order
to build a natural addition on recurrent configurations like in the ASM. In the ASM, the anti-toppling of a
vertex is equivalent to the toppling of all the other vertices. In the HAM, this relation is sometimes false.
When λ 6= 1 the behaviour of the HAM differs from the ASM. Thus, we introduce two different equivalence
relations, the first one ∼t which is the ASM equivalence and the second one ∼q where the factor λ is relevant.

4.1. Toppling equivalence ∼t.

Definition 4.1. Let u = (h, ω) and u′ = (h′, ω′) be two configurations. We say that u and u′ are toppling

equivalent, and we note u ∼t u
′ if and only if u can be obtained from u′ by a sequence of (forced) topplings

and anti-topplings of any vertex.
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Figure 10. The last configuration is not toppling equivalent with the two others, but

obviously arrow equivalent with them.

As we mentionned above, this relation is finer than ∼o. It corresponds to the classical equivalence
relation on the Abelian Sandpile Model. In the ASM, there is only one recurrent configuration in each
equivalence class.

In the following this result is extended to the HAM.

Proposition 4.2. ∼t is an equivalence relation on the set of all configurations. Moreover, ∼t =⇒ ∼o.

Proof. The fact that ∼t is transitive, reflexive and symetric is obvious. From Definition 4.1, if u ∼t u
′,

then:

∃k , ∀i , ωi = σkiτi(ω′i) .

In particular it means that ω ∼o ω
′ i.e., u ∼o u

′. �

A direct corollary of Theorem 2.4 is the following proposition:

Proposition 4.3. The equivalence classes of ∼t have same cardinality λ.
Thus we can define a finer (if λ > 1) equivalence relation:

Definition 4.4. Let u = (h, ω) and u′ = (h′, ω′) be two configurations. We say that u and u′ are sink

equivalent, and we note u ∼q u
′ if and only if u can be obtained from u′ by a sequence of (forced) topplings

and anti-topplings of any vertex except q.
This relation is more restrictive than ∼t. If ω is an orientation of a τq-map then we denote by Pq(u) the

equivalence class of u for ∼q.

Proposition 4.5.

∼q =⇒ ∼t =⇒ ∼o

We also have the converse relation for inclusion of equivalence classes.

Moreover, λ = 1⇐⇒∼q=∼t

Proof. The first inclusions are straightforward from the definition of equivalence relations.

The second point is a corollary of the following fact: toppling λ times the sink q is rigourously equivalent

to anti-toppling λdi

τi
times vertex i for all vertices i except q. Since there do not exist k < λ such that toppling

k times the sink is equivalent to toppling other vertices, ∼t and ∼q correspond to the same equivalence

relation if and only if λ = 1.
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Figure 11. Non equivalence between ∼t and ∼q .

�

If u and u′ are two configurations. Then they are sink equivalent if and only if u can be obtained from
u′ by a sequence of topplings of any vertices with the restriction that the sink q is toppled kλ times for some
integer k.

The proof is quite straightforward. From Theorem 2.4, we can express the anti-toppling of any vertex i
in term of topplings of vertices. If every vertex topples diλ/τi times except vertex i that topples diλ/τi − 1
times, then it is as if the vertex i anti-topples. Hence if u ∼q u

′, u can be obtained from u′ by a sequence of
topplings of vertices with the restriction that the sink q can only topples a number of times multiple of λ.

This last remark proves that there is only one recurrent configuration in each equivalence class of ∼q .

Proposition 4.6.

|Eω/ ∼q | = |Eω|

From these remarks on ∼q arises a natural order on configurations noted �q .

Definition 4.7. Let u and u′ be two configurations. We say that u �q u
′ if u′ could be obtained from u

with a series of (forced) topplings of vertices (6= q).
This order is a partial order on the infinite set of configurations of the HAM. Moreover, any class P q(u) is

an infinite distributive lattice for this order. If we denote by u1, . . . , uλ the λ distinct recurrent configurations
of a class for ∼t, then each one belongs to a different class for ∼q. We go from one class to the other by
toppling q (cf figure 12).
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q

Pq(uλ)

Pq(ui)

Pq(u2)

Pq(u1)

Figure 12. A class of ∼t splits into λ classes Pq(u) of ∼q.

4.2. Extended burning algorithm.

Theorem 4.8. Let u be a configuration. Then there exists a unique recurrent configuration u′ sink-equivalent

to u. This configuration is the fixed point of the following process:

(1) Topple λ times the sink in u.

(2) Relax the configuration obtained.

We call this process extended burning algorithm (see figure 13).

Moreover if u is non-negative then the number of iterations of the previous process is bounded by a

characteristic factor of Mτ
q .
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Figure 13. Extended burning algorithm

4.3. Addition. We now define an addition for recurrent configurations. The main problem between
HAM and ASM is that the orientations could be different between two recurrent configurations.

So let ω be an orientation We call ω-representation of the configuration u = (h, ω1) the configuration
u′ = (h′, ω) obtained from u by anti-toppling each vertex i the smallest number of times to obtain the same
orientation as ω. If u = (h, ω) and u′ = (h′, ω) are two recurrent configurations. Their ω-addition is the
relaxation of the configuration (h+ h′, ω).
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Figure 14. ω-representation

Definition 4.9. Let u, u′ be two recurrent configurations of Eω . We define the ω-addition u ⊕ω u
′ of the

two configurations as the recurrent configuration sink-equivalent to the sum of the ω-representation of u and

u′.

σ

0 1

1

1

0

τb = 2

⊕ω =

0

2

0−1

0 −1

4

1

1

0 −1

6

−1

3b, a

ω

τc = 2τa = 1

Figure 15. Exemple of addition

Note that this definition is coherent because there exists a unique recurrent configuration sink-equivalent
to a configuration. For example, the identity of (Eω ,⊕ω) is the unique recurrent configuration sink-equivalent
to (0, ω) which can be obtained by the extended burning algorithm.

5. Conclusion

In this article we make an extensive study of the so-called Height Arrow Model. We show how the
classical results of the Eulerian Walker and of the Abelian Sandpile Model could be generalized. Moreover,
we find the cardinality of the set of recurrent configurations of the HAM but the proofs are analytic. It is
possible to generalize the bijections between recurrent configurations and spanning trees as those found by
Dhar.
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A combinatorial approach to jumping particles I: maximal flow regime

Enrica Duchi and Gilles Schaeffer

Abstract. In this paper we consider a model of particles jumping on a row of cells, called in physics

the one dimensional totally asymmetric exclusion process (TASEP). More precisely we deal with the

TASEP with two or three types of particles, with or without boundaries, in the maximal flow regime.

From the point of view of combinatorics a remarkable feature of these Markov chains is that they

involve Catalan numbers in several entries of their stationary distribution.

We give a combinatorial interpretation and a simple proof of these observations. In doing this

we reveal a second row of cells, which is used by particles to travel backward. As a byproduct we

also obtain an interpretation of the occurrence of the Brownian excursion in the description of the

density of particles on a long row of cells.

Résumé. Dans cet article, nous étudions un modèle de particules qui sautent le long d’une ligne,

appelé en physique le processus d’exclusion totalement asymétrique unidimensionnel (TASEP). Plus

précisément, nous traitons le TASEP avec deux ou trois types de particules, avec ou sans bords,

dans le régime de flux maximal. D’un point de vue combinatoire, une propriété remarquable de ces

châınes de Markov est qu’elles font intervenir des nombres de Catalan dans plusieurs entrées de

leur distribution stationnaire.

Nous donnons une interprétation combinatoire et une preuve simple de ces observations. Ce

faisant, nous révélons une deuxième rangée de cases, utilisées par les particules pour retourner en

arrière. Nous en déduisons enfin une interprétation de l’apparition d’excursion Brownienne dans

la description de la densité des particules le long d’une longue rangée de cases.

1. Jumping particles

1.1. The basic model. We shall consider a model of jumping particles on a row of n cells that was
studied since the early 90’s in physics under the name one dimensional totally asymmetric exclusion process
with boundaries, or TASEP for short. Although the model is usually presented as a continuous time evolution,
it is equivalent, and it is more convenient for us, to define it in discrete time as a Markov chain S0 on a set
of basic configurations:

• A basic configuration is a row of n cells, separated by n+ 1 walls (the leftmost and rightmost ones
are borders). Each cell is occupied by one particle, and each particle has a type, black or white
(see Figure 1).

• At time t = 0, the system is in a basic configuration S0(0) (possibly chosen at random).
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104 JUMPING PARTICLES

Figure 1. A basic configuration with n = 10 cells.

Figure 2. An exemple of evolution, with n = 4. The active wall triggering each transition is indicated.

• From time t to t+1, the system evolves from the basic configuration S0(t) to the basic configuration
S0(t+ 1) as follows: an active wall is chosen uniformly at random among the n+ 1 walls and four
cases arise. The complete model for n = 3 is presented in Appendix B (see Figure 19).
a. If the active wall separates a black particle (on its left) and a white particle (on its right),

then the two particles swap.
b. If the active wall is the left border and the leftmost cell contains a white particle, then the

white particle leaves the system and it is replaced by a black particle.
c. If the active wall is the right border and the rightmost cell contains a black particle, then the

black particle leaves the system and it is replaced by a white particle.
d. Otherwise nothing happens: S0(t+ 1) = S0(t).

As illustrated by Fig. 2, black particles travel from left to right, while white particles do the opposite.
Equivalently one can view white particles as empty cells. Derrida et al. [DDM92, DEHP93] proved the
following nice results about the evolution of the system S0 after a long time. First,

(1.1) Prob(S0(t) contains 0 black particles) −→
t→∞

1

Cn+1
,

where Cn+1 = 1
n+2

(
2n+2
n+1

)
is the (n+ 1)th Catalan number. More generally, for all 0 ≤ k ≤ n,

(1.2) Prob(S0(t) contains k black particles) −→
t→∞

1
n+1

(
n+1

k

)(
n+1
n−k

)

Cn+1
,

where the numerators are called Narayana numbers.
The model is a finite state Markov chain which is clearly ergodic so that the previous limits are in fact

the probabilities of the same events in the unique stationary distribution of the chain [H0̈2]. More generally,
Derrida et al. provided expressions for the stationary probabilities. Since their original work a number of
papers have appeared providing alternative proofs and further results on correlations, time evolutions, etc. It
should be moreover stressed that the model we presented is a special case among the many existing variants
of asymmetric exclusion processes. In particular we have restricted our attention here to the maximal flow
regime, where particles enter, travel and exit at the same rate (see however [DS04] for an extension of
the present work to general rates). Recent advances and a biblography can be found for instance in the
article [DLS03]. Books about particle processes are [Spo91, Lig85]. However, the remarkable apparition
of Catalan numbers is not easily understood from the proofs in the physics literature. As far as we know,
these proofs rely either on a matrix ansatz, or on a Bethe ansatz, both being then proved by a recursion on
n.

We propose here a combinatorial derivation of these stationary probabilities. In fact we deal with with a
slightly more general model, the three particle TASEP [And88, DEHP93]. This model is a Markov chain
S that extends S0 to three kinds of particles:
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• A basic configuration is a row of n cells, separated by n+ 1 walls (the leftmost and rightmost ones
are borders). Each cell is occupied by one particle. Each particle has a type, • (black), ×, or ◦
(white), and these three types are ordered: • >×> ◦.

Figure 3. A basic configuration with n = 14 cells.

• At each step, together with the selection of the active wall, a choice is made between two transition
rules θ and θ′, with equal probability. Then four cases arise:
a. The active wall separates two particles such that the type of the left one is larger than the type

of the right one. Then the two particles swap. In other terms, the possible local transitions
around the active wall are (•|◦ → ◦|•), (•|×→×|•), and (×|◦ → ◦|×).

b. The active wall is the left border. If the leftmost particle is white then it exits, and it is
replaced by a black or an× particle when the rule is respectively θ or θ′. If instead it is an×
particle and the rule is θ′, then it exits and is replaced by a black particle.

c. The active wall is the right border. If the rightmost particle is black then it exits, and gets
replaced by a white or an× particle when the rule is respectively θ or θ′. If instead it is an×
particle and the rule is θ′, then it exits and is replaced by a white particle.

d. Otherwise nothing happens.

An example of evolution is given in Figure 4. One possible interpretation of this model is that black
and white particles still travel respectively to the right and to the left, while× particles act as empty cells.
Another interpretation is with white particles standing for vacancies and black particles overtaking slower×
particles.

1.2. The complete model. Our main ingredient to study the three particle TASEP consists in the
construction of a new Markov chain X on a set Ωn of complete configurations that satisfies two main
requirements: on the one hand the stationary distribution of the basic chain S can be simply expressed in
terms of that of the chain X ; on the other hand the stationary behavior of the chain X is easy to understand.
The complete configurations that we introduce for this purpose are made of two rows of n cells containing
black, ×, and white particles. The first requirement is met by imposing that disregarding what happens
in the second row, the chain X simulates the chain S in the first row. The second requirement is met by
adequately choosing the complete configurations and the transition rules so that X clearly has a uniform
stationary distribution.

More precisely a pair of rows of particles belongs to Ωn if: (i) the× particles appear in pairs to form
|××|-columns, thus delimiting blocks of contiguous black and white particles; (ii) each of these blocks contains

an equal number of black and white particles; (iii) inside each block, to the left of any vertical wall there
are no more white particles than black ones (the positivity condition).

θ’

θ’

θ

θ

Figure 4. An example of evolution with n = 4 for the three particle model.
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An example of a complete configuration is given in Figure 5: from left to right the blocks have successively
length 3, 0, 1, and 7. In Section 2 we prove that the cardinality of Ωn is 1

2

(
2n+2
n+1

)
, and that, for any

k + ` + m = n, the cardinality of the set Ω`
k,m of complete configurations with ` |××|-columns, and k black

and m white particles on the top row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.

Figure 5. A complete configuration with n = 14.

The Markov chain X on Ωn is defined in terms of two transition rules, T and T ′, from the set
Ωn×{0, . . . , n} to the set Ωn, that respectively extend the transition rules θ and θ′. These transition rules
are derived in Section 3 from two fundamental bijections T̄ and T̄ ′ but can be conveniently described as
follows. Given a complete configuration ω and an active wall i, the actions of T and T ′ on the top row of ω
do not depend on the second row, and mimic the actions of θ and θ′ as defined by cases a, b, c and d of the
description of the three particle TASEP. In particular in the top row, black particles travel from left to right
and white particles from right to left. As opposed to that, in the bottom row, T and T ′ move black and
white particles backward. In order to describe this, we first introduce the concept of sweep (see Figure 6):

• A white sweep between walls i1 and i2 consists in all white particles of the bottom row and between
walls i1 and i2 simultaneously hopping to the right (some black particles thus being displaced to
the left in order to fill the gaps). For well definiteness a white sweep between i1 and i2 can occur
only if the particle on the right hand side of i2 is black.

• A black sweep between walls i1 and i2 consists in all black particles of the bottom row and between
walls i1 and i2 simultaneously hopping to the left (some white particles thus being displaced to the
right in order to fill the gaps). For well definiteness a white sweep between i1 and i2 can occur only
if the particle on the left hand side of i1 is white.

Next, around the active wall i, we distinguish the following walls: if i 6= 0, let j1 < i be the leftmost wall
such that there are only white particles in the top row between walls j1 and i− 1; if i 6= n, let j2 > i be the
rightmost wall such that there are only black particles in the top row between walls i+1 and j2. With these
definitions, we are in the position to describe the actions of T and T ′ on the bottom row of a configuration.
First whenever an× particle jumps in the top row, the× particle below must follow it (so that they remain
in the same column). Then the cases a, b and c of the transition rules θ and θ′ are complemented in the
bottom row as follows:

a. The moves in the bottom row depend on the transition at the active wall i in the top row (these
moves are illustrated by Figures 7–8, and more precisely described in Figures 11–16):

– (×|◦ → ◦|×): the |××|- and |•◦ |-columns get exchanged and then a white sweep occurs between
walls j1 and i− 1.

1i 2i 2i1i

Figure 6. A white sweep and a black sweep.
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i

i j1 i

i j2

? white

?blackblack

white

Figure 7. Sweeps occurring below transitions (×|◦ → ◦|×) and (•|×→×|•).

i

white black
?

j1

j2i

i

? white

?black

Figure 8. Sweeps occurring below the transition (•|◦ → ◦|•).

– (•|×→×|•): the | •◦ |- and |××|-columns get exchanged and then a black sweep occurs between

walls i+ 1 and j2 + 1 (or between i+ 1 and j2 if j2 = n or the particle on the right hand side
of j2 is a×).

– (•|◦ → ◦|•): depending whether the particle on the bottom right of the ith wall in ω is white
or black, a white sweep occurs between j1 and i− 1, or a black one between i+ 1 and j2 + 1
(or between i+ 1 and j2 if j2 = n or the particle on the right hand side of j2 is a×).

b. If the entering particle is black, a black sweep occurs between the left border and wall j2 + 1.
c. If the entering particle is white, a white sweep occurs between wall j1 and the right border.

Otherwise nothing else happens in the bottom row. Based on T and T ′, the Markov chain X is defined in a
similar way as the three particle TASEP:

• The set of configurations is the set Ωn of complete configurations of length n.
• From time t to t + 1, the system evolves from the complete configuration X(t) to the next one
X(t+ 1) as follows: an active wall i is chosen uniformly at random among the n+ 1 walls, and one
of the two rules T and T ′ is selected at random with probability 1/2. The configuration X(t+ 1)
is obtained by applying the selected rule to X(t) at the active wall.

In Section 4, we shall prove that there exists an evolution between any two configurations, i.e., that the
Markov chain X is irreducible. There is also a positive probability to stay in any configuration, so that it is
aperiodic. Our main result is then the following theorem.

Theorem 1.1. The Markov chain X has a uniform stationary distribution.
The uniformity of the stationary distribution is obtained “by construction”: indeed, in Section 3 we

show T (and similarly T ′) can be described more explicitly as the first component Ωn×{0, . . . , n} → Ωn of a
bijection T̄ : Ωn×{0, . . . , n} → Ωn×{0, . . . , n}; then assuming that at some time t the system is in the uniform
distribution on Ωn, i.e.,

Prob(X(t) = ω) =
1

|Ωn|
,
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Τ ’

Τ ’

Τ

Τ

Figure 9. An example of evolution with n = 4 for the complete three particle model.

it always remains in the uniform distribution:

Prob(X(t+ 1) = ω) =

=
1

2

∑

(ω′,i)∈T−1(ω)

Prob(X(t) = ω′) · 1
n+1

+
1

2

∑

(ω′′ ,i)∈T ′−1(ω)

Prob(X(t) = ω′′) · 1
n+1

=
1

2
·
∣∣T−1(ω)

∣∣ · 1

|Ωn|
· 1

n+ 1
+

1

2
·
∣∣T ′−1(ω)

∣∣ · 1

|Ωn|
· 1

n+ 1
=

1

|Ωn|
,

where T−1(ω) and T ′−1(ω) denote the sets of preimages of ω respectively by T and T ′; the last equality
follows from the facts that T−1(ω) = {T̄−1(ω, j) | j = 0, . . . , n} and T ′−1(ω) = {T̄ ′−1(ω, j) | j = 0, . . . , n},
and that T̄ and T̄ ′ are bijections.

1.3. From the complete to the basic model. According to the theory of finite state Markov chains
[H0̈2], Theorem 1.1 ensures that for any choice of initial condition X(0),

Prob(X(t) = ω) −→
t→∞

1

|Ωn|
=

1
1
2

(
2n+2
n+1

) .

This result is sufficient to recover the stationary distribution of the basic model. Indeed observe that by
construction hiding the bottom row in the complete model exactly yields the basic model. Hence we obtain
the following combinatorial interpretation for the stationary distribution of the three particle TASEP:

Theorem 1.2. Let top(ω) denote the top row of a complete configuration ω. Then for any initial configu-

rations S(0) and X(0) with top(X(0)) = S(0), and any basic configuration r,

Prob(S(t) = r) = Prob(top(X(t)) = r) −→
t→∞

∣∣{ω ∈ Ωn | top(ω) = r}|
|Ωn|

.

In particular, for any k + `+m = n, we obtain combinatorially the formula:

Prob(S(t) contains k black and m white particles) −→
t→∞

|Ω`
k,m|
|Ωn|

=
`+1
n+1

(
n+1

k

)(
n+1
m

)

1
2

(
2n+2
n+1

) .

As discussed in Section 5 this interpretation sheds a new light on some recent results of Derrida et al.
connecting the TASEP to Brownian excursions [DEL].
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(a) (b)

Figure 10. A basic (a) and a complete (b) configuration for the three particle TASEP on a circle

1.4. Two variations. Let us denote by Ω0
n the subset of configurations of Ωn without×particles, and

recall that Ω0
k,m is the subset of configurations of Ω0

n with k black and m white particles in the first row. In

Section 2 we show that |Ω0
n| = 1

n+1

(
2n+2

n

)
and that |Ω0

k,m| = 1
n+1

(
n+1

k

)(
n+1
m

)
. As we did for Ωn, we define

a Markov chain on the set Ω0
n whose evolution is determined just by the application of T 0, which is the

restriction of T to the subset Ω0
n. The behavior of the first row in this Markov chain then exactly mimics the

basic TASEP with two particles. Moreover, the associated application T̄ 0 is a bijection from Ω0
n×{0, . . . , n}

into itself, so that that the uniform distribution is again stationary for this Markov chain. Finally it is also
an ergodic Markov chain. Therefore

Prob(X0(t) = ω) −→
t→∞

1

|Ω0
n|
,

and the stationary distribution of the two particles TASEP is combinatorially expressed as

Prob(S0(t) = r) −→
t→∞

|{ω ∈ Ω0
n | top(ω) = r}|
|Ω0

n|
.

The results (1.1)-(1.2) are then immediate consequences. The basic and complete system with two particles
for n = 3 are represented in Figures 19–20 in Appendix B.

Another variant of TASEP found in the literature is the TASEP with periodic boundary conditions,
in which the particles travel around a circle (see Figure 10, the circle is rigid, not subject to rotation).
Since there are no border walls in these configurations, the Markov chain Ŝ is defined using only Case a of
the transition rule θ of the TASEP with boundaries. In the periodic TASEP the numbers of black,× and
white particles do not change, and the case without × particle immediately leads to a uniform stationary
distribution. Our approach is easily adapted to deal with the more interesting case where there are×particles.

Indeed one can associate to this model a new set Ω̂n of complete configurations, made of two rows of cells

arranged on a circle. As for Ωn, configurations of Ω̂n are subject to the condition that the blocks between
two |××|-columns, when read in clockwise direction, satisfy the positivity constraints. Since the number of

black, white and×particles never change in this system, we concentrate on the set Ω̂`
k,m of configurations of

Ω̂n with ` |××|-columns, k black and m white particles in the top row. In Section 2 we prove that cardinality

of Ω̂`
k,m is

(
n
k

)(
n
m

)
. Again Case a of the evolution rule T is sufficient to define an evolution rule T̂ on Ω̂`

k,m

and an associated bijection from Ω̂`
k,m×{0, . . . , n− 1} to itself. The same arguments as for the chain X show

that the resulting Markov chain X̂ has uniform stationary distribution, and this yields:

Prob(X̂(t) = ω) −→
t→∞

1

|Ω̂`
k,m|

=
1(

n
k

)(
n
m

) .

The stationary distribution of the TASEP Ŝ is then combinatorially expressed in terms of complete config-
urations:

Prob(Ŝ(t) = r) −→
t→∞

|{ω ∈ Ω̂`
k,m | top(ω) = r}|
|Ω`

k,m|
.
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1.5. Outline of the rest of the paper. In Section 2 the different classes of complete configurations
are enumerated. The main bijections are studied in Section 3, and in Section 4 the chains are proven to be
irreducible. Finally some concluding remarks are gathered in Section 5.

2. Complete configurations and the cycle lemma

In this section we state the enumerative lemmas (see proofs in Appendix A). Given a complete config-
uration of length n, and an integer j, 0 ≤ j ≤ n, let B(j) and W (j) be respectively the numbers of black
and white particles lying in the first j-th columns (from left to right), and set E(j) = B(j) −W (j). In
other terms, the quantities B(j), W (j) and E(j) represent the number of black particles, the number of
white particles, and their difference on the left-hand side of the jth wall. In particular, E(0) = E(n) = 0,
and Condition (iii) of the definition of complete configurations reads E(j) ≥ 0 for j = 0, . . . , n (this is why
we call it a positivity condition). Readers with a background in enumerative combinatorics may recognize
bicolored Motzkin paths in disguise [Sta99, Ch. 6].

Lemma 2.1. The number |Ωn| of complete configurations of Ωn is 1
2

(
2n+2
n+1

)
.

Lemma 2.2. Let k, `,m, n be non negative integers with k + ` + m = n. The number |Ω`
k,m| of complete

configurations of Ωn with ` |××|-columns, k black and m white particles on the top row, and m black and k

white particles on the bottom row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.

Lemma 2.3. The number |Ω`
p| of complete configurations of Ωn, for p + ` = n, with ` |××|-columns, and p

black and p white particles distributed between the two rows is `+1
n+1

(
2n+2

p

)
.

Remark. As already said, when ` = 0 we have configurations with just two kinds of particles. In this case,
from Lemma 2.2 and Lemma 2.3, we have |Ω0

k,m| = 1
n+1

(
n+1

k

)(
n+1
m

)
and |Ω0

n| = 1
n+1

(
2n+2

n

)
.

Lemma 2.4. The number |Ω̂k,m| of configurations of |Ω̂n| having ` |××|-columns, k black particles at the top,

and m at the bottom is
(
n
k

)(
n
m

)
.

3. The bijections T̄ and T̄ ′

In this section we describe the mappings T̄ and T̄ ′ case by case and check that they are bijections from
Ωn×{0, . . . , n} to itself.

We shall partition the set Ωn×{0, . . . , n} into classes Aa′
1
, Aa′′

1
, Aa2 , Aa3 , Ab1 , Ab2 , Ac1 , Ac2 , Ad, and

describe, for each class Aα, its images Bα = T̄ (Aα) and B′α = T̄ ′(Aα) under the action of T̄ and T̄ ′. From
now on, (ω, i) denotes an element of the current class, and (ω′, j) its image, either by T̄ or by T̄ ′ depending
on the context. In the pairs (ω, i) and (ω′, j), i and j refer to walls of the configurations ω and ω′, and i
is called the active wall of ω. Following the notations of Section 1, when i 6= 0, we also consider j1 < i the
smallest integer such that in the top row of ω all cells between walls j1 and i − 1 contain white particles.
Symmetrically, when i 6= n, we consider j2 > i the largest integer such that in the top row of ω all cells
between walls i + 1 and j2 contain black particles. In the first few cases the applications T̄ and T̄ ′ do not
differ, so a common description is given. Later on, they are distinguished.

Aa1 The active wall of ω separates in the top row a black particle P and a white particle Q. Then in the
top row the particles P and Q swap. In the bottom row, the sweep that occurs depends on the
type of the particle R that is below Q in ω (see Figure 11):
Aa′

1
The particle R is black. Then j = j1 and, in the bottom row, a white sweep occurs between
walls j and i. Observe that ω′ belongs to Ωn. Indeed ω′ can also be described as obtained
from ω by moving a | ◦• |-column from the right of the ith wall to the right of the jth. But
moving a | ◦• |-column has no effect on the positivity constraints.
The image Ba′

1
= B′a′

1
of the class Aa′

1
consists of pairs (ω′, j) such that: there is not a white

particle on the left-hand side of the jth wall in the top row of ω′, there is a | ◦• |-column on its
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right-hand side, and the sequence of white particles on the right-hand side of the jth wall in
the top row is followed by a black particle.

Aa′′
1

The particle R is white. Then j = j2 and, in the bottom row, a black sweep occurs between
walls i+ 1 and j + 1 (resp. i+ 1 and j) if on the right of j there is a white particle (resp. an
|××|-column or the border). The new configuration ω′ satisfies clearly the positivity condition

at all walls but i. But there is a | ◦◦ |-column on the right of i in ω, so that in this configuration
B(i)−W (i) ≥ 2, and this quantity remains non negative in ω′.
The image Ba′′

1
= B′a′′

1
of the class Aa′′

1
consists of pairs (ω′, j) with a | ◦◦ |-column, an |××|-

column, or the border on the right-hand side of the jth wall of ω′ and such that there is a
non-empty sequence of black particles on the left-hand side of the jth wall in the top row,
followed by a white particle.

T’T =

B’a’1B  =a’1

j1

R

P Qi
white

white

Aa’1

black

B  =a"1 B’a"1

1
Aa’’

T = T’

j2

black

iP Q

R

Figure 11. Jump moves in the (•|◦ → ◦|•) case.

Aa2 The active wall of ω separates in the top row an×particle P and a white particle Q. We remark that,
in order to satisfy the positivity constraint, the cell under Q must contain a black particle R (see
Figure 12, left-hand side). Then in the top row the particles P and Q swap. In the bottom row, the
× particle under P and the particle R swap, and then a white sweep occurs between walls j = j1
and i− 1. Observe that ω′ belongs to Ωn. Indeed ω′ can also be described as obtained from ω by
moving a | ◦• |-column from the right of the ith wall to the right of the jth.

The image Ba2 = B′a2
of the class Aa2 consists of pairs (ω′, j) such that: there is not a white

particle on the left-hand side of the jth wall in the top row of ω′, there is a | ◦• |-column on its

a2

T = T’

B  =a2
B’a2

j1

R

P Qi
white

white

A

black

a3

T = T’

B  =a3
B’a3

j2

black

iP Q

A R

Figure 12. Jump moves in the (×|◦ → ◦|×) and (•|×→×|•) cases.
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right-hand side and the sequence of white particles on the right-hand side of the jth wall in the
top row is followed by an× particle.

Aa3 The active wall of ω separates in the top row an black particle P and an× particle Q. This time the
cell under P must contain a white particle R (see Figure 12, right-hand side). Then the particles P
and Q swap. In the bottom row, the particle R and the×particle under Q swap, and then a black
sweep occurs between walls i+1 and j+1 with j = j2 (or between walls i+1 and j if an |××|-column

or the border is reached). The configuration ω′ belongs to Ωn since a |××| and a |•◦ |-column swap
and no other black particle moves to the right.

The image Ba3 = B′a3
of the class Aa3 consists of pairs (ω′, j) with a | ◦◦ |-column, an |××|-column,

or the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left-hand side of the jth wall in the top row, followed by an× particle.

Ab1 The active wall of ω is the left border with a white particle Q on its right in the top row. Again, the
cell under Q must contain a black particle R (see Figure 13). Then the images by T̄ and T̄ ′ are
different:

– T̄ is applied. First the particles Q and R are replaced by | •◦ |-column. Then j = j2 and, in the
bottom row, a black sweep occurs between walls 1 and j + 1 (or between walls 1 and j if an
|××|-columns or the border is reached). The configuration ω′ belongs to Ωn. Indeed no black
particle moves to the right.
The image Bb1 of the class Ab1 consists of pairs (ω′, j) with a | ◦◦ |-column, an |××|-column, or

the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left of the jth wall in the top row, ending at the left border.

– T̄ ′ is applied. Then both Q and R particles are replaced by × particles, and j = 0. The
configuration ω′ belongs to Ωn since a | ◦• |-column was replaced by an |××|-column.

The image B′b1 of Ab1 consists of pairs (ω′, 0) with an |××|-column on the left border.
Ab2 The active wall of ω is the left border with an× particle Q on its right in the top row. The particle R

under Q must be an× particle (see Figure 14):
– T̄ is applied. Then ω′ = ω and j = 0. The image Bb2 of the class Ab2 consists of pairs (ω′, 0)

with a |××|-column on the left border.

– T̄ ′ is applied. First, the particles Q and R are replaced by a | •◦ |-column. Then a black sweep

occurs between walls 1 and j+1 with j = j2 (or between 1 and j if a |××|-columns or the border

is reached). The configuration ω′ belongs to Ωn since no black particle moves to the right.
The image B′b2 of the class Ab2 consists of pairs (ω′, j) with a | ◦◦ |-column, an |××|-column, or

the border on the right of the jth wall of ω′ and such that there is a non-empty sequence of
black particles on the left of the jth wall in the top row, ending at the left border.

Ac1 The active wall of ω is the right border with a black particle Q on its left in the top row. The cell
under Q must contain a white particle R (see Figure 15):

– T̄ is applied. First the particles Q and R are replaced by a | ◦• |-column. Then j = j1 and, in
the bottom row, a white sweep occurs between walls j and n−1. The configuration ω′ belongs
to Ωn since the transformation amounts to moving and flipping a | •◦ |-column.
The image Bc1 of the class Ac1 consists of pairs (ω′, j) such that: there is not a white particle
on the left-hand side of the jth wall of ω′ in the top row, there is a | ◦• |-column on its right-hand
side, and such that the sequence of white particles on the right-hand side of the jth wall in
the top row ends at the right border.

– T̄ ′ is applied. Then both Q and R are replaced by× particles, and j = n. The configuration
ω′ belongs to Ωn since a | •◦ |-column is replaced by a |××|-column.

The image B′c1
of Ac1 consists of pairs (ω′, n) with an |××|-column on the right border.
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T T’

R

Q

R

Q

b1B’

j20
blackAb1

blackBb1

0

Ab1

Figure 13. Active left border with a white particle in the top row.

T T’

Ab2

j2

Ab2

2bB

0
blackQ

R

black
2bB’

Q

R

0

Figure 14. Active left border with an x particle in the top row.

T T’

j1
Q

R
Ac 1

white Q

R
Ac 1

c 1
B’whiteBc 1

n n

Figure 15. Active right border with a black particle in the top row.

Ac 2

T T’

B’c 2

Ac 2

2cB

j1

white

white Q

R

Q

R

n n

Figure 16. Active right border with a× particle in the top row.
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Ac2 The active wall of ω is the right border with an× particle Q on its left in the top row. The particle R
under Q must be an× particle (see Figure 16). Then the image by T̄ and T̄ ′ are:

– T̄ is applied. Then ω′ = ω and j = n. The image Bc2 of the class Ac2 consists of pairs (ω′, n)
with a |××|-column on the right border.

– T̄ ′ is applied. First, the particles Q and R are replaced by a | ◦• |-column. Then a white sweep
occurs between walls j = j1 and n − 1. The configuration ω′ belongs to Ωn. Indeed the
operation amounts to the introduction of a | ◦• |-column at the jth wall.
The image B′c2

of the class Ac2 consists of pairs (ω′, j) such that: there is not a white particle
on the left-hand side of the jth wall of ω′ in the top row, there is a | ◦• |-column on its right-hand
side, and the sequence of white particles on the right-hand side of the jth wall in the top row
ends at the right border.

Ad This class contains all the remaining cases. For these configurations the mappings T̄ and T̄ ′ do not
change anything, that is, for (ω, i) ∈ Ad, T̄ (ω, i) = T̄ ′(ω, i) = (ω, i).

Theorem 3.1. The mappings T̄ , T̄ ′ : Ωn×{0, . . . , n} → Ωn×{0, . . . , n} are bijections.

Proof. In each case the transformations are clearly reversible. We conclude by checking that both

{Ba′
1
, Ba′′

1
, Ba2 , Ba3 , Bb1 , Bb2 , Bc1 , Bc2 , Bd} and {Ba′

1
, Ba′′

1
, Ba2 , Ba3 , B

′
b1
, B′b2 , B

′
c1
, B′c2

, Bd} are partitions of

Ωn×{0, . . . , n}. �

For the two particle model, it suffices to observe that the restriction of T̄ to Ω0
n×{0, . . . , n} is a bijection

onto Ω0
n×{0, . . . , n}. For the three particle model on the circle, a bijection from Ω̂`

k,m onto itself is readily
obtained using the constructions in cases Aa′

1
, Aa′′

1
, Aa2 and Aa3 .

4. Paths between two configurations

In this section we verify that the Markov chains X0, X̂ and X are irreducible, i.e. that there is a
positive probability to go from any configuration ω to any other one ω′. In other terms we need to prove
that the transition graph defined on Ωn by T and T ′ is connected. The proof is based on an observation
about iterating the bijections T̄ or T̄ ′, and on induction on n.

To every pair (ω, i) of Ωn×{0, . . . , n} we associate a reduced configuration ωi in Ωn−1, obtained from ω
by deleting two particles around the wall i using the following rules:

• if (ω, i) belongs to Aa′
1
, Aa2 or Ab1 then ωi is obtained by removing the | ◦• |-column on the right-hand

side of the wall i (particles Q and R on the corresponding figure),
• if (ω, i) belongs to Aa′′

1
then ωi is obtained by removing the two particles forming the configurations

• |◦ around the wall i (particles P and R on the corresponding figure),

• if (ω, i) belongs to Aa3 or Ac1 then ωi is obtained by removing the | •◦ |-column on thean left-hand
side of the wall i (particles P and R on the corresponding figure),

• if (ω, i) belongs to Ab2 , then ωi is obtained by removing the |××|-column on the left border,

• if (ω, i) belongs to Ac2 , then ωi is obtained by removing the |××|-column on the right border.

Lemma 4.1. Let ω′ be a configuration of Ωn−1. Let S(ω′) be the set of pairs (ω, i) of Ωn×{0, . . . , n} having

ω′ as reduced configuration, i.e. such that ωi = ω′. Then:

• the set S(ω′) is a cyclic orbit of T̄ ′: given (ω, i) ∈ S all other elements of S can be reached by

successive applications of T̄ ′,
• the set S(ω′) \ {(ω′0, 0), (ω′n, n)} is a cyclic orbit of T̄ , where ω′0 is the configuration |××|ω′ and ω′n

is the configuration ω′|××|.

Proof. As can be checked on the left-hand sides of Figures 11 and 12, iterating T̄ , or T̄ ′ from a pair

(ω, i) of Aa′
1

or Aa2 , the selected wall moves to the left with the pair of particles P and R, and successively
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stops on the right hand side of every black or × particle of the top row, until it reaches the left border.

Similarly, as can be checked on the right-hand sides of Figures 11 and 12, iterating T̄ or T̄ ′ from a pair of

Aa′′ or Aa2 , the selected wall moves to the right with the pair of particles P and R, stopping on the left

hand side of every white and×particles of the top row, until it reaches the right border.

As shown by Figures 13–16, the application T̄ and T̄ ′ behave differently when the border is reached: T̄ ′

visits the configurations ω′0 or ω′n while T̄ skips them and restart moving in the opposite direction.

Starting from an element (ω, i) all other elements of S(ω′) (respectively S \ {ω′0, ω′n}) are thus visited in

a cycle by successive applications of T̄ ′ (respectively T̄ ). �

Lemma 4.1 provides us with cycles in the transition graph on Ωn, and each cycle is associated to a
reduced configuration of Ωn−1. The next lemma transports transitions from Ωn−1 to Ωn.

Lemma 4.2. Let (ω′, j) = T̄ ′(ω, i) be a transition between two configurations of Ωn−1. Then there exists

pairs (ω+, i+) ∈ S(ω) and (ω′+, j+) ∈ S(ω′) such that (ω′+, j+) = T̄ ′(ω+, i+).

Proof. In each case of Figures 11–16, an |××|-column can be inserted, either on the left or on the right

border, without interfering with the action of T̄ ′. �

Lemma 4.2 gives a transition between an element of the cycle associated to ω and an element of the
cycle associated to ω′. Taking the connectivity of the transition graph on Ωn−1 as induction hypothesis, we
conclude that all cycles of Lemma 4.1 belong to the same connected component of the transition graph on
Ωn. Since every element of Ωn belong to a cycle, this concludes the proof of the irreducibility of X . The

proofs for X0 and X̂ are similar.

5. Conclusions and relations to Brownian excursions

The starting point of this paper was a “combinatorial Ansatz”: the stationary distribution of the two
and three particle TASEP with or without boundaries can be expressed in terms of Catalan numbers hence
should have a nice combinatorial interpretation. In our interpretation, configurations of the TASEP are
completed by a (usually hidden) second row in which particles go back. The resulting system has a uniform
stationary distribution so that the probability of a given TASEP configuration just reflects the diversity of
possible rows hidden below it.

We do not claim that our combinatorial interpretation is of any physical relevance. However, apart
from explaining the “magical” occurrence of Catalan numbers in the problem, it sheds new light on the
recent results of Derrida et al. [DEL] connecting the TASEP with Brownian excursion. More precisely,
using explicit calculations, Derrida et al. show that the density of black particles in configurations of the two
particle TASEP can be expressed in terms of a pair (et, bt) of independent processes, a Brownian excursion et

and a Brownian motion bt. In our interpretation these two quantities appear at the discrete level, associated
to each complete configuration ω of Ω0

n:

• The role of the Brownian excursion for ω is played by the halved differences e(i) = 1
2 (B(i)−W (i))

between the number of black and white particles sitting on the left of the ith wall, for i = 0, . . . , n.
By definition of complete configurations, (e(i))i=0,...,n is a discrete excursion, that is, e(0) = e(n) =
0, e(i) ≥ 0 and |e(i)− e(i− 1)| ∈ {0, 1}, for i = 0, . . . , n.

• The role of the Brownian motion is played for ω by the differences b(i) = Btop(i)−Bbot(i) between
the number of black particles sitting in the top and in the bottom row, on the left of the ith wall,
for i = 0, . . . , n. This quantity (b(i))i=0,...,n is a discrete walk, with |b(i) − b(i − 1)| ∈ {0, 1} for
i = 0, . . . , n.

Since e(i) + b(i) = 2Btop(i) − i, these quantities allow one to describe the cumulated number of black
particles in the top row of a complete configuration. Accordingly, the density in a given segment (i, j) is
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(Btop(j)−Btop(i))/(j− i) = 1
2 + e(j)−e(i)

2(j−i) + b(j)−b(i)
2(j−i) . This is a discrete version of the quantity considered by

Derrida et al. in [DEL].
Now the two walks e(i) and b(i) are correlated since one is stationary when the other is not, and vice-

versa: |e(i) − e(i − 1)| + |b(i) − b(i − 1)| = 1. Given ω, let Ie = {α1 < . . . < αp} be the set of indices of
|•• |- and |◦◦ |-columns, and Ib = {β1 < . . . < βq} the set of indices of | •◦ |- and |◦• |-columns (p+ q = n). Then
the walk e′(i) = e(αi)− e(αi−1) is the excursion obtained from e by ignoring stationary steps, and the walk
b′(i) = b(βi)− b(βi−1) is obtained from b in the same way. Conversely given a simple excursion e′ of length
p, a simple walk b′ of length q and a subset Ie of {1, . . . , p+ q} of cardinality p, two correlated walks e and
b, and thus a complete configuration ω can be uniquely reconstructed. The consequence of this discussion
is that the uniform distribution on Ω0

n corresponds to the uniform distribution of triples (Ie, e
′, b′) where,

given Ie, the processes e′ and b′ are independent.
A direct computation shows that in the large n limit, with probability exponentially close to 1, a

random configuration ω is described by a pair (e′, b′) of walks of roughly equal lengths n/2 + O(n1/2+ε).

In particular, up to multiplicative constants, the normalized pairs ( e′(tn/2)

n1/2 , b′(tn/2)

n1/2 ) and ( e(tn)

n1/2 ,
b(tn)

n1/2 ) both
converge to the same pair (et, bt) of independent processes, with et a standard Brownian excursion and bt a
standard Brownian walk.

We thus obtain a combinatorial interpretation of the appearence of the pair (et, bt) in the two particle
TASEP. The result now extends immediately to the three particle TASEP: it follows from the construction
of Lemma 2.1 that the uniform distribution on Ωn leads to a pair (e′, b′) where the continuum limit of e′ is
now a reflected Brownian bridge, while b′ remains a Brownian bridge. More generally conditioning on the
number of x particles amounts to conditioning on the local time at the origin of the process e.

Another possible outcome of our approach could be an explicit construction of a continuum TASEP by
taking the limit of the Markov chain X0, viewed as a Markov chain on pairs of walks. An appealing way to
give a geometric meaning to the transitions in the continuum limit could be to use a representation in terms
of parallelogram polyominos, using the process e(t) (or et in the continuum limit) to describe the width of
the polymonino and the process b(t) (or bt in the continuum limit) to describe the vertical displacement of
its spine.

Acknowledgments. Referees are warmly thanked for their great help in improving the paper.
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Appendix A. Proofs of the enumerative lemmas of Section 2

Lemma 2.1. The number |Ωn| of complete configurations of Ωn is 1
2

(
2n+2
n+1

)
.

Proof. Let Γn+1 be the set of (unconstrained) configurations of n+ 1 black and n+ 1 white particles

distributed between two rows of n+1 cells, so that |Γn+1| =
(
2n+2
n+1

)
. Among these configurations, we restrict

our attention to those ending with a column with a black particle in the top cell and a white particle in the

bottom cell (called a | •◦ |-column for simplicity), and those ending with a column with two black particles (a

|•• |-column). Let us denote the set of these configurations by Γn+1. Exchanging black and white colors is

obviously a bijection between Γn+1 and its complement in Γn+1 so that |Γn+1| = 1
2

(
2n+2
n+1

)
.

The proof of the lemma now consists in the following bijection φ between Ωn and Γn+1 (see Figure 17).

Given ω ∈ Ωn, its image φ(ω) is obtained as follows: First, if the number of |××|-columns of ω is even,

add a |•◦ |-column at the end of ω, otherwise add to it an |××|-column. Then replace the first half of the

|××|-columns by | ◦◦ |-columns, and the remaining half by | •• |-columns (from left to right). By construction the

resulting φ(ω) belongs to Γn+1. Consider now γ ∈ Γn+1, and let d = min(E(j)) be the depth of γ. Then set

ji = min{j | E(j) = −2i}, and j ′i = max{j | E(j − 1) = −2i}, for i = 1, . . . , |d|, and define the application

ψ that first changes columns ji and j′i into |××|-columns, and then removes the last column. By construction

the blocks between two of the modified columns of γ satisfy the positivity condition, so that φ(γ) ∈ Ωn+1,

and the applications φ and ψ are clearly inverses of each other. �

Lemma 2.2. Let k, `,m, n be non negative integers with k + `+m = n. The number |Ω`
k,m| of complete

configurations of Ωn with ` |××|-columns, k black and m white particles in the top row, and m black and k

white particles in the bottom row is `+1
n+1

(
n+1

k

)(
n+1
m

)
.

Proof. The statement is verified using the cycle lemma (see [Lot99, Ch. 11], or [5, Ch. 5]). Let

p = k+m and denote by ∆`+1
p the set of configurations with p black and p+2`+2 white particles distributed

between two rows of n + 1 cells. Then the cardinality of the subset ∆`+1
k,m of elements of ∆`+1

p that have k

black particles in the top row and the other m in the bottom row is
(
n+1

k

)(
n+1
m

)
. In such a configuration the

number of white particles exceeds by 2` + 2 that of black particles, so that E(n + 1) = −2` − 2. Given ω

in ∆`+1
k,m, let d = min(E(j)) be the depth of ω, and set ji = min{j | E(j) = d + 2i}, for i = 0, . . . , `. By

construction, these `+1 columns are | ◦◦ |-columns. On the one hand, let ∆̄`+1
k,m be the set of pairs (ω, j) where

ω ∈ ∆`+1
k,m and j ∈ {j0, . . . , j`}, so that |∆̄`+1

k,m| =
(
n+1

k

)(
n+1
m

)
· (`+ 1). On the other hand, define the set Ω̄`+1

k,m

of pairs (ω′, i) where ω′ is obtained from an element of Ω`
k,m by adding a final |××|-column, and i ∈ {0, . . . , n}.

By construction, |Ω̄`+1
k,m| = |Ω`

k,m| · (n+ 1).

(i) (ii)

0 2 2 0 0 2 2 2 4 20 0 00 2 −2−4−4−2−2 0 0 0 2 0 −2 002 0

Figure 17. From (i) an element of Γn+1, to (ii) one of Ωn. The (B(j)−W (j))j=0..n+1 are

given under both configurations and graphically represented.
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0 2 2 0 0 2 2 2 4 20 0 0 0

(iii)

0 2 2 0 −2−4−4 −4−4−4 −4−2−6−6 −6−80 0 0 02 −2−4−2−2−4−6 −8−10−10−8−8

(i) (ii)

Figure 18. (i) An element of ∆̄`+1
k,m (with ` = 3 and column j = 6 colored), (ii) its conjugate

(with column n+ 1− j colored), and (iii) the corresponding element of Ω`
k,m. The sequence

(B(j)−W (j))j=0..n+1 is given under each configuration and graphically represented.

The proof of the lemma consists in a bijection φ between ∆̄`+1
k,m and Ω̄`+1

k,m (see Figure 18). Given

(ω, j) ∈ ∆̄`+1
k,m, let ω1 denote the first j columns of ω, and ω2 the n + 1 − j others. Then by construction

of j, the concatenation ω2|ω1 satisfies E(i) > −2` − 2 for i = 1, . . . , n, and E(n + 1) = −2` − 2. This

implies that ω2|ω1 decomposes as a sequence ω′0, ω
′
1, . . . , ω

′
` of `+ 1 (possibly empty) blocks that satisfy the

positivity constraint, each followed by a | ◦◦ |-column. Let ω′ be obtained by replacing these `+1 | ◦◦ |-columns

by |××|-columns. Then the map (ω, j)→ (ω′, n+1− j) is a bijection of ∆̄`+1
k,m onto Ω̄`+1

k,m: the inverse bijection

is readily obtained by first replacing the |××|-columns into | ◦◦ |-columns, and then recovering the factorization

ω2|ω1 from the fact that ω2 has n+ 1− j columns. �

Lemma 2.3. The number |Ω`
p| of complete configurations of Ωn, for p+ ` = n, with ` |××|-columns, and

p black and p white particles distributed between the two rows is `+1
n+1

(
2n+2

p

)
.

Proof. The proof uses the same arguments than the proof of Lemma 2.2. The only difference is that,

instead of counting elements of ∆`+1
k,m with k black particles in the top row and m in the bottom row, we

count elements of ∆`+1
p , that have a total of p black particles. Hence the previous factor |∆`+1

k,m| =
(
n+1

k

)(
n+1
m

)

is replaced by |∆`+1
p | =

(
2n+2

p

)
. �

Remark. As already said, when ` = 0 we have configurations with just two kinds of particles. In this case,
from Lemma 2.2 and Lemma 2.3, we have |Ω0

k,m| = 1
n+1

(
n+1

k

)(
n+1
m

)
and |Ω0

n| = 1
n+1

(
2n+2

n

)
.

Lemma 2.4. The number |Ω̂k,m| of configurations of |Ω̂n| having ` |××|-columns, k black particles at the top,

and m at the bottom is
(
n
k

)(
n
m

)
.

Proof. Recall that ∆`
k,m denote configurations of length n with k black and m + ` white particles

in the top row, and m black and k + ` white particles in the bottom row, so that |∆`
k,m| =

(
n
k

)(
n
m

)
. In

order to prove the statement of the lemma we show that ∆`
k,m and Ω̂k,m are in bijection. Let δ ∈ ∆`

k,m,

and consider its depth d = min(E(i)) and the ` columns ji = min{j | E(j) = d + 2i}, i = 0, . . . , ` − 1,
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as in the proof of Lemma 2.3. By definition of these columns, the positivity condition is satisfied by each

block between two of them. Morever, by definition of j0 and j`−1, the positivity condition is also satisfied

by the concatenation ω`|ω0 of the final block ω` and the initial block ω0. Hence transforming the columns

j0, . . . , j` into |××|-columns, and arranging the two rows in a circle by fusing walls 0 and n at the apex yields

a configuration φ(δ) of Ω̂k,m (recall that these configurations are not considered up to rotation). Conversely,

given ω in Ω̂k,m, a unique element δ of ∆`
k,m such that φ(δ) = ω is obtained by opening at the apex and

transforming |××|-columns into | ◦◦ |-columns. �

Appendix B. A complete example

1/14
3/14

2/14 2/14
3/14

1/14

1/141/14

Figure 19. The basic configurations for n = 3 and transitions between them. The start-

ing point of each arrow indicates the wall triggering the transition. The numbers are the

stationary probabilities.

Figure 20. The 14 complete configurations for n = 3 and transitions between them. The

starting point of each arrow indicates the wall triggering the transition (loop transitions are

not indicated). Stationary probabilities are uniform (equal to 1/14) since each configuration

has equal in and out degrees. Ignoring the bottom rows reduces this Markov chain to the

chain of Figure 19.
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Abstract. We derive a general identity that relates generalised P–functions to the product of a

Schur function and �
1≤i<j≤n

(xi + yj).

This result generalises a number of well–known results in Robbins and Rumsey, Chapman, Tokuyama,

and Macdonald. We also interpret our result in terms of µ–alternating sign matrices.

Résumé. Nous dérivons une identité générale reliant les P–fonctions généralisées et, le produit

d’une fonction de Schur et � 1≤i<j≤n(xi + yj). Ce résultat est une généralisation des travaux de

Robbins et Rumsey, Chapman, Tokuyama, et Macdonald. Nous en donnons aussi une variante avec

des µ–matrices à signes alternants.

1. Introduction

The fundamental expression

(1.1)
∏

1≤i<j≤n

(xi + yj)

appears in a number of contexts in symmetric function theory. Given y = y1, y2, . . . , yn and x = x1, x2, . . . , xn,
when y = −x, equation (1.1) is the Weyl denominator formula (also called the Vandermonde determinant):

(1.2) det(xn−j
i ) =

∏

1≤i<j≤n

(xi − xj).

For y = λx, expression (1.1) becomes the λ–determinant formula of Robbins and Rumsey [RR86]:

(1.3)
∏

1≤i<j≤n

(xi + λxj) =
∑

A∈An

λSE(A)(1 + λ)NS(A)
n∏

i=1

x
NEi(A)+SEi(A)+NSi(A)
i ,

where the exponents are various parameters associated with alternating sign matrices and defined in Section
3. Bressoud [B01] asked for a combinatorial proof of (1.3) which was provided by Chapman [C01] who
generalised it to:

(1.4)
∏

1≤i<j≤n

(xi + yj) =
∑

A∈An

n∏

i=1

x
NEi(A)
i y

SEi(A)
i (xi + yi)

NSi(A).
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For y = tx, there is also the t deformation of the Weyl denominator formula due to Tokuyama [T88]:

(1.5)
∏

1≤i<j≤n

(xi + txj)sλ(x)s1n(x) =
∑

ST∈ST µ

thgt(ST )(1 + t)str(ST )−nxwgt(ST ),

where the sum is over semistandard shifted tableaux ST and where hgt, str, and wgt are parameters
associated with semistandard shifted tableaux and defined in Section 2. Note also that sλ(x) is the Schur
function, and s1n(x) = x1x2 . . . xn is the Schur function of shape 1n.

Here we present a general identity that unifies results (1.2)-(1.5) and we also demonstrate a connection
to a generalisation of Schur P–functions. Our identity can also easily be re–interpreted in terms of Schur
Q–functions—see Section 2.

The Main Result:

Let µ = λ + δ be a strict partition of length `(µ) = n, with λ a partition of length `(λ) ≤ n and
δ = (n, n− 1, . . . , 1). In addition, let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Then

(1.6) Pµ(x/y) = s1n(x) sλ(x)
∏

1≤i<j≤n

(xi + yj),

where Pµ(x/y) is the generalised P–function defined in Section 2. Our paper is arranged as follows. Section
2 introduces the necessary background. Section 3 gives a formal statement of the result and provides a
proof and detailed example. Section 4 demonstrates the connection to alternating sign matrices. Section 5
explores future directions involving other root systems.

2. Background

Let λ = (λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be a partition of weight |λ| = λ1 +λ2 + · · ·+λp and
length `(λ) = p, where each λi is a positive integer for all i = 1, 2, . . . , p. Then λ defines a Young diagram
F λ consisting of p rows of boxes of lengths λ1, λ2 . . . , λp left-adjusted to a vertical line.

A partition µ = (µ1, µ2, . . . , µq) of length `(µ) = q is said to be a strict partition if all the parts of µ
are distinct, that is µ1 > µ2 > · · · > µq > 0. A strict partition µ defines a shifted Young diagram SF µ

consisting of q rows of boxes of lengths µ1, µ2, . . . , µq left-adjusted this time to a diagonal line.
For any partition λ of length `(λ) ≤ n let T λ(n) be the set of all semistandard tableaux T obtained

by numbering all the boxes of F λ with entries taken from the set {1, 2, . . . , n}, subject to the usual total
ordering 1 < 2 < · · · < n. The numbering must be such that the entries are:

T1 weakly increasing across each row from left to right;
T2 strictly increasing down each column from top to bottom.

The weight of the tableau T is given by wgt(T ) = (w1, w2, . . . , wn), where wk is the number of times k
appears in T for k = 1, 2, . . . , n.

By the same token, for any strict partition µ of length `(µ) ≤ n let ST µ(n) be the set of all semistandard
shifted tableaux ST obtained by numbering all the boxes of SF µ with entries taken from the set {1, 2, . . . , n},
subject to the total ordering 1 < 2 < · · · < n. The numbering must be such that the entries are:

ST1 weakly increasing across each row from left to right;
ST2 weakly increasing down each column from top to bottom;
ST3 strictly increasing down each diagonal from top-left to bottom-right.

The weight of the tableau ST is again given by

wgt(ST ) = (w1, w2, . . . , wn),

where wk is the number of times k appears in ST for k = 1, 2, . . . , n. The rules ST1-ST3 serve to exclude any
2×2 blocks of boxes all containing the same entry, and as a result each ST ∈ ST µ(n) consists of a sequence of
ribbon strips of boxes containing identical entries. Any given ribbon strip may consist of a number of disjoint
connected components. Let str(ST ) denote the total number of disjoint connected components of all the
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ribbon strips. Let hgt(ST ) be the height of the tableaux, defined hgt(ST ) =
∑n

k=1(rowk(ST )− conk(ST )),
where rowk(ST ) is the number of rows of S containing an entry k, and conk(ST ) is the number of connected
components of the ribbon strip of ST consisting of all the entries k.

Refining this construct, for any strict partition µ with `(µ) ≤ n let PSTµ(n) be the set of all primed,
or marked, semistandard shifted tableaux PST obtained by numbering all the boxes of SF µ with entries
taken from the set {1′, 1, 2′, 2, . . . , n′, n}, subject to the total ordering 1′ < 1 < 2′ < 2 < · · · < n′ < n. The
numbering must be such that the entries are:

PST1 weakly increasing across each row from left to right;
PST2 weakly increasing down each column from top to bottom;
PST3 with no two identical unmarked entries in any column;
PST4 with no two identical marked entries in any row;
PST5 with no marked entries on the main diagonal.

The passage from ST µ(n) to PSTµ(n) is effected merely by adding marks to the entries of each
ST ∈ ST µ(n) in all possible ways that are consistent with PST1-5 to give some PST ∈ PST µ(n). The
only entries for which any choice is possible are those in the lower left hand box at the beginning of each
connected component of a ribbon strip. Thereafter in that connected component of the ribbon strip en-
tries in the boxes of its horizontal portions are unmarked and those in the boxes of its vertical portions
are marked. It should be noted that all the boxes on the main diagonal are necessarily at the lower left
hand end of a connected component of a ribbon strip, but their entries remain unmarked by virtue of
PST5. The marked weight of the tableau PST is then defined to be the vector wgt(PST ) = (u1, u2, . . . , un/
v1, v2, . . . , vn), where uk and vk are the number of times k and k′, respectively, appear in PST for k =
1, 2, . . . , n.

Let x = (x1, x2, . . . , xn) be a vector of n indeterminates and let w = (w1, w2, . . . , wn) be a vector of n
non-negative integers. Then

xw = xw1
1 xw2

2 · · ·xwn
n .

With this notation it is well known that each partition λ of length `(λ) ≤ n specifies a Schur function sλ(x)
with combinatorial definition:

(2.1) sλ(x) =
∑

T∈T λ(n)

xwgt(T )

Similarly, each strict partition µ of length `(µ) ≤ n specifies a Schur Q-function whose combinatorial
defintion takes the form:

(2.2) Qµ(x) =
∑

ST∈ST µ(n)

2str(ST )xwgt(ST ).

The corresponding Schur P -function takes the form:

(2.3) Pµ(x) =
∑

ST∈ST µ(n)

2str(ST )−`(µ)xwgt(ST ).

Let z = (x/y) = (x1, x2, . . . , xn/y1, y2, . . . , yn), where x and y are two vectors of n indeterminates, and
let w = (u/v) =
(u1, u2, . . . , un/v1, v2, . . . , vn) where u and v are two vectors of n non-negative integers. Then let zw =
(x/y)(u/v) = xu yv = xu1

1 · · ·xun
n yv1

1 · · · yvn
n . With this notation each strict partition µ of length `(µ) ≤ n

serves to specify a generalised Schur P -function that may be denoted by Pµ(x/y) and defined by
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(2.4) Pµ(x/y) =
∑

PST∈PST µ(n)

(x/y)wgt(PST )

Since the map back from PST ∈ PSTµ(n) to some |ST | ∈ STµ(n) is effected merely by deleting marks,
and there are no marks on the main diagonal, it follows that

(2.5) Qµ(x) = 2`(µ)Pµ(x) with Pµ(x) = Pµ(x/x).

It might be noted that sλ(x), Pµ(x) and Qµ(x) are nothing other than the specialisations Pλ(x; 0),
Pµ(x;−1) and Qµ(x;−1), respectively, of the Hall-Littlewood functions Pµ(x; t) and Qµ(x; t). In fact sλ(x) =
Pλ(x; 0) = Qλ(x; 0), see Macdonald [M95] pp 208 and p225, and this is true for all partitions λ.

Rather than generalise Pµ(x) we could equally well have generalised Qµ(x). If we replace PST1-4
by identical conditions QST1-4, but drop the condition PST5, the corresponding marked shifted tableaux
QST ∈ QSTµ(n), with marks now allowed on the diagonal entries, serve to define

(2.6) Qµ(x/y) =
∑

QST∈QST µ(n)

(x/y)wgt(QST ).

With this definition, the result analagous to (1.6) takes the form:

(2.7) Qµ(x/y) = sλ(x)
∏

1≤i≤j≤n

(xi + yj).

3. The Bijection

3.1. Main Result. The generalisation from Pµ(x) to Pµ(x/y) allows us to formulate the following

Theorem 3.1. Let µ = λ+ δ be a strict partition of length `(µ) = n, with λ a partition of length `(λ) ≤ n

and δ = (n, n− 1, . . . , 1). In addition, let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Then

(3.1) Pµ(x/y) = s1n(x) sλ(x)
∏

1≤i<j≤n

(xi + yj).

Here s1n(x) = x1x2 · · ·xn is associated with the unmarked entries 1, 2, . . . , n that must appear on the
main diagonal of each PST ∈ PSTµ(n) in the case `(µ) = n.

Our main result, is to provide a bijective proof of the above identity from which follow a number of
corollaries. The case λ = 0 is equivalent to an alternating sign matrix identity attributed to Robbins and
Rumsey [RR86], proved combinatorially by Chapman[C01]. The case x = y is an example of Macdonald
(Sec. III.8, Ex. 2) [M95]. The case y = tx = (tx1, tx2, . . . , txn) is equivalent to a Weyl denominator
deformation Theorem due to Tokuyama [T88] for the Lie algebra gl(n) and proved combinatorially by
Okada [O90].

It should be stressed that the above Theorem is restricted to the case of a strict partition µ of length
`(µ) = n, although a similar result applies in the case `(µ) = n− 1 which may be obtained from the above
by dividing both sides by s1n(x) = x1x2 · · ·xn.
Proof of Theorem 3.1: Given a primed semistandard shifted tableau, PST, of shape µ = λ+δ, we will show
how to decompose it into a semistandard tableau of shape λ and a primed (not necessarily semistandard)
shifted tableau of shape δ satisfying: 1) k′ appears only in column k; 2) k appears only in row k, and; 3)
there are no primed entries on the main diagonal.

Apply jeu de taquin for generalised marked shifted tableaux ([S87], [W84], [SS89], [M95],[HH92]) to
the primed entries k′ in turn (starting with the 1′) by moving them to the left as far as but no farther than
the kth column. For this purpose we assume k′ is less than i for i = 1, 2, . . . , k − 1. If there is more than
one k′ we start with the highest one. In doing this we must always be careful not to violate PST4—thus
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identical primed entries must be in different rows at all times even if they are separated by unprimed entries.
Note that at each stage we can blank out all entries greater than k in the right hand portion and remove all
columns to the left of the kth.

When the k′’s have all been moved to their own column, the tableau that results will have unprimed
elements on the main diagonal. Now permute the other entries so as to leave all the unprimed entries in their
own rows. We can divide the resulting tableau at column n to give a primed semistandard shifted tableau
of shape δ and a semistandard tableau of shape λ.

To undo the above transformation, reverse the steps taken. First move all the primed entries to the
top of their own columns. Then play jeu de taquin in reverse with primed entries k′ taken in turn from
bottom to top. These entries move in a south easterly direction with k′ now assumed to be larger than i for
i = 1, . . . , k − 1 but less than j for j = k, k + 1, . . . , with the semistandardness conditions applying to all
unprimed entries at all times. ♦

We can derive a number of corollaries of Theorem 3.1. We will derive a further corollary in Section 4.
Setting λ = 0 in Theorem 3.1 we obtain the following corollary:

Corollary 3.2.

(3.2) s1n(x)
∏

1≤i<j≤n

(xi + yj) = Pδ(x/y).

The case y = tx = (tx1, tx2, . . . , txn) is equivalent to a Weyl denominator deformation Theorem due to
Tokuyama [T88] for the Lie algebra gl(n). There is also a combinatorial proof due to Okada [O90].

Corollary 3.3.

(3.3)
∏

1≤i<j≤n

(xi + txj)sλ(x) =
∑

ST∈ST µ

thgt(ST )(1 + t)str(ST )−nxwgt(ST ),

Finally, when x = y we derive a formula appearing in Macdonald (Sec. III.8, Ex. 2, p.259):

Corollary 3.4.

Pµ(x) = sλ(x)
∏

1≤i<j≤n

(xi + xj).

where µ = λ+ δ with `(µ) = n.

3.2. Example. Consider the case µ = (9, 8, 6, 4, 3, 1) and the shifted standard tableau:

(3.4) S =

1 1 1 2 3 3 4 4 4

2 2 2 3 4 5 5 5

3 4 4 4 5 6

4 5 5 6

5 6 6

6

∈ ST 9,8,6,4,3,1

Now let us assign ′’s to those entries for which it is essential; that is, for every entry lying immediately
above the same entry and some of those for which it is optional (those entries off the main diagonal that are
at the start of any continuous strip of equal entries).
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This gives, for example,

(3.5) PST =

1 1 1 2′ 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

∈ PST 9,8,6,4,3,1

Now we move all the primed entries k′ to the left by means of jeu du taquin as far as but no further
than their own column, that is with 1′’s at the top of column 1, 2′’s at the top of column 2 etc. In doing
this it is assumed that k′ is less that i for all i = 1, 2, . . . , k − 1.

First moving the single 2′ as far as possible in a north-westerly direction, but no further than column 2.

(3.6)

1 1 1 2′ 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 1 2′ 1 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 1 1 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

Then do the same for the two 3′’s, moving the upper one first,

(3.7) −→

1 2′ 1 3′ 1 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 1 1 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

and then the second 3′

(3.8) −→

1 2′ 3′ 1 1 3 4 4 4

2 2 3′ 2 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 1 1 3 4 4 4

2 3′ 2 2 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

Now for the two 4′’s, again moving the upper 4′ first

(3.9) −→

1 2′ 3′ 1 1 4′ 4 4 4

2 3′ 2 2 3 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 1 4′ 1 4 4 4

2 3′ 2 2 3 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 4′ 1 1 4 4 4

2 3′ 2 2 3 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

and then the other 4′
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(3.10) −→

1 2′ 3′ 4′ 1 1 4 4 4

2 3′ 4′ 2 3 5′ 5 5

3 2 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

Now for the two 5′’s, the upper one first

(3.11) −→

1 2′ 3′ 4′ 1 1 5′ 4 4

2 3′ 4′ 2 3 4 5 5

3 2 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 4′ 1 5′ 1 4 4

2 3′ 4′ 2 3 4 5 5

3 2 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

−→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 2 3 4 5 5

3 2 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

and then the other 5′

(3.12) −→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 2 3 4 5 5

3 2 5′ 4 5 6

4 4 5 6′

5 6′ 6

6

−→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 5′ 3 4 5 5

3 2 2 4 5 6

4 4 5 6′

5 6′ 6

6

Finally, for the two 6′’s, first the upper one

(3.13) −→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 5′ 3 4 5 5

3 2 2 4 6′ 6

4 4 5 5

5 6′ 6

6

−→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 5′ 3 6′ 5 5

3 2 2 4 4 6

4 4 5 5

5 6′ 6

6

−→

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 4′ 5′ 6′ 3 5 5

3 2 2 4 4 6

4 4 5 5

5 6′ 6

6

(3.14) −→

1 2′ 3′ 4′ 5′ 6′ 1 4 4

2 3′ 4′ 5′ 1 3 5 5

3 2 2 4 4 6

4 4 5 5

5 6′ 6

6

and then the final 6′
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(3.15) −→

1 2′ 3′ 4′ 5′ 6′ 1 4 4

2 3′ 4′ 5′ 1 3 5 5

3 2 2 4 4 6

4 4 6′ 5

5 5 6

6

−→

1 2′ 3′ 4′ 5′ 6′ 1 4 4

2 3′ 4′ 5′ 1 3 5 5

3 2 2 6′ 4 6

4 4 4 5

5 5 6

6

−→

1 2′ 3′ 4′ 5′ 6′ 1 4 4

2 3′ 4′ 5′ 6′ 3 5 5

3 2 2 1 4 6

4 4 4 5

5 5 6

6

Finally notice that in each of the first 6 columns the entry on the main diagonal is always unprimed and
we permute the other entries so as to leave all the unprimed entries in their own rows. This operation still
leaves all the primed entries in their own column.

(3.16)

1 2′ 3′ 4′ 5′ 1 1 4 4

2 3′ 2 2 6′ 3 5 5

3 4′ 5′ 6′ 4 6

4 4 4 5

5 5 6

6

This results in a primed semistandard shifted tableau juxtaposed with a semistandard Young tableau:

(3.17)

1 2′ 3′ 4′ 5′ 1

2 3′ 2 2 6′

3 4′ 5′ 6′

4 4 4

5 5

6

·

1 4 4

3 5 5

4 6

5

6

Note that at an individual stage, say the shifting of the 5′’s, we can blank out the entries greater than
5′ in the right hand portion and also strip off the columns to the left of the first column that contains a 5′.
This reduces the problem to a classical jeu de taquin problem. We start with

(3.18)

1 2′ 3′ 4′ 1 1 4 4 4

2 3′ 2 2 3 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

=

1 1 4 4 4

2 3 5′

4 4

5′

Now play the jeu du taquin

(3.19)

1 1 5′ 4 4

2 3 4

4 4

5′
−→

1 5′ 1 4 4

2 3 4

4 4

5′
−→

5′ 1 1 4 4

2 3 4

4 4

5′
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(3.20) −→

5′ 1 1 4 4

2 3 4

5′ 4

4
−→

5′ 1 1 4 4

5′ 3 4

2 4

4

4. Connection to Alternating Sign Matrices

In this section we show how to move from PST to alternating sign matrices. Using this relationship, a
result of Chapman [C01] is a straightforward consequence of Theorem 3.1.

An alternating sign matrix (ASM) is an n×n matrix filled with 0’s, 1’s, and −1’s such that the first and
last nonzero entries of each row and column are 1’s and the nonzero entries within a row or column alternate
in sign. There is a famous formula, conjectured by Mills, Robbins, and Rumsey [MRR83] and proved by

Zeilberger [Z96], that counts the number of ASM of size n as
∏n−1

j=0
(3j+1)!
(n+j)! . See also Bressoud [B99].

We work with a generalisation of ASM called µ–ASM [O93] that can be associated with shifted tableaux.
Given a partition µ with distinct parts and such that `(µ) = n and µ1 ≤ n, the set of µ–alternating sign
matrices, µ–ASM, is the set of n×m matrices that satisfy the following conditions:

ASM1 aiq ∈ {−1, 0, 1} for 1 ≤ i ≤ n, 1 ≤ q ≤ m;
ASM2

∑m
q=p aiq ∈ {0, 1} for 1 ≤ i ≤ n, 1 ≤ p ≤ m;

ASM3
∑n

i=j aiq ∈ {0, 1} for 1 ≤ j ≤ n, 1 ≤ q ≤ m
ASM4

∑m
q=1 aiq = 1 for 1 ≤ i ≤ n;

ASM5
∑n

i=1 aiq = 1 if q = µj for some j; or
∑n

i=1 aiq = 0 otherwise; for 1 ≤ q ≤ m.

The bijection to µ–ASM is a special case of our bijection between µ–UASM and symplectic shifted
tableaux [HK03]. Briefly, associate to each primed shifted tableaux PST of shape µ with `(µ) = n and
µ1 = m an n ×m matrix filled with the entries from the primed shifted tableaux and with zeros such that
if there is an i (resp. i′) on diagonal j of the PST (where the main diagonal is diagonal 1 and the last box
in the first row is diagonal µ1 = m), then there is an i (resp. i′) in row i (resp. i), column j of the matrix.
All other positions are zero.

For example, given a primed shifted tableau of shape µ = 9, 8, 6, 4, 3, 1:

(4.1) PST =

1 1 1 2′ 3′ 3 4 4 4

2 2 2 3′ 4′ 5′ 5 5

3 4′ 4 4 5 6

4 5′ 5 6′

5 6′ 6

6

=⇒M(PST ) =




1 1 1 0 0 0 0 0 0
2 2 2 2′ 0 0 0 0 0
3 0 0 3′ 3′ 3 0 0 0
4 4′ 4 4 4′ 0 4 4 4
5 5′ 5 0 5 5′ 5 5 0
6 6′ 6 6′ 0 6 0 0 0



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This can be converted into a µ–alternating sign matrix by replacing the rightmost entry of each con-
tinuous sequence of nonzero entries by a 1 and each zero immediately to the left of a nonzero entry by −1,
leaving all other entries 0.

(4.2) A =




0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 −1 0 0 1 0 0 0
0 0 0 0 1 −1 0 0 1
0 0 1 −1 0 0 0 1 0
0 0 0 1 −1 1 0 −1 0



∈ A986431

Square ice provides a further refinement of the above bijection. Square ice is a directed graph that
models the orientation of oxygen and hydrogen molecules in frozen water. The vertices are laid out in an
n×n grid and each vertex has two incoming and two outgoing edges in a north, south, east, west orientation.
At each vertex there are six possible orientations of the four directed edges. The horizontal orientation (with
both horizontal edges directed in) corresponds to +1 and the vertical orientation (with both vertical edges
directed in) corresponds to −1; the other four orientations correspond to 0. Accordingly there are northwest
zeros (with edges pointing in the north and west directions), southwest zeros, northeast zeros, and southeast
zeros. Northwest zeros are those whose nearest nonzero neighbour to the right, if it has one, is −1, and
whose nearest nonzero neighbour below is 1. Southwest zeros are those whose nearest nonzero neighbour to
the right, if it has one, is −1, and whose nearest nonzero neighbour below, if it has one, is −1. Northeast
zeros are those whose nearest nonzero neighbour to the right is 1, and whose nearest nonzero neighbour
below is 1. Southeast zeros are those whose nearest nonzero neighbour to the right is 1, and whose nearest
nonzero neighbour below, if it has one, is −1.

(4.3)

WE NS NE SW NW SE

↑ ↓ ↑ ↓ ↑ ↓

−→ · ← ← · −→ −→ · −→ ← · ← ← · ← −→ · −→

↓ ↑ ↑ ↓ ↑ ↓

1 −1 0 0 0 0

The equivalent expression in square ice is
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We can also derive a “compass points” matrix:

(4.4) CM =




NE NE WE NW NW NW NW NW NW
NE NE SE WE NW NW NW NW NW
WE NW NS SE NE WE NW NW NW
SE NE NE SE WE NS NE NE WE
SE NE WE NS SE NE NE WE SW
SE NE SE WE NS WE NW SW SW




The entriesNE in the kth row may be associated with an entry k in PST and correspondingly to a weight
factor xk . The entries SE in the kth row may be associated with an entry k′ in PST and correspondingly
to a weight factor yk. The entries NS in the kth row are to be associated with the two possible labels k
and k′ of the first box of each connected component of strk(PST ) other than the one starting on the main
diagonal. Correspondingly each NS in row k is associated with a weight factor (xk + yk). It should be
pointed out that the above weighting excludes the weight x1x2 · · ·xn arising from the entries 1, 2, . . . , n on
the main diagonal of each PST .

Combining the weight factors we have a total weight associated with each A ∈ Aµ given by

(4.5)
∑

A∈Aµ

n∏

k=1

x
NEk(A)
k y

SEk(A)
k (xk + yk)NSk(A)

Corollary 4.1.

∏

1≤i<j≤n

(xi + yj)s1n(x)sλ(x) =
∑

A∈Aµ

n∏

k=1

x
NEk(A)
k y

SEk(A)
k (xk + yk)NSk(A).

where µ = λ+ δ.
This generalises a result of Chapman [C01]. In his original paper he weights by column instead of row

so the parameters in his paper correspond to the transpose matrix.
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Corollary 4.2 (Chapman [C01]).

∏

1≤i<j≤n

(xi + yj) =
∑

A∈A

n∏

k=1

x
NEk(A)
k y

SEk(A)
k (xk + yk)NSk(A).

5. Other Directions

Okada [O93] contains a number of t–deformations of Weyl’s denominator formula for root systems
Bn, Cn, and Dn. These are similar in form to the Robbins and Rumsey [RR86] formula, (1.3), which can
be seen as a deformation for An. Deformations for Bn and Cn also appear in Simpson [S97a][S97b] and
Hamel and King [HK02]. We anticipate that the methods presented here would also apply to these root
systems and would enable combinatorial proofs of y generalisations of these t–deformations similar in spirit
to (1.4), Chapman’s generalisation [C01] of Robbins and Rumsey.
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The Octahedron Recurrence and gln Crystals

André Henriques and Joel Kamnitzer

Abstract. We study the hives of Knutson, Tao, and Woodward by means of a modified octahedron

recurrence. We define a tensor category where tensor product is given by hives and where the

associator and commutor are defined using our recurrence. We then prove that this category is

equivalent to the category of crystals for the Lie algebra ��� n. The proof of this equivalence uses

a new connection between the octahedron recurrence and the Jeu de Taquin and Schützenberger

involution procedures on Young Tableaux.

Résumé. Nous étudions les hives de Knutson, Tao, et Woodward avec une récurrence octaèdre

modifiée. Nous définissons une catégorie tensorielle où le produit tensoriel est donné par les hives

et où l’associateur et le commuteur sont définies en termes de notre récurrence. Nous montrons

que cette catégorie est équivalente à la catégorie des cristaux pour l’algèbre de Lie ����� . La preuve de

cette équivalence emploie une connection nouvelle entre la récurrence d’octaèdre et, les procédures

de Jeu de Taquin et de l’involution de Schützenberger sur les tableaux de Young.

1. Hives

In [KTW], Knutson, Tao, and Woodward introduced hives for studying tensor product multiplicities
of gln representations. Consider the triangle

{
(x, y, z) : x + y + z = n, x, y, z ≥ 0

}
. This has

(
n+2

2

)
integer

points; call this finite set 4n. We will draw it in the plane and put (n, 0, 0) at the lower left, (0, 0, n) at the
top, and (0, n, 0) in the lower right.

Let P be a function P : 4n → Z. We say that P satisfies the hive condition if for any unit rhombus in
a hive, the sum across the short diagonal is greater than the sum across the long diagonal.

A hive is an equivalence class of functions satisfying the hive condition, where two functions are considered
to be equivalent if their difference is a constant function. We will usually picture a hive in terms of its
representative that takes the value 0 at (0, 0, n).

µ
�

�
�

��	

b0 = 0 = c0
b1 c1
· · ·

· · · ·
· · · · ·

a0 =bn a1 · · · an =cn

@
@

@
@@R

ν

-
λ

∈ HIVEν
λ,µ
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By adding together rhombus inequalities along the bottom of the hive, we see that (a1 − a0, a2 −
a1, . . . , an − an−1) is a weakly decreasing sequence of integers. Similarly, the sides labelled by b and c give
weakly decreasing sequences of integers.

Let Λ+ denote the set of weakly decreasing sequences of integers of length n. We can identify Λ+ with
the set of dominant weights of gln.

For λ, µ, ν ∈ Λ+, let HIVEν
λµ denote the set of hives of size n such that

• the difference on the bottom (a1 − a0, a2 − a1, . . . , an − an−1) = λ
• the differences on the upper left side (b1 − b0, b2 − b1, . . . , bn − bn−1) = µ
• the differences on the upper right side (c1 − c0, c2 − c1, . . . cn − cn−1) = ν

Example 1.1. We will use the following two examples of hives throughout the paper:

T =

0
2 3

4 5 6
5 7 8 8

∈ HIVE
(3,3,2)
(2,1,0),(2,2,1) U =

0
1 2

1 3 4
1 3 4 5

∈ HIVE
(2,2,1)
(2,1,1),(1,0,0)

In [KTW], Knutson, Tao, and Woodward define a ring with basis bλ for λ ∈ Λ+(gln) and multiplication:

bλbµ =
∑

ν

cνλµbν

where cνλµ is the size of the set HIVEν
λµ. They then prove that their ring is isomorphic to the representation

ring of gln. The most difficult step in their proof is to show that their ring is associative.
To prove this associativity they use the octahedron recurrence of [RR] to construct a bijection:

(1.1)
⋃

δ

HIVE
ρ
λδ × HIVEδ

µν =⇒
⋃

γ

HIVE
γ
λµ × HIVEρ

γν

The purpose of this paper is to modify the octahedron recurrence in order to construct a bijection:

(1.2) HIVEν
λµ =⇒ HIVEν

µλ

and to understand the structure of these bijections. This structure is most easily seen as giving us an
associator and a commutor for a certain tensor category Hives whose simple objects are indexed by Λ+ and
whose tensor product is defined using hives. For the purposes of the present paper, a tensor category is a
category with a tensor product along with a natural isomorphism called the associator making the tensor
product associative and a natural isomorphism called the commutor making the tensor product commutative.

1.1. The category Hives. We now define the category Hives. An object in Hives is not a hive; rather
an object A is a choice of finite set Aλ for each λ ∈ Λ+ such that only finitely many Aλ are non-empty. A
morphism from A,B is just a set map from Aλ to Bλ for each λ.

We think of A as being a representation of gln along with a direct sum decomposition into irreducible
subrepresentations with the elements of Aλ labelling those summands isomorphic to Vλ.

Now we use our hives to define the tensor product on the category. We define:

(A⊗B)ν =
⋃

λ,µ

Aλ ×Bµ × HIVEν
λµ

Note that:

(A⊗ (B ⊗ C))ρ =
⋃

δ,λ,µ,ν

Aλ ×Bµ × Cν × HIVE
ρ
λδ × HIVEδ

µν

((A⊗B)⊗ C)ρ =
⋃

γ,λ,µ,ν

Aλ ×Bµ × Cν × HIVE
γ
λµ × HIVEρ

γν

So in order to define a natural isomorphism A⊗ (B⊗C)→ (A⊗B)⊗C (an associator) we need a bijection:
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⋃

δ

HIVE
ρ
λδ × HIVEδ

µν =⇒
⋃

γ

HIVE
γ
λµ × HIVEρ

γν

Similarly, to make a natural isomorphism A⊗B → B ⊗A (a commutor) we need a bijection:

HIVEν
λµ =⇒ HIVEν

µλ

To construct these bijections we now introduce the octahedron reccurence.

2. The Octahedron Recurrence

Figure 1. The tiling of space-time.

Fix m,n ∈ Z>0. Let us call space-time the space Y = [0,m] × [0, n] × R. It contains the lattice
L = {(x, y, t) ∈ Z3 ∩ Y : x + y + z is even} on which the recurrence will take place. Y has two compact
spatial dimensions and one time dimension. The lattice L is the set of vertices of a tiling of Y by tetrahedra,
octahedra, 1/2-octahedra, and 1/4-octahedra as shown in Figure 1. The tetrahedra are given by

conv{(x, y, t), (x + 1, y + 1, t), (x + 1, y, t + 1), (x, y + 1, t + 1)}, x + y + t even,
conv{(x + 1, y, t), (x, y + 1, t), (x, y, t + 1), (x + 1, y + 1, t + 1)}, x + y + t odd,

while the octahedra, 1/2-octahedra and 1/4-octahedra are given by

Y ∩ conv{(x + 1, y, t), (x, y + 1, t), (x, y, t + 1), (x− 1, y, t), (x, y − 1, t), (x, y, t− 1)},

for x+ y + t odd.

A section is a connected subcomplex S of the 2-skeleton of the above tiling which contains exactly

one point over each (x, y). In particular, S is the graph S = {(x, y, h(x, y))} of a continuous map h :

[0,m]× [0, n]→ R. A point (x, y, t) ∈ L is said to be in the future of a section S if there exists (x, y, t′) ∈ S
with t′ ≤ t.

A state of a subset A ⊂ Y is an integer valued function f : A ∩ L → Z. In particular we may speak of

the state of a section. The state f of a section S determines the state (again denoted by f) of the set of all

points in its future, according to the following modified octahedron recurrence:

(2.1) f(x, y, t+ 1) =
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max
�
f(x + 1, y, t) + f(x− 1, y, t), f(x, y + 1, t) + f(x, y − 1, t) � − f(x, y, t− 1)

if 0 < x < m, 0 < y < n,
f(x + 1, y, t) + f(x− 1, y, t)− f(x, y, t− 1) if 0 < x < m, y = 0 or n,
f(x, y + 1, t) + f(x, y − 1, t)− f(x, y, t− 1) if 0 < y < n, x = 0 or m,
f(x + 1, y, t) + f(x, y + 1, t)− f(x, y, t− 1) if (x, y) = (0, 0),
f(x + 1, y, t) + f(x, y − 1, t)− f(x, y, t− 1) if (x, y) = (0, n),
f(x− 1, y, t) + f(x, y + 1, t)− f(x, y, t− 1) if (x, y) = (m, 0),
f(x− 1, y, t) + f(x, y − 1, t)− f(x, y, t− 1) if (x, y) = (m, n).

So we have one rule if our new point is in the interior (this is the recurrence in [KTW] which is the

tropicalization of the original octahedron recurrence in [RR]), another rule if it lies on a wall, and a third if

it lies on a vertical edge. These rules can be seen in Figure 2.

c

a a

e

b b

e

a+b−ea+c−e

c

a
bd

e

max(a+c,b+d)−e

Figure 2. The modified octahedron recurrence.

2.1. The hive Condition. We want to use the octahedron recurrence to define operantions on hives.

We therefore need to understand how the hive condition propagates through the octahedron recurrence. A

rhombus in Y is a subcomplex consisting of two coplanar unit triangles touching each other by one edge. A

rhombus R has two obtuse vertices and two acute vertices. Given a state f , we say that f satisfies the hive

condition at R if f(obtuse vertex) + f(other obtuse vertex) ≥ f(acute vertex) + f(other acute vertex). We

say that f satisfies the hive condition on a section S if it satisfies the above inequality for all rhombi R ⊂ S.

Let S, S′ be two sections with S′ in the future of S. Let f be a state on S which is extended to a state of

S′ by the octahedron recurrence. Suppose that f satisfies the hive condition on S. We will now investigate

the problem of which hive conditions will be satisfied by f on S ′.
A wavefront is a subcomplex W ⊂ Y of the form

W =
{
(x, y, t) ∈ Y

∣∣∃k ∈ Z : |t+ 2k(m+ n) + c| = x+ y
}

or W =
{
(x, y, t) ∈ Y

∣∣∃k ∈ Z : |t+ 2k(m+ n) + c| = x+ (n− y)
}
,

for some constant c. We gave wavefronts their name because one can think of them as world-surfaces of a

linear waves propagating at speed 1, and reflecting on the corners of space. A wave front W is composed of

big rhombi, touching each other at their acute vertices. Call these acute vertices the cutpoints of W .

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	�		�		�		�		�	
�

�

�

�

�


��������������������������������
A wavefront.

We say that a section S is transverse to a wavefront W if W ∩ S is one dimensional and if no cutpoint

of W is contained in S. Given an edge α ⊂W \ ∂Y , let Rα be the rhombus that has α as its small diagonal

and that is not contained in W .
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Given a state f of S and a wavefrontW which is tranverse to it, we say that f satisfies the hive condition

at W t S if it satisfies the hive condition at each rhombus Rα for α ⊂W ∩ S.

We see that the hive condition propogates along wavefronts in the following way:

Lemma 2.1. Let S, S′, f be as above. Let W be a wavefront transverse to both S and S ′. Then f satisfies

the hive condition at W t S if and only if it satisfies the hive condition at W t S ′.

3. Operations on Hives

We can define an associator and a commutor for category Hives using the octahedron recurrence.

Throughout this section we fix our spacetime to have size n = m.

3.1. Associator. Consider the section S which is the graph of the function |x − y|. This section is

composed of two equilateral triangles which meet along a common edge. Now suppose we have two hives

T ∈ HIVE
ρ
λδ and U ∈ HIVEδ

µν . Then the northwest edge of T is the same as the northeast edge of U . Now

we have two natural maps 4n → S by (x, y, z) 7→ (x, n − z, y) and (x, y, z) 7→ (n − z, y, x). The images of

these two maps are the two equilateral triangles discussed above. Use these maps transport T and U onto

S. Since T and U agree on an edge and the points of 4n are all mapped into L, we get a state f of S.
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Figure 3. The spacelike section S with old hives T, U and the section S ′ with new hives P,Q.

Once we have f on S, we can use the octahedron recurrence to get the state of any future point. In

particular consider the section S ′ defined as the graph of n − |n − x − y|. Note that S ′ is in the future of

S and that four of the edges of S ′ match four of the edges of S. We again have two natural maps taking

4n → S′, namely (x, y, z) 7→ (x, y, n − z) and (x, y, z) 7→ (n − y, n − z, n − x). The state f on S ′ induces

two integer labellings P and Q of 4n.

To show that P and Q are hives, consider the set W of wavefronts W which are transverse to S. It

consists of all the wavefronts except the ones that contain a facet of the big tetrahedron A = {(x, y, t) :

|x−y| ≤ t ≤ n−|n−x−y|}. The wavefronts in W are also the ones which are transverse to S ′. Now, saying

that T and U are hives is equivalent to say that f satisfies the hive condition at S t W for all W ∈ W . By

Lemma 2.1, this implies the hive condition at S ′ tW for all W ∈ W . Hence, P and Q are hives.

Example 3.1. Consider the hives T, U from Example 1.1. We apply the octahedron ecurrence and get a

state on the region A. Here is its state, shown by a sequence of horizonal slices through A:

5
4

2
0

7
5 4

3 3
1

8
6 6

4 3
1

8
7

4
1

Hence the resulting P,Q are:
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P =
µ �
�

��/

1
3 4

4 6 7
5 7 8 8

S
S

SSw

γ

-
λ

Q =
ν �
�

��/

0
1 3

1 4 6
1 4 7 8

S
S

SSw

ρ

-
γ

Proposition 3.2 ([KTW]). The map:
⋃

δ

HIVE
ρ
λδ × HIVEδ

µν →
⋃

γ

HIVE
γ
λµ × HIVEρ

γν

(T, U) 7→ (P (T, U), Q(T, U))

is a bijection.

Now for A,B,C ∈ Hives we can define the associator:

αA,B,C : A⊗ (B ⊗ C)→ (A⊗B)⊗ C
(a, (b, c, U), T ) 7→ ((a, b, P ), c, Q)

This map is an isomorphism by Proposition 3.2.

3.2. Commutor. We also have a commutor in Hives. Let P ∈ HIVEν
λµ. Let S = {(x, y, t) : x+ y = t ≤

n} (half of a section). Embed P into S by the map (x, y, z) 7→ (y, z, n−x) and use the octahedron recurrence

to evolve this state to the region A = {(x, y, t) : x + y ≤ t ≤ 2n− x − y} (a big 1/4-octahedron). Consider

an embedding of 4n into the spacetime by (x, y, z) 7→ (y, z, n+ x). This gives us P ? : 4n → Z. It’s again

possible to check that a wavefront W is transverse to the bottom face S if and only if it is transverse to the

top face. We apply Lemma 2.1 and deduce that P is a hive if and only if P ∗ is.

By examining the octahedron recurrence on the boundary of the spacetime, we see that P ? has boundary

µ, λ, ν and hence P ? ∈ HIVEν
µλ.

P*

ν

µ

P
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*

Figure 4. The old hive P and the new hive P ?.

Example 3.3. Consider the hive:

P =
µ �
�

��/

0
4 4

6 7 7
6 8 8 8

S
S

SSw

ν

-
λ
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We follow the above procedure and give a state to A. Here is the state as shown by a sequence of

horizonal slices through A:

8 8
7

8
7

7 4

6
6

7 4
4 0

5
4

4 0
2

0 −2

Hence the resulting P ? is:

P ? =
λ �
�

��/

−2
0 2

0 4 5
0 4 6 6

S
S

SSw

ν

-
µ

Proposition 3.4. The map:

HIVEν
λµ → HIVEν

µλ

P 7→ P ?

is a bijection.

We define the commutor σA,B in Hives by:

σA,B : A⊗B → B ⊗A
(a, b, P ) 7→ (b, a, P ?)

(3.1)

4. gln Crystals

We would like to relate the category Hives to gln crystals. We will study gln crystals using tableaux. We

begin by recalling this connection. These results have generally appeared elsewhere, see for example [Sh].

Proposition 4.1. There exists a crystal structure on the set Bλ of semistandard Young tableaux of shape

λ. Moreover this family {Bλ} is the unique closed family of irreducible highest weight gln crystals.

If T, U are two tableaux of shape λ and µ respectively, we can form their skew product denoted T ? U

which is the skew tableau made by putting U up and to the right of T . Denote the resulting skew shape by

λ ? µ.

Example 4.2.

If: T̂ = 1 3
2

Û =
1 2
2
3

then: T̂ ? Û =

1 2
2
3

1 3
2

Given a skew tableau X , let J(X) be the tableau that results by applying Jeu de Taquin to X . Suppose

that X and Y are skew tableaux of the same shape. Choose a particular order for performing Jeu de Taquin.

Then X and Y are said to be dual equivalent if the shapes of X and Y are the same throughout the Jeu de

Taquin process.

We have the following connection between Jeu de Taquin and tensor product:

Theorem 4.1. The map Bλ⊗Bµ → ∪Bν by (T, U) 7→ J(T ?U) is a map of crystals. Moreover, (T, U) and

(T ′, U ′) are in the same component of Bλ ⊗Bµ iff T ? U and T ′ ? U ′ are dual equivalent.
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4.1. Category of crystals. The category gln-Crystals is the category whose objects are crystals B such

that each connected component of B is isomorphic to some Bλ. For the rest of this paper, crystal means an

object in this category. A morphism of crystals is a map of the underlying sets that commutes with all the

crystal operators. We have the following version of Schur’s Lemma:

Lemma 4.3. Hom(Bλ, Bµ) contains just the identity if λ = µ and is empty otherwise. Hence if B is a

crystal there is exactly one way to identify each of its components with a Bλ. �

Let B be a crystal and let b ∈ B be a high weight element of weight λ. By lemma 4.3, the component

of B generated by b is isomorphic to Bλ via a unique isomorphism. So if T ∈ Bλ, we let T (b) denote the

image of b under this isomorphism. We refer to T (b) as the T -element of the subcrystal generated by b.

The category gln-Crystals acquires a tensor product by the usual tensor product of crystals. The asso-

ciator is this category is very simple because if A,B,C are crystals then A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C by

(a, (b, c)) 7→ ((a, b), c) is an isomorphism of crystals.

4.2. Commuter for crystals. The basic idea to construct the commuter is to first produce an invo-

lution ξB : B → B for each crystal B that reverses the crystal structure. Then the commuter is defined by

(a, b) 7→ ξ(ξ(b), ξ(a)). This idea was originally suggested by Arkady Berenstein and is carried out for general

g in [HK]. For our case g = gln, the map ξ will be the Schützenberger involution on tableaux. We will now

define this involution.

First, recall the defintion of Gelfand-Tsetlin patterns. A Gelfand-Tsetlin pattern of size n is a map

T : (i, j) : 1 ≤ j ≤ i ≤ n→ Z such that T (i, j) ≥ T (i−1, j) ≥ T (i, j+1). We will usually draw a GT pattern

in a triangle like a hive of size n− 1, but we use a different indexing convention than for hives to emphasize

that GT pattern are less symmetric. We will index them by pairs (i, j) with (0, 0) on the top (n, 0) on the

bottom left and (n, n) on the bottom right.

The base of a Gelfand-Tsetlin pattern is the sequence of integers that appear on the bottom row, and

the weight of a GT pattern is the sequence of difference of row sums from top to bottom.

Recall that there is a bijection between GT patterns of base λ and weight µ and tableaux of shape λ

and weight µ. This bijection sends a tableau T to the GT pattern whose value at (i, j) is the number of

1 . . . i on the jth row of T .

Example 4.4. Here is a tableau and the corresponding GT pattern:

1 1 2 2
2 3 3
4

←→
i

j










�

-
2

4 1
4 3 0

4 3 1 0

This bijection is so natural that we will use the same letter to denote both the tableau and the corre-

sponding GT pattern, so that if T is a tableau, T (i, j) denotes the number of 1 . . . i on row j of T .

For each 1 ≤ i < n, we have the Bender-Knuth move si. This map takes GT patterns of weight λ to

themselves by:

si(T )(k, j) =





min(T (i+ 1, j), T (i− 1, j − 1)+

max(T (i+ 1, j + 1), T (i− 1, j))− T (i, j) if k = i

T (k, j) otherwise
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We can now define the Schüzenberger involution by:

ξλ : Bλ → Bλ

T 7→ s1(s2s1) · · · (sn−1 · · · s1)(T )

Example 4.5. Consider:

P̂ =
1

3 1
4 2 0

s17→
3

3 1
4 2 0

s27→
3

4 1
4 2 0

s17→
2

4 1
4 2 0

so ξ(P̂ ) =
2

4 1
4 2 0.

Proposition 4.6. The Schützenberger involution has the following properties with respect to the crystal

structure on Bλ:

ei · ξ(T ) = ξ(fn−i · T )

fi · ξ(T ) = ξ(en−i · T )

wt(ξ(T )) = w0 · wt(T )

where w0 denotes the long element in the symmetric group.

Extend ξ to a map ξB : B → B for all crystals B by applying the appropriate ξλ to each connected

component of B.

Let A,B by crystals. We define:

σA,B : A⊗B → B ⊗A
(a, b) 7→ ξB⊗A(ξB(b), ξA(a))

(4.1)

Theorem 4.2. σA,B is a natural isomorphism of crystals.

5. Equivalence of Categories

Recall that a tensor functor Φ : Crystals→ Hives is a functor Φ along with natural isomorphisms

φA,B : Φ(A) ⊗ Φ(B)→ Φ(A⊗B)

such that the following diagrams commute:

(5.1) Φ(A)⊗ (Φ(B)⊗ Φ(C))
α

//

φ◦1⊗φ

��

(Φ(A)⊗ Φ(B))⊗ Φ(C)

φ◦φ⊗1

��

Φ(A⊗ (B ⊗ C))
Φ(α)

// Φ((A⊗B)⊗ C).

(5.2) Φ(A)⊗ Φ(B)
σ

//

φ

��

Φ(B)⊗ Φ(A)

φ

��

Φ(A⊗B)
Φ(σ)

// Φ(B ⊗A)

An equivalence of tensor categories is a pair of tensor functors which give rise to an equivalence of

categories.

The rest of the paper will be devoted to establishing the following result:

Theorem 5.1. There exists an equivalence of tensor categories between Crystals and Hives.
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We define start by defining functors Φ : Crystals→ Hives and Ψ : Hives→ Crystals by

Φ(B)λ = {set of highest weight elements of B of weight λ}
Ψ(A) =

⋃

λ

Aλ ×Bλ

Clearly these functors provide an equivalence of categories, so it remains to enrich one of them to a

tensor functor.

5.1. From Tableaux to Hives. Because of the way we have defined Φ, it will be very important for

us to think about high weight elements of crystals. In particular we must consider the high weight elements

of tensor products. Let B be a crystal. Recall that we have a map εi : B → Z such that εi(b) is the number

of times we can apply ei to b. We say that b ∈ B is µ-dominant if εi(b) ≤ 〈µ, α∨i 〉 for all i ∈ I . Examining

the definition of tensor product formula we have the following observation which we first found in [St]:

Lemma 5.1. Let b ∈ B and c ∈ C. Then (b, c) is high weight iff b is µ-dominant and c is high weight of

weight µ.

A quasi-hive is an equivalence class of maps P : 4n → Z which satisfies the two horizontal rhombus

axioms, but not neccessarily the vertical rhombus axiom.

Given a quasi-hive, we can produce a GT pattern P̂ by defining P̂ (i, j) = P (i− j, j, n − i)− P (i− j +

1, j − 1, n− i).
Example 5.2. For hives T, U from Example 1.1 we get the GT patterns:

T̂ =
1

1 1
2 1 0

Û =
1

2 1
2 1 1

which correspond to the tableaux of Example 4.2.

The following bijection was established by Pak and Vallejo [PV2], following similar bijections due to

Berenstein and Zelevinsky, and others.

Theorem 5.2. If P is a quasi-hive, then P̂ is a GT pattern. Moreover, the map P 7→ P̂ provides a bijection

between HIVEν
λµ and the set of µ-dominant tableaux of shape λ and weight ν − µ.

Now we can define the natural isomorphisms φA,B for A,B ∈ Crystals by:

φA,B : Φ(A) ⊗ Φ(B)→ Φ(A⊗B)

(a, b, P ) 7→ (P̂ (a), b)

To see that this makes sense, note that a is a high weight element of A of weight λ, b is a high weight element

of B of weight µ and P ∈ HIVEν
λµ. Then by Lemma 5.1 and Theorem 5.2 (P̂ (a), b) is a high weight element

of A⊗B. It is of weight ν since P̂ (a) has weight ν − µ and b has weight µ.

5.2. Associator. In order to prove that (5.1) commutes we need to better understand what happens

to tableaux in tensor products. Let X,Y be tableaux. One way to perform the Jeu de Taquin process on

X ? Y is to first excavate all the empty boxes to the left of the last row of Y , then those to the left of the

second last row, etc. After excavating the boxes to the left of rows n, . . . , k + 1 of Y , the resulting skew

tableau will be of the form:
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k

J k

Y

where Jk is some tableau and Y k denotes the first k rows of Y . Note that Jn = X and J0 = J(X ? Y ).

Example 5.3. If T̂ and Û are as in Example 4.2, the Jeu de Taquin process produces:

T̂ = J3 = 1 3
2

J2 = 1 3 3
2

J1 = 1 2 3
2 3

J0 =
1 1 2
2 2 3
3

Now let λk denote the shape of Jk. We define a recording tableau R(X,Y ) for the Jeu de Taquin process.

We define it in terms of the associated GT pattern by:

R(X,Y )(i, j) =
∑

r≥j

λi−j+1
r −

∑

r≥j+1

λi−j
r

Example 5.4. For the above example,

λ3 = (2, 1, 0), λ2 = (3, 1, 0), λ1 = (3, 2, 0), λ0 = (3, 3, 1)

So as a GT pattern:

R(T̂ , Û) =
1

2 1
2 1 0

We establish the following refinement of Theorem 4.1:

Theorem 5.3. If X ∈ Bλ, Y ∈ Bµ, then (X,Y ) sits in the component of Bλ⊗Bµ with high weight element

(R(X,Y ), bµ) and represents the J(X ? Y ) element of that crystal.

Returning to our proof that (Φ, φ) is a tensor functor, we want to prove that the following diagram

commutes:

Φ(A)⊗ (Φ(B)⊗ Φ(C))
α

//

φ◦φ⊗1

��

(Φ(A)⊗ Φ(B))⊗ Φ(C)

φ◦1⊗φ

��

Φ(A⊗ (B ⊗ C))
Φ(α)

// Φ((A⊗B)⊗ C))

Let us carefully examine what we need to prove. Let (a, (b, c, U), T ) ∈ (Φ(A)⊗ (Φ(B)⊗ Φ(C)))ρ. Then

for some δ:

a ∈ Φ(A)λ, b ∈ Φ(B)µ, c ∈ Φ(C)ν , T ∈ HIVE
ρ
λδ , U ∈ HIVEδ

µν

Let P = P (T, U), Q = Q(T, U). Following the diagram along the top and then down gives (P̂ (Q̂(a), b), c).

Following the diagram down and then along the bottom gives ((T̂ (a), Û (b)), c).

Hence we must show that in the tensor product of Bλ⊗Bµ, (T̂ , Û) lies in the same component as (Q̂, bµ)

and that it represents the P̂ element of that crystal. By Theorem 5.3, we see that it suffices to prove the

following result which was conjectured by Pak and Vallejo in [PV1]:

Theorem 5.4. We have the following relation between the octahedron recurrence and Jeu de Taquin:

J(T̂ ? Û) = P̂ R(T̂ , Û) = Q̂

In fact more is true. Each stage of Jk of the Jeu de Taquin procedure can be read off from the octahedron

recurrence:



144 THE OCTAHEDRON RECURRENCE AND gln CRYSTALS

Proposition 5.5. Use T, U to give a state f to S as in section 3.1. Use the octahedron recurrence to extend

this state to the region A = {(x, y, t) : |x− y| ≤ t ≤ n− |n− x− y|}.
Then for each k define the map

rk : 4n → A

(x, y, z) 7→
{

(n− z, x, y) for x ≤ k
(y + k, x, n− k − z) for x ≥ k

(5.3)

Use rk to define a quasi-hive P k = f ◦ rk.

Then P̂ k = Jk(T̂ , Û).
Example 5.6. Choosing hives T, U from Example 1.1, produces the state in Example 3.1. Reading off the
P k from this state gives:

P 3 = T =

0
2 3

4 5 6
5 7 8 8

P 2 =

0
2 3

4 5 6
4 7 8 8

P 1 =

0
2 3

3 5 6
3 6 8 8

P 0 = P =

0
1 3

1 4 6
1 4 7 8

These hives T, U correspond to the tableaux T̂ , Û from Example 4.2. Applying Jeu de Taquin to this pair

of tableaux produced the intermediate tableaux Jk in Example 5.3. Note that the hives P k correspond to

these tableaux Jk and that the hive Q from Example 3.1 corresponds to the recording tableau R(T̂ , Û) from

Example 5.4.

5.3. Commuter. To prove that the commuter diagram commutes we begin with the following consid-

eration. Let P ∈ HIVEν
λµ. By Lemma 5.1 and Theorem 5.2, (P̂ , bµ) is a high weight element of Bλ ⊗Bµ. P

can also be turned into a tableau P̃ of shape µ by the formula:

(5.4) P̃ (i, j) = P (j, n− i, i− j)− P (j − 1, n− i, i− j + 1)

Example 5.7. If P is as in Example 3.3, then as GT pattern:

P̃ =
1

3 1
4 2 0

Note that each crystal Bλ posseses a lowest weight element, that is a cλ ∈ Bλ that is killed by all fi and

such that Bλ is generated by ei acting on cλ. In terms of tableaux, cλ is the tableau with n at the end of

every row, n− 1 second from the end of every row, etc. Also note that ξ(bλ) = cλ.

Recall that for P ∈ HIVEν
λµ, (P̂ , bµ) was a highest weight element of the crystal Bλ ⊗ Bµ. We have the

following related result for P̃ :

Lemma 5.8. (cλ, P̃ ) is the lowest weight element of connected component of Bλ ⊗ Bµ with highest weight

(P̂ , bµ).

Returning to the commutor diagram, we need to prove that the following commutes:

Φ(A)⊗ Φ(B)
σ

//

φ

��

Φ(B)⊗ Φ(A)

φ

��

Φ(A⊗B)
Φ(σ)

// Φ(B ⊗A)

Let (a, b, P ) ∈ (Φ(A) ⊗ Φ(B))ν , where:

a ∈ Φ(A)λ, b ∈ Φ(B)µ, P ∈ HIVEν
λµ
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Following the diagram along the top and then down gives us

(5.5) φ(b, a, P ?) = (P̂ ?(b), a)

Following the diagram down and then along the bottom gives:

(5.6) Φ(σ)(P (a), b) = ξ ⊗ ξ ◦ flip ◦ξ(P (a), b) = (ξ ⊗ ξ)(P̃ (b), ξ(a)) = (ξ(P̃ (b), a))

by Lemma 5.8 and the fact that ξ(T (a)) = ξ(T )(a) which follows from the way we extended ξ component-

wise.

Comparing (5.5) and (5.6), we see that it suffices prove the following relation between the Schützenberger

involution and the octahedron recurrence:

Theorem 5.5. Let P be a hive. Then:

P̂ ? = ξ(P̃ )

As for the Jeu de Taquin, each stage of the Schützenberger involution can be seen.

Let A = {(x, y, t) : x + y ≤ t ≤ 2n− x − y}, the region used to compute the commuter map P 7→ P ?.

Let r : 4n → A be an inclusion. We say that r is standard if it is of the form:

(x, y, z) 7→ (x, y, h(z))

for some continuous function h : [0 . . . n] → [0 . . . 2n] with h(0) = n and h(z − 1) ∈ {h(z) + 1, h(z)− 1} for

z ∈ {1, . . . , n}.
If 0 < i < n, we say that such an r is i-flippable if h(n− i+ 1) = h(n − i− 1) = h(n − i) + 1. We say

that r is 0-flippabble if h(n− 1) = h(n) + 1. If r is i-flippable, we define ti(r) by the formula:

ti(r)(x, y, z) =

{
r(x, y, z) + (0, 0, 2) if z = n− i
r(x, y, z) otherwise

Now, let M be a quasi-hive and let r be a standard i-flippable embedding. Use M to given a state f

to im(r). This determines a state on the image of si(r) by the octahedron recurrence. Note that ti(M) :=

f ◦ (ri(m)) is a quasi-hive by consideration of appropriate wavefronts.

Proposition 5.9. With the above setup, if i 6= 0 we have:

t̂i(M) = si(M̂)

where on the RHS we are using the Bender-Knuth move.

Also, t̂0(M) = M̂ .

Example 5.10. Let P be as in Example 3.3. Let r be the embedding (x, y, z) 7→ (x, y, n− z). Using r and

P we get a state to the region A as shown in Example 3.3. From there we can read off:

P
t07→

7
7 8

4 7 8
0 4 6 6

t17→
7

4 7
4 7 8

0 4 6 6

t27→
7

4 7
0 4 5

0 4 6 6

t07→
4

4 7
0 4 5

0 4 6 6

t17→
4

0 2
0 4 5

0 4 6 6

t07→
−2

0 2
0 4 5

0 4 6 6

= P ?

P̃ is shown in Example 5.7 and the computation of ξ(P̃ ) is shown using Bender-Knuth moves in Example

4.5. Note that the intermediate stages of that computation match the intermediate stages shown above.
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A Signed Analog of the Birkhoff Transform

Samuel K. Hsiao

Abstract. We construct a family of posets, called signed Birkhoff posets, that may be viewed as

signed analogs of distributive lattices. Our posets are generally not lattices, but they are shown to

posses many combinatorial properties corresponding to well known properties of distributive lattices.

They have the additional virtue of being face posets of regular cell decompositions of spheres. We

give a combinatorial description the cd-index of a signed Birkhoff poset in terms of peak sets of

linear extensions of an associated labeled poset. Our description is closely related to a result of

Billera, Ehrenborg, and Readdy’s expressing the cd-index of an oriented matroid in terms of the

flag f-vector of the underlying geometric lattice. As an analog of the Distributive Lattice Conjecture,

we conjecture that the chain polynomial of a signed Birkhoff poset has only real zeros.

1. Introduction

This paper introduces a signed analog of the standard construction of a distributive lattice J(P ) from a
finite poset P . Beginning with the work of Birkhoff [Bi], distributive lattices have been well studied fom a
combinatorial viewpoint. Nowadays they are often analyzed in conjunction with notions such as P -partitions,
linear extensions, and R-labelings; see, e.g., [Sta4, Chapter 3]. Our construction will give rise to a family
of Eulerian posets that are amenable to similar types of analyses. Stembridge’s enriched P -partitions [Ste]
turn out to play a role in the enumeration theory of these posets that is analogous to the role of Stanley’s
P -partitions [Sta1] for distributive lattices. Our enumerative analysis is motivated by the work of Billera,
Ehrenborg, and Readdy on the cd-index of oriented matroids [BER]. Although the posets that we construct
are not directly related to face lattices of oriented matroids, the flag vectors of these two classes of posets
are seen to have some remarkably similar properties.

Given a positive integer n and a poset P on the set [n] := {1, 2, . . . , n} partially ordered by ≤P , let ±P
be the poset on {±1, . . . ,±n} ordered so that p <±P q if and only if |p| <P |q|. A filter of a poset Q is a
subset X of Q such that whenever q ∈ X and q <Q q′ then q′ ∈ X . The Birkhoff transform of P is the
poset (distributive lattice) J(P ) consisting of the filters of P ordered by reverse inclusion.1 Define a signed
P -filter to be a filter X of ±P such that if p is a minimal element of X then −p 6∈ X. We now define the
main object of study.

2000 Mathematics Subject Classification. Primary 06A07, 06A11, 05A15; Secondary 06D05.
Key words and phrases. Distributive lattice, Eulerian poset, flag f-vector, cd-index, enriched P -partition, quasisymmetric

function, peak algebra, Neggers-Stanley Poset Conjecture.
A portion of the results presented here first appeared in the author’s doctoral thesis, written under the supervision of Louis

Billera. This research is partially supported by the NSF Postdoctoral Research Fellowship.
1Usually J(P ) is defined as the poset of order ideals of P under inclusion, rather than as the filters under reverse inclusion;

these two definitions yield isomorphic posets. Filters turn out to be more convenient for us notationally.
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Figure 1. (a) A naturally labeled poset P ; (b) the induced labeled poset ±P ; (c) the dual

Birkhoff transforms J(P )∗ (without top element) and J(P0)
∗ (with top element), with edge-

labeling induced by P ; (d) the signed Birkhoff transform B(P ) (without top element) and

B̂(P ) (with top element), with edge-labeling induced by P.

Definition 1.1. The signed Birkhoff transform of P is the poset B(P ) consisting of all signed P -filters

ordered by inclusion.
Note that one could define the signed Birkhoff transform more abstractly without identifying P with

[n]. This identification is made here for notational convenience and without loss of generality. Let B̂(P )

denote the poset B(P ) with a unique maximal element 1̂ added. Any poset of the form B(P ) or B̂(P )

is called a signed Birkhoff poset.2 For clarity we sometimes call B̂(P ) a graded signed Birkhoff poset (cf.
Proposition 2.2).

Figure 1 illustrates both the ordinary and signed Birkhoff transforms of a three element poset. Filters
in the figure are denoted by 〈p1, . . . , pm〉, where p1, . . . , pm are the minimal generators of the filter. Let us
also point out two interesting families of examples. First recall that the face poset P (Γ) of a finite regular
cell complex Γ is the poset of cells of Γ, along with the empty cell, ordered by inclusion of their closures.

Example 1.2. If P is an n-element chain, then B(P ) is isomorphic to the face poset of a regular cell

decomposition of the (n − 1)-sphere with exactly two cells in each dimension. Such a poset is sometimes

called a ladder.

Example 1.3. If P is an n-element antichain, then B(P ) is isomorphic to the face poset of the boundary

of an n-dimensional hyperoctahedron.
Our main results are summarized below.
In Section 2 we discuss basic structural properties of signed Birkhoff posets, the highlight being a “pairing

procedure” (Theorem 2.5) that allows one to recover P uniquely (up to isomorphism) from B(P ). This is
analogous in part to Birkhoff’s fundamental theorem for finite distributive lattices, which asserts that every

2To our knowledge, there is no direct connection between signed Birkhoff posets and the hyperoctahedral analogs of posets,

called signed posets, introduced by Reiner [R].
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finite distributive lattice L is isomorphic to the poset of order ideals of the subposet of join irreducibles of L.
Presently lacking in this analogy is an intrinsic characterization of signed Birkhoff posets that avoids reference

to an underlying poset P . Interestingly, B̂(P ) is not a lattice unless P is an antichain (Proposition 2.1), so
the pairing procedure does not involve lattice notions such as join irreducibility.

Section 3 deals with shellability properties of signed Birkhoff posets. We show that the edge-labeling

of B̂(P ) induced by a natural labeling of P is an EL-labeling and a dual R-labeling (Theorem 3.1). This

implies that B̂(P ) is Gorenstein∗ for every P . The Gorenstein∗ property is also a consequence of the fact
that B(P ) is the face poset of a regular shellable decomposition of a sphere (Theorem 3.4). This result,

first established by Billera and the author, is proved here by showing that B̂(P ) admits a recursive coatom
ordering (Theorem 3.3) then invoking a theorem of Björner’s on cellular interpretations of posets [Bj2].

Section 4 covers enumerative aspects of signed Birkhoff posets. Let P0 denote the poset P with a unique
minimal element added. We establish the identity (Theorem 4.1)

(1.1) 2F �B(P )∗ = K̃P0

relating Ehrenborg’s F -quasisymmetric function (which encodes the flag f -vector) of the dual poset B̂(P )∗

to the weight enumerator for enriched P0-partitions. This fundamental identity follows easily from Stem-
bridge’s original work on enriched P -partitions [Ste] as well as from Bergeron, Mykytiuk, Sottile, and van
Willigenburg’s theory of Eulerian Pieri operators [BMSW, Section 7]. The latter work is relevant because of
the close connection between the signed Birkhoff transform and the doubled réseau of a distributive lattice.

A corollary of (1.1) is a description of the zeta polynomial of B̂(P ) in terms of the enriched order polyno-
mial of P0. Using recent work of Billera, Hsiao, and van Willigenburg [BHW] connecting the cd-index to

Stembridge’s peak algebra, we derive from (1.1) a combinatorial interpretation of the cd-index of B̂(P ) in
terms of peak sets of linear extensions of P0 (Theorem 4.4). Our description implies that the cd-index of

B̂(P ) is coefficient-wise maximized when P is an antichain and minimized when P is a chain. There is an
elegant reformulation of (1.1) that directly relates the cd-index of a signed Birkhoff poset to the flag f -vector
of its underlying distributive lattice (Theorem 4.12). Our formula is essentially identical to the expression
provided by Billera, Ehrenborg, and Readdy [BER] relating the cd-index of an oriented matroid to the flag
f -vector of its geometric lattice of flats (Theorem 4.11).

In Section 5 we conjecture that the chain polynomial of B̂(P ) has only real zeros. This is a signed
analog of the Distributive Lattice Conjecture, which is equivalent to the Neggers-Stanley Poset Conjecture
for naturally labeled posets [Br1]. We show that ours is equivalent to Stembridge’s Enriched Poset Conjecture
for naturally labeled posets having a unique minimal element.

All posets in this paper are assumed to be finite unless otherwise indicated. A graded poset is always
assumed to have a unique minimal element 0̂ and a unique maximal element 1̂. Unexplained terminology
and further background related to posets can be found in [Sta4, Chapter 3].

Acknowledgments. We are grateful to Louis Billera and Marcelo Aguiar for many valuable discussions.
We also thank two anonymous referees for helpful comments.

2. Signed Birkhoff posets

Assume throughout this section that n > 0 is fixed and P is a poset on [n] ordered by ≤P . Sometimes
P is called a labeled poset. Say that P is naturally labeled if p <P q implies p < q as integers. Let P0 denote
the labeled poset obtained from P by adding a unique minimal element labeled 0.

2.1. Basic properties. Some familiar properties of ordinary Birkhoff transforms carry over to signed
transforms without much difficulty. For instance, as with the identity J(P t Q) ∼= J(P ) × J(Q), it is
straightforward to show that

(2.1) B(P tQ) ∼= B(P )×B(Q),
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where t and × denote, respectively, the disjoint union and cartesian product operations for posets.
Unlike the class of distributive lattices, the class of signed Birkhoff posets is not closed under taking

intervals. For instance, the poset in Figure 1(d) has several intervals that are isomorphic to the Boolean
lattice of rank 3, which itself is not a signed Birkhoff poset. The following result points to another significant
difference between these two classes of posets.

Proposition 2.1. B̂(P ) is a lattice if and only if P is an antichain.
In the sequel it will be useful to relate ordinary and signed transforms via the order-reversing surjective

map ϕ : B̂(P )→ J(P0) defined by

ϕ(X) =

{
{|p| : p ∈ X} if X ∈ B(P ),

P0 if X = 1̂.

Note that ϕ restricts to a map from B(P ) onto J(P ).
The cover relations in J(P ) are precisely those relations of the form A ∪ {p} < A for some maximal

element p of P\A. Thus J(P ) is graded of rank n with rank function given by rk(A) = n − #A. The
corresponding assertions for signed Birkhoff posets follow easily:

Proposition 2.2. The cover relations in B(P ) are precisely those relations of the form X < X ∪ 〈p〉 such

that p and −p are maximal elements of ±P\X or, equivalently, |p| is a maximal element of P\ϕ(X). Thus

B̂(P ) is a graded poset of rank n+ 1 with rank function given by rk(X) = #ϕ(X).
It is a basic property of the Birkhoff transform that a sequence

(p1, . . . , pn) ∈ P×n is in L(P ), the set of linear extensions of P , if and only if {p1, . . . , pn} < {p2, . . . , pn} <
· · · < {pn} < ∅ is a maximal chain of J(P ). By Proposition 2.2, if c = {∅ = X0 lX1 l · · ·lXn} is a maximal
chain of B(P ) then there exists a sequence λ(c) = (p1, . . . , pn) ∈ (±P )×n such that Xi = Xi−1 ∪ 〈pi〉 for all
i. Such sequences can be characterized as “signed linear extensions” of P :

Proposition 2.3. Let π ∈ (±P )×n. Then π = λ(c) for some (unique) maximal chain c of B(P ) if and only

if π = εσ for some (ε, σ) ∈ {±1}×n ×L(P ).

Remark 2.4. The doubled réseau δJ(P ) studied by Bergeron, et al. in [BMSW] is the directed graph

obtained by replacing each labeled edge A ∪ {p} p→ A in the Hasse diagram of J(P ) with the two labeled

edges A ∪ {p}
p

⇒
−p

A. In light of Proposition 2.3, we may view signed Birkhoff posets as “poset realizations”

of doubled réseaux of distributive lattices. It is then possible to infer a direct connection between flag

enumeration in B̂(P ) and weight enumeration of enriched P -partitions via the theory of Eulerian Pieri

operators developed in [BMSW, Section 7]; see Theorem 4.1 and Remark 4.2.

2.2. The pairing procedure. Let B = B(P ). We describe a procedure for recovering P from B.
Define an equivalence relation on B by putting X ≡ X ′ if and only if X and X ′ cover exactly the same set of
elements, so in particular X and X ′ are of the same rank. Let T1, . . . , Tm be the non-singleton equivalence
classes in B/ ≡, indexed so that i < j whenever the elements of Ti have rank greater than those of Tj . Our
goal is to inductively construct posets B1, . . . , Bm whose isomorphism types depend only on the isomorphism
type of B; the result is that Bm

∼= P ∗.
It is easy to see that 〈p〉 ≡ 〈−p〉 for all p ∈ P and that every Ti is the union of sets of the form {〈p〉, 〈−p〉}.

Fix a partition of T1 into blocks of size two and let B1 be the antichain consisting of these blocks. Assume
by induction that the poset Bi−1 has been constructed for some i > 1. Given X,X ′ ∈ Ti, write X ≡i X

′

provided that for every j < i and Y ∈ Tj we have X < Y if and only if X ′ < Y. Each equivalence class in
Ti/ ≡i has even size because 〈p〉 ≡i 〈−p〉 for any p. Now partition each equivalence class in Ti/ ≡i arbitrarily
into blocks of size two. Define the poset Bi by adjoining these two-element blocks to Bi−1 and, for any such
block {X,X ′} and any {Y, Y ′} ∈ Bi−1, putting {X,X ′} <Bi {Y, Y ′} if and only if X and X ′ are both less
than Y and Y ′.
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Theorem 2.5. The pairing procedure, when applied to B(P ), always produces a poset that is isomorphic to

P ∗. Thus P is uniquely determined by B(P ) (up to isomorphism).

Example 2.6. Let B = B(P ) be the poset from Figure 1(d). Then the pairing procedure yields the

following:

1. T1 = {〈2〉, 〈−2〉};
2. T2 = {〈1〉, 〈−1〉, 〈3〉, 〈−3〉};
3. B1 is the one-element antichain {{〈2〉, 〈−2〉}};
4. T2/ ≡2= {{〈1〉, 〈−1〉}, {〈3〉, 〈−3〉}};
5. B2 is the poset on the set {〈2〉, 〈−2〉}, {〈1〉, 〈−1〉}, {〈3〉, 〈−3〉}with exactly one relation, {〈3〉, 〈−3〉} <B2

{〈2〉, 〈−2〉}.
Note that B2 is isomorphic to P ∗ via the map {〈p〉, 〈−p〉} 7→ |p|.

3. Shellability and sphericity

Assume throughout this section that n > 0 is fixed and P is a poset on [n].

3.1. EL-shellability. An edge-labeling of a poset is a map from its cover relations to the integers. The
edge-labeling of J(P ) induced by P is defined by mapping each cover relation A∪{p}lA to p. Similarly, the
edge-labeling of B(P ) induced by P is defined by mapping the cover relation X lX ∪ 〈p〉 to p. We extend

this to an edge-labeling of B̂(P ) by mapping each cover relation of the form X l 1̂ to 0. Figure 1 illustrates
induced edge-labelings.

Let λ be an edge-labeling of a graded poset Q. Given a maximal chain c = {q0 l q1 l · · ·l qm} of some
interval [q0, qm] of Q, say that c is increasing if its label-sequence λ(c) := (λ(q0, q1), . . . , λ(qm−1, qm)) is a
weakly increasing sequence, and say that c is decreasing if λ(c) is a strictly decreasing sequence. Call λ an
R-labeling if every interval I has a unique increasing chain, which we denote by aI . Call λ an EL-labeling if it
is an R-labeling and for every interval I, λ(aI ) is lexicographically smaller than λ(c) for any other maximal
chain c of I. Call λ a dual R-labeling of it is an R-labeling of the dual poset Q∗. If Q has an EL-labeling,
then the lexicographic ordering of its maximal chains determines a shelling of the order complex of Q [Bj1].
For this reason we call such a poset EL-shellable. If P is naturally labeled, then the induced edge-labeling
of J(P ) is well-known (and easily shown) to be an EL-labeling.

Theorem 3.1. If P is naturally labeled then the induced edge-labeling of B̂(P ) is both an EL-labeling and a

dual R-labeling.
A graded poset Q with rank function rk is called Eulerian if its Möbius function satisfies µQ(p, q) =

(−1)rk(q)−rk(p) for every p ≤Q q. It is called Cohen-Macaulay (over the rationals) if the homology of the order
complex (i.e. simplicial complex of chains) of every open interval in Q vanishes below the top dimension.
Say that Q is Gorenstein∗ if it is Eulerian and Cohen-Macaulauy.

Corollary 3.2. B̂(P ) is Gorenstein∗.

3.2. Recursive coatom ordering. Sphericity. Let Q be a graded poset. A coatom of Q is an
element covered by 1̂. Let coat(Q) denote the set of coatoms of Q. Following [BW], we say that Q admits a
recursive coatom ordering if its rank is 1, or if its rank is greater than 1 and there is an ordering x1, x2, . . . , xm

of its coatoms such that the following conditions hold:

(i) For all j = 1, . . . ,m, [0̂, xj ] admits a recursive coatom ordering in which the elements in coat([0̂, xj ])∩(
∪i<jcoat([0̂, xi])

)
come first.

(ii) For all i < j, if y < xi, xj then there exist k < j and z ∈ B̂(P ) such that y ≤ z l xk, xj .

Theorem 3.3. B̂(P ) admits a recursive coatom ordering.



152 SIGNED BIRKHOFF TRANSFORM

〈3〉 〈−3〉

〈1〉

〈−1〉

Figure 2. A cell decomposition of the 2-sphere into four 0-cells, six 1-cells, and four 2-cells.

The face poset of this sphere is the signed Birkhoff poset in Figure 1(d).

The recursive coatom ordering property is a purely combinatorial formulation of the concept of shel-
lability for a regular cell complex. It also generalizes the notion of EL-shellability. For a graded poset
Q,

Q is EL-shellable=⇒Q∗ admits a recursive coatom ordering.

These shelling properties make it possible to interpret intervals in signed Birkhoff posets (and their duals)

as regular decompositions of spheres. Given a finite regular cell complex Γ, let P̂ (Γ) denote the face poset
P (Γ) with a unique maximal element added. Call a graded poset thin if every interval of rank 2 has size 4.

Björner [Bj2] showed that a graded poset Q of rank n is isomorphic to P̂ (Γ) for Γ a shellable regular cell
decomposition of the (n − 2)-sphere if and only if Q is thin and admits a recursive coatom ordering. It is
easy to prove directly that graded signed Birkhoff posets are thin. (This also follows from the fact that they
are Eulerian.) Thus Björner’s theorem together with Theorem 3.1 and Theorem 3.3 yield the following:

Theorem 3.4 (Billera and Hsiao). Let [X,Y ] be an interval in B̂(P ) or B̂(P )∗. Then [X,Y ] is isomorphic

to the face poset of a shellable regular decomposition of the (rk(Y )− rk(X)− 2)-sphere.
Figure 2 illustrates a cell complex whose face poset is the signed Birkhoff poset from Figure 1(d).

Remark 3.5. A different proof that B(P ) is the face poset of a regular sphere was originally found by

Billera and the author via an explicit geometric description of the cell decomposition. The geometric aspects

of signed Birkhoff posets will be studied in greater detail elsewhere. We thank Sergey Fomin for pointing us

to Björner’s result.

4. Enumerative properties

4.1. Quasisymmetric generating functions. Let Q =
⊕

n≥0Qn denote the graded algebra of quasi-
symmetric functions over Q in the variables x1, x2, . . . The vector space Qn consists of those homogeneous
power series in Q[[x1, x2, . . .]] of degree n for which the coefficients of xa1

1 x
a2
2 · · ·xak

k and xa1

i1
xa2

i1
· · ·xak

ik
are

equal whenever i1 < · · · < ik and a1, . . . , ak is a sequence of positive integers summing to n. Set Q0 = Q.
For each n ≥ 1, the fundamental basis for Qn is the linear basis consisting of the 2n−1 elements

LS :=
∑

i1≤···≤in:
j∈S⇒ij <ij+1

xi1xi2 · · ·xin (S ⊆ [n− 1]).

This notation suppresses the dependence of LS on n. See [Sta5] for general background and references on
quasisymmetric functions.

Let Q be a graded poset (with 0̂ and 1̂) of rank n with rank function rk . If s ≤ t ∈ Q then write
rk(s, t) = rk(t) − rk (s). To study the flag enumerative invariants of Q, it will be useful to work with the
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following quasisymmetric generating function introduced by Ehrenborg [E1]:

FQ :=
∑

k≥1,

0̂=t0≤t1≤···≤tk−1<tk=1̂

x
rk(t0,t1)
1 x

rk(t1,t2)
2 · · ·xrk(tk−1,tk)

k ,

where the sum is over all multichains of Q from 0̂ to 1̂ in which 1̂ occurs exactly once. We review some
essential facts about this generating function.

Recall that the descent set of a sequence σ = (σ1, σ2, . . . , σn) of integers is defined by Des(σ) := {i ∈
[n− 1] : σi > σi+1}. If Q has an R-labeling λ, then

(4.1) FQ =
∑

c

LDes(λ(c)),

where the sum is over all maximal chains c of Q. In general, when Q does not necessarily have an R-labeling,
the vector of coefficients of FQ in the fundamental basis is the flag h-vector of Q.

Given a poset P , let A(P ) denote the set of P -partitions; i.e. order-preserving maps from P to the
positive integers.3 The weight enumerator for P -partitions is the quasisymmetric function

KP :=
∑

σ∈A(P )

xσ(1)xσ(2) · · ·xσ(n).

Gessel [G] first studied quasisymmetric weight enumerators for more general objects called (P, ω)-partitions
[Sta1], the motivation being that these weight enumerators generalize Schur functions in a combinatorially
useful way. It is easy to verify using (4.1) (see [Sta5, page 359]) that

(4.2) FJ(P ) = KP .

Theorem 4.1 below expresses a similar relationship between F �B(P )∗ and Stembridge’s enriched weight enu-
merator.

4.2. Enumeration in the peak algebra. The peak set of a sequence σ = (σ1, . . . , σn) of integers is
defined to be

Peak (σ) := {i ∈ {2, 3, . . . , n− 1} : σi−1 < σi > σi+1}.
Let Peakn denote the set of all possible peak sets of sequences of length n. Thus, S ∈ Peak n if and only if
(i) 1, n 6∈ S and (ii) i ∈ S implies i− 1 6∈ S. For each S ∈ Peakn, the peak function θS ∈ Qn is defined by

θS := 2#S+1
∑

T⊆[n−1]:S⊆TM(T+1)

LT ,

where T M U := (T\U) ∪ (U\T ) and T + 1 := {i+ 1 : i ∈ T}. The peak functions are linearly independent
and span a proper subalgebra Π of Q, called the peak algebra [Ste].

Let ±P be the linear order −1 ≺ +1 ≺ −2 ≺ +2 ≺ −3 ≺ +3 ≺ · · · on the set of non-zero integers. An
enriched P -partition of a poset P is an order-preserving map σ : P → ±P such that if σ(p) = σ(q) then
σ(p) > 0. Let E(P ) denote the set of enriched P -partitions. The enriched weight enumerator for P -partitions
is the quasisymmetric function

K̃P :=
∑

σ∈E(P )

x|σ(1)|x|σ(2)| · · ·x|σ(n)|.

3What we call a P -partition here is what Stanley [Sta1] originally calls a reverse P -partition.
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Stembridge [Ste] originally defined enriched weight enumerators in the more general context of enriched
(P, ω)-partitions.4 His theory of enriched (P, ω)-partitions was motivated by the study of Schur’sQ-functions.
A basic property of enriched weight enumerators is that

(4.3) K̃P =
∑

σ∈L(P )

θPeak(σ)

when P is naturally labeled.

Theorem 4.1. For any poset P,

2F �B(P )∗ = K̃P0 .

Proof. We may assume without loss of generality that P is a naturally labeled poset on [n]. It follows

from [Ste, Theorem 3.6 and (1.4)] that

K̃P0 =
∑

(ε,σ)∈{±1}×(n+1)×L(P0)

LDes(εσ)(4.4)

=2
∑

(ε,σ)∈{±1}×n×L(P )

LDes(0.εσ).

The last expression equals 2F �B(P )∗ by Proposition 2.3 and the fact that, by Theorem 3.1, the induced

edge-labeling of B̂(P )∗ is an R-labeling. �

Remark 4.2. In [BMSW, Example 7.5] it is observed that K̃P0 =
∑

cLDes(c), the sum being over all

maximal chains in the doubled reséau δJ(P0). This formula is essentially (4.4) and thus provides an alternate

approach to proving Theorem 4.1. Yet another proof can be adapted from that of [BER, Theorem 3.1]; see

Remark 4.13.
The enriched order polynomial Ω′(P,m) is the number of enriched P -partitions σ : P → ±P such that

σ(p) 4 m for all p ∈ P . As an enriched analog of the familiar equation Z(J(P ),m) = Ω(P,m) relating the
zeta polynomial of J(P ) to the order polynomial of P [Sta4], we obtain the following:

Corollary 4.3. For any poset P,

2Z(B̂(P ),m) = Ω′(P0,m).

4.3. The cd-index. Theorem 4.1 may be used to give a combinatorial interpretation of the cd-index

of B̂(P ), as we now explain. For a graded poset Q of rank n, let (fS(Q) : S ⊆ [n − 1]) denote the flag
f -vector of Q; i.e., fS(Q) is the number of chains of size #S in Q whose elements have ranks precisely in S.
Define a polynomial of degree n− 1 in the non-commuting variables a and b of degree 1 by

ΨQ :=
∑

S⊆[n−1]

fS(Q)uS ,

where uS = u1 · · ·un−1, ui = b if i ∈ S and ui = a−b if i 6∈ S. Fine [BK] observed that when Q is Eulerian,
ΨQ can be written as a polynomial in the variables c = a+b and d = ab+ba, called the cd-index of Q; for
a sampling of work on the cd-index, see [Sta3], [BER], [BE], [ER], and [E2]. If Γ is a cell complex such

that P̂ (Γ) is Eulerian, we may refer to Ψ �P (Γ) as the cd-index of Γ or P (Γ).

To connect the cd-index to our work, we set up a one-to-one correspondence w 7→ Sw between the set
of cd-words of degree n− 1 and Peakn given by

c
a1dc

a2d · · · cakdc
ak+1 7→ {deg(ca1d), deg(ca1dc

a2d), . . . , deg(ca1d · · · cakd)}.

4Our definition of an enriched P -partition agrees with Stembridge’s original definition of an enriched (P,ω)-partition when

ω is a natural labeling of P .
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For fixed n, let wS denote the cd-word of degree n− 1 associated to the peak set S ∈ Peak n. For instance,
Scddccdc = {3, 5, 9} ∈ Peak 11 and w{3,5,9} = cddccdc. Given an Eulerian poset Q of rank n and a cd-word
w of degree n− 1, let [w] denote the coefficient of the word w in ΨQ. A link between the cd-index and the
peak algebra is provided by the identity [BHW, Corollary 2.2]

(4.5) FQ =
∑

S∈Peakn

[wS ]

21+#S
· θS .

This formula together with Theorem 4.1 and (4.3) yield the following:

Theorem 4.4. For a naturally labeled poset P ,

Ψ �B(P )∗ =
∑

σ∈L(P0)

2#Peak(σ)wPeak(σ).

In particular, the cd-indices of B̂(P )∗ and B̂(P ) have non-negative coefficients.
Note that ΨQ∗ is obtained from ΨQ by changing every cd-word w to w∗, the word consisting of the

letters of w in reverse order [BER].

Example 4.5. If P is the poset from Figure 1(a) then

Ψ �B(P )∗ =wPeak(0123) + wPeak(0213) + wPeak(0231)

=w∅ + 2w{2} + 2w{3}

=ccc + 2dc + 2cd

and

Ψ �B(P ) = ccc∗ + 2dc∗ + 2cd∗ = ccc + 2cd + 2dc.

Theorem 4.4 provides further evidence for Stanley’s Gorensetin∗ conjecture [Sta3, Conjecture 2.1], which
is known to hold for face lattices of convex polytopes and oriented matroids:

Conjecture 4.6 (Stanley). The coefficients of the cd-index of a

Gorenstein∗ poset are non-negative.

Remark 4.7. Conjecture 4.6 has received special attention in connection with a conjecture of Charney and

Davis [CD] on the sign of the quantity

κ(Γ) := 1− 1

2
f0 +

1

4
f1 − · · ·+

(
−1

2

)d+1

fd,

where fi is the number of i-cells of the d-dimensional cell complex Γ. The Charney-Davis Conjecture predicts

that (−1)mκ(Γ) ≥ 0 whenever Γ is a flag complex triangulating a (2m− 1)-sphere. If Γ is the order complex

of P\{0̂, 1̂}, where P is an Eulerian poset of rank 2m+ 1, then (−1)m22mκ(Γ) is the coefficient of dm of the

cd-index of P ; see [Sta2] for additional details. For the face poset Q of a cell complex Γ, the order complex

of Q\{0̂} is a flag complex and is the barycentric subdivision of Γ. Thus Theorem 4.4 proves a special case of

the Charney-Davis Conjecture by supplying a combinatorial interpretation of the quantity (−1)mκ(Γ) when

Γ is the barycentric subdivision of a cellular sphere whose face poset is a signed Birkhoff poset.
Let S0

n be the set of permutations of 0, 1, . . . , n that start with 0. Taking P to be the antichain on [n]
in Theorem 4.4 yields [BER, Proposition 8.1]:

Corollary 4.8 (Billera, Ehrenborg, and Readdy). Let Cn be the face lattice of the n-dimensional cube. Then

ΨCn =
∑

π∈S0
n

2#Peak(π)wPeak(π).
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On the other hand, if P is an n-element chain then a direct computation shows that Ψ �B(P ) = cn. For

an arbitrary, naturally labeled poset P on [n], L(P0) is a subset of S0
n. Thus Theorem 4.4 and Corollary 4.8

imply the following:

Corollary 4.9. The cd-index of a signed Birkhoff poset of rank n+1 is coefficient-wise maximized by the cd-

index of the n-dimensional hyperoctahedron and minimized by cn. In other words, Ψ �B(P ) is coefficient-wise

maximized when P is an antichain minimized when P is a chain.

4.4. Comparisons with oriented matroids. Let Γ be a cell complex whose face poset is isomorphic
to B(P ) for some P . Let m be the number of minimal elements of P . The number of maximal cells of Γ is
clearly 2m, which equals

(4.6)
∑

x∈J(P )

|µJ(P )(0̂, x)|,

where µJ(P ) is the Möbius function of J(P ). This is easily proved using well-known properties of the Möbius
function of a distributive lattice; see, e.g., [Sta4, Example 3.9.6].

Formula (4.6) is reminiscent of a famous result of Zaslavsky’s expressing the f -vector of a hyperplane
arrangement in terms of its intersection lattice [Z]. He showed in particular that the number of regions in

a hyperplane arrangement is
∑

x∈L |µL(0̂, x)|, where L is the intersection lattice. This result holds more
generally in the setting of oriented matroids, where the intersection lattice is now replaced by the geometric
lattice of flats. We refer the reader to [BLSWZ] for background and references in this area. Note that
whereas a signed Birkhoff poset is completely determined by its underlying distributive lattice, an oriented
matroid is not necessarily determined by its geometric lattice. In this respect, Zaslavsky’s formula is more
surprising, and indeed more subtle, than (4.6). Bayer and Sturmfels [BS] extended Zaslavsky’s result by
showing that the entire flag f -vector of an oriented matroid depends only on the underlying geometric lattice.
The dependency is formulated explicitly in [BLSWZ, Proposition 4.6.2] in terms of the zero map, which
“forgets the signs” of covectors. Using ϕ in place of the zero map, we have an essentially identical formula:

Proposition 4.10. Let Ak < Ak−1 < · · · < A0 = ∅ be a chain in J(P ). The number of chains in the

preimage of c under the map ϕ : B(P )→ J(P ) is

#ϕ−1(c) =

k∏

i=1

∑

B∈J(P )
Ai≤B≤Ai−1

|µJ(P )(Ai, B)|.

Billera, Ehrenborg, and Readdy described explicitly the cd-index of an oriented matroid in terms of the
flag f -vector of the underlying geometric lattice [BER]. To state their result, let us define a linear map
ϑ : Q → Π on the basis {LS} by

ϑ(LDes(σ)) = θPeak(σ)

for any fixed n ≥ 1 and any sequence of σ = (σ1, . . . , σn). We set ϑ(1) = 1. It is easy to see that ϑ is
well-defined. Stembridge [Ste] introduced ϑ as a means of relating the weight enumerator of P -partitions to
that of enriched P -partitions. A basic consequence of the definition of ϑ is that

(4.7) ϑ(KP ) = K̃P

for any poset P . It is also possible to view ϑ as a specialization of a family of maps on noncommutative
symmetric functions defined by Krob, Leclerc, and Thibon [KLT]. Many properties about these maps are
proved in their work, and connections to the peak algebra are explained in [BHT].

The following is [BER, Theorem 3.1], stated in the present form in [BHW, Proposition 3.5]:

Theorem 4.11 (Billera, Ehrenborg, and Readdy). For the geometric lattice L of an oriented matroid O,
2FT∗ = ϑ(FL0),
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where T is the face lattice of O.
By comparison, using (4.2) and (4.7) we can restate Theorem 4.1 as follows:

Theorem 4.12. For any poset P,

2F �B(P )∗ = ϑ(FJ(P0)).

Theorem 4.12 summarizes the relationship between the flag enumerative invariants of a signed Birkhoff
poset and its underlying distributive lattice.

Remark 4.13. It is possible to prove Theorem 4.12 (and hence Theorem 4.1) by adapting Billera, Ehrenborg,

and Readdy’s proof of [BER, Theorem 3.1], with Proposition 4.10 now playing the role of [BLSWZ,

Proposition 4.6.2].

5. An analog of the Distributive Lattice Conjecture

The chain polynomial of a graded poset Q of rank n is defined by C(Q, t) :=
∑n

i=0 cit
i, where ci is

the number of chains in Q of length i from 0̂ to 1̂. We state a well-known reformulation of a conjecture of
Neggers [N] from 1978:

Conjecture 5.1 (The Distributive Lattice Conjecture). The chain polynomial of a distributive lattice has

only real zeros.
For a poset P on [n], n > 0, define W (P, t) :=

∑
σ∈L(P ) t

#Des(σ)+1. It is a standard exercise to show

that if P is naturally labeled then (1− t)nC(J(P ), t/(1− t)) = W (P, t). Thus C(J(P ), t) has only real zeros
if and only if W (P, t) does. More generally, the Neggers-Stanley Poset Conjecture predicts that W (P, t) has
only real zeros for any labeling of P . It is a classical result that a polynomial with non-negative coefficients
has only real zeros if and only if its coefficients form a Pólya frequency sequence. This would imply, in the
case of W (P, t), that the coefficients form a log-concave, unimodal sequence. We refer the reader to [Br1],
[Br2], and [RW] for results and references related to the Neggers-Stanley Conjecture and Pólya frequency
sequences.

The following is a signed analog of the Distributive Lattice Conjecture:

Conjecture 5.2. For any poset P , C(B̂(P ), t) has only real zeros.
We make some observations in support of this conjecture. In the enumerative theory of P -partitions,

W (P, t) arises as the numerator of the rational generating function
∑

m≥0 Ω(P,m)tm [Sta1]. Likewise, in

the enumerative theory of enriched P -partitions, one has the identity [Ste, Theorem 4.1]

(5.1)
∑

m≥0

Ω′(P,m)tm =
1

2

(1 + t)n+1

(1− t)n+1
·W ′

(
P,

4t

(1 + t)2

)
,

where W ′(P, t) :=
∑

σ∈L(P ) t
#Peak(σ)+1 and P has n elements. Stembridge’s Enriched Poset Conjecture

[Ste, Conjecture 4.3] predicts that W ′(P, t) has only real zeros for any labeled poset P . This is known to
be true when P is a disjoint union of labeled chains [Ste, Corollary 4.6] and has been verified for all labeled
posets of size up to 7 and all naturally labeled posets of size 8. The relevance to our work is explained by
the following:

Proposition 5.3. For a naturally labeled poset P, W ′(P0, t) has only real zeros if and only if C(B̂(P ), t)

has only real zeros.

Remark 5.4. Proposition 5.3 shows that Conjecture 5.2 is a special case of the Enriched Poset Conjecture.

Brenti’s work [Br1] indicates the usefulness of the distributive-lattice approach to the Neggers-Stanley

Conjecture for naturally labeled posets. We hope that some progress can be made on the Enriched Poset

Conjecture in light of Proposition 5.3.
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Pieri and Cauchy Formulae for Ribbon Tableaux

Thomas Lam

Abstract. In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are

spin and weight generating functions for ribbon tableaux. This article is aimed at studying these

functions in analogy with Schur functions. In particular we will describe:

• a Pieri and dual-Pieri formula for ribbon functions,

• a ribbon Murnaghan-Nakayama formula,

• ribbon Cauchy and dual Cauchy identities,

• and a
�
-algebra isomorphism ωn : Λ(q)→ Λ(q) which sends each Gλ to Gλ′ .

We will show that the ribbon Pieri and Murnaghan–Nakayama rules are formally equivalent in a

purely combinatorial manner. We will also connect the ribbon Cauchy and Pieri formulae to the

combinatorics of ribbon insertion as studied by Shimozono and White [SW2]. In particular we give

complete combinatorial proofs for the domino n = 2 case.

Résumé. Dans [LLT], Lascoux, Leclerc et Thibon ont introduit des fonctions symétriques Gλ qui

sont les series formelles pour tableaux des rubans, selon la rotation et le poids. Notre article étudie

l’analogie entre ces fonctions et les fonctions de Schur. En particulier, nous décrirons:

• des formules ruban-Pieri et dual-ruban-Pieri,

• une formule de ruban Murnagham–Nakayama,

• les identités ruban-Cauchy et dual-ruban-Cauchy pour fonctions de ruban,

• et un isomorphisme
�
-algèbre ωn : Λ(q)→ Λ(q) qui envoie chaque Gλ sur Gλ′ .

Nous montrerons que les règles Pieri de et Murnagham-–Nakayama sont formellement équivalentes

dans une manière purement combinatoire. Nous connecterons aussi les formules ruban-Cauchy et

ruban-Pieri au combinatoire d’insertion des rubans, comme étudié par Shimozono et White [SW2].

En particulier, nous donnons les preuves combinatoires complétes pour le cas domino n = 2.

Introduction

This abstract is a much shortened version of the paper [Lam1]. It has been rewritten with the focus
placed on combinatorial aspects. Many results and essentially all the proofs together with the representation
theoretic details have been removed.

Let n ≥ 1 be a fixed integer and λ a partition with empty n-core. In analogy with the combinatorial
definition of the Schur functions, Lascoux, Leclerc and Thibon [LLT] have defined a family of symmetric
functions Gλ(X ; q) ∈ Λ(q) by:

Gλ(X ; q) =
∑

T

qs(T )xw(T )

1991 Mathematics Subject Classification. 17B,05E.
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160 RIBBON TABLEAUX

where the sum is over all semistandard ribbon tableaux of shape λ, and s(T ) and w(T ) are the spin and
weight of T respectively. The definition of a semistandard ribbon tableau is analagous to the definition of
semistandard Young tableaux, with boxes replaced by ribbons (or border strips) of length n. We shall loosely
call the functions Gλ(X ; q) ribbon functions.

3

2

3

3

11 4

Figure 1. A semistandard 3-ribbon tableau with shape (7, 6, 4, 3, 1), weight (2, 1, 3, 1) and

spin 7.

When q = 1 the ribbon functions become products of usual Schur functions. However, when the
parameter q is introduced, it is no longer obvious that the functions Gλ(X ; q) are symmetric. The main
aim of this paper will be to develop the theory of ribbon functions in the same way Schur functions are
studied in the ring of symmetric functions. We shall see that the appropriate ‘ribbon’ analogues of the power
sum, homogeneous and elementary symmetric functions is given by the the plethysm

f 7→ f [(1 + q2 + · · ·+ q2n−2)X ].

We show that this leads to a ribbon Pieri rule in a natural way and also define ‘border ribbon strips’
which lead to a ribbon Murnaghan-Nakayama rule. These two rules are connected by showing that they are
formally equivalent in a combinatorial fashion. The plethysm of the Cauchy kernel leads to a Cauchy and
dual-Cauchy identity. We also describe a C-algebra isomorphism ωn : Λ(q) → Λ(q) which sends each skew
ribbon function to the ribbon function corresponding to the conjugate.

It is well known that the corresponding formulae are important for Schur functions in representation
theory and algebraic geometry.

Much of the interest in the ribbon functions has been focused on the q-Littlewood Richardson coefficients
cµλ(q) of the expansion of Gλ(X ; q) in the Schur basis:

Gλ(X ; q) =
∑

µ

cµλ(q)sµ(X).

These are q-analogues of Littlewood Richardson coefficients. Using results of Varagnolo and Vasserot [VV],
Leclerc and Thibon [LT] have shown that these coefficients are parabolic Kazhdan-Lusztig polynomials of
type A. Results of Kashiwara and Tanisaki [KT] then imply that they are polynomials in q with non-
negative coefficients. Much interest has also developed in connecting ribbon tableaux and the q-Littlewood
Richardson coefficients to rigged configurations and the generalised Kostka polynomials defined by Kirillov
and Shimozono [KS], Shimozono and Weyman [SW3], Schilling and Warnaar [SchW] and Shimozono [Shi].

To prove that the functions Gλ(X ; q) were symmetric Lascoux, Leclerc and Thibon connected them to

Fock space representation F of the quantum affine algebra Uq(ŝln). The crucial property of F is an action of

a Heisenberg algebra H , commuting with the action of Uq(ŝln), discovered by Kashiwara, Miwa and Stern

[KMS]. In particular, they showed that as a Uq(ŝln)×H-module, F decomposes as

F ∼= VΛ0 ⊗ C(q)[H−]

where VΛ0 is the highest weight representation of Uq(ŝln) with highest weight Λ0 and C(q)[H−] is the usual
Fock space representation of the Heisenberg algebra.
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In [Lam1], the connection between ribbon functions and the action of the Heisenberg algebra is made
explicit by showing that the map Φ : F→ C(q)[H−] defined by

|λ〉 7→ Gλ

is a map of H-modules, after identifying C(q)[H−] with the ring of symmetric functions Λ(q) in the usual
way. The map Φ has the further remarkable property that it changes certain linear maps into algebra maps
(for example leading to ωn). Via the map Φ, the action of the Heisenberg algebra leads to the ribbon
Murnaghan-Nakayama and Pieri rules. Unfortunately, we will not be able to explore this aspect of the
subject in this abstract.

We shall also connect our study of ribbon functions to more combinatorial aspects of ribbon tableaux.
Using the domino insertion of Barbasch and Vogan, Garfinkle and Shimozon and White [BV, Gar, SW] we
will give combinatorial proofs of the Pieri and Murnaghan-Nakayama formulae. The Cauchy and dual-Cauchy
identities were observed earlier in [Lam]. Shimozono and White [SW2] have defined a ribbon-Schensted
algorithm for n > 2 which is also compatible with spin on ribbon tableaux. As we shall discuss, this algorithm
gives a combinatorial proof of the first ribbon Pieri formula for k = 1, but appears to be insufficient to prove
either the Cauchy identity or the higher Pieri rules.

Acknowledgements. This work is part of my dissertation written under the guidance of Richard
Stanley. I am indebted to him for suggesting the study of ribbon tableaux and for providing me with
assistance throughout. I would also like to thank Mark Shimozono and Ole Warnaar for pointing out a
number of references.

1. Partitions and Tableaux

A distinguished integer n ≥ 1 will be fixed throughout the whole article. When n = 1, the reader may
check that we recover the classical theory of Schur functions. We will use the usual notation and definitions
for partitions, compositions, horizontal strips, border strips, standard and semistandard Young tableaux
which can be found in [EC2, Mac].

Let b be a border strip. The height h(b) is the number of rows in b, minus 1. When a border strip has n
squares for the distinguished (fixed) integer n, we will call it a ribbon. The height of the ribbon r will then
be called its spin s(r). The reader should be cautioned that in the literature the spin is usually defined as
half of this.

Let λ be a partition. Its n-core, obtained from λ by removal of n-ribbons (until we are no longer able

to), is denoted λ̃. The n-quotient of λ will be denoted (λ(0), . . . , λ(n−1)). We shall write P for the set of

partitions. We will use Pδ to denote the set of partitions λ such that λ̃ = δ for an n-core δ = δ̃.
A ribbon tableau T of shape λ/µ is a tiling of λ/µ by n-ribbons and a filling of each ribbon with a

positive integer (see Figure 1). We will use the convention that a ribbon tableau of shape λ where λ̃ 6= ∅ is

simply a ribbon tableau of shape λ/λ̃. A ribbon tableau is semistandard if for each i

(1) removing all ribbons labelled j for j > i gives a valid skew shape λ≤i/µ and,
(2) the subtableau containing only the ribbons labelled i form a horizontal n-ribbon strip.

A horizontal n-ribbon strip is a skew shape tiled by ribbons such that the topright-most square of every
ribbon touches the northern edge of the shape (see Figure 2). If such a tiling exists, it is necessarily unique.
If the numbers occuring in a ribbon tableau are exactly {1, 2, . . . ,m}, for some m, then the tableau is called
standard.

We will often think of a ribbon tableau as a chain of partitions

λ̃ = µ0 ⊂ µ1 ⊂ · · · ⊂ µr = λ

where each µi+1/µi is a horizontal ribbon strip. The partitions µi here are not to be confused with the
n-quotient of µ.
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Figure 2. A horizontal 4-ribbon strip with spin 5.

The spin s(T ) of a ribbon tableau T is the sum of the spins of its ribbons. The weight w(T ) of a tableau
is the composition counting the occurences of each value in T .

All these concepts and statistics on ribbon tableau can be described in terms of the n-quotient (see
[SSW]).

2. Symmetric Functions

In this section we briefly review some standard notation in symmetric function theory. The reader is
referred to [Mac] for further details.

Let ΛZ denote the ring of symmetric functions with coefficients in Z. Recall that ΛZ has a distinguished
integral basis sλ known as the Schur functions. Nearly all the results of this paper can be stated in ΛZ[q],
but some intermediate steps may require working in Λ = ΛC so we will use that as our symmetric function
ring from now on. We will write Λ(q) for ΛC ⊗C C(q).

It is well known that the Schur functions sλ are orthogonal with respect to a natural inner product 〈 , 〉
on Λ and are unique up to signed permutation. We will denote the homogeneous, elementary, monomial and
power sum symmetric functions by hλ, eλ, mλ and pλ respectively. Recall that we have 〈hλ,mµ〉 = δλµ and

〈pλ, pµ〉 = zλδλµ where zλ = 1m1(λ)m1(λ)!2
m2(λ)m2(λ)! · · · . Each of {pi}, {ei} and {hi} generate Λ. We will

write X to mean (x1, x2, . . .). Thus sλ(X) = sλ(x1, x2, . . .).
Let f ∈ Λ. We will recall the definition of the plethysm g 7→ g[f ]. Write g =

∑
λ cλpλ. Then we have

g[f ] =
∑

λ

cλ

l(λ)∏

i=1

f(xλi
1 , x

λi
2 , . . .).

Thus the plethysm by f is the (unique) algebra isomorphism of Λ which sends pk 7→ f(xk
1 , x

k
2 , . . .). When

f(x1, x2, . . . ; q) ∈ Λ(q) for the distinguished element q, we define the plethysm as pk 7→ f(xk
1 , x

k
2 , . . . ; q

k).
Thus plethysm does not commute with spcialising q to a complex number.

For example, the plethysm by (1 + q)p1 is given by sending

pk 7→ (1 + qk)pk

and extending to an algebra isomorphism Λ(q) → Λ(q). In such situations we will write f [(1 + q)X ] for
f [(1 + q)p1].

We will be particularly concerned with the plethysm given by (1 + q2 + · · ·+ q2n−2)p1. We will use Υq,n

to denote the map Λ(q)→ Λ(q) given by f 7→ f [(1 + q2 + · · ·+ q2n−2)X ].

3. Ribbon Functions

We will now define the central objects of this paper as introduced by Lascoux, Leclerc and Thibon in
[LLT].



Thomas Lam 163

Definition 3.1. Let λ/µ be a skew partition, tileable by n-ribbons. Define the symmetric functions Gλ/µ ∈
Λ(q) as:

Gλ/µ(X ; q) =
∑

T

qs(T )xw(T )

where the sum is over all semistandard ribbon tableaux T of shape λ/µ and xα = xα1
1 xα2

2 · · · . When λ

is a partition with non-empty n-core, we write Gλ for Gλ/λ̃. These functions will be loosely called ribbon

functions.
The fact that the functions Gλ/µ are symmetric is not obvious from the combinatorial definition. The

proof requires the use of the action of the Heisenberg algebra on the Fock space of the quantum affine algebra

Uq(ŝln).

Theorem 3.1 ([LLT]). The functions Gλ/µ(X ; q) are symmetric functions.

Definition 3.2. Let λ/µ be a skew shape tileable by n-ribbons. Then define

Kλ/µ,α(q) =
∑

T

qs(T ),

the spin generating function of all semistandard ribbon tableaux T of shape λ/µ and weight α. Similarly let

Lλ/µ,α(q) =
∑

T

qs(T )

summed over all column semistandard ribbon tableaux of shape λ/µ and weight α. A ribbon tableau is

column semistandard if its conjugate is semistandard.
Thus Gλ/µ(X ; q) =

∑
αKλ/µ,α(q)xα. We will now define border ribbon strips.

Definition 3.3. A border ribbon strip T is a connected skew shape λ/µ with a distinguished tiling by disjoint

non-empty horizontal ribbon strips T1, . . . , Ta such that the diagram T+i = ∪j≤iTj is a valid skew shape for

every i and for each connected component C of Ti we have

(1) The shape of C ∪ Ti−1 is not a horizontal ribbon strip. Thus C has to ‘touch’ Ti−1 ‘from below’.

(2) No sub horizontal ribbon strip C ′ of C which can be added to Ti−1 satisfies the above property.

Since C is connected, this is equivalent to saying that only the rightmost ribbon of C touches Ti−1.

We further require that T1 is connected. The height h(Ti) of the horizontal ribbon strip Ti is the number of

its components. The height h(T ) of the border ribbon strip is defined as h(T ) = (
∑

i h(Ti)) − 1. The size

of the border ribbon strip T is then the total number of ribbons in ∪iTi. A border ribbon strip tableau is

a chain T = λ0 ⊂ λ1 · · · ⊂ λr of shapes such that λi/λi−1 has been given the structure of a border ribbon

strip. The type of T = {λi} is then the composition α with αi equal to the size of λi/λi−1.

Define X µ/λ
ν as

X µ/λ
ν (q) =

∑

T

(−1)h(T )qs(T )

summed over all border ribbon strip tableaux of shape µ/λ and type ν.
Note that this definition reduces to the usual definition of a border strip and border strip tableau when

n = 1, in which case all the horizontal strips Ti are actually connected.

Example 3.4. Let n = 2 and λ = (4, 2, 2, 1). Suppose S is a border ribbon strip such that S1 has shape

(7, 5, 2, 1)/(4, 2, 2, 1), and thus it has size 3 and spin 1. We will now determine all the possible horizontal

ribbon strips which may form S2. It suffices to find the possible connected components that may be added.

The domino (9, 5, 2, 1)/(7, 5, 2, 1) may not be added since its union with S1 is a horizontal ribbon strip,

violating the conditions of the definition. The domino strip (8, 8, 2, 1)/(7, 5, 2, 1) is not allowed since the

domino (8, 8, 2, 1)/(7, 7, 2, 1) can be removed and we still obtain a strip which touches S1.
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The legitimate connected horizontal ribbon strips C which can be added are

(7, 7, 2, 1)/(7, 5, 2, 1), (7, 5, 3, 3, 2, 1)/(7, 5, 2, 1) and (7, 5, 4, 1)/(7, 5, 2, 1)

as shown in Figure 3. Thus assuming S2 is non-empty, there are 5 choices for S2, corresponding to taking

some compatible combination of the three connected horizontal ribbon strips above.

Figure 3. Connected horizontal strips C which can be added to S1 = (7, 5, 2, 1)/(4, 2, 2, 1)

to form a border ribbon strip. The resulting border ribbon strips all have height 1.

Example 3.5. As before let n = 2. We will calculate X λ/µ
5 (q) for λ = (5, 5, 2) and µ = (2). The relevant

border ribbon strips S are (successive differences of the following chains denote the Si)

• (2) ⊂ (5, 5, 2) with height 0 and spin 5,

• (2) ⊂ (5, 3, 2) ⊂ (5, 5, 2) with height 1 and spin 3,

• (2) ⊂ (5, 5) ⊂ (5, 5, 2) with height 1 and spin 3,

• (2) ⊂ (5, 3) ⊂ (5, 5, 2) with height 2 and spin 1.

Thus

X λ/µ
5 (q) = q5 − 2q3 + q.

4. The Murnaghan-Nakayama Rule

The core calculation of the paper [Lam1] (performed using the action of the Heisenberg algebra on the

Fock space of Uq(ŝln)) is the ribbon Murnaghan-Nakayama Rule.

Theorem 4.1 (Murnaghan-Nakayama Rule). Let k ≥ 1 be an integer and ν be a partition. Then

(4.1)
(
1 + q2k + · · ·+ q2k(n−1)

)
pkGν(X ; q) =

∑

µ

X µ/ν
k (q)Gµ(X ; q).

Also

k
∂

∂pk
Gν(X ; q) =

∑

µ

X ν/µ
k (q)Gµ(X ; q).

Example 4.1. Let n = 2 and consider (1 + q4)p2 · 1. By the ribbon Murnaghan-Nakyama rule (G0 = 1),

this should equal to

G(4) + qG(3,1) + (q2 − 1)G(2,2) − qG(2,1,1) − q2G(1,1,1,1).

We can compute directly that

G(4) = h2, G(3,1) = qh2, G(2,1,1) = qe2

G(2,2) = q2h2 + e2, G(1,1,1,1) = q2e2,

verifying Theorem 4.1 directly.
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5. Murnaghan-Nakayama and Pieri

We now show that the ‘ribbon Murnaghan-Nakayama’ and ‘ribbon Pieri’ (to be made explicit in Section
6) rules are formally equivalent. In the case n = 1 we obtain a direct combinatorial proof that the usual
Pieri and Murnaghan-Nakayama rules are equivalent.

Lemma 5.1. The power sum and homogeneous symmetric functions satisfy the following equation

mhm = pm−1h1 + pm−2h2 + · · ·+ pm.

Proof. See (2.10) in [Mac]. �

Let V be a vector space over C(q) and vλ be vectors in V labelled by partitions. Recall the definitions of

X µ/λ
k (q), Kµ/λ,k(q) and Lµ/λ,k(q) from Section 3. Suppose {Pk} are commuting linear operators satisfying

Pkvλ =
∑

µ

X µ/λ
k (q)vµ for all k

then we will say that the Murnaghan-Nakayama rule holds.
Suppose {Hk} are commuting linear operators on V satisfying

Hkvλ =
∑

µ

Kµ/λ,k(q)vµ for all k,

then we will say that Pieri formula holds.
Suppose {Ek} are commuting linear operators on V satisfying

Ekvλ =
∑

µ

Lµ/λ,k(q)vµ for all k,

then we will say that dual-Pieri formula holds.
If the skew shapes µ/λ are replaced by λ/µ in the above formulae, we get adjoint versions of these

formulae which can be thought of as lowering operators. Thus if a set of commuting linear operators
{
P⊥k
}

satisfies

P⊥k vλ =
∑

µ

X λ/µ
k (q)vµ for all k

then we will say the lowering Murnaghan-Nakayama rule holds, and similarly for
{
E⊥k
}

and
{
H⊥k

}
.

Proposition 5.2. Fix n ≥ 1 as usual. Let {Hk} and {Pk} be commuting sets of linear operators satisfying

the relations between hk and pk in Λ. Then the ribbon Murnaghan-Nakayama rule holds for {Pk} if and only

if the ribbon Pieri rule holds for {Hk}.

(Sketch of Proof). The idea is to use Lemma 5.1 and to proceed by induction on k. Thus suppose

that the Murnaghan-Nakayama rule holds for {Pk} and the ribbon Pieri rule holds for Hi for i ≤ k. Then

writing

kHk = Hk−1P1 + · · ·+ Pk

we see that the action of kHk on vλ can be described in terms of ordered pairs (S, T ) consisting of a border

ribbon strip S and horizontal ribbon strip T (such that S is added first to λ then T later).

For the case n = 1, an involution α can be defined on such pairs (S, T ) which changes the sign of

(−1)h(S). This involution α is given by

(1) If the ‘bottom’ horizontal strip S1 of S is such that T ∪ S1 is a horizontal strip then we set

α(S, T ) = (S − S1, T ∪ S1)

(2) Otherwise T ‘touches’ S from below. Let α(S, T ) = (S ∪ T1, T − T1) where T1 is the unique sub

horizontal strip which can be attached to S to form another border strip.
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In both cases the height of the border strip will change and one can check that this is an involution when

it is well defined. The contributions of these strips to kHkvλ cancel out since the total shape λ ∪ S ∪ T is

fixed. The involution fails to be defined in the situation that S and T are both horizontal strips such that

S ∪ T is also a horizontal strip. This case gives exactly the contribution to kHk, proving the inductive step.

The case for general n is more complicated, but the idea is similar. �

In fact we have the following theorem [Lam1].

Theorem 5.1. Let {Hi}, {Ei} and {Pi} be commuting operators on a vector space V over C(q) satisfy the

relations of hi, ei and pi in Λ. Let vλ be a set of vectors in V indexed by partitions. Suppose that one of the

Pieri, dual-Pieri and Murnaghan-Nakayama holds, then all three holds. The same is true for the lowering

operators satisfying the same relation.

6. Ribbon Pieri Formulae

Let n ≥ 1 be a fixed integer. Define the formal power series

H(t) =
∏

i

n−1∏

k=0

1

1− xiq2kt

E(t) =
∏

i

n−1∏

k=0

(
1 + xiq

2kt
)
.

As usual we may define symmetric functions hk and ek by H(t) =
∑

k hkt
k and similarly for ek. Note that

we have suppressed the integer n from the notation. We shall see later that the definitions of these power
series are completely natural in the context of Robinson-Schensted ribbon insertion.

In plethystic notation, hk = hk[(1 + q2 + · · ·+ q(2n−2))X ] and ek = ek[(1 + q2 + · · ·+ q(2n−2))X ]. The
following theorem is an immediate consequence of Theorem 5.1 and Theorem 4.1.

Theorem 6.1 (Ribbon Pieri Rule). Let λ be a partition. Then

(6.1) hkGλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all partitions µ such that µ/λ is a horizontal n-ribbon strip with k ribbons. Here

s(µ/λ) refers to the spin of the unique tableau which is a horizontal ribbon strip of shape µ/λ. Also

ekGλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all partitions µ such that µ/λ is a vertical n-ribbon strip with k ribbons. Here s(µ/λ)

refers to the spin of the unique tableau which is a vertical ribbon strip of shape µ/λ.
Note that by Theorem 6.1, we have

hk =
∑

λ

qmspin(λ)Gλ(X ; q)

where the sum is over all λ with no n-core such that |λ| = kn with no more than n rows and mspin(λ) is the
maximum spin of a ribbon tableau of shape λ. A similar formula holds for ek.

Example 6.1. Let n = 3, k = 2 and λ = (3, 1). Then

h2G(3,1) =

G(9,1) + qG(6,2,2) + q2G(4,4,2) + q2G(6,1,1,1,1) + q3G(3,3,2,1,1) + q4G(3,2,2,2,1).
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We should remark that dual-Pieri formulae also follows and is equivalent to a cospin branching formula
of [SSW]. These dual formulae are in some sense easier as they essentially only rely on the fact that ribbon
functions are symmetric.

7. The Ribbon Involution ωn and the Ribbon Cauchy Identity

We now define an involution wn on Λ(q) which is essentially the involution v 7→ v′ on the Fock space F
of [LT]. However, this involution will turn out to be not just a semi-linear involution, but also a C-algebra
isomorphism of Λ(q).

Definition 7.1. Define the ribbon involution wn : Λ(q) → Λ(q) as the semi-linear map satisfying wn(q) =

q−1 and

wn(sλ) = q(n−1)|λ|sλ′ .

Theorem 7.1. The map wn is an C-algebra homomorphism which is an involution. It maps Gλ/µ into

G(λ/µ)′ for every skew shape λ/µ.
The proof of the first statement is not difficult. The proof of the second statement requires the use of

calculations in the Fock Space F which are generalisations of those in [LT], together with symmetric function
manipulations.

Let us write the formal power series

Ω(X ; q) =
∏

i,j

n−1∏

k=0

1

1− xiyjq2k

Ω̃(X ; q) =
∏

i,j

n−1∏

k=0

(
1 + xiyjq

2k
)
.

Then we have:

Theorem 7.2 (Ribbon Cauchy Identity). Fix n as usual and a n-core δ. Then

Ω(X ; q) =
∑
Gλ(X ; q)Gλ(Y ; q)

and

Ω̃ =
∑

λ∈Pδ

q(n−1)|λ/λ̃|Gλ′(X ; q)Gλ(Y ; q−1).

where the sum is over all λ such that λ̃ = δ.
Note that this does not imply that the Gλ form an orthonormal basis under a certain inner product, as

they are not linearly independent.

(Sketch of Proof). Using results relating the Fock Space F and Λ(q) in [Lam1] we have

sλ[(1 + q2 + · · ·+ q2n−2)X ] =
∑

µ

cλµ(q)Gµ(X ; q)

where the sum is over all µ ∈ Pδ . Now multiply both sides by sλ(Y ) and sum over λ, giving the Cauchy

identity. The dual Cauchy identity can be obtained via a calculation involving ωn. �

The factor of q(n−1)|λ/λ̃| can be explained combinatorially by the fact that s(T ′) = q(n−1)|λ/λ̃|− s(T ) for
a ribbon tableau T and its conjugate T ′ satisfying sh(T ) = λ.
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8. Connections with Ribbon Insertion

In this section we put the ribbon Pieri formula (Theorem 6.1) and ribbon Cauchy identity (Theorem
7.2) in the context of ribbon Robinson-Schensted-Knuth (RSK) insertion, where both will be proven combi-
natorially and completely for the case n = 2.

8.1. Robinson-Schensted-Knuth for usual Young tableaux. Recall that the Robinson-Schensted
bijection gives a bijection between permutations w ∈ Sm and pairs of standard Young tableaux (see [EC2]):

w 7→ (P (w), Q(w)) .

The semistandard generalisation of this is a bijection between biwords w and pairs of semistandard tableaux
(P (w), Q(w)) of the same shape. This immediately implies the usual Cauchy identity.

In fact the bijection is realised by the insertion algorithm which produces a semistandard tableau T ′ =
(T ← i) given a semistandard tableau T and a number i to insert. An increasing insertion property of
Robinson-Schensted-Knuth insertion guarantees that Q(w) will be semistandard. Let i < j. The increasing
insertion property is the fact that the insertion path of i will always lie to the left of the path of j (if i is
inserted before j). This property is crucial to a combinatorial proof (see [EC2, p. 341]) of the Pieri rule:

hksλ =
∑

µ

sµ.

We may interpret hk as the generating function for a k-tuple of increasing positive integers (i1 ≤ i2 ≤ · · · ≤
ik), and sλ as the weight generating function of tableaux T with shape λ, as usual. Then a bijection from
the left hand side to the right hand side is obtained by associating to a pair ((i1, · · · , ik), T ) the tableau

T ′ = ((· · · ((T ← i1)← i2) · · · )← ik).

The increasing insertion property guarantees that sh(T ′)/λ is indeed a horizontal strip.

8.2. Domino insertion. The above discussion also leads to proofs for the domino n = 2 tableaux case.
Barbasch and Vogan [BV] have defined domino insertion in connection with the primitive ideals of classical
lie algebras. This was put into the usual bumping description by Garfinkle [Gar]. Recently, Shimozono and
White [SW] have extended Garfinkle’s description to the semistandard case and connected it with mixed
insertion. They also observed that it had the crucial color-to-spin property. A straightforward extension to
the non-empty 2-core case was presented in [Lam].

A colored biletter is an ordered triple (c, i, j) where c ∈ {0, 1} is the color and i, j ∈ {1, 2, . . .}. A colored
biword ω is a multiset of colored biletters canonically ordered in some way, usually denoted in an array:

w =

(
c1 · · ·cm
i1 · · · im
j1 · · · jm

)

Theorem 8.1. Fix a 2-core δ. There is a bijection between colored biwords w of length m with two colors

{0, 1} and pairs (Pd(w), Qd(w)) of semistandard domino tableaux with the same shape λ ∈ Pδ and |λ| =

2m+ |δ| with the following properties:

• The bijection has the color-to-spin property:

(8.1) tc(w) = s(Pd(w)) + s(Qd(w))

where tc(w) is the twice the sum of the colors in the top line of w.

• The weight of Pd(w) is the weight of the lowest line of w. The weight of Qd(w) is the weight of

the middle line of w.
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In fact the bijection is realized by an insertion procedure (denoted (T ← γi) where T is a domino
tableau and γi is either a horizontal or vertical domino labelled i) analogous to the usual Robinson-Schensted
insertion.

This bijection immediately leads to the domino Cauchy identity (n = 2 in Theorem 7.2). In [Lam], we
have also described two dual domino insertion algorithms which are bijections between ‘dual colored biwords’
and pairs of semistandard tableaux of conjugate shape. This proves the dual domino Cauchy formula.

It further turns out that domino insertion has the following domino increasing insertion property. This
was first shown by Shimozono and White by connecting domino insertion with mixed insertion. [Lam] gives
a different proof using growth diagrams. This domino increasing insertion property can be described by
specifying a total order < on dominoes as follows (γi denotes a domino labelled i)

(1) If γi is horizontal and γj vertical then γi > γj .
(2) If γi and γj are both horizontal then γi > γj if and only if i > j.
(3) If γi and γj are both vertical then γi > γj if and only if i < j.

Under this order, domino insertion also has a increasing insertion property,

Lemma 8.1. Let T be a domino tableau without the labels i and j. Set T ′ = (T ← γi) and T ′′ = (T ′ ← γj)

for some dominoes γi and γj . Then sh(T ′/T ) lies to the left of sh(T ′′/T ′) if and only if γi < γj .
Similarly, the dual domino insertion has a property which is dual to this. This increasing property is

retained when the bijection is extended to the semistandard case (see [SW, Lam] for details).

Proposition 8.2. Semistandard domino insertion gives a combinatorial proof of the Pieri rule (Theorem

6.1) for n = 2. Dual semistandard domino insertion gives a combinatorial proof of the dual Pieri rule for

n = 2.

Proof. From the formal power series H(t), it is easy to see that hk is the weight generating function

for multisets Γ = {γi}ki=1 of labelled dominoes of size k, where the weight of a labelled domino γi is given by

w(γi) = q2s(γi)xi.

Now fix a shape λ. Let S1 be the set of pairs (Γ, T ) where Γ is a multiset of dominoes of size k and

T is a semistandard domino tableau of shape λ. Let S2 be the set of semistandard tableaux T ′ such that

sh(T ′)/λ is a horizontal domino strip of size k. We define a map α : S1 → S2 by

α(Γ, T ) = ((· · · ((T ← γ1))← γ2) · · · )← γk),

where γi runs over the dominoes within Γ. Here the dominoes are inserted in the order of the increasing

insertion property described above ensuring that the change in shape sh(T ′)/sh(T ) is a horizontal strip.

Taking the weights of these sets and using the color-to-spin property of domino insertion we see obtain

Theorem 6.1 for n = 2. Using Theorem 8.1 one sees that α is a bijection. The proof for the dual case is

exactly analagous. �

8.3. Shimozono and White’s ribbon insertion. Shimozono and White [SW2] have described a
ribbon insertion algorithm for general n. This can be described in a traditional bumping fashion or in terms
of Fomin’s growth diagrams [Fom1, Fom2].

The ribbon insertion algorithm of [SW2] has the usual weight preserving properties, but also the spin
to color property (8.1) which an earlier ribbon-RSK algorithm of Stanton and White [SW1] did not have.
However, the algorithm stops short of being a bijection between colored biwords (with n colors) and pairs
of semistandard ribbon tableaux. The algorithm is only described as a bijection π between colored words
w (not biwords) and a pair (Pr(w), Qr(w)) where Pr(w) is a semistandard ribbon tableau and Qr(w) is
a standard ribbon tableau. In particular the Cauchy identity of Theorem 7.2 does not immediately follow.



170 RIBBON TABLEAUX

The algorithm also does not seem to possess a ribbon increasing insertion property. However one can at
least salvage the following, which is just the first Pieri rule.

Proposition 8.3. Shimozono and White’s bijection π gives a combinatorial proof that

(1 + q2 + . . .+ q2(n−1))h1Gλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all µ such that µ/λ is a n-ribbon.

Proof. As before we construct a weight preserving bijection between the two sides of the Pieri rule by:

(T, (c, j)) 7→ T ′ = (T ← (c, j)).

Here (c, j) denotes an n-ribbon with color (or spin) c and label j. The color c ranges from 0 to n− 1 and h1

is just the generating function for the labels j. �

Shimozono and White’s ribbon insertion is determined by forcing all ribbons to bump by rows to another
ribbon of the same spin (at least in the standard case). It is possible however to insist that all ribbons of
a particular spin bump by columns instead. Unfortunately, it appears that none of these algorithms have a
ribbon increasing insertion property.
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q, t-Kostka Polynomials and the Affine Symmetric Group

Luc Lapointe and Jennifer Morse

Abstract. The k-Young lattice Y k is a partial order on partitions with no part larger than k that

originated [LLM] from the study of k-Schur functions s
(k)
λ , symmetric functions that form a natural

basis of the space spanned by homogeneous functions indexed by k-bounded partitions. The chains in

the k-Young lattice are induced by a Pieri-type rule experimentally satisfied by the k-Schur functions.

Here, using a natural bijection between k-bounded partitions and k +1-cores, we can identify chains

in the k-Young lattice with certain tableaux on k + 1 cores. This identification reveals that the

k-Young lattice is isomorphic to the weak order on the quotient of the affine symmetric group S̃k+1

by a maximal parabolic subgroup. From this, the conjectured k-Pieri rule implies that the k-Kostka

matrix connecting the homogeneous basis {hλ}λ∈Y k to {s
(k)
λ }λ∈Y k may now be obtained by counting

appropriate classes of tableaux on k + 1-cores. This suggests that the conjecturally positive k-Schur

expansion coefficients for Macdonald polynomials (reducing to q, t-Kostka polynomials for large k)

could be described by a q, t-statistic on these tableaux, or equivalently on reduced words for affine

permutations.

Résumé. Un ordre partiel Y k sur les partitions dont les parties ne dépassent pas un certain entier

positif k tire son ori-gine de l’étude de fonctions de Schur généralisées [LLM], fonctions symétriques

formant une base de l’espace engendré par les fonctions homogènes indicées par des partitions k-

bornées. Les châınes dans le treillis Y k sont induites par une règle du type Pieri que satisfont

expérimentalement les fonctions de k-Schur. En utilisant une bijection naturelle entre les partitions

k-bornées et les k+1-cores, nous obtenons une correspondance entre les châınes dans le treillis Y k et

certains remplissages de k + 1-cores. Cette correspondance révèle que le treillis Y k est isomorphe à

l’ordre faible du groupe symétrique affine S̃k+1 modulo un sous-groupe parabolique maximal. La règle

de Pieri experimentale implique ainsi que la matrice de k-Kostka connectant les bases {hλ}λ∈Y k

et {s
(k)
λ }λ∈Y k peut être obtenue en énumérant certaines classes de tableaux sur les k + 1-cores,

et suggère entre autres que les coefficients de développements, que nous conjecturons positifs, des

polynômes de Macdonald en termes de fonctions de k-Schur (se reduisant aux polynômes de q, t-

Kostka lorsque k est grand) pourraient être décrits par une q, t-statistique sur ces tableaux, ou de

façon équivalente, par une q, t-statistique sur les décompositions réduites de certaines permutations

affines.
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1. Introduction

1.1. The k-Young lattice. Recall that λ is a successor of a partition µ in the Young lattice when λ
is obtained by adding an addable corner to µ where partitions are identified by their Ferrers diagrams. This
relation, which we denote “µ→ λ”, occurs naturally in the classical Pieri rule

(1.1) h1[X ] sµ[X ] =
∑

λ: µ→λ

sλ[X ] ,

and the partial order of the Young lattice may be defined as the transitive closure of µ → λ. It was
experimentally observed that the k-Schur functions [LLM, LM1] satisfy the rule

(1.2) h1[X ] s(k)
µ [X ] =

∑

λ: µ→k λ

s
(k)
λ [X ] ,

where “µ →k λ” is a certain subrelation of “µ → λ”. This given, the partial order of the k-Young lattice
Y k is defined as the transitive closure of µ →k λ.

The precise definition of the relation µ →k λ stems from another “Schur” property of k-Schur func-
tions. Computational evidence suggests that the usual ω-involution for symmetric functions acts on k-Schur
functions according to the formula

(1.3) ω s(k)
µ [X ] = s

(k)
µωk [X ] ,

where the map µ 7→ µωk is an involution on k-bounded partitions called “k-conjugation” generalizing partition
conjugation µ 7→ µ′. Then viewing the covering relations on the Young lattice as

(1.4) µ→ λ ⇐⇒ |λ| = |µ|+ 1 & µ ⊆ λ & µ′ ⊆ λ′ ,

we accordingly, in our previous work [LLM], defined µ →k λ in terms of the involution µ 7→ µωk by

(1.5) µ →k λ ⇐⇒ |λ| = |µ|+ 1 & µ ⊆ λ & µωk ⊆ λωk .

Thus only certain addable corners may be added to a partition µ to obtain its successors in the k-Young
lattice. We shall call such corners the “k-addable corners” of µ.

The precise determination of k-addable corners relies on a bijection between k-bounded partitions and
the set of k + 1-cores (partitions with no k + 1-hooks). For any k + 1-core γ, we define

p(γ) = (λ1, . . . , λ`)

where λi is the number of cells with k-bounded hook length in row i of γ. It turns out that p(γ) is a
k-bounded partition and that the correspondence γ 7→ p(γ) bijectively maps k + 1-cores onto k-bounded
partitions. With λ 7→ c(λ) denoting the inverse of p, we define the k-conjugation of a k-bounded partition λ
to be

(1.6) λωk = p
(
c(λ)′

)
.

That is, if γ is the k + 1-core corresponding to λ, then λωk is the partition whose row lengths equal the
number of k-bounded hooks in corresponding rows of γ ′. This reveals that k-conjugation, which originally
emerged from the action of the ω involution on k-Schur functions, is none other than the p-image of ordinary
conjugation of k + 1-cores.

The p-bijection then leads us to a characterization for k-addable corners that determine successors in
the k-Young lattice. By labeling every square (i, j) in the ith row and jth column by its “k + 1-residue ”,
j − i mod k + 1, we find
(Theorem 4.1) Let c be any addable corner of a k-bounded partition λ and c′ (of k + 1-residue i) be the
addable corner of c(λ) in the same row as c. c is k-addable if and only if c′ is the highest addable corner of
c(λ) with k + 1-residue i.
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This characterization of k-addability leads us to a notion of standard k-tableaux which we prove are in
bijection with saturated chains in the k-Young lattice.
(Definition 4.6) Let γ be a k+ 1-core and m be the number of k-bounded hooks of γ. A standard k-tableau
of shape γ is a filling of the cells of γ with the letters 1, 2, . . . ,m which is strictly increasing in rows and
columns and such that the cells filled with the same letter have the same k + 1-residue.
(Theorem 4.9) The saturated chains in the k-Young lattice joining the empty partition ∅ to a given k-
bounded partition λ are in bijection with the standard k-tableaux of shape c(λ).

We then consider the affine symmetric group S̃k+1 modulo a maximal parabolic subgroup denoted by

Sk+1. Bruhat order on the minimal coset representatives of S̃k+1/Sk+1 can be defined in terms of simple
containment of k + 1-core diagrams (this connection is stated precisely by Lascoux in [L] and is equivalent
to results in [MM, BB]). From this, stronger relations among k + 1-core diagrams can be used to describe
the weak order on such coset representatives. We are thus able to prove that our new characterization of
the k-Young lattice chains implies an isomorphism between the k-Young lattice and the weak order on these
coset representatives. Consequently, a bijection between the set of k-tableaux of a given shape c(λ) and the

set of reduced decompositions for a certain affine permutation σλ ∈ S̃k+1/Sk+1 can be achieved by mapping:

(1.7) w : T 7→ si`
· · · si2si1 ,

where ia is the k + 1-residue of letter a in the standard k-tableau T . A by-product of this result is a simple
bijection between k-bounded partitions and affine permutations in S̃k+1/Sk+1:

(1.8) φ : λ 7→ σλ ,

where σλ corresponds to the reduced decomposition obtained by reading the k + 1-residues of λ from right
to left and from top to bottom. It is shown in [LMW] that this bijection, although algorithmically dis-
tinct, is equivalent to the one presented by Björner and Brenti [BB] using a notion of inversions on affine
permutations. It follows from our results that Eq. (1.2) reduces simply to

(1.9) h1[X ] s
(k)
φ−1(σ)[X ] =

∑

σ<·w τ

s
(k)
φ−1(τ)[X ] ,

where the sum is over all permutations that cover σ in the weak order on S̃k+1/Sk+1.
As will be detailed in § 1.2, Theorem 4.9 also plays a role in the theory of Macdonald polynomials and

the study of k-Schur functions, thus motivating a semi-standard extension of Definition 4.6:
(Definition 6.1) Let m be the number of k-bounded hooks in a k + 1-core γ and let α = (α1, . . . , αr) be
a composition of m. A semi-standard k-tableau of shape γ and evaluation α is a column strict filling of γ
with the letters 1, 2, . . . , r such that the collection of cells filled with letter i is labeled with exactly αi distinct
k + 1-residues.

As with the ordinary semi-standard tableaux, we show that there are no semi-standard k-tableau under
conditions relating to dominance order on the shape and evaluation. An analogue of Theorem 4.9 can then be
used to show that this coincides with unitriangularity of coefficients in the k-Schur expansion of homogeneous
symmetric functions and suggests that the k-tableaux should have statistics to combinatorially describe the
k-Schur function expansion of the Hall-Littlewood polynomials. The analogue of Theorem 4.9 relies on the
following definition: with the pair of k-bounded partitions λ, µ defined to be “r-admissible ” if and only if
λ/µ and λωk/µωk are respectively horizontal and vertical r-strips, we say a sequence of partitions

∅ = λ(0) −→ λ(1) −→ λ(2) −→ · · · −→ λ(`)

is α-admissible when λ(i), λ(i−1) is a αi-admissible pair for i = 1, . . . , `. It turns out that all α-admissible
sequences are in fact chains in the k-Young lattice and that Theorem 4.9 extends to:
(Theorem 6.6) Let m be the number of k-bounded hooks in a k + 1-core γ and let α be a composition of
m. The collection of α-admissible chains joining ∅ to p(γ) is in bijection with the semi-standard k-tableaux
of shape γ and evaluation α.
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As mentioned, the root of our work lies in the study of symmetric functions. We conclude our introduction
with a summary of these ideas.

1.2. Macdonald expansion coefficients. The k-Young lattice
emerged from the experimental Pieri rule (1.2) satisfied by k-Schur functions. In turn, k-Schur functions
have arisen from a close study of Macdonald polynomials. To appreciate the role of our findings in the theory
of Macdonald polynomials we shall briefly review this connection. To begin, we consider a modification of
the Macdonald integral form [M] Jλ[X ; q, t] obtained by plethystic substitution:

(1.10) Hµ[X ; q, t ] = Jµ

[
X

1−q ; q, t
]

=
∑

λ`n

Kλµ(q, t)sλ[X ] ,

where Kλµ(q, t) ∈ N[q, t] are known as the q, t-Kostka polynomials. Formula (1.10), when q = t = 1, reduces
to

(1.11) hn
1 =

∑

λ`n

fλ sλ[X ] ,

where fλ is the number of standard tableaux of shape λ. This given, one of the outstanding problems in
algebraic combinatorics is to associate a pair of statistics aµ(T ), bµ(T ) on standard tableaux to the partition
µ so that

(1.12) Kλµ(q, t) =
∑

T∈ST (λ)

qaµ(T )tbµ(T ) ,

where “ST (λ)” denotes the collection of standard tableaux of shape λ.
In previous work [LLM, LM1], we proposed a new approach to the study of the q, t-Kostka polynomials.

This approach is based on the discovery of a certain family of symmetric functions {s(k)
λ [X ; t]}λ∈Y k for each

integer k ≥ 1, which we have shown [LM1] to be a basis for the space Λ
(k)
t spanned by the Macdonald poly-

nomials Hµ[X ; q, t ] indexed by k-bounded partitions. This revealed a mechanism underlying the structure
of the coefficients Kλµ(q, t). To be precise, for µ, ν ∈ Y k, consider

(1.13) Hµ[X ; q, t ] =
∑

ν∈Y k

K(k)
νµ (q, t) s(k)

ν [X ; t ] , and s(k)
ν [X ; t ] =

∑

λ

πλν(t) sλ[X ] .

We then we have the factorization

(1.14) Kλµ(q, t) =
∑

ν∈Y k

πλν(t)K(k)
νµ (q, t) .

It was experimentally observed (proven for k = 2 in [LM0, LM1]) that K
(k)
νµ (q, t) ∈ N[q, t] and πλν(t) ∈ N[t].

This suggests that the problem of finding statistics forKλµ(q, t) may be decomposed into two analogous prob-

lems for K
(k)
νµ (q, t) and πλν(t). We also have experimental evidence to support that Kλµ(q, t)−K(k)

νµ (q, t) ∈
N[q, t] which implies that s

(k)
λ [X ; t ]-expansions are formally simpler.

These developments prompted a close study of the polynomials

s
(k)
λ [X ; 1 ] = s

(k)
λ [X ]. In addition to (1.2), it was also conjectured that these polynomials satisfy the more

general rule

(1.15) hr[X ] s(k)
µ [X ] =

∑

λ/µ=horizontal r-strip

λωk /µωk =vertical r-strip

s
(k)
λ [X ] .

Iteration of (1.2) starting from s∅[X ] = 1 yields

(1.16) hn
1 [X ] =

∑

λ∈Y k

K
(k)
λ,1ns

(k)
λ [X ] ,
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while iterating (1.15) for suitable choices of r gives the k-Schur function expansion of an h-basis element
indexed by any k-bounded partition µ . That is,

(1.17) hµ[X ] =
∑

λ∈Y k

K
(k)
λµ s

(k)
λ [X ]

Since s
(k)
λ [X ] = sλ[X ] when all the hooks of λ are k-bounded, we see that (1.16) reduces to (1.11) for a

sufficiently large k. Similarly, the coefficient K
(k)
λµ in (1.17) reduces to the classical Kostka number Kλµ when

k is large. Our definition of the k-Young lattice and its admissible chains, combined with the experimental
Pieri rules (1.2) and (1.15), yield the following corollary of Theorems 4.9 and 6.6:

On the validity of (1.15), K
(k)
λ,1n equals the number of standard k-tableaux of shape c(λ),

or equivalently the number of reduced expressions for σλ, and the coefficient K
(k)
λµ equals

the number of semi-standard k-tableaux of shape c(λ) and evaluation µ.

Since (1.13) reduces to (1.16) when q = t = 1, this suggests that the positivity of K
(k)
λµ (q, t) may be accounted

for by q, t-counting standard k-tableaux of shape c(λ), or reduced words of σλ, according to a suitable statistic
depending on µ. More precisely, for T k(λ) the set of k-tableaux of shape c(λ) and Red(σ) the reduced words
for σ,

Hµ[X ; q, t ]

=
∑

λ:λ1≤k


 ∑

T∈T k(λ)

qaµ(T ) tbµ(T )


 s

(k)
λ [X ; t ](1.18)

=
∑

σ∈S̃k+1/Sk+1


 ∑

w∈Red(σ)

qaσµ (w) tbσµ (w)


 s

(k)
φ−1(σ)[X ; t ] .(1.19)

We should also mention that the relation in (1.17) was proven to be unitriangular [LM1] with respect
to the dominance partial order “�” as well as the t-analog of this relation, given by the Hall-Littlewood
polynomials corresponding to the specialization q = 0 of the Macdonald polynomials:

(1.20) Hµ[X ; 0, t ] =
∑

λ∈Y k

λ�µ

K
(k)
λµ (t) s

(k)
λ [X ; t ] .

The conjecture that K
(k)
λµ (q, t) ∈ N[q, t] implies K

(k)
λµ (t) would also have positive integer coefficients. Our

work here then suggests that this positivity may be accounted for by defining the coefficients in terms of a
k-charge statistic on semi-standard k-tableaux.

2. Definitions

A partition λ = (λ1, . . . , λm) is a non-increasing sequence of positive integers with “degree” |λ| =
λ1 + · · · + λm and “length” `(λ) = m. Each partition λ has an associated Ferrers diagram with λi lattice
squares in the ith row, from the bottom to top, and a “conjugate” diagram λ′ obtained by reflecting λ about
the diagonal. λ is “k-bounded” if λ1 ≤ k. Any lattice square (i, j) in the ith row and jth column of a Ferrers
diagram is called a cell. We say that λ ⊆ µ when λi ≤ µi for all i. The “dominance order” � on partitions
is defined by λ � µ when λ1 + · · · + λi ≥ µ1 + · · · + µi for all i, and |λ| = |µ|. A “removable” corner of
partition γ is a cell (i, j) ∈ γ with (i, j + 1), (i+ 1, j) 6∈ γ and an “addable” corner is a square (i, j) 6∈ γ with
(i, j − 1), (i− 1, j) ∈ γ.

More generally, for ρ ⊆ γ, the skew shape γ/ρ is identified with its diagram {(i, j) : ρi < j ≤ γi}. The
degree of a skew shape is the number of cells in its diagram. Lattice squares that do not lie in γ/ρ will be
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simply called “squares ”. We shall say that any c ∈ ρ lies “below ” γ/ρ. The “hook ” of any lattice square
s ∈ γ is defined as the collection of cells of γ/ρ that lie inside the L with s as its corner. This is intended to
apply to all s ∈ γ including those below γ/ρ. In the example below the hook of s = (1, 3) is depicted by the
framed cells

(2.1)
s

.

We let hs(γ/ρ) denote the number of cells in the hook of s and say that the hook of a cell or a square is
k-bounded if its length is not larger than k. We are particularly interested in “k + 1-cores, partition that
have no k + 1-hooks (e.g.[JK]). The “k + 1-residue” of square (i, j) is j − i mod k + 1.

A “composition” α of an integer m is a vector of positive integers that sum to m. A “tableau” T of
shape λ is a filling of T with integers that is weakly increasing in rows and strictly increasing in columns.
The “evaluation” of T is given by a composition α where αi is the multiplicity of i in T .

The affine symmetric group S̃k+1 is generated by the k + 1 elements ŝ0, . . . , ŝk satisfying the affine
Coxeter relations:

ŝ2i = id, ŝiŝj = ŝj ŝi (i− j 6= ±1 mod k + 1),

and ŝiŝi+1ŝi = ŝi+1ŝiŝi+1 .
(2.2)

Note that ŝi is understood as ŝi modk+1 if i ≥ k + 1. Elements of S̃k+1 are called affine permutations. A

word w = i1i2 · · · im in the alphabet {0, 1, . . . , k} corresponds to the permutation σ ∈ S̃k+1 if σ = ŝi1 . . . ŝim .
The “length” of σ, denoted `(σ), is the length of the shortest word corresponding to σ. Any word for σ with
`(σ) letters is said to be “reduced”. We denote by Red(σ) the set of all reduced words of σ.

The weak order on S̃k+1 is defined through the following covering relations:

(2.3) σ <·wτ ⇐⇒ τ = ŝi σ for some i ∈ {0, . . . , k} , and `(τ) > `(σ) .

The subgroup of S̃k+1 generated by the subset {ŝ1, . . . , ŝk} is a maximal parabolic subgroup denoted by

Sk+1. We consider the set of minimal coset representatives of S̃k+1/Sk+1.

3. The k-Young lattice

Let Ck+1 and Pk respectively denote the collections of k + 1 cores and k-bounded partitions. We start
with the map

p : γΩ̃(λ1, . . . , λ`)

where λi is the number of cells with a k-bounded hook in row i of γ. If ρ(γ) is the partition consisting only
of the cells in γ whose hook lengths exceed k, then p(γ) = λ is equivalently defined by letting λi denote the
length of row i in the skew diagram γ/ρ(γ). For example, with k = 4:

(3.1) γ = γ/ρ(γ) = p(γ) =

We prove that p is a bijection by showing that each diagram γ/ρ(γ) can be uniquely associated to a
skew diagram constructed from some k-bounded partition λ.

Definition 3.1. For any λ ∈ Pk, the “k-skew diagram of λ” is the diagram λ/k where

(i) row i has length λi for i = 1, . . . , `(λ)

(ii) no cell of λ/k has hook-length exceeding k

(iii) all squares below λ/k have hook-length exceeding k.
The inverse of p can thus be defined on any k-bounded partition λ, with λ/k = γ/ρ, by c(λ) = γ. Note,

there is an algorithm for constructing λ/k by attaching the row of length λ` to the bottom of (λ1, . . . , λ`−1)/
k,
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in the leftmost position so that no hooks-lengths exceeding k are created. In (3.1), we construct λ/k = γ/ρ
from λ = p(γ) according to this method and thus can easily find c(λ) = γ.

Theorem 3.2. p is a bijection from Ck+1 onto Pk with inverse c.
The notion of k-skew diagram gives rise to an involution on Pk:

Definition 3.3. For any λ ∈ Pk, the “k-conjugate” of λ denoted λωk is the k-bounded partition given by

the columns of λ/k. Equivalently, λωk = p(c(λ)′).
Given the k-conjugate, a partial order “� ” on the collection of k-bounded partitions arises:

Definition 3.4. The “k-Young lattice” � on partitions in Pk is defined by the covering relation

(3.2) λΩ̃kµ when λ ⊆ µ and λωk ⊆ µωk

for µ, λ ∈ Pk where |µ| − |λ| = 1. See Figure 1.
The k-Young lattice generalizes the Young lattice since λ � µ reduces to λ ≤ µ when µ is such that

h(1,1)(µ) ≤ k. It is also important to note that although the definition of � implies:

λ � µ =⇒ λ ⊆ µ and λωk ⊆ µωk ,

the converse of this statement does not hold. For example, with k = 3, λ = (2, 2) and µ = (3, 2, 1, 1, 1, 1), we
have λ ⊆ µ and λωk ⊆ µωk , but λ 6� µ. This can be verified by constructing all chains using Theorem 4.1,
or follows immediately from [LM2, Th. 19].

While this poset on k-bounded partitions originally arose in connection to a rule for multiplying k-Schur
functions, we show that it is isomorphic to the weak order on the quotient of the affine symmetric group by
a maximal parabolic subgroup. Consequently, this poset is a lattice [W] ([Ul] gives a proof by identifying
the k-Young lattice as a cone in a permutahedron-tiling of Rk).

0

1

2 11

21 111

22 211 1111

221 2111 11111

222 2211 21111 111111

Figure 1. Hasse diagram of the k-Young lattice in the case k = 2.

4. k-Young lattice, k + 1-cores, and k-tableaux

Since the set of µ such that µ ⊃ λ and |µ| = |λ|+1 consists of all partitions obtained by adding a corner
to λ, a subset of these partitions will be the elements that cover λ with respect to �.

Theorem 4.1. The order � can be characterized by the covering relation

(4.1) λΩ̃k µ ⇐⇒ λ = µ− er

where r is any row of c(µ) with a removable corner whose k+1-residue i does not occur in a higher removable

corner.
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Example 4.2. With k = 4 and λ = (4, 2, 1, 1),

(4.2) c(4, 2, 1, 1) =

1
2
3 4
4 0 1
0 1 2 3 4 0 1

,

and thus the partitions that are covered by λ are (4, 1, 1, 1), and (4, 2, 1), while those that cover it are

(4, 2, 1, 1, 1) and (4, 2, 2, 1).
We find the covering relations can be equivalently determined using operators on Ck+1:

Definition 4.3. The “operator si” acts on a k + 1-core by:

(a) removing all removable corners with k + 1-residue i if there is at least one removable corner of

k + 1-residue i

(b) adding all addable corners with k + 1-residue i if there is at least one addable corner with k + 1-

residue i

(c) leaving it invariant when there are no addable or removable corners of k + 1-residue i.

Recall that operators adding corners of a given residue to partitions arose in [DJKMO] and [MM] (see
also [L]), and coincide with restricting and inducing operators introduced in [Ro].

Corollary 4.4. Given k-bounded partitions λ and µ,

(4.3) λΩ̃k µ ⇐⇒ c(λ) ⊂ c(µ) and si

(
c(λ)

)
= c(µ) for some i ∈ {0, . . . , k} .

From this, we are able to provide a core-characterization of the saturated chains from the empty partition
(hereafter ∅ = λ(0)) to any k-bounded partition λ ` n:

(4.4) Dk(λ) =
{
(λ(0), λ(1), . . . , λ(n) = λ) : λ(j)Ω̃k λ

(j+1)
}
.

Corollary 4.5. The saturated chains to the vertex λ ` n in the k-lattice are given by

Dk(λ) =
{
(λ(0), λ(1), . . . , λ(n) = λ) : c(λ(j)) ⊂ c(λ(j+1))

and c(λ(j+1)) = si

(
c(λ(j))

)
for some i

}

Motivated by the proposed role of k-lattice chains in the study of certain Macdonald polynomial expan-
sion coefficients, we pursue a tableaux interpretation for these chains. We provide a bijection between the
set of chains Dk(λ) and a new family of tableaux defined on cores.

Definition 4.6. A k-tableau T of shape γ ∈ Ck+1 with n k-bounded hooks is a filling of γ with integers

{1, . . . , n} such that

(i) rows and columns are strictly increasing

(ii) repeated letters have the same k + 1-residue
The set of all k-tableaux of shape c(λ) is denoted by T k(λ).

Example 4.7. T 3(3, 2, 1, 1), or the set of 3-tableaux of shape (6, 3, 1, 1), is

(4.5)
7
5
4 6 7
1 2 3 4 6 7

7
6
4 5 7
1 2 3 4 5 7

7
4
3 6 7
1 2 4 5 6 7

7
4
2 6 7
1 3 4 5 6 7

The bijection between chains of Dk(λ) in the k-lattice and k-tableaux T k(λ) is given by the following
maps:

Definition 4.8. For any path P = (λ(0), . . . , λ(n)) ∈ Dk(λ), let Γ(P ) be the tableau constructed by putting

letter j in positions c(λ(j))
/
c(λ(j−1)) for j = 1, . . . , n.

Given T ∈ T k(λ), let Γ̄(T ) = (λ(0), . . . , λ(n)) where c(λ(j)) is the shape of the tableau obtained by deleting

letters j + 1, . . . , n from T .
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To compute the action of Γ on a path, we view the action of c as a composition of maps on a partition
– first skew the diagram and then add the squares below the skew to obtain a core.

Theorem 4.9. Γ is a bijection between Dk(λ) and T k(λ) with Γ−1 = Γ̄.

5. The k-Young lattice and the weak order on S̃k+1/Sk+1

The k + 1-core characterization of the k-Young lattice covering relations given in Corollary 4.4 leads to
the identification of the k-Young lattice as the weak order on S̃k+1/Sk+1. A by-product of this result is a
simple bijection between reduced words and k-tableaux and one between k-bounded partitions and affine
permutations in S̃k+1/Sk+1.

Definition 5.1. For σ ∈ S̃k+1, let s send σ to a k + 1-core by

(5.1) s : σ = si1 · · · si`
· ∅ ,

where i1 · · · i` is any reduced word for σ and ∅ is the empty k + 1-core.
Following from the characterization of Bruhat order in terms of cores (see [L]), we are able to obtain

from our k+ 1-core characterization of the chains in the k-lattice that this lattice is isomorphic to the weak
order on S̃k+1/Sk+1:

Proposition 5.2. Let σ, τ ∈ S̃k+1/Sk+1, and let λ = p(s(σ)) and µ = p(s(τ)). Then

σ <·w τ ⇐⇒ λΩ̃kµ .(5.2)

We have seen in Theorem 4.9 that the saturated chains to shape λ in the k-lattice are in bijection with
k-tableaux of shape p(γ). On the other hand, the reduced words for σ ∈ S̃k+1/Sk+1 encode the chains to σ.
Proposition 5.2 thus implies there is a bijection between k-tableaux of shape γ and the reduced words for
s−1(γ).

Definition 5.3. For a k-tableau T with m letters where ia is the k + 1-residue of the letter a, define

w : T 7→ im · · · i1 .

For w = im · · · i1 ∈ Red(σ), w−1(w) is the tableau with letter ` = 1, . . . ,m occupying the cells of si`
· · · si1 ·

∅
/
si`−1

· · · si1 · ∅.
Example 5.4. With k = 3:

T =
7
6
4 5 7
1 2 3 4 5 7

w

↔ 1 2 0 3 2 1 0 since the 4-residues are
1
2
3 0 1
0 1 2 3 0 1

Proposition 5.5. The map w : T k(λ) −→ Red(σ) is a bijection, where σ ∈ S̃k+1/Sk+1 is defined uniquely

by c(λ) = s(σ).
We now make use of canonical chains in the k-Young lattice to obtain a simple bijection between k-

bounded partitions and permutations in S̃k+1/Sk+1.

Definition 5.6. For any partition λ, let “wλ” be the word obtained by reading the k + 1-residues in each

row of λ, from right to left, starting with the highest removable corner and ending in the first cell of the first

row. Further, let “σλ” be the affine permutation corresponding to wλ.

Example 5.7. For λ = (3, 2, 2, 1) and k = 3, wλ = 1 3 2 0 3 2 1 0 and σλ = ŝ1ŝ3ŝ2ŝ0ŝ3ŝ2ŝ1ŝ0 since:

(5.3) λ =
1
2 3
3 0
0 1 2

Proposition 5.8. The map φ : PkΩ̃S̃k+1/Sk+1 where φ(λ) = σλ is a bijection whose inverse is φ−1 = p ◦ s.
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6. Generalized k-tableaux and the k-Young lattice

We now introduce a set of tableaux that serve as a semi-standard version of k-tableaux.

Definition 6.1. Let γ be a k + 1-core, m be the number of k-bounded hooks of γ, and α = (α1, . . . , αr) be

a composition of m. A semi-standard k-tableau of shape γ and evaluation α is a filling of γ with integers

1, 2, . . . , r such that

(i) rows are weakly increasing and columns are strictly increasing

(ii) the collection of cells filled with letter i are labeled with exactly αi distinct k + 1-residues.
We denote the set of all semi-standard k-tableaux of shape c(λ) and evaluation α by T k

α (λ). When
α = (1m), we call the k-tableaux “standard”. In this case, T k

(1m)(λ) = T k(λ).

Example 6.2. For k = 3, T 3
(1,3,1,2,1,1)(3, 3, 2, 1) of shape c ((3, 3, 2, 1)) = (8, 5, 2, 1) is the set:

(6.1)
5
4 6
2 3 4 4 6
1 2 2 2 3 4 4 6

6
4 5
2 3 4 4 5
1 2 2 2 3 4 4 5

4
3 6
2 4 4 5 6
1 2 2 2 4 4 5 6

It is known that there are no semi-standard tableaux of shape λ and evaluation µ when λ 4 µ in
dominance order. We have found that this is also true for the k-tableaux.

Theorem 6.3. There are no semi-standard k-tableaux in T k
µ (λ) when λ 4 µ. Further, there is exactly one

when λ = µ.
A rule for expanding the product of a k-Schur function with the homogeneous function h` (for ` ≤ k)

in terms of k-Schur functions was conjectured in [LM1]. We introduce certain sequences of partitions based
on this generalized Pieri rule and show their connection to the semi-standard k-tableaux. The connection
with symmetric functions is then discussed in the next section.

A pair of k-bounded partitions λ, µ is “r-admissible” if and only if λ/µ and λωk/µωk are respectively
horizontal and vertical r-strips. For composition α, a sequence of partitions

(
λ(0), λ(1), · · · , λ(r)

)
is “α-

admissible” if λ(j), λ(j−1) is a αj-admissible pair for all j. It turns out that any α-admissible sequence must
be a chain in the k-Young lattice. We are interested in the set of chains:

Definition 6.4. For any composition α, let

Dk
α(λ) =

{
(∅ = λ(0), . . . , λ(r) = λ) that are α-admissible

}
.

The following maps provide a bijection between the chains in Dk
α(λ) and the tableaux in T k

α (λ).

Definition 6.5. For any P = (λ(0), λ(1), . . . , λ(m)) ∈ Dk
α(λ), let Γ(P ) be the tableau of shape c(λ) where let-

ter j fills cells in positions

c(λ(j))/c(λ(j−1)), for j = 1, . . . ,m.

For a k-tableau T ∈ T k
α (λ) with α = (α1, . . . , αm), let

Γ̄(T ) = (λ(0), . . . , λ(m)), where c(λ(i)) is the shape of the tableau obtained by deleting the letters i+1, . . . ,m

from T .

Theorem 6.6. Γ is a bijection between T k
α (λ) and Dk

α(λ), with

Γ−1 = Γ̄.

7. Symmetric functions and k-tableaux

Refer to [M] for details on Macdonald polynomials. Here, we are interested in the study of the q, t-
Kostka polynomials Kµλ(q, t) ∈ N[q, t]. These polynomials arise as expansion coefficients for the Macdonald
polynomials Jλ[X ; q, t] in terms of a basis dual to the monomial basis with respect to the Hall-Littlewood
scalar product. As in the introduction, we use the modification of Jλ[X ; q, t] whose expansion coefficients in
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terms of Schur functions are the q, t-Kostka coefficients:

(7.1) Hλ[X ; q, t] =
∑

µ

Kµλ(q, t) sµ[X ] .

The q, t-Kostka coefficients also have a representation theoretic interpretation [GH, H], from which they
were shown to lie in N[q, t]. Since Jλ[X ; q, t] reduces to the Hall-Littlewood polynomial Qλ[X ; t] when q = 0,
we obtain a modification of the Hall-Littlewood polynomials by taking:

(7.2) Hλ[X ; t] = Hλ[X ; 0, t] =
∑

µ�λ

Kµλ(t) sµ[X ] ,

with the coefficients Kµλ(t) ∈ N[t] known as Kostka-Foulkes polynomials. We can then obtain the homoge-
neous symmetric functions by letting t = 1:

(7.3) hλ[X ] = Hλ[X ; 1] =
∑

µ�λ

Kµλ sµ[X ] ,

where Kµλ ∈ N are the Kostka numbers.
Recent work in the theory of symmetric functions has led to a new approach in the study of the q, t-Kostka

polynomials. The underlying mechanism for this approach relies on a family of polynomials that appear to
have a remarkable kinship with the classical Schur functions [LLM, LM1]. More precisely, consider the

filtration Λ
(1)
t ⊆ Λ

(2)
t ⊆ · · · ⊆ Λ

(∞)
t = Λ, given by linear spans of Hall-Littlewood polynomials indexed by

k-bounded partitions. That is,

Λ
(k)
t = L{Hλ[X ; t]}λ;λ1≤k , k = 1, 2, 3, . . . .

A family of symmetric functions called the k-Schur functions, s
(k)
λ [X ; t], was introduced in [LM1] (these

functions are conjectured to be precisely the polynomials defined using tableaux in [LLM]). It was shown

that the k-Schur functions form a basis for Λ
(k)
t and that, for λ a k-bounded partition,

(7.4) Hλ[X ; q, t ] =
∑

µ;µ1≤k

K
(k)
µλ (q, t) s(k)

µ [X ; t ] , K
(k)
µλ (q, t) ∈ Z[q, t] ,

and

(7.5) Hλ[X ; t ] = s
(k)
λ [X ; t ] +

∑

µ;µ1≤k
µ>Dλ

K
(k)
µλ (0, t) s(k)

µ [X ; t ] , K
(k)
µλ (0, t) ∈ Z[t] .

The study of the k-Schur functions is motivated in part by the conjecture that the expansion coefficients
actually lie in N[q, t]. That is,

(7.6) K
(k)
µλ (q, t) ∈ N[q, t] .

Since it was shown that s
(k)
λ [X ; t] = sλ[X ] for k larger than the hook-length of λ, this conjecture generalizes

Eq. (7.1). Also, there is evidence to support that Kµλ(q, t)−K(k)
µλ (q, t) ∈ N[q, t], suggesting that the k-Schur

expansion coefficients are simpler than the q, t-Kostka polynomials.
The preceding developments on the k-lattice can be applied to the study of the generalized q, t-Kostka

coefficients as follows: the k-Schur functions appear to obey a generalization of the Pieri rule on Schur
functions. It was conjectured in [LLM, LM1] that for the complete symmetric function h`[X ],

(7.7) h`[X ] s
(k)
λ [X ; 1] =

∑

µ∈E
(k)
λ,`

s(k)
µ [X ; 1] ,

where

(7.8) E
(k)
λ,` =

{
µ |µ/λ is a horizontal `−strip and µωk/λωk is a vertical `−strip

}
.
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Iteration, from s
(k)
∅ [X ; 1] = 1, then yields that the expansion of

hλ1 [X ]hλ2 [X ] · · · satisfies

(7.9) hλ[X ] =
∑

µ

K
(k)
µλ s

(k)
µ [X ; 1] ,

where K
(k)
µλ is a nonnegative integer reducing to the usual Kostka number Kµλ when k is large since

s
(k)
λ [X ; t] = sλ[X ] in this case. The definition of E

(k)
λ,` in the k-Pieri expansion thus reveals the motiva-

tion behind the set of chains given in Definition 6.4. This connection implies that

K
(k)
µλ = the number of chains of the k-lattice in Dk

λ(µ) .

Equivalently, using the bijection between paths in Dk
λ(µ) and T k

λ (µ) given in Theorem 6.6, we have

K
(k)
µλ = the number of k-tableaux of shape c(µ) and evaluation λ .

Although this combinatorial interpretation relies on the conjectured Pieri rule (7.7), it was proven in [LM1]
that the k-Schur functions are unitriangularly related to the homogeneous symmetric functions. That is,

K
(k)
λµ = 0 when µ 4 λ and K

(k)
λλ = 1. Therefore, Theorem 6.3 implies that the number of k-tableaux does

correspond to K
(k)
λµ in these cases.

More generally, note that letting q = 0 in Eq. (7.6) gives that the coefficients in Hall-Littlewood expansion

Eq. (7.5) satisfy K
(k)
µλ (0, t) ∈ N[t]. However, since Hλ[X ; 1] = hλ[X ], we have that K

(k)
µλ (0, 1) = K

(k)
µλ from

Eq. (7.9). Therefore, since it appears that K
(k)
µλ counts the number of semi-standard k-tableaux in T k

λ (µ),
it is suggested that there exists a t-statistic on such k-tableaux giving a combinatorial interpretation for the

generalized Kostka-Foulkes K
(k)
µλ (0, t).

Alternatively, Hλ[X ; 1, 1] = h1n [X ] for λ ` n implies that K
(k)
µλ (1, 1) = K

(k)
µ 1n by Eq. (7.9). This lends

support to the idea that a q, t-statistic on the standard k-tableaux that would account for the apparently

positive coefficients K
(k)
µλ (q, t) in Eq. (7.6). That is,

K
(k)
µλ (1, 1) = the number of standard k-tableaux of shape c(µ) .

Equivalently, our bijection between affine permutations and standard k-tableaux suggests there may be
a q, t-statistic on reduced words that would account for the positivity:

K
(k)
µλ (1, 1) = the number of reduced words of σµ ∈ S̃k+1/Sk+1 .

Acknowledgments. We would like to thank Michelle Wachs for helpful and revealing correspondence, and
Ira Gessel for his tableaux macros.
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Affine Weyl groups in K-theory

and representation theory

Cristian Lenart and Alexander Postnikov

Abstract. We present a simple combinatorial model for the characters of the irreducible represen-

tations of complex semisimple Lie groups and, more generally, for Demazure characters. On the

other hand, we give an explicit combinatorial Chevalley-type formula for the T -equivariant K-theory

of generalized flag manifolds G/B. The construction is given in terms of alcove paths, which corre-

spond to decompositions of affine Weyl group elements, and saturated chains in the Bruhat order on

the (nonaffine) Weyl group. A key ingredient is a certain R-matrix, that is, a collection of operators

satisfying the Yang-Baxter equation. Our model has several advantages over the Littelmann path

model and the LS-galleries of Gaussent and Littelmann. The relationship between our model and

the latter ones is yet to be explored.

Résumé. Nous présentons un modèle combinatoire simple pour les caractères des représentations

d’un groupe de Lie complexe semisimple et, en général, pour les caractères de Demazure. D’autre

part, nous présentons une généralisation combinatoire de la formule de Chevelley pour la K-théorie

équiva-ri-an-te des variétés de drapeaux G/B. Notre construction est en termes de chemins sur les

alcôves déterminées par le groupe de Weyl affine (qui correspondent aux décompositions réduites

dans ce groupe) et de chemins saturés sur le groupe de Weyl (nonaffine). Un ingrédient important

est une certaine R-matrice, c’est-à-dire une collection des opérateurs qui vérifient l’équation de

Yang-Baxter. Notre modèle a plusieurs avantages par comparaison avec le modèle de chemins de

Littelmann et les galeries LS de Gaussent et Littelmann. La relation entre notre modèle et les deux

autres n’a pas encore été étudiée.

1. Introduction

Littelmann paths give a model for characters of irreducible representations Vλ of a semisimple Lie group
G, and, more generally, for a complex symmetrizable Kac-Moody algebra. The theory extends to the char-
acters of Demazure modules Vλ,w, which are B-modules. Littelmann [Li1, Li2] showed that the mentioned
characters can be described by counting certain continuous paths in h∗

R
. These paths are constructed re-

cursively, using certain operators acting on them, known as root operators. A special case of Littelmann

Key words and phrases. semisimple Lie group, irreducible representations, generalized flag variety, Demazure charac-

ters, Chevalley formula, equivariant K-theory, affine Weyl group, alcoves, Littelmann path model, Bruhat order, Yang-Baxter

equation.
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paths are the Lakshmibai-Seshadri paths (L-S paths), which have been introduced before, in the context of
standard monomial theory [LS1]. L-S paths also have a nonrecursive characterization.

A geometric application of Littelmann paths was given by Pittie and Ram [PR], who used them to derive
a Chevalley-type multiplication formula in the T -equivariant K-theory of the generalized flag variety G/B.
Let KT (G/B) be the Grothendieck ring of T -equivariant coherent sheaves on G/B. According to Kostant
and Kumar [KK], the ring KT (G/B) is a free module over the representation ring R(T ) of the maximal
torus, with basis given by the classes [Ow] of structure sheaves of Schubert varieties. Pittie and Ram showed
that the basis expansion of the product of [Ow] with the class [Lλ] of a line bundle can be expressed as
a sum over certain L-S paths. The Pittie-Ram formula extends the classical Chevalley formula [Chev] for
the cohomology ring H∗(G/B), and its special case for the cohomology of the classical flag variety SLn/B,
known as Monk’s rule.

Let us also mention some important results related to the Pittie-Ram formula. The fact that the product
in this formula expands as a nonnegative combination was also explained by Brion [Bri] and Mathieu [Mat].
Brion [Bri] noted that the special case of the Pittie-Ram formula corresponding to a fundamental weight is
closely related to the multiplication of [Ow] with the class of the structure sheaf of a codimension 1 Schubert
variety (that is, to the hyperplane section of a Schubert variety in equivariant K-theory). The coefficients
in the Pittie-Ram formula were identified as certain characters by Lakshmibai and Littelmann [LL] using
geometry. Finally, Littelmann and Seshadri [LS2] showed that the Pittie-Ram formula is a consequence of
standard monomial theory [LS1, Li3], and, furthermore, that it is almost equivalent to standard monomial
theory.

When it comes to explicit calculations, it is often quite difficult to use the Littelmann path model, for
the following reasons.

• The recursive process of constructing Littelmann paths via root operators is quite complex. On
the other hand, there is no nonrecursive characterization of Littelmann paths in general, with the
exception of L-S paths (see the next remark).

• L-S paths are not purely combinatorial objects, since their characterization involves rational num-
bers. Furthermore, their complexity is reflected in the fact that some applications (the Pittie-Ram
formula, standard monomial theory [LLM]) require, in the case of nonregular weights λ, Deodhar’s

lift operators W/WλΩ̃W from cosets modulo parabolic subgroups; these operators are defined by a
nontrivial recursive procedure. The picture becomes even more complicated when, beside Wλ, there
is another parabolic subgroup involved; this siuation appears, for instance, in standard monomial
theory [LLM].

• The recently defined LS-galleries [GL], which are closely related to the path model, are given by
complicated conditions.

• L-S paths did not seem to allow an extension of the Pittie-Ram formula to the case of arbitrary
weights λ.

• It is difficult to use L-S paths to compute hyperplane sections of Schubert varieties via Brion’s
result mentioned above, because the Pittie-Ram formula would have to be applied a large number
of times. Essentially, this means that the Pittie-Ram formula is hard to “invert”.

In this paper, we present an alternative model for both Demazure characters and Chevalley-type formulas
in KT (G/B). This model has the following nice features.

• It is simple, nonrecursive, and purely combinatorial (no rational numbers are involved). The
related computations are very explicit and straightforward, since they only involve enumerating
certain saturated chains in Bruhat order.

• Deodhar’s lifts from cosets modulo parabolic subgroups are not needed.
• The corresponding Chevalley-type formula is equally simple for any weight, regular or nonregular,

dominant or nondominant.
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• This formula is straightforward to “invert”, in order to compute hyperplane sections of Schubert
varieties in T -equivariant K-theory.

Our model is based on enumerating certain saturated chains in the Bruhat order on the corresponding
Weyl group. This enumeration is determined by an alcove path, which is a sequence of adjacent alcoves
for the affine Weyl group of the Langland’s dual group G∨. Alcove paths correspond to representations of
elements in the affine Weyl group as products of generators.

Our Chevalley-type formula in KT (G/B) can be conveniently formulated in terms of a certain R-matrix,
that is, in terms of a collection of operators satisfying the Yang-Baxter equation. We express the operator
Eλ of multiplication by the class of a line bundle [Lλ] ∈ KT (G/B) as a composition R[λ] of elements of the
R-matrix given by an alcove path. In order to prove the formula, we simply verify that the operators R[λ]

satisfy the same commutation relations with the elementary Demazure operators Ti as the operators Eλ.
Currently, we are working on clarifying the relationship between the Littelmann path model and LS-

galleries on the one hand, and our construction on the other hand. We are planning to describe root
operators and give an explicit Littlewood-Richardson rule in terms of our model in forthcoming publications.
Generalizing our construction to Kac-Moody groups is also a joint project.

We are grateful to Shrawan Kumar, V. Lakshmibai, and Andrei Zelevinsky for helpful comments.

2. Notation

Let G be a connected, simply connected, simple complex Lie group. Fix a Borel subgroup B and a
maximal torus T such that G ⊃ B ⊃ T . Let h be the corresponding Cartan subalgebra of the Lie algebra g

of G. Let r be the rank of Cartan subalgebra h. Let Φ ⊂ h∗ be the corresponding irreducible root system.
Let h∗

R
⊂ h∗ be the real span of the roots. Let Φ+ ⊂ Φ be the set of positive roots corresponding to our choice

of B. Then Φ is the disjoint union of Φ+ and Φ− = −Φ+. Let α1, . . . , αr ∈ Φ+ be the corresponding set of
simple roots, which form a basis of h∗

R
. Let (λ, µ) denote the scalar product on h∗

R
induced by the Killing form.

Given a root α, the corresponding coroot is α∨ := 2α/(α, α). The collection of coroots Φ∨ := {α∨ : α ∈ Φ}
forms the dual root system.

The Weyl group W ⊂ Aut(h∗
R
) of the Lie group G is generated by the reflections sα : h∗

R
Ω̃h∗

R
, for α ∈ Φ,

given by sα : λ 7→ λ−(λ, α∨)α. In fact, the Weyl group W is generated by simple reflections s1, . . . , sr corre-
sponding to the simple roots si := sαi . An expression of a Weyl group element w as a product of generators
w = si1 · · · sil

which has minimal length is called a reduced decomposition for w; its length `(w) = l is called
the
length of w. The Weyl group contains a unique longest element w◦ with maximal length `(w◦) = |Φ+|.
For u,w ∈ W , we say that u covers w, and write um w, if w = usβ , for some β ∈ Φ+, and `(u) = `(w) + 1.
The transitive closure of the relation m is called the Bruhat order on W .

The weight lattice Λ is given by Λ := {λ ∈ h∗
R

: (λ, α∨) ∈ Z for any α ∈ Φ}. The weight lattice Λ is
generated by the fundamental weights ω1, . . . , ωr, which are defined as the elements of the dual basis to the
basis of simple coroots, i.e., (ωi, α

∨
j ) = δij . The set Λ+ of dominant weights is given by Λ+ := {λ ∈ Λ :

(λ, α∨) ≥ 0 for any α ∈ Φ+}.
Let ρ := ω1 + · · · + ωr = 1

2

∑
β∈Φ+ β. The height of a coroot α∨ ∈ Φ∨ is (ρ, α∨) = c1 + · · · + cr if

α∨ = c1α
∨
1 + · · · + crα

∨
r . Since we assumed that Φ is irreducible, there is a unique highest coroot θ∨ ∈ Φ∨

that has maximal height. The dual Coxeter number is h∨ := (ρ, θ∨) + 1.

3. The K-theory of Generalized Flag Varieties

The generalized flag variety G/B is a smooth projective variety. It decomposes into a disjoint union of
Schubert cells X◦w := BwB/B indexed by elements w ∈ W of the Weyl group. The closures of Schubert cells
Xw := X◦w are called Schubert varieties. Let Ow := OXw be the structure sheaves of Schubert varieties Xw.
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The group of characters X = X(T ) of the maximal torus T is isomorphic to the weight lattice Λ.
Its group algebra Z[X ] = R(T ) is the representation ring of T . This is generated by formal exponents
{xλ : λ ∈ Λ} with multiplication xλ · xµ := xλ+µ, i.e., Z[X ] = Z[x±ω1 , · · · , x±ωr ] is the algebra of Laurent
polynomials in r variables. Let Lλ := G×B Cλ be the line bundle over G/B associated with the weight λ.

Denote by KT (G/B) the Grothendieck ring of coherent T -equivariant sheaves on G/B. According to
Kostant and Kumar [KK], the Grothendieck ring KT (G/B) is a free Z[X ]-module. The classes [Ow] ∈
KT (G/B) of the structure sheaves Ow form a Z[X ]-basis of KT (G/B). The classes [Lλ] ∈ KT (G/B) of the
line bundles Lλ span the Grothendieck ring (as a Z[X ]-module). The product [Lλ] · [Ou] in the Grothendieck
ring KT (G/B) can be written as a finite sum

(3.1) [Lλ] · [Ou] =
∑

w∈W, µ∈Λ

cλ,µ
u,w xµ [Ow],

where cλ,µ
u,w are some integer coefficients. It makes sense to call these coefficients KT -Chevalley coefficients ;

indeed, they are related to the coefficients in Chevalley’s formula via applying the Chern character map to
both sides of (3.1). In this paper, we present an explicit combinatorial formula for cλ,µ

u,w, see Theorems 5.1

and 6.2. We will see that cλ,µ
u,w = 0 unless w ≤ u in the Bruhat order, and that cλ,µ

u,u = δλ,µ.

If λ is a dominant weight, then we will see that all coefficients cλ,µ
u,w are nonnegative. In this case,

Pittie and Ram [PR] showed that cλ,µ
u,w count certain L-S paths, cf. also Lakshmibai-Littelmann [LL] and

Littelmann-Seshadri [LS2].

4. Affine Weyl Groups

Let Waff be the affine Weyl group for the Langland’s dual group G∨. The affine Weyl group Waff is
generated by the affine reflections sα,k : h∗

R
Ω̃h∗

R
, for α ∈ Φ and k ∈ Z, that reflect the space h∗

R
with respect

to the affine hyperplanes

(4.1) Hα,k := {λ ∈ h∗R : (λ, α∨) = k}.
The hyperplanes Hα,k divide the real vector space h∗

R
into open regions, called alcoves. The following impor-

tant property can be found, e.g.,
in [Hum, Chapter 4].

Lemma 4.1. The affine Weyl group Waff acts simply transitively on the collection of all alcoves.
The fundamental alcove A◦ is given by

A◦ := {λ ∈ h∗R : 0 < (λ, α∨) < 1 for all α ∈ Φ+}.
Lemma 4.1 implies that, for any alcove A, there exists a unique element vA of the affine Weyl group Waff

such that vA(A◦) = A. Hence the map A 7→ vA is a one-to-one correspondence between alcoves and elements
of the affine Weyl group.

Recall that θ∨ ∈ Φ∨ is the highest coroot. Let θ ∈ Φ+ be the corresponding root, and let α0 := −θ.
The fundamental alcove A◦ is, in fact, the simplex given by

(4.2) A◦ = {λ ∈ h∗R : 0 < (λ, α∨i ) for i = 1, . . . , r, and (λ, θ∨) < 1},
Lemma 4.1 also implies that the affine Weyl group is generated by the set of reflections s0, s1, . . . , sk with
respect to the walls of the fundamental alcove A◦, where s0 := sα0,−1 and s1, . . . , sr ∈ W are the simple
reflections si = sαi,0. As before, a decomposition v = si1 · · · sil

∈ Waff is called reduced if it has minimal
length; its length `(v) = l is called the length of v.

We say that two alcoves A and B are adjacent if B is obtained by an affine reflection of A with respect
to one of its walls. In other words, two alcoves are adjacent if they are distinct and have a common wall.

For a pair of adjacent alcoves, let us write A
β−→ B if the common wall of A and B is of the form Hβ,k
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and the root β ∈ Φ points in the direction from A to B. By definition, all alcoves that are adjacent to the

fundamental alcove A◦ are obtained from A◦ by the reflections s0, · · · , sr, and A◦
−αi−→ si(A◦).

Definition 4.2. An alcove path is a sequence of alcoves (A0, A1, . . . , Al) such that Aj−1 and Aj are adjacent,

for j = 1, . . . , l. Let us say that an alcove path is reduced if it has minimal length l among all alcove paths

from A0 to Al.
Let v 7→ v̄ be the homomorphism Waff Ω̃W defined by ignoring the affine translation. In other words,

s̄α,k = sα ∈W .
The following Lemma, which is essentially well-known, summarizes some properties of decompositions

in affine Weyl groups, cf. [Hum].

Lemma 4.3. Let v be any element of Waff , and let A = v(A◦) be the corresponding alcove. Then the

decompositions v = si1 · · · sil
of v (reduced or not) as a product of generators in Waff are in one-to-one

correspondence with alcove paths A0
−β1−→ A1

−β2−→ · · · −βl−→ Al from the fundamental alcove A0 = A◦ to Al = A.

This correspondence is explicitly given by Aj = si1 · · · sij (A◦), for j = 0, . . . , l; and the roots β1, . . . , βl are

given by

(4.3) β1 = αi1 , β2 = s̄i1(αi2 ), β3 = s̄i1 s̄i2(αi3 ), . . . , βl = s̄i1 · · · s̄il−1
(αil

).

Let rj ∈ Waff denote the affine reflection with respect to the common wall of the alcoves Aj−1 and Aj , for

j = 1, . . . , l. Then the affine reflections r1, . . . , rl are given by

(4.4) r1 = si1 , r2 = si1si2si1 , r3 = si1si2si3si2si1 , . . . , rl = si1 · · · sir · · · si1 .

We have r̄i = sβi and v = si1 · · · sil
= rl · · · r1.

The affine translations by weights preserve the set of affine hyperplanesHα,k, and map alcoves to alcoves.
For λ ∈ Λ, let Aλ = A◦+λ be the alcove obtained by the affine translation of the fundamental alcove A◦ by
the vector λ. Let vλ = vAλ

be the corresponding element of Waff , i.e,. vλ is defined by vλ(A◦) = Aλ. Note
that vλ may not be an affine translation, although it translates the alcove A◦.
Definition 4.4. Let λ be a weight, and let v−λ = si1 · · · sil

be any decomposition, reduced or not, of v−λ as

a product of generators of Waff . Let r1, . . . , rl ∈ Waff be the affine reflections given by (4.4), and let β1, . . . , βl

be the roots given by (4.3). Thus r̄i = sβi . We say that the sequence (r1, . . . , rl) is the λ-chain of reflections

and the sequence (β1, . . . , βl) is the λ-chain of roots associated with the decomposition v−λ = si1 · · · sil
.

Equivalently, a sequence of roots (β1, . . . , βl) is a λ-chain of roots if there is an alcove path A0
−β1−→

· · · −βl−→ Al. By Lemma 4.3, the elements of the corresponding λ-chain of reflections are the affine reflections

rj with respect to the common walls of the alcoves Aj−1 and Aj , for j = 1, . . . , l.

Finally, we say that a λ-chain is reduced if it is associated with a reduced decomposition of v−λ.

5. The KT -Chevalley Formula

We can formulate our main result as follows.

Theorem 5.1. Fix any weight λ. Let (r1, . . . , rl) and (β1, . . . , βl) be the λ-chain of reflections and the λ-

chain of roots associated with a decomposition v−λ = si1 · · · sil
∈ Waff , which may or may not be reduced.

Let u,w ∈ W , and µ ∈ Λ. Then the KT -Chevalley coefficient cλ,µ
u,w, i.e., the coefficient of xµ [Ow] in the

expansion of the product [Lλ] · [Ou], can be expressed as follows:

(5.1) cλ,µ
u,w =

∑

J

(−1)n(J) ;

the summation ranges over all subsets J = {j1 < · · · < js} of {1, . . . , l} satisfying the following conditions:
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(a) u m u r̄j1 m u r̄j1 r̄j2 m · · · m u r̄j1 r̄j2 · · · r̄js = w is a saturated decreasing chain from u to w in the

Bruhat order on the Weyl group W ;

(b) −µ = u rj1 · · · rjs(−λ),
where n(J) is the number of negative roots in {βj1 , . . . , βjs}.

If λ is a dominant weight, then cλ,µ
u,w equals the number of subsets J ⊆ {1, . . . , l} that satisfy conditions

(a) and (b) in Theorem 5.1.

If λ is an anti-dominant weight, then (−1)`(u)−`(w) cλ,µ
u,w equals the number of subsets J ⊆ {1, . . . , l} that

satisfy conditions (a) and (b) in Theorem 5.1.
In the next section, we reformulate this Theorem in a compact form and then prove it, using a certain

R-matrix. In Sections 7 and 8, we give several examples that illustrate this Theorem.
Given a dominant weight λ, let Vλ denote the finite dimensional irreducible representation of the Lie

group G with highest weight λ. For λ ∈ Λ+ and w ∈ W , the Demazure module Vλ,w is the B-module
that is dual to the space of global sections of the line bundle Lλ on the Schubert variety Xw, i.e., Vλ,w =
H0(Xw,Lλ)∗. The formal characters of these modules, called Demazure characters, are given by ch(Vλ,w) :=∑

µ∈Λmλ,w(µ) eµ ∈ Z[Λ], where mλ,w(µ) is the multiplicity of the weight µ in Vλ,w . The characters of

irreducible representations of G are special cases, namely ch(Vλ) = ch(Vλ,w◦
). The Demazure characters are

given by Demazure’s character formula [Dem].

Lemma 5.2. (cf. Lakshmibai-Littelmann [LL], Littelmann–

Seshadri [LS2].) For any λ ∈ Λ+ and u ∈ W , the Demazure character ch(Vλ,u) can be expressed in

terms of the KT -Chevalley coefficients as follows: ch(Vλ,u) =
∑

w∈W, µ∈Λ c
λ,µ
u,w e

µ.

Theorem 5.1 implies the following combinatorial model for the Demazure characters ch(Vλ,u) and, in
particular, for the characters ch(Vλ) of the irreducible representations Vλ of the Lie group G.

Corollary 5.3. Let λ be a dominant weight, let u ∈ W , and let v−λ = si1 · · · sil
∈ Waff be a reduced

decomposition of v−λ. Let (r1, . . . , rl) be the corresponding λ-chain of reflections. Then the Demazure

character ch(Vλ,u) is equal to the sum

ch(Vλ,u) =
∑

J

e−u rj1 ···rjs (−λ)

over all subsets J = {j1 < · · · js} ⊂ {1, . . . , l} such that

um u r̄j1 m u r̄j1 r̄j2 m · · ·m u r̄j1 r̄j2 · · · r̄js

is a saturated decreasing chain in the Bruhat order on the Weyl group W .
We can slightly simplify the formula for the characters ch(Vλ) = ch(Vλ,w◦

) of the irreducible represen-
tations of G, as follows.

Corollary 5.4. Consider the setup in Corollary 5.3. We have

ch(Vλ) =
∑

J

e−rj1 ···rjs (−λ) ,

where the summation is over all subsets J = {j1 < · · · js} ⊂ {1, . . . , l} such that

1 l r̄j1 l r̄j1 r̄j2 l · · ·l r̄j1 r̄j2 · · · r̄js

is a saturated increasing chain in the Bruhat order on the Weyl group W .
In order to make our formula completely combinatorial, we present one particular choice for the λ-chain

of reflections, which is illustrated by Example 8.1. The construction depends on the choice of a total order
on the simple roots in Φ. For simplicity, assume that λ is dominant. The set R = Rλ ⊂ Waff of affine
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reflections with respect to the affine hyperplanes Hα,k that separate the alcoves A◦ and A−λ is given by

R = Rλ =
⋃

α∈Φ+

{sα,k : 0 ≥ k > −(λ, α∨)}.

Let us choose a path π : [0, 1]Ω̃h∗
R

that connects the alcoves A◦ and A−λ; then let us totally order the
set R according to the order in which the path π crosses the hyperplanes Hα,k. If the path is given by
π = πε : t 7→ −t λ + ε ω1 + ε2ω2 + · · · + εrωr, where ε is a sufficiently small positive constant, then the
corresponding total order on R can be described as follows. Let h : RΩ̃Rr+1 be the map given by

(5.2) h : sα,k 7→ (λ, α∨)−1 (−k, (ω1, α
∨), . . . , (ωr, α

∨)),

for any sα,k ∈ R with α ∈ Φ+. The map h is injective.

Proposition 5.5. Let R = {r1 < r2 < · · · < rl} be the total order on the set R such that h(r1) < h(r2) <

· · · < h(rl) in the lexicographic order on Rr+1. Then (r1, . . . , rl) is a reduced λ-chain of reflections.

6. KT -Chevalley Formula: Operator Notation

Let us extend the ring of coefficients in KT (G/B), as follows. Let Λ/h∨ := {λ/h∨ : λ ∈ Λ}, where

h∨ = (ρ, θ∨) + 1 is the dual Coxeter number. Let Z[X̃ ] be the group algebra of Λ/h∨ with formal exponents

xλ/h∨

, for λ ∈ Λ. And let K̃T (G/B) := KT (G/B) ⊗Z[X] Z[X̃ ]. For α ∈ Φ+, define the Z[X̃]-linear Bruhat

operators Bα acting on K̃T (G/B) by

(6.1) Bα : [Ow] 7−→
{

[Owsα ] if `(wsα) = `(w)− 1,

0 otherwise.

Also define Bα := −B−α, for negative roots α. The operators Bα move Weyl group elements one step down

in the Bruhat order. For a weight λ, define the Z[X̃ ]-linear operators Xλ acting on K̃T (G/B) by

(6.2) Xλ : [Ow] 7→ xw(λ/h∨)[Ow].

Let us define operators Rα by

(6.3) Rα := Xα +X(ρ,α∨) αBα = Xρ (Xα +Bα)X−ρ, for α ∈ Φ.

The operators Rα generalize the operators considered in [BFP]. The following claim can be proved along
the lines of [BFP].

Theorem 6.1. The family of operators Rα, α ∈ Φ, satisfies the Yang-Baxter equation (in the sense of

Cherednik [Cher, Definition 2.1a]). In other words, R−α = (Rα)−1; the operators Rα and Rβ commute

whenever (α, β) = 0; if α and β generate a root subsystem of type A2, then

RαRα+βRβ = RβRα+βRα ;

finally, there are similar relations for the other rank 2 root subsystems.
For λ ∈ Λ, let us define the operator R[λ] acting on K̃T (G/B) as

(6.4) R[λ] = Rβl
Rβl−1

· · ·Rβ2Rβ1 ,

where (β1, . . . , βl) is a λ-chain of roots and the Rα are given by (6.3). Theorem 6.1 implies that the operator
R[λ] depends only on the weight λ and not on the choice of a λ-chain. The operator R[λ] preserves the space
KT (G/B).

We can formulate the equivariant K-theory Chevalley formula using the operator notation, as follows.
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Theorem 6.2. For any weight λ and any u ∈ W , we have

[Lλ] · [Ou] = R[λ]([Ou]),

i.e., the operator R[λ] acts on the space KT (G/B) as the operator of multiplication by the class [Lλ] of a line

bundle.
If λ is a dominant weight, then all roots in a reduced λ-chain are positive; thus the operator R[λ] expands

as a positive expression in the Bruhat operatorsBα, α ∈ Φ+, and the operatorsXµ. In this case, Theorem 6.2
gives a positive formula for [Lλ] · [Ou].

7. Examples for Type A

Suppose that G = SLn. Then the root system Φ is of type An−1 and the Weyl group W is the symmetric
group Sn. We can identify the space h∗

R
with the quotient space V := Rn/R(1, . . . , 1), where R(1, . . . , 1)

denotes the subspace in Rn spanned by the vector (1, . . . , 1). The action of the symmetric group Sn on V is
obtained from the (left) Sn-action on Rn by permutation of coordinates. Let ε1, . . . , εn ∈ V be the images of
the coordinate vectors in Rn. The root system Φ can be represented as Φ = {αij := εi−εj : i 6= j, 1 ≤ i, j ≤
n}. The simple roots are αi = αi i+1, for i = 1, . . . , n− 1. The longest coroot is θ∨ = α∨1n. The fundamental
weights are ωi = ε1 + · · · + εi, for i = 1, . . . , n − 1. We have ρ = nε1 + (n − 1)ε2 + · · · + 2εn−1 + εn. The
dual Coxeter number is h∨ = (ρ, θ∨)+1 = n. The weight lattice is Λ = Zn/Z(1, . . . , 1). We use the notation
[λ1, . . . , λn] for a weight, as the coset of (λ1, . . . , λn) in Zn.

Let Z ⊂ Λ be the set Z of central points of alcoves scaled by the factor h∨ = n. The fundamental alcove

corresponds to the point ρ in Z. Two alcoves are adjacent A
α−→ B, α ∈ Φ, if and only if the corresponding

elements of Z are related by ζB − ζA = α. In this case, we write ζA
α−→ ζB . Thus, we have the structure of

a directed graph with labeled edges on the set Z. Alcove paths correspond to paths in this graph. The set
Z can be explicitly described as

Z = {[µ1, . . . , µn] ∈ Λ : µ1, . . . , µn have distinct residues modulo n}.

For an element µ = [µ1, . . . , µn] ∈ Z, there exists an edge µ
αij−→ (µ+ αij) if and only if µi + 1 ≡ µj mod n.

Given a weight λ, the corresponding λ-chains are in one-to-one correspondence with directed paths in the
graph Z from ρ to ρ− nλ.
Example 7.1. Suppose that n = 4 and λ = ω2 = [1, 1, 0, 0]. The directed path

[4, 3, 2, 1]
−α23−→ [4, 2, 3, 1]

−α13−→ [3, 2, 4, 1]
−α24−→ [3, 1, 4, 2]

−α14−→ [2, 1, 4, 3].

from ρ = [4, 3, 2, 1] to ρ− nω2 = [0,−1, 2, 1] = [2, 1, 4, 3] produces the ω2-chain (α23, α13, α24, α14).
Example 7.2. For an arbitrary n, we have ω1 = ε1 = [1, 0, . . . , 0]. The path

[n, n − 1, . . . , 1]
−α12−→ [n− 1, n, n− 2, . . . , 1]

−α13−→ [n − 2, n, n− 1, n− 3, . . . , 1]

quad
−α14−→ [n − 3, n, n− 1, n− 2, n − 4, . . . , 1]

−α15−→ · · ·
−α1n−→ [1, n, n − 1, . . . , 2].

from ρ to ρ− nω1 gives the ω1-chain (α12, α13, α14, . . . , α1n). In general, for any k = 1, . . . , n, we have the

εk-chain

(7.1) (αk k+1, αk k+2, . . . , αk n, αk 1, αk 2, . . . , αk k−1)

given by the corresponding path from ρ to ρ− nεk.
Recall that v−λ is the unique element of Waff such that v−λ(A◦) = A−λ. Equivalently, we can define

v−λ in terms of central points of alcoves by the condition v−λ(ρ/h∨) = ρ/h∨ − λ.
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Lemma 7.3. Suppose that Φ is of type An−1. Then, for k = 1, . . . , n − 1, the affine Weyl group element

v−ωk
belongs, in fact, to Sn ⊂Waff . This permutation is given by

v−ωk
=

(
1 2 · · ·n− kn− k + 1 · · ·n

k + 1k + 2 · · · n 1 · · ·k
)
∈ Sn ⊂Waff .

Let Rij := Rαij . Theorem 6.2 implies the following statement.

Corollary 7.4. For k = 1, . . . , n, the operator of multiplication by [Lεk
] in the Grothendieck ring KT (SLn/B)

is given by

R[εk] = Rk k−1Rk k−2 · · ·Rk 1Rk nRk n−1 · · ·Rk k+1.

For k = 1, . . . , n − 1, the operator of multiplication by the line bundle [Lωk
] corresponding to the k-th

fundamental weight ωk is given by

(7.2) R[ωk] = R[ε1] · · ·R[εk] =

−→∏

i=1,...,k

←−∏

j=k+1,...,n

Rij .

The combinatorial formula for multiplication by [Lωk
]x=1 in the

Grothendieck ring K(SLn/B) that follows from formula (7.2) was originally found in [Len].

Example 7.5. For n = 3, Corollary 7.4 says that

R[ω1] = R13R12 and R[ω2] = R13R23.

Example 7.6. Suppose that n = 3, λ = ω1, and u = w◦ = s1s2s1 ∈ W . Let us calculate the product

[Lλ] · [Ou] in KT (SLn/B) using Theorem 5.1. The ω1-chain (β1, β2) = (α12, α13) is associated with the

reduced decomposition s1s2 = v−ω1 . The corresponding ω1-chain of reflections is (r1, r2) = (s1, s1s2s1) =

(sα12,0, sα13,0). Three out of four subsequences in (β1, β2) correspond to decreasing chains from w◦: (empty

subsequence), (α12), and (α12, α13). Thus we have

[Lω1 ] · [Ow◦
] = x−w◦(−ω1)[Ow◦

] + x−w◦r1(−ω1)[Os1s2 ] + x−w◦r1r2(−ω1)[Os2 ].

We can write this expression as

[L[1,0,0]] · [Ow◦
] = x[0,0,1][Ow◦

] + x[0,1,0][Os1s2 ] + x[1,0,0][Os2 ].

This gives the character of the irreducible representation Vω1 :

ch(Vω1) = e[0,0,1] + e[0,1,0] + e[1,0,0].

Let us give a less trivial example.

Example 7.7. Suppose n = 3 and λ = 2ω1 + ω2 = [3, 1, 0]. The path

[3, 2, 1]
−α12−→ [2, 3, 1]

−α13−→ [1, 3, 2]
−α23−→ [1, 2, 3]

−α13−→ [0, 2, 4]
−α12−→ [−1, 3, 4]

−α13−→ [−2, 3, 5]

from ρ = [3, 2, 1] to ρ− nλ = [−2, 3, 5] gives the λ-chain

(β1, . . . , β6) = (α12, α13, α23, α13, α12, α13),

which is associated with the reduced decomposition v−λ = s1s2s1s0s1s2 in the affine Weyl group. We have

R[λ] = Rβ6 · · ·Rβ1 = R13R12R13R23 R13R12 = R[ω1]R[ω2]R[ω1].

The corresponding λ-chain of reflections is

(r1, . . . , r6) = (sα12,0, sα13,0, sα23,0, sα13,−1, sα12,−1, sα13,−2).
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Theorem 5.1 says that that the coefficient of [Ow] in the product [Lλ] · [Ou] in KT (SLn/B) is given by the

sum over subsequences in the λ-chain (β1, . . . , β6) that correspond to saturated decreasing chains um · · ·mw

in the Bruhat order on W = S3.

Suppose that u = s2s1. There are five saturated chains in Bruhat order descending from u: (empty

chain), (um usα12 = s2), (um usα13 = s1), (um usα12 m usα12sα23 = 1), (um usα13 m usα13sα12 = 1). Thus

the expansion of [Lλ] · [Ou] is given by the sum over the following subsequences in the λ-chain (β1, . . . , β6):

(empty subsequence), (α12), (α13), (α12, α23), (α13, α12).

The sequence (β1, . . . , β6) contains one empty subsequence, two subsequences of the form (α12), three subse-

quences of the form (α13), one subsequence of the form (α12, α23), and two subsequence of the form (α13, α12).

Hence, we have

[Lλ] · [Os2s1 ] = x−u(−λ) [Os2s1 ] +
(
x−ur1(−λ) + x−ur5(−λ)

)
[Os2 ] +

+
(
x−ur2(−λ) + x−ur4(−λ) + x−ur6(−λ)

)
[Os1 ] +

+ x−ur1r3(−λ) [O1] +
(
x−ur2r5(−λ) + x−ur4r5(−λ)

)
[O1].

We can explicitly write this expression as

[L[3,1,0]] · [Os2s1 ] = x[1,0,3] [Os2s1 ] +
(
x[3,0,1] + x[2,0,2]

)
[Os2 ] +

+
(
x[1,3,0] + x[1,2,1] + x[1,1,2]

)
[Os1 ]

+ x[3,1,0] [O1] +
(
x[2,2,0] + x[2,1,1]

)
[O1].

The Demazure character ch(Vλ,u) is obtained from the right-hand side of this expression by replacing

each term xµ[Ow] with eµ:

ch(V[3,1,0],s2s1
) = e[1,0,3] + e[3,0,1] + e[2,0,2]

+ e[1,3,0] + e[1,2,1] + e[1,1,2]

+ e[3,1,0] + e[2,2,0] + e[2,1,1].

8. Examples for Other Types

For root systems of other types, we can use the explicit construction of the λ-chain of reflections
(r1, . . . , rl) given by Proposition 5.5.

Example 8.1. Suppose that the root system Φ is of type G2. Let us find λ-chains for λ = ω1 and λ = ω2

using Proposition 5.5. The positive roots are γ1 = α1, γ2 = 3α1 +α2, γ3 = 2α1 +α2, γ4 = 3α1 + 2α2, γ5 =

α1 + α2, γ6 = α2. The corresponding coroots are γ∨1 = α∨1 , γ
∨
2 = α∨1 + α∨2 , γ

∨
3 = 2α∨1 + 3α∨2 , γ

∨
4 =

α∨1 + 2α∨2 , γ
∨
5 = α∨1 + 3α∨2 , γ

∨
6 = α∨2 .

Suppose that λ = ω1. The set Rω1 of affine reflections with respect to the hyperplanes separating the

alcoves A◦ and A−ω1 is

Rω1 = {sγ1,0, sγ2,0, sγ3,0, sγ3,−1, sγ4,0, sγ5,0}.
The map h : Rω1 Ω̃Rr+1 given by (5.2) sends these affine reflections to the vectors

(0, 1, 0), (0, 1, 1), (0, 1, 3
2 ), ( 1

2 , 1,
3
2 ), (0, 1, 2), (0, 1, 3),

respectively. The lexicographic order on vectors in R3 induces the following total order on the set Rω1 :

sγ1,0 < sγ2,0 < sγ3,0 < sγ4,0 < sγ5,0 < sγ3,−1 .
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Suppose now that λ = ω2. The set Rω2 of affine reflections with respect to the hyperplanes separating A◦
and A−ω2 is

Rω2 = {sγ2,0, sγ3,0, sγ3,−1, sγ3,−2, sγ4,0, sγ4,−1, sγ5,0, sγ5,−1, sγ5,−2, sγ6,0}.
The map h : Rω2 Ω̃Rr+1 sends these affine reflections to the vectors

(0, 1, 1), (0, 2
3 , 1), ( 1

3 ,
2
3 , 1), ( 2

3 ,
2
3 , 1), (0, 1

2 , 1), ( 1
2 ,

1
2 , 1),

(0, 1
3 , 1), ( 1

3 ,
1
3 , 1), ( 2

3 ,
1
3 , 1), (0, 0, 1),

respectively. The lexicographic order on vectors in R3 induces the following total order on Rω2 :

sγ6,0 < sγ5,0 < sγ4,0 < sγ3,0 < sγ2,0

< sγ5,−1 < sγ3,−1 < sγ4,−1 < sγ5,−2 < sγ3,−2 .

The total orders on Rω1 and Rω2 correspond to the ω1-chain

(γ1, γ2, γ3, γ4, γ5, γ3) and the ω2-chain (γ6, γ5, γ4, γ3, γ2, γ5, γ3, γ4, γ5, γ3). Thus the operators of multipli-

cation by the classes [Lω1 ] and [Lω2 ] in KT (G/B) are given by

R[ω1] = Rγ3 Rγ5 Rγ4 Rγ3 Rγ2 Rγ1 ,

R[ω2] = Rγ3 Rγ5 Rγ4 Rγ3 Rγ5 Rγ2 Rγ3 Rγ4 Rγ5 Rγ6 .

By Lemma 7.3, we have v−ωk
∈ W for all fundamental weights ωk in type A. In fact, similar a

phenomenon occurs for minuscule fundamental weights in other types as well. The last two examples
concern minuscule weights in types B and C. Recall that the element v−λ is defined by the condition
v−λ(ρ/h∨) = ρ/h∨ − λ.
Example 8.2. Suppose that Φ is a root system of type Cr. This can be embedded into Rr as follows:

Φ = {±εi ± εj , ±2εi : i 6= j}, where ε1, . . . , εr are the coordinate vectors in Rr. The simple roots are

α1 = ε1 − ε2, α2 = ε2 − ε3, . . .αr−1 = εr−1 − εr, αr = 2εr. The Weyl group W is the semidirect product

of Sr and (Z/2Z)r. It acts on Rr by permuting the coordinates and changing their signs. The fundamental

weights are ωk = ε1 + · · · + εk, k = 1, . . . , r; and ρ = (r, . . . , 1) ∈ Rr. The dual Coxeter number is

h∨ = (ρ, θ∨) + 1 = 2r.

Suppose that λ = ω1. Then ρ− h∨ω1 = (−r, r− 1, r− 2, . . . , 1) ∈ Rr. This weight is obtained from ρ by

applying the Weyl group element s2ε1 that changes the sign of the first coordinate. Thus v−ω1 = s2ε1 ∈W ⊂
Waff . The only reduced decomposition of this element is v−ω1 = s1 · · · sr−1 sr sr−1 · · · s1, so `(v−ω1) = 2r−1.

This reduced decomposition corresponds to the ω1-chain

(α1, s1(α2), s1s2(α3), . . . , s1 . . . sr−1(αr), . . . , s1 . . . sr . . . s2(α1)) =

(ε1 − ε2, ε1 − ε3, · · · , ε1 − εr, 2ε1, ε1 + εr, · · · , ε1 + ε3, ε1 + ε2),

cf. Definition 4.4. The operator R[ω1] is given by

R[ω1] = Rε1+ε2Rε1+ε3 · · ·Rε1+εrR2ε1Rε1−εr · · ·Rε1−ε3Rε1−ε2 .

Example 8.3. Suppose that the root system Φ is of type Br. This can be embedded into Rr as follows:

Φ = {±εi ± εj , ±εi : i 6= j}, where ε1, . . . , εr are the coordinate vectors in Rr. The simple roots are

α1 = ε1 − ε2, α2 = ε2 − ε3, . . .αr−1 = εr−1 − εr, αr = εr. The Weyl group W and its action on Rr are the

same as in type Cr. The fundamental weights are ωk = ε1+· · ·+εk, k = 1, . . . , r−1, and ωr = 1
2 (ε1+· · ·+εr);

on the other hand, ρ = (r − 1
2 , . . . , 1− 1

2 ) ∈ Rr. The dual Coxeter number is h∨ = (ρ, θ∨) + 1 = 2r.

Suppose that λ = ωr is the last fundamental weight. Then ρ−h∨ωr = (− 1
2 ,−1− 1

2 ,−2− 1
2 , . . . ,−r+ 1

2 ) ∈
Rr. This weight is obtained from ρ by applying the Weyl group element v−ωr ∈ W ⊂Waff that reverses the
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order of all coordinates and changes their signs. The element v−ωr ∈ W has length `(v−ωr ) = r(r + 1)/2.

One of the reduced decompositions for this element is given by

v−ωr = (sr)(sr−1 sr)(sr−2 sr−1 sr) · · · (s2 · · · sr)(s1 · · · sr).

The associated ωr-chain is (αr , sr(αr−1), srsr−1(αr), srsr−1sr(αr−2), . . . ). We can explicitly find the roots

in this ωr-chain and write the operator R[ωr] as

R[ωr] = (Rε1 Rε1+ε2 Rε1+ε3 · · ·Rε1+εr )(Rε2 Rε2+ε3 Rε2+ε4 · · ·Rε2+εr ) · · ·
· · · (Rεr−2 Rεr−2+εr−1 Rεr−2+εr )(Rεr−1 Rεr−1+εr )(Rεr ).
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Littelmann Paths

for Affine Lie Algebras

Peter Magyar

Abstract. We give a new combinatorial model for the crystal graphs of an affine Lie algebra
�

� ,
unifying Littelmann’s path model with the Kyoto path model. The vertices of the crystal graph are

represented by certain infinitely looping paths which we call skeins.

We apply this model to the case when the corresponding finite-dimensional algebra � has a mi-

nuscule representation

(classical type and E6, E7). We prove that the basic level-one representation of
�

� , when consid-

ered as a representation of � , is an infinite tensor product of fundamental representations of � .
This is the infinite limit of a finer result: that the finite-dimensional Demazure submodules of

the basic representation are finite tensor products. The corresponding Demazure characters give

generalizations of the Hall-Littlewood polynomials.

This paper is an extended abstract of [Mag].

1. Littelmann’s path model

Littelmann’s combinatorial model [Lit1],[Lit2],[LLM2] for the representations of a Kac-Moody algebra
g is a vast generalization of Young tableaux. Littelmann’s paths and path operators give a flexible construc-
tion of the crystal graphs associated to quantum g-modules by Kashiwara [K1] and Lusztig [Lus] (see also
[Jos],[HK]). We briefly sketch Littelmann’s theory.

For concreteness, let g be a complex simple Lie algebra. For our purposes, we define a g-crystal as a set B
with a weight function, wt : BΩ̃⊕r

i=1 Z$i, as well as partially defined crystal operators e1, . . . , er,f1, . . . , fr :

BΩ̃B satisfying:
wt(fi(b)) = wt(b)− αi and ei(b) = b′ ⇐⇒ fi(b

′) = b .

Here $1, . . . , $r are the fundamental weights and α1, . . . , αr are the roots of g. A dominant element is a
b ∈ B such that ei(b) is not defined for any i. We say that a crystal B is a model for a g-module V if the
formal character of B is equal to the character of V , and the dominant elements of B correspond to the
highest-weight vectors of V . That is:

char(V ) =
∑

b∈B e
wt(b) and V ∼=

⊕
b dom V (wt(b)) ,

where the second sum is over the dominant elements of B. Clearly, a g-module V is determined up to
isomorphism by any model B.

1991 Mathematics Subject Classification. Primary 17B10; Secondary 05E10 .

Key words and phrases. minuscule representation, basic representation, Demazure module, crystal graph.

This paper grew out of a joint project with V. Kreiman, V. Lakshmibai, and J. Weyman.
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We construct such g-crystals B consisting of polygonal paths in the vector space of weights, h∗
R

:=
⊕r

i=1R$i. Specifically:

• The elements of B are certain continuous piecewise-linear mappings π : [0, 1]Ω̃h∗
R
, up to reparametriza-

tion, with initial point π(0) = 0. We use the notation π = (v1 ? v2 ? · · · ? vk), where v1, . . . , vk ∈ h∗
R

are vectors, to denote the polygonal path starting at 0 and moving linearly to v1, then to v1+v2,
etc.

• The weight of a path is its endpoint:

wt(π) := π(1) = v1+ · · ·+vk .

• The crystal lowering operator fi is defined as follows (and there is a similar definition of the raising
operator ei). Let ? denote the natural associative operation of concatenation of paths, and let any

linear map w : h∗
R
Ω̃h∗

R
act pointwise on paths: w(π) := (w(v1) ? · · · ? w(vk)). We will divide a path

π into three well-defined sub-paths, π = π1 ? π2 ? π3, and reflect the middle piece by the simple
reflection si:

fiπ := π1 ? siπ2 ? π3 .

The pieces π1, π2, π3 are determined according to the behavior of the i-height function hi(t) =
hπ

i (t) := 〈π(t), α∨i 〉. As the point π(t) moves along the path from π(0) = 0 to π(1) = wt(π), this
function may attain its minimum value hi(t) = M several times. If, after the last minimum point,
hi(t) never rises to the value M+1, then fiπ is undefined. Otherwise, we define π2 as the last
sub-path of π on which M ≤ hi(t) ≤M+1, and π1, π3 as the remaining initial and final pieces of
π.

A key advantage of the path model is that the crystal operators, while complicated, are universally
defined for all paths. Hence a path crystal is completely specified by giving its set of paths B.

Also, the dominant elements have a neat pictorial characterization, as the paths π which never leave the
fundamental Weyl chamber: that is, hπ

i (t) ≥ 0 for all t ∈ [0, 1] and all i = 1, . . . , r. For simplicity we restrict
ourselves to integral dominant paths, meaning that all the steps are integral weights: v1, . . . , vk ∈ ⊕r

i=1Z$i.
(For arbitrary dominant paths, see [Lit2].)

Littelmann’s Character Theorem [Lit2] states that if π is any integral dominant path with weight λ,
then the set of paths B(π) generated from π by f1, . . . , fr is a model for the irreducible g-module V (λ). (This
B(π) is also closed under e1, . . . , er.) Note that we can choose any integral path π which stays within the
Weyl chamber and ends at λ, and each such choice gives a different (but isomorphic) path crystal modelling
V (λ). In principle, any reasonable indexing set for a basis of V (λ) should be in natural bijection with B(π)
for some choice of π. For example, classical Young tableaux correspond to choosing the steps vj to be
coordinate vectors in h∗

R
∼= Rn.

Furthermore, we have Littelmann’s Product Theorem [Lit2]:
if π1, . . . , πm are dominant integral paths of respective weight λ1,. . . , λm, then B(π1) ? · · · ? B(πm), the
set of all concatenations, is a model for the tensor product V (λ1)⊗ · · · ⊗ V (λm).

Everything we have said also holds for the corresponding affine algebra [Kac, Ch. 6 and 7]:

ĝ = g⊗C[t, t−1] ⊕ CK ⊕ Cd,

provided we replace the roots α1, . . . , αr of g by the roots α0, α1, . . . , αr of ĝ ; and the weights $1, . . . , $r

of g by the weights Λ0,Λ1, . . . ,Λr of ĝ. We also replace the vector space h∗
R

by ĥ∗
R

:= ⊕r
i=0RΛi ⊕ Rδ, where

δ is the non-divisible positive imaginary root of ĝ. (Indeed, Littelmann’s theory works uniformly for all
symmetrizable Kac-Moody algebras.) We denote representations and path crystals of g as V (λ) and B, and

the corresponding objects for ĝ as V̂ (Λ) and B̂.

We can also model the affine Demazure module V̂z(Λ) := U(n̂+) · vzΛ, where n̂+ is the algebra spanned

by the positive weight-spaces of ĝ, z ∈ Ŵ is a Weyl group element, and vzΛ is a non-zero vector of extremal
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weight zΛ in V̂ (Λ). Demazure modules are always finite-dimensional vector spaces. If z = si1 · · · sim is a
reduced decomposition and π is an integral dominant path of weight Λ, we define the Demazure path crystal:

B̂z(π) := {fk1

i1
· · · fkm

im
π | k1, . . . , km ≥ 0} .

Because of the local nilpotence of the lowering operators, this is always a finite set.
Then the formal character of B̂z(π) is equal to the character of V̂z(Λ), and π is the unique dominant path

[Lit1]. Now suppose z = t−λ∨ , an anti-dominant translation in Ŵ , so that V̂λ∨(Λ) := V̂z(Λ) is a g-submodule

of V̂ (Λ); and consider B̂λ∨(π) := B̂z(π) as a g-crystal by forgetting the action of f0, e0 and projecting the

affine weight function to h∗
R
. Then Littelmann’s Restriction Theorem [Lit2] implies that the g-crystal B̂λ∨(π)

is a model for the g-module V̂λ∨(Λ).

2. The Skein model

For the case of an affine algebra ĝ, we introduce a generalization of Littelmann’s model by allowing
certain infinite paths.

Let us introduce a notation for a path π which emphasizes the vector steps going toward the endpoint
Λ = wt(π) rather than away from the starting point 0. Define

π = (? vk ? · · · ? v1`Λ) := (v′? vk ? · · · ? v1) ,
the path with endpoint Λ, last step v1, etc, and first
step v′ := Λ−(vk+ · · ·+v1), a makeweight to assure that the steps add up to Λ.

A skein is an infinite list:

π = (· · · ? v2 ? v1`Λ) ,

where Λ ∈ ⊕r
i=0ZΛi and vj ∈ h∗

R
(not ĥ∗

R
), subject to conditions (i) and (ii) below. For i = 0, . . . , r and

k > 0, define:

hi[k] := 〈Λ−(v1+ · · ·+vk), α∨i 〉 .
We require:
(i) For each i and all kγ0, we have hi[k] ≥ 0.
(ii) For each i, there are infinitely many k such that hi[k] = 0.

We think of the skein π as a “projective limit” of the paths

π[k] := (? vk ? · · · ? v1`Λ) as kΩ̃∞ .

The conditions on π assure that only a finite number of steps of π lie outside the fundamental chamber Ĉ,
and that π touches each wall of Ĉ infinitely many times. Note that π stays always at the level ` = 〈Λ,K〉.
Lemma 2.1. For a skein π and i = 0, . . . , r, one of the following is true:

(i) fi(π[k]) is undefined for all kγ0;

(ii) there is a unique skein π′ such that π′[k] = fi(π[k]) for all kγ0.

In the second case, we define fiπ := π′.

Proof. Recall that a path π is i-neutral if hπ
i (t) ≥ 0 for all t and hπ

i (1) = 0. For a fixed i, divide π into

a concatenation: π = (· · · ? π2 ? π1 ? π0`Λ), where each πj is an i-neutral finite path except for π0, which is

an arbitrary finite path. Now it is clear that if fi(π0) is undefined, then (i) holds. Otherwise (ii) holds and

fiπ = (· · · ? π2 ? π1 ? fi(π0)`Λ−αi ) .

�
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We can immediately carry over the definitions of the path model to skeins, including that of (Demazure)
path crystals. For example, we say that π is an integral dominant skein if π[k] is integral dominant for
kγ0, and hence for all k. There exist integral dominant skeins of level ` = 1 only when g has a minuscule
coweight. We cannot concatenate two skeins, but we can concatenate a skein π1 and a path π0: that is,
π1 ? π0 := (π1?π0 ` wt(π1)+ wt(π0) ) .

Proposition 2.2. For an integral dominant skein π of weight Λ, the crystal B̂(π) is a model for V̂ (Λ), and

B̂z(π) is a model for the Demazure module V̂z(Λ).

Proof. Given an integral dominant skein π and a Weyl group element z ∈ W̃ , we can divide π = π1 ?π0

in such a way that the Demazure operator B̂z acts on π by reflecting intervals in π0 rather than π1. This

gives an isomorphism between the Demazure crystals generated by the path wt(π1) ? π0 and by the skein π:

B̂z(wt(π1) ? π0)
∼
Ω̃ B̂z(π1 ? π0) = B̂z(π)

wt(π1) ? π
′ 7→π1 ? π

′ .

This proves the assertion about Demazure modules.

Now, given an infinite chain of Weyl group elements z1<z2< · · · , we have the morphisms of ĝ-crystals:

B̂z1(Λ)
∼←B̂z1(wt(π1) ? π0)

∼
Ω̃ B̂z1(π)

∩ ∩
B̂z2(Λ)

∼←B̂z2(wt(π′1) ? π
′
0)
∼
Ω̃ B̂z2(π)

∩ ∩
...

...
...

B̂(Λ) B̂(π)

Here B̂z(Λ) denotes the canonical path crystal of Lakshmibai-Seshadri paths, generated from the straight-line

path (Λ). Since the ĝ crystals at the bottom are the unions of their Demazure crystals, they are isomorphic:

B̂(Λ) ∼= B̂(π). �

3. Product theorems

As before, we let ĝ be the untwisted affine Kac-Moody algebra corresponding the to the complex simple
algebra g. The basic representation V̂ (Λ0), the fundamental representation corresponding to the distin-
guished node of the extended Dynkin diagram, is the simplest and most important ĝ-module (cf. [Kac,
Ch. 14],[PS, Ch. 10]).

One of its remarkable properties is the Tensor Product Phenomenon. In many cases, the Demazure
modules V̂z(Λ0) ⊂ V̂ (Λ0) are representations of the finite-dimensional algebra g, and they factor into a

tensor product of many small g-modules. Hence the full V̂ (Λ0) could be constructed by extending the
g-structure on the semi-infinite tensor power V ⊗ V ⊗ · · · of a small g-module V .

The Kyoto school of Jimbo, Kashiwara, et al. has established this phenomenon in many cases (and for a

large class of ĝ-modules V̂ (Λ)) via the theory of perfect crystals [KKMMNN], [KMOTU1], [KMOTU2],
[HK], [K2] a development of their earlier theory of semi-infinite paths [DJKMO]. See especially [HKKOT].
Pappas and Rapoport [PR] have given a geometric version of the phenomenon for type A: they construct a
flat deformation of Schubert varieties of the affine Grassmannian into a product of finite Grassmannians.

We extend the Tensor Product Phenomenon for V̂ (Λ0) to the non-classical types E6 and E7 by a
uniform method which applies whenever g possesses a minuscule representation, or more precisely a minuscule
coweight. We shall rely on a key property of such coweights which may be taken as the definition. Let X̂
be the extended Dynkin diagram (the diagram of ĝ). A coweight $∨ of g is minuscule if and only if it
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is a fundamental coweight $∨ = $∨i and there exists an automorphism σ of X̂ taking the node i to the
distinguished node 0. Such automorphisms exist in types A,B,C,D,E6, E7.

We let V (λ) denote the irreducible g-module with highest weight λ, and V (λ)∗ its dual module. Our
main representation-theoretic result is:

Theorem 3.1. Let λ∨ be an element of the coroot lattice of g which is a sum:

λ∨ = λ∨1 + · · ·+ λ∨m,

where λ∨1, · · · , λ∨m are minuscule fundamental coweights (not necessarily distinct), with corresponding funda-

mental weights λ1, · · · , λm.

Let V̂λ∨(Λ0) ⊂ V̂ (Λ0) be the Demazure module corresponding to the anti-dominant translation t−λ∨ in the

affine Weyl group.

Then there is an isomorphism of g-modules:

V̂λ∨(Λ0) ∼= V (λ1)
∗ ⊗ · · · ⊗ V (λm)∗ .

Now fix a minuscule coweight $∨ and its corresponding fundamental weight $. Let N be the smallest
positive integer such that N$∨ lies in the coroot lattice of g. Then we have the following characterization
of the basic irreducible ĝ-module:

Theorem 3.2. The tensor power VN :=V ($)⊗N possesses non-zero g-invariant vectors. Fix such a vector

vN , and define the g-module V ⊗∞ as the direct limit of the sequence:

VN ↪→ V ⊗2
N ↪→ V ⊗3

N ↪→ · · ·
where each inclusion is defined by: v 7→ vN ⊗ v.

Then V̂ (Λ0) is isomorphic as a g-module to V ⊗∞.
It would be interesting to define the action of the full algebra ĝ on V ⊗∞, and thus give a uniform

“path construction” of the basic representation (cf. [DJKMO]): that is, to define the raising and lowering
operators E0, F0, as well as the energy operator d. Combinatorial definitions of the energy for g of classical
type produce generalizations of the Hall-Littlewood and Kostka-Foulkes polynomials (c.f. [Oka]), with
connections to Macdonald polynomials [San], [Ion].

4. Crystal theorems

We prove Theorem 3 by reducing it to an identity of paths: we construct a path crystal for the affine
Demazure module which is at the same time a path crystal for the tensor product.

For λ a dominant weight, define its dual weight λ∗ by the dual g-module: V (λ∗) = V (λ)∗.
Theorem 4.1. Let λ∨ be as in Theorem 3, and let B(λ) denote the path crystal generated by the straight-line

path (λ). Then the set of concatenated paths Λ0 ? B(λ∗1) ? · · · ? B(λ∗m) is a path crystal for the Demazure

module V̂λ∨(Λ0). In fact, there is a unique ĝ-dominant path π with weight Λ0 such that:

B̂λ∨(π) = Λ0 ? B(λ∗1) ? · · · ? B(λ∗m) mod Rδ .

This is to be understood as an equality of sets of paths in ĥ∗
R

mod Rδ, and hence an isomorphism of ĝ-crystals.

Proof. Let σj be the automorphism of the diagram X̂ corresponding to the minuscule coweight λ∨j for

j = 1, . . . ,m. This also defines an automorphism of ĥ∗ by σ(Λi) = Λσ(i). We define πm inductively as the

last of a sequence of paths π0, π1, . . . , πm:

π0 := Λ0, πj := σ−1
j (πj−1 ? λ

∗
j ) .

We may picture the path πm as jumping from 0 up to level Λ0, winding horizontally around the fundamental

alcove A ⊂ h∗
R
+Λ0, and ending at Λ0.
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We prove the Theorem by showing that the Demazure operator B̂λ∨ = B̂λ∨1
B̂λ∨2
· · · B̂λ∨m “unwinds” πm

starting from its endpoint. The dual weights enter because λ∗j = −σj(λj).

The key fact is that the linear mapping σi preserves the set of paths B(λ∗j ) for all i, j. This is obvious

if V (λ∗j ) is a minuscule representation, but the general case requires some work using results of Stembridge

[Ste]. �

Theorem 3 now follows immediately. Indeed, siΛ0 = Λ0 for i = 1, . . . , r, so fi(Λ0 ? π
′) = Λ0 ? fi(π

′)
for any path π′. Thus the right-hand side of the equation in the Theorem is isomorphic as a g-crystal to
B(λ∗1) ? · · · ? B(λ∗m), which models V (λ1)

∗ ⊗ · · · ⊗ V (λr)
∗. See [GM] for methods of enumerating the paths

in this crystal (and hence computing the dimension of the corresponding representation).
Theorem 4 follows as a corollary. We describe the crystal graph of the semi-infinite tensor product by

the appropriate skein-crystal. We thus recover the Kyoto path model for classical g, and our results are
equally valid for E6, E7.

Theorem 4.2. Let $∨, N be as in Theorem 4. Define the m-fold concatenation Bm = B($∗) ? · · · ?B($∗).
Then Λ0 ? BN contains a unique ĝ-dominant path Λ0 ? πN .

Define the skein π := (· · · ? πN ? πN ? πN`Λ0), which satisfies π ? πN = π. Then the ĝ-crystal of V̂ (Λ0)

is given by the skein-crystal:

B̂(π) =
⋃

m≥1

π ? Bm .

That is, B̂(π) is the set of all semi-infinite paths which are equal to π except for a finite length near the
end, and all of whose vector steps lie in B($∗).

5. Example: E6

Referring to Bourbaki [Bour], we write the extended Dynkin diagram X̂ = Ê6:

◦ 0|• 2|•—•—•—•—•
1 3 4 5 6

The simple roots are defined inside R6 with standard basis ε1, . . . , ε6. (Our ε6 is 1√
3
(−ε6−ε7+ε8) in Bourbaki’s

notation.) They are:

α1 = 1
2 (ε1+ε2+ε3+ε4 + ε5)+

√
3

2 ε6, α2 = ε1+ε2,
α3 = ε2−ε1, α4 = ε3−ε2, α5 = ε4−ε3, α6 = ε5−ε4 .

Since E6 is simply laced, the coroots and coweights may be identified with the roots and weights, with the
natural pairing given by the standard dot product on R6.

We focus on the minuscule coweight $∨1 corresponding to the diagram automorphism σ with σ(1) = 0
and σ(0) = 6. In this case, the corresponding fundamental representation V ($1) is also minuscule, meaning
that all of its weights are extremal weights λ ∈ W (E6)·$1. The roots α2, · · · , α6 generate the root sub-
system D5 ⊂ E6, and the reflection subgroup W (D5) = StabW (E6)($1) acts by permuting ε1, . . . , ε5 (the
subgroup W (A4) = S5) and by changing an even number of signs ±ε1, . . . ,±ε5. We have dimV ($1) =
|W (E6)/W (D5)| = 27. The weights are:

$1=
2
√

3
3 ε6,

S5· 12 (−ε1+ε2+ε3+ε4+ε5) +
√

3
6 ε6,

S5· 12 (−ε1−ε2−ε3+ε4+ε5) +
√

3
6 ε6,

− 1
2 (ε1+ε2+ε3+ε4+ε5) +

√
3

6 ε6,

±S5·ε1 −
√

3
3 ε6 .
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The lowest weight is −$6 = −ε5−
√

3
3 ε6, so that V ($1)

∗ = V ($6) and $∗1 = $6.
The simplest path crystal for V ($∗1) is the set of 27 straight-line paths from 0 to the negatives of the

above extremal weights:

B($∗1) = { (v) | v ∈ −W (E6)·$1 }
We have 3$∨1 ∈ ⊕6

i=1Rα∨i the coroot lattice, so that N = 3 in Theorem 4, and this N is also the order of
the automorphism σ. The path crystal B3 := B($∗1) ? B($∗1) ? B($∗1), the set of all 3-step walks with steps
chosen from the 27 weights of V ($∗1), is a model for V ($∗1)

⊗3.
By Theorem 5, Λ0 ? B3 contains a unique ĝ-dominant path Λ0 ? π3, where

π3 := ($6) ? ($1−$6) ? (−$1) .

In this case, π3 has the even stronger property that it is the unique g-dominant path of weight 0, so that it
corresponds to the one-dimensional space of g-invariant vectors in V ($∗1)

⊗3.

Now Theorem 5 states that the affine Demazure module V̂3m$∨
1
(Λ0) is modelled by the ĝ-path crystal:

B3m = {(Λ0 ? v1 ? · · · ? v3m) | vj ∈ −W (E6)·$1} ,
the set of all 3m-step walks in Λ0⊕R6 starting at Λ0, with steps chosen from the 27 weights of V ($∗1). This
path crystal is generated from its unique ĝ-dominant path Λ0?π3? · · · ?π3. Considering it as a g-crystal, we
have B3m

∼= B ? m
3 , which shows that V̂3m$∨

1
(Λ0) ∼= V ($∗1)⊗3m as g-modules.

By Theorem 6, the ĝ-crystal of the basic ĝ-module V̂ (Λ0) is given by the set of all infinite walks (skeins)
of the form:

π = Λ0 ? π3 ? · · · ? π3︸ ︷︷ ︸
infinite

? v1 ? · · · ? v3m ,

with m > 0 and vj ∈ −W (E6)·$1. The endpoint of such a skein is wt(π) := Λ0+v1+ · · ·+v3m. The crystal
operators fi are defined just as for finite paths. Acting near the end of the skein, they unwind the coils π3

one at a time, right-to-left. As a g-module, V̂ (Λ0) is an infinite tensor power of V ($∗1).

References
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Tutte Meets Poincaré

Jeremy L. Martin

Abstract. Let G be a graph and X d(G) the space of all “pictures” of G in complex projective

d-space. We prove that X d(G) has no torsion or odd-dimensional integral homology, and that its

Poincaré series is a specialization of the Tutte polynomial of G. As an application to combinatorial

rigidity theory, we give a criterion for d-parallel independence in terms of the Tutte polynomial. In

the case that X d(G) is smooth (which is equivalent to the condition that G is an orchard), we give

a presentation of its cohomology ring, and relate the intersection theory on X d(G) to the Schubert

calculus on flag varieties.

Résumé. Soient G un graphe et X d(G) l’espace de toutes les “figures” de G dans l’espace complexe

projectif d-dimensionnel. Nous prouvons que X d(G) ne présente ni de torsion, ni d’homologie

entière en dimension impaire, et que sa série de Poincaré est une spécialisation du polynôme de

Tutte de G. Comme application à la théorie combinatoire de la rigidité, nous développons un critère

pour l’indépendance d-parallel en termes du polynôme de Tutte. Dans le cas où X d(G) est lisse (ce

qui est équivalent à la condition que G soit un verger), nous donnons une présentation de son

anneau de cohomologie, et relions la théorie d’intersection de X d(G) au calcul de Schubert sur les

variétés de drapeaux.

1. Introduction

Let G be a graph with vertices V and edges E, and let d ≥ 2 be an integer. A picture of G in complex
projective d-space Pd = Pd

C
consists of a point in Pd for each vertex of G and a line for each edge, subject to

containment conditions inherited from incidence in G. The set of all pictures of G is a projective algebraic
set, the picture space X d(G). In Section 2, we state our main result (Theorem 2.3) which expresses the
Poincaré series of X d(G) as a specialization of the Tutte polynomial of G.

In Section 3, we apply this result to the theory of combinatorial rigidity. Briefly, a graph G is d-parallel
independent if there are no constraints on the direction vectors of the lines in a generic picture of G in
d-space. In fact, this is a matroid independence condition; see [11]. Generalizing a result of [8], we show
that G is d-parallel independent if and only if X d(G) is irreducible and dimX d(G) = d|V |, where v(G) is
the number of vertices of G. Whether these conditions hold can be determined from the Poincaré series of
X d(G), which implies that d-parallel independence is a function of the Tutte polynomial.

In section 4, we study the cohomology ring H∗(X d(G); Z) in the case that X d(G) is smooth. It turns
out that smoothness is equivalent to the property that G is an “orchard”; that is, every edge is either a loop
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or an isthmus (an edge whose deletion increases the number of connected components). In this case, X d(G)
is an iterated projectivized vector bundle, so its cohomology ring may be presented in terms of Chern classes
of line bundles, just as for Grassmannians and flag varieties (see, e.g., [2] or [4]). Using this presentation
(Theorem 4.3), we apply the classical Schubert calculus of partial flag varieties to solve enumerative geometry
problems in the picture space of an orchard.

The author wishes to thank his colleagues Wojciech Chachólski, Sandra Di Rocco, and Victor Reiner for
numerous helpful discussions, and two anonymous reviewers at FPSAC 2004 for their thoughtful comments.
This abstract is an abridged version of a longer paper [9] which is presently under review.

2. The Main Theorem

We assume familiarity with elementary graph theory (see, e.g., [10]) but will briefly mention a few key
terms and notations. A graph is a pair G = (V,E), where V = V (G) is a finite nonempty set of vertices and
E = E(G) is a finite set of edges. An edge whose endpoints are equal is called a loop. A graph is simple if
it has no loops or multiple edges; that is, an edge may be specified by its pair of endpoints. The numbers of
vertices, edges and connected components of G will be denoted v(G), e(G), c(G) respectively.

For e ∈ E, the deletion G− e is the graph (V,E \ {e}). In general, either c(G− e) = c(G) or c(G− e) =
c(G) + 1; in the latter case, e is called an isthmus (or bridge or coloop). If e is not a loop, the contraction
G/e is obtained by removing e from G and identifying its endpoints with each other. An isthmus (or bridge)
is an edge e such that c(G − e) = c(G) + 1; otherwise, c(G − e) = c(G).

Definition 2.1. Let G = (V,E) be a graph. The Tutte polynomial TG(x, y) is defined as follows. If

e(G) = 0, then TG(x, y) = 1. Otherwise, TG(x, y) is defined recursively as

(2.1) TG(x, y) =





x ·TG/e(x, y) if e is an isthmus,

y ·TG−e(x, y) if e is a loop,

TG−e(x, y) + TG/e(x, y) otherwise.

for any e ∈ E(G). (It is a standard fact, albeit not immediate from the definition, that the choice of e does

not matter.)
Many isomorphism invariants of graphs, such as the number of acyclic orientations and the chromatic

polynomial, satisfy deletion-contraction recurrences akin to (2.1). The Tutte polynomial may thus be re-
garded as the most general deletion-contraction invariant. For a comprehensive treatment of many aspects
of the Tutte polynomial, see [3].

There is an equivalent (and non-recursive) definition of the Tutte polynomial as a certain generating
function for the edge subsets F ⊂ E(G). Define the rank of F , denoted r(F ), as the cardinality of a maximal
acyclic subset of F . Equivalently, r(F ) = v(G|F ) − c(G|F ), where G|F is the subgraph with edges F and
vertices

{v ∈ V (G) : v is an endpoint of at least one edge of F}.
Then the Tutte polynomial may be defined in closed form as the corank-nullity generating function

(2.2) TG(x, y) =
∑

F⊂E(G)

(x− 1)r(E)−r(F )(y − 1)|F |−r(F )

[3, eq. 6.13]; this formula will be useful in the study the d-parallel matroid in Section 3.
The main objects of our study are projective algebraic sets which parametrize “pictures” of graphs. (For

more details, see [8].)

Definition 2.2. Let G = (V,E) be a graph and d ≥ 2 a positive integer. Denote complex projective d-space

by Pd. A picture P of G consists of a point P(v) ∈ Pd for each v ∈ V and a line P(e) in Pd for each e ∈ E,
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such that P(v) ∈ P(e) whenever v is an endpoint of e. The set of all pictures is called the d-dimensional

picture space of G, denoted X d(G).
Our main theorem concerns the enumeration of the (non-reduced) integral homology groupsHi(X d(G)) =

Hi(X d(G); Z).

Theorem 2.3. Let G be a graph and d ≥ 2 an integer. Then

(1) The picture space X d(G) is path-connected and simply connected.

(2) Hi(X d(G)) is free abelian for i even and zero for i odd.

(3) The “compressed Poincaré series” defined by

(2.3) P d
G(q) :=

∑

i

qi rankZ H2i(X d(G))

(that is, the generating function for the even Betti numbers) is given by the formula

P d
G(q) = ([d]q − 1)v(G)−c(G) [d+ 1]c(G)

q TG

(
[2]q [d]q
[d]q − 1

, [d]q

)

where [d]q = (1− qd)/(1− q).
In the remainder of this section, we sketch the proof of Theorem 2.3. We begin with a few elementary

observations about picture spaces.
First, X d(G) is easily seen to be path-connected: any picture can be deformed continuously to a “max-

imally degenerate” picture in which all points (resp. lines) coincide, and the set of maximally degenerate
pictures is isomorphic to a partial flag variety.

Second, X d(G) is the product of the picture spaces of the connected components of G. In particular, if
e(G) = 0, then X d(G) ∼= (Pd)v(G). Moreover, if e is a loop, then X d(G) is a Pd−1-bundle over X d(G− e).

At the heart of our methods are two canonical morphisms between picture spaces that correspond to
the graph operations of deletion and contraction. First, for every e ∈ E(G), there is a natural epimorphism

(2.4) X d(G)� X d(G− e)
given by forgetting the data for the line P(e). (In fact, there is a canonical epimorphism X d(G)Ω̃X d(G′) for
any subgraph G′ of G, but this is the most important case for our present purposes.)

Let e be a nonloop edge with endpoints v, w. The coincidence locus of e in X d(G) is defined as

(2.5) Ze(G) = Zvw(G) :=
{
P ∈ X d(G) | P(v) = P(w)

}
.

The second canonical map is the natural monomorphism

(2.6) X d(G/e) ↪→ X d(G− e)
whose image is the coincidence locus Ze(G− e).

We remark briefly that in light of (2.4) and (2.6), one may regard X d as a contravariant functor from
the category of graphs to that of projective algebraic sets.

The maps (2.4) and (2.6) form part of a commutative diagram

(2.7) Ze(G) �

�

//

��
��

X d(G)

��
��

X d(G/e)
�

�

// X d(G− e)

By a technical but not difficult argument, one can show that the map Ze(G)Ω̃X d(G/e) is a Pd−1-fibration,
and that the diagram (2.7) is a homotopy pushout square. Consequently, there is a Mayer-Vietoris long exact
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sequence

(2.8)
. . . Ω̃ Hi(Ze(G)) Ω̃Hi(X d(G/e))⊕Hi(X d(G)) Ω̃Hi(X d(G− e))

Ω̃Hi−1(Ze(G)) Ω̃ . . . .

We first consider two simple cases. If e(G) = 0, then X d(G) ∼= (Pd)v(G), while if v(G) = 1, then
X d(G) is a (Pd−1)e(G)-bundle over Pd, whose Poincaré series is the same as that of Pd × (Pd−1)e(G) (see,
e.g., Proposition 2.3 of [5]). In both cases, X d(G) is a simply connected complex manifold with no torsion
or odd-dimensional integral homology. Since the compressed Poincaré series of Pd

C
is [d+ 1]q , we have

(2.9) P d
G(q) =

{
[d+ 1]

v(G)
q if e(G) = 0,

[d]
e(G)
q [d+ 1]q if v(G) = 1.

We now consider the general case. To show that X d(G) is simply connected and has no torsion or
odd-dimensional homology, we proceed inductively, choosing an edge e and assuming these properties for
X d(G − e) and X d(G/e). Since Ze(G) is a Pd−1-bundle over X d(G/e), it follows from Proposition 2.3
of [5] that Ze(G) has no torsion or odd-dimensional homology (essentially because the Leray-Serre spectral
sequence degenerates quickly), so that (2.8) splits into short exact sequences

(2.10) 0 Ω̃ Hi(Z) Ω̃ Hi(X d(G/e))⊕Hi(X d(G)) Ω̃ Hi(X d(G− e)) Ω̃ 0,

from which we obtain the desired properties for X d(G). Furthermore, the short exact sequences (2.10) lead
to recurrences expressing the compressed Poincaré series P d

G(q) in terms of P d
G−e(q) and P d

G/e(q). By suitable

normalizations, these recurrences can be transformed into the Tutte recurrence (2.2).

3. Parallel Independence

Let P be a d-dimensional picture of a simple graph G = (V,E) (that is, with no loops or multiple edges).
Consider a physical model of P consisting of a “bar” for each edge e and a “joint” for each vertex v. If e has
v as an endpoint, then the corresponding bar is attached to the corresponding joint. The bars may cross, and
their lengths are allowed to vary, but we fix the angles at which the bars are attached to the joints. Thus,
for example, a square framework may be deformed to produce an arbitrary rectangle, but not any other
rhombus. Under what conditions on G is such a model rigid? That is, when is the model determined up to
congruence by specifying the attaching angles? These and similar questions are the focus of combinatorial
rigidity theory ; for more details, see, e.g., [6] and [11].

The graph G (or, more properly, its edge set) is said to be d-parallel independent if for a generic picture
in X d(G), the directions of the lines representing edges are mutually unconstrained. This is in fact a matroid
independence condition on edge sets; for the reader not familiar with matroids, we remark here only that it
satisfies certain axioms which abstract the idea of linear independence in a vector space. In particular, loops
and multiple edges are dependent sets in t

The Poincaré series formula of Theorem 2.3 can be applied to give the following criterion for independence
in the d-parallel matroid:

Theorem 3.1. Let d be a positive integer and G a simple graph (with no loops or multiple edges). Then

E(G) is independent in the generic d-parallel matroid if and only if the polynomial

([d]q − 1)v(G)−c(G) TG

(
[2]q [d]q
[d]q − 1

, [d]q

)

is monic of degree d(v(G) − c(G)).
We briefly sketch the proof of Theorem 3.1. The first fact we need is that the leading term of Poin(X ; q)

is cq2d, where d = dimC X and c is the number of irreducible components of X of dimension d; see [4,
Appendix A, Lemmas 2 and 4].
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Call a picture P of G generic if the points P(v), for v ∈ V (G), are all distinct. The picture variety
Vd(G) is the closure of the set of generic pictures; in general, Vd(G) is an irreducible component of X d(G)
of dimension 2v(G), and all other components have equal or greater dimension (for details, see [8]). Fur-
thermore, Theorem 4.5 of [8] admits the following generalization: For G a simple graph and d ≥ 2, E(G) is
d-parallel independent if and only if X d(G) = Vd(G).

Combining these observations with Theorem 2.3, one sees that d-parallel independence is equivalent to
the condition that the compressed Poincaré series

([d]q − 1)v(G)−c(G) [d+ 1]c(G)
q TG

(
[2]q [d]q
[d]q − 1

, [d]q

)

be monic of degree d · v(G). On the other hand, the corank-nullity generating function (2.2) says that

TG

(
[2]q [d]q
[d]q − 1

, [d]q

)
=

f(q)

([d]q − 1)r(E)
=

f(q)

([d]q − 1)v(G)−c(G)

where f(q) is a polynomial in q, and r is the rank function on subsets of E (see Section 2). Therefore, we

may divide the compressed Poincaré series by [d+ 1]
c(G)
q yields a polynomial in q to obtain the statement of

Theorem 3.1.

4. Orchard Schubert Calculus

4.1. The cohomology ring of an orchard. An edge e in a graphG is an isthmus if c(G−e) = c(G)+1
(otherwise c(G − e) = c(G)). We denote the number of isthmuses and loops by i(G) and `(G) respectively.
In addition, if v is an endpoint of e, we will write e ∈ E(v) or say that v, e is an incident pair .

An orchard is a graph G such that every edge is either an isthmus or a loop; that is, e(G) = i(G)+`(G).
In this case, the Tutte polynomial of G is

TG(x, y) = xi(G)y`(G),

so by Theorem 2.3 the compressed Poincaré series of X d(G) is

(4.1) P d
G(q) = [d+ 1]c(G)

q [2]i(G)
q [d]e(G)

q .

This polynomial is palindromic, suggesting that the picture space of an orchard is smooth (by Poincaré
duality). In fact, more is true.

Proposition 4.1. Let G = (V,E) be a graph and d ≥ 2. The picture space X d(G) is smooth if and only if

G is an orchard.
Proposition 4.1 is proved as follows. When G is an orchard, X d(G) may be realized explicitly as an

iterated projective bundle over Pd with smooth fibers. If G is not an orchard, let P be a generic picture
(where no points coincide) and let Q be a picture that is “maximally degenerate”—that is, all points Q(v)
coincide, as do all lines Q(e). Then one can show directly that the tangent space to X d(G) at P has
dimension exactly d · v(G), while the tangent space at Q has strictly greater dimension; it follows that Q is
a singular point.

Remark 4.2. If G is an orchard then P d
G(q) is palindromic, by Proposition 4.1 and Poincaré duality. The

converse is not true. For instance, let G have two vertices and three nonloop edges. Then X 2(G) is not

smooth, but by Theorem 2.3 its compressed Poincaré series is 1 + 5q + 9q2 + 9q3 + 5q4 + q5.
We will need several facts about vector bundles over complex manifolds. For more details, see chapter IV

of [2], especially pp. 269–271. The main fact is as follows. Let M be a complex manifold and E a complex

vector bundle on M of rank d. The projectivization of E is the fiber bundle P(E)
π

Ω̃M whose fiber at a point
m ∈M is P(E)m = P(Em), that is, the space of lines through the origin in the fiber of E at m. Thus π−1E is
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a rank-d vector bundle over P(E). The tautological subbundle L is the line bundle on P(E) defined fiberwise
by Lp = p (regarding p as a line in Eπ(p)). With this setup,

(4.2) H∗(P(E)) ∼= H∗(M)[x] /
(
xd + c1(E)xd−1 + · · ·+ cd(E)

)

where ci(E) denotes the ith Chern class of E , and x = c1(L∗), the first Chern class of the dual line bundle
L∗.

The idea of the presentation of H∗(X d(G)) (to follow in Theorem 4.3) is that we can say precisely
how the graph-theoretic operations of deletion and contraction correspond to projectivizations of certain
vector bundles. Every nontrivial orchard can be “pruned”; that is, we can identify a simpler orchard G′

and a vector bundle E on X d(G′) such that X d(G) = P(E). Moreover, the fiber of E has an elementary
description in terms of the data for a picture P of G′. By the aforementioned machinery of Chern classes,
in particular (4.2), we can express H∗(X d(G)) as an algebra over X d(G′).

Let e ∈ E(G). We have already seen that if e is a loop and G′ = G − e, then X d(G) is a Pd−1-bundle
over X d(G′). More precisely, if v is the unique endpoint of e, then X d(G) = P(W/Lv), whereW is the trivial
bundle of rank d+ 1 and Lv is the line bundle whose fiber is P(v).

Now suppose that e is an isthmus. It suffices to consider the case that e is the “stem of a leaf v”; that
is, v ∈ V (G) and E(v) = {e}. Let w be the other endpoint of e, and let G′ be the graph obtained from G
by deleting e and v and attaching a loop e′ at the other endpoint of e. Then X d(G) = P(Fe), where Fe is
the plane bundle on X d(G′) with fiber P(e).

Theorem 4.3. Let G = (V,E) be an orchard, with vector bundles Lv and Fe as above. For each v ∈ V , let

xv = c1(L∗v), and for each incident pair v, e, let yv,e = c1((Fe/Lv)
∗). Then

H∗(X d(G); Z) ∼= Z [xv , yv,e : v ∈ V, e ∈ E(v)] / IG,

where IG is the ideal

IG =

〈
xd+1

v for v ∈ V,
hd(xv , yv,e) for v ∈ V, e ∈ E(v),
xv − xw + yv,e − yw,e, xvyv,e − xwyw,e for e = vw

〉
.

Here hd(x, y) = xd +xd−1y+ · · ·+xyd−1 + yd is the dth complete homogeneous symmetric function in x and

y, and e = vw means that e is an isthmus with endpoints v, w.
Setting ze := c1(Fe), the Whitney product formula for vector bundles gives the relations ze = xv +yv,e =

xw + yw,e whenever e is an edge with endpoints v, w. This yields an equivalent and somewhat more concise
presentatation of the cohomology ring.

Corollary 4.4. Let G be an orchard and xv , ze as above.

Then H∗(X d(G)) = Z [xv , ze : v ∈ V, e ∈ E] / JG, where

JG =

〈
xd+1

v for v ∈ V,
hd(xv , ze − xv) for v ∈ V, e ∈ E(v),
(xv − xw)(ze − xv − xw) for e = vw

〉
.

4.2. Enumerative geometry. The Schubert calculus (see, e.g., [7] or [4]) reduces certain enumerative
geometry questions to calculations in the cohomology ring of a flag manifold. If G is an orchard, then the
presentation of H∗(X d(G)) given in Theorem 4.3, together with the canonical epimorphism (2.4), allows us
to answer similar enumerative geometry questions about pictures of G.

Let L1 be the graph consisting of a vertex and a loop. A picture of L1 is a point lying on a line in
complex projective d-space, or equivalently a line through the origin lying on a plane in Cd+1. That is,
X d(L1) is naturally isomorphic to the partial flag manifold F`1,2(d+ 1) (in the notation of [4]).
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More generally, suppose that G is an orchard, v ∈ V (G), and e ∈ E(v). As in (2.4), there is an
epimorphism (in fact, a smooth fibration)

(4.3) πv,e : X d(G)Ω̃X d(L1) ∼= F`1,2(d+ 1)

forgetting all data except P(v) and P(e). This gives a decomposition of X d(G) as a disjoint union of orchard
Schubert cells

Ω◦σ =
⋂

e∈E(v)

π−1(Ω◦σv,e
)

indexed by (2i(G)− `(G))-tuples σ of permutations σv,e in the symmetric group Sd+1.
By induction on e(G), one can show that each Ω◦σ is isomorphic to an affine space. Moreover, it is not

hard to identify permutations σv,e for which Ω◦σ is nonempty. We expect that in general the orchard Schubert

variety Ωσ = Ω◦σ should be a union of orchard Schubert cells.

Problem 4.5. Describe the orchard Bruhat order, the partial order on tuples of partitions given by σ � τ

iff Ω◦σ ⊆ Ωτ .
In general, the orchard Bruhat order is weaker than the product of the various strong Bruhat orders:

that is, σ � τ implies that σv,e ≤ τv,e in the strong Bruhat order for all incident pairs v, e. The converse is
false in general. For example, if G = K2 is the complete graph on two vertices and d = 2, then (231, 231)
and (213, 213) are incomparable in the orchard Bruhat order, even though 231 > 213 in the Bruhat order
on S3.

The fibrations (4.3) induce pullback monomorphisms of cohomology rings

π∗v,e : H∗(F`1,2(d+ 1))Ω̃H∗(X d(G))

for every incident pair v, e. This observation allows us to extend the Schubert calculus of (partial) flag
varieties to solve enumerative geometry problems about picture of orchards. We devote the remainder of
this section to a typical problem and its solution. (For this and many similar computations, the author used
the computer algebra system Macaulay [1].)

Example 4.6. Let G be the tree with vertices V = {1, 2, 3} and edges E = {12, 13}:

Let A1, A2, A3 ⊂ P3 be planes, and let A4, . . . , A9 ⊂ P3 be lines, with the collection {Ai} in general position.

We will calculate the number of pictures of G in P3 satisfying the conditions

(4.4)

P(i) ∈ Ai for i = 1, 2, 3,

P(12) ∩ Ai 6= ∅ for i = 4, 5, 6,

P(13) ∩ Ai 6= ∅ for i = 7, 8, 9.

For i = 1, . . . , 9, let Yi be the subvariety of X 3(G) consisting of pictures P for which the condition

involving Ai is satisfied. Then the problem is to determine the cardinality of Y =
⋂

i Yi. Each Yi is the

pullback of some Schubert variety Ωσ ⊆ F`1,2(C4), so its cohomology class is a Schubert polynomial (see [4])

in the variables x1, x2, x3, z12, z13 (using the presentations of Theorem 4.3 and Corollary 4.4). For instance,

[Y1]=
[
π1,12

−1(Ω2134)
]

= S2134(x1, z12 − x1) = x1 and

[Y4]=
[
π1,12

−1(Ω1324)
]

= S1324(x1, z12 − x1) = z12.
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By similar calculations, we find that

[Y2] = x2, [Y5] = [Y6] = z12,

[Y3] = x3, [Y7] = [Y8] = [Y9] = z13.

Therefore [Y ] = x1x2x3z
3
12z

3
13. Finally, the cohomology class of a point in X 3(G) is (x1x2x3)

3. Since

x1x2x3z
3
12z

3
13 = 4(x1x2x3)

3

in H∗(X 3(G)), we conclude that |Y | = 4. That is, there exist four pictures of the orchard G satisfying the

conditions (4.4).
This cohomological calculation depends on the fact that the subvarieties Yi meet transversely. For the

stated example, this can be verified by solving the enumerative problem directly geometrically; however, the
author (who is not an expert on Schubert calculus) does not at present have a more general transversality
result.
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A Hopf Algebra of Parking Functions

J.-C. Novelli and J.-Y. Thibon

Abstract. If the moments of a probability measure on
�

are interpreted as a specialization of

complete homogeneous symmetric functions, its free cumulants are, up to sign, the corresponding

specializations of a sequence of Schur positive symmetric functions (fn). We prove that (fn) is the

Frobenius characteristic of the natural permutation representation of � n on the set of prime parking

functions. This observation leads us to the construction of a Hopf algebra of parking functions, which

we study in some detail.

Résumé. Si on interprète les moments d’une mesure de probabilité sur
�

comme une spécialisation

de fonctions symétriques complètes, ses cumulants libres sont, au signe près, les spécia-lisations

correspondantes d’une suite de fonctions symétriques (fn) Schur-positives. Nous montrons que

(fn) est la caractéris-tique de Frobenius d’une représentation permutationnelle naturelle de � n sur

l’ensemble des fonctions de parking primitives. Cette observation nous conduit à construire une

algèbre de Hopf des fonctions de parking que nous étudions ensuite en détail.

1. Introduction

The free cumulants Rn of a probability measure µ on R are defined (see e.g., [20]) by means of the
generating series of its moments Mn

(1.1) Gµ(z) :=

∫

R

µ(dx)

z − x = z−1 +
∑

n≥1

Mnz
−n−1

as the coefficients of its compositional inverse

(1.2) Kµ(z) := Gµ(z)〈−1〉 = z−1 +
∑

n≥1

Rnz
n−1 .

It is in general instructive to interpret the coefficients of a formal power series as the specializations of
the elements of some generating family of the algebra of symmetric functions. In this context, it is the
interpretation

(1.3) Mn = φ(hn) = hn(A)
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which is relevant. Indeed, the process of functional inversion (Lagrange inversion) admits a simple expression
within this formalism (see [14], ex. 24 p. 35). If the symmetric functions h∗n are defined by the equations

(1.4) u = tH(t) ⇐⇒ t = uH∗(u)

where H(t) :=
∑

n≥0 hnt
n, H∗(u) :=

∑
n≥0 h

∗
nu

n, then, using the λ-ring notation,

(1.5) h∗n(X) =
1

n+ 1
(−1)nen((n+ 1)X) :=

1

n+ 1
[tn]E(−t)n+1

where E(t) is defined by E(t)H(t) = 1. This defines an involution f 7→ f ∗ of the ring of symmetric functions.
Now, if one sets Mn = hn(A) as above, then

(1.6) Gµ(z) = z−1H(z−1) = u ⇐⇒ z = Kµ(u) =
1

u
E∗(−u) = u−1 +

�

n≥1

(−1)ne∗nun−1 .

Hence,

(1.7) Rn = (−1)ne∗n(A) .

It follows immediately from the explicit formula (see [14] p. 35)

(1.8) −e∗n =
1

n− 1

∑

λ`n

(
n− 1

l(λ)

)(
l(λ)

m1,m2, . . . ,mn

)
eλ

(where λ = 1m12m2 · · ·nmn) that −e∗n is Schur positive. Clearly, −e∗n is the Frobenius characteristic of a
permutation representation Πn, twisted by the sign character. Let us set

(1.9) (−1)(n−1)Rn = −e∗n =: ω(fn)

so that fn is the character of Πn. We start with a construction of this representation in terms of parking
functions. This leads us to the definition of a Hopf algebra of parking functions that generalizes the con-
structions of [15, 3]. We expect that this combinatorics can be generalized to other root systems, at least
for type B (see, e.g., [2]).

We note that our construction of Πn is merely a variation about previously known results (see in
particular [12, 17]). However, since this is this precise version that led us to the Hopf algebra of parking
functions and some of its properties, we decided to present it in detail.

Although many definitions will be recalled, we shall assume that the reader is familiar with the notation
of [5, 3].

Acknowledgements.- The problem of constructing the representation Πn was suggested by S. Kerov during his stay in

Marne-la-Vallée in 1996. The question was forgotten for a long time without any attempt of solution, and rediscovered recently

on the occasion of talks by S. Ferrières and P. Biane. Thanks also to P. Biane for providing the reference [17].

2. Parking functions

2.1. Parking functions. A parking function on [n] = {1, 2, . . . , n} is a word a = a1a2 · · · an of length
n on [n] whose nondecreasing rearrangement a↑ = a′1a

′
2 · · · a′n satisfies a′i ≤ i for all i. Let PFn be the set

of such words. It is well-known that |PFn| = (n + 1)n−1, and that the permutation representation of Sn

naturally supported by PFn has Frobenius characteristic (−1)nω(h∗n) (see [8]).

2.2. Prime parking functions. Gessel introduced in 1997 (see [22]) the notion of prime parking
function. One says that a has a breakpoint at b if |{ai ≤ b}| = b. Then, a ∈ PFn is said to be prime if its
only breakpoint is b = n.

Let PPFn ⊂ PFn be the set of prime parking functions on [n]. It can easily be shown that |PPFn| =
(n− 1)n−1 (see [22, 10]).
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2.3. Operations on parking functions. For a word w on the alphabet 1, 2, . . ., denote by w[k] the
word obtained by replacing each letter i by i+ k. If u and v are two words, with u of length k, one defines
the shifted concatenation

(2.1) u • v = u · (v[k])
and the shifted shuffle

(2.2) u d v = u (v[k]) .

It is immediate to see that the set of permutations is closed under both operations, and that the subalgebra
spanned by those elements is isomorphic to the convolution algebra of symmetric groups (see [15]) or to Free
Quasi-Symmetric Functions (see [3]).

It is equally immediate to see that the set of all parking functions is closed under these operations and
that the prime parking functions exactly are the parking functions that do not occur in any nontrivial shifted
shuffle of parking functions. These properties allow us to define a Hopf algebra of parking functions (see
Section 3).

Let us now move to representation theory.

2.4. The module of prime parking functions. Recall that the expression of complete symmetric
functions in the basis eλ is the commutative image of the formula

(2.3) (−1)nSn =
∑

I�n

(−1)l(I)ΛI

which, applied to h∗n, gives

(2.4) ch(PFn) = (−1)nω(h∗n) =
∑

I�n

fi1 · fi2 · · · fir .

Now, let us interpret this last formula. Parking functions can be classified according to the factorization
of their nondecreasing reorderings a↑ with respect to the operation of shifted concatenation. That is, if

(2.5) a↑ = w1 • w2 • · · · • wr

is the unique maximal factorization of a↑, each wi is a nondecreasing prime parking function. Let us define
ik = |wk| and let I = (i1, . . . , ir). We shall say that a is of type I and denote by PPFI the set of parking
functions of type I .

Then, the set PPFn of prime parking functions of size n obviously is a sub-permutation representation
of PFn, and it remains to compute its Frobenius characteristic. We prove that it is fn, so that Πn can be
identified with PPFn. It is sufficient to show that the number of prime parking functions whose reordered

evaluation is a given partition λ is equal to 1
n−1

(
n−1
l(λ)

)(
l(λ)

m1,m2,...,mn

)
where λ = 1m12m2 · · ·nmn . Indeed, this

number corresponds to the number of ways of putting the λi over n − 1 places in a circle ; there is one
circular word associated with each circle whose reading is a prime parking function (see [4]). It then easily
comes that

(2.6) ch(PPFn) = fn ,

so that Πn can be identified with PPFn, as claimed before.
As a consequence, the set PPFI of parking functions of type I is a sub-permutation representation of

PFn too, and its Frobenius characteristic is

(2.7) ch(PPFI) = fi1 . . . fir .

Summing over all compositions I of n finally gives the right interpretation of Equation (2.4). A more
transparent proof is given in Section 3.8.



218 A HOPF ALGEBRA OF PARKING FUNCTIONS

3. A Hopf algebra of parking functions

3.1. The algebra PQSym. We can embed the algebra of Free Quasi-Symmetric functions FQSym
of [3] inside the algebra spanned by the elements Fa (a ∈ PF), whose multiplication rule is defined by

(3.1) Fa′Fa′′ :=
∑

a∈a′da′′

Fa .

We shall call this algebra PQSym (Parking Quasi-Symmetric functions).
For example,

(3.2) F12F11 = F1233 + F1323 + F1332 + F3123 + F3132 + F3312 .

3.2. The coalgebra PQSym. There is a comultiplication on PQSym that naturally extends the
comultiplication of FQSym. Recall (see [15, 3]) that if σ is a permutation,

(3.3) ∆Fσ =
∑

u·v=σ

FStd(u) ⊗ FStd(v),

where Std denotes the usual notion of standardization of a word.
Given a word w, it is possible to define a notion of parkization Park(w), a parking function that coincides

with Std(w) when w is a word without repetition.
For w = w1w2 · · ·wn on {1, 2, . . .}, let us define

(3.4) d(w) := min{i|#{wj ≤ i} < i} .
If d(w) = n+ 1, then w is a parking function and the algorithm terminates, returning w. Otherwise, let w′

be the word obtained by decrementing all the elements of w greater than d(w). Then Park(w) := Park(w′).
Since w′ is smaller than w in the lexicographic order, the algorithm terminates and always returns a parking
function.

For example, let w = (3, 5, 1, 1, 11, 8, 8, 2). Then d(w) = 6 and w′ = (3, 5, 1, 1, 10, 7, 7, 2). Then d(w′) = 6
and w′′ = (3, 5, 1, 1, 9, 6, 6, 2). Finally, d(w′′) = 8 and w′′′ = (3, 5, 1, 1, 8, 6, 6, 2), that is a parking function.
Thus, Park(w) = (3, 5, 1, 1, 8, 6, 6, 2).

Now, the comultiplication on PQSym in defined as

(3.5) ∆Fa :=
∑

u·v=a

FPark(u) ⊗ FPark(v),

For example,

(3.6) ∆F3132 = 1⊗ F3132 + F1 ⊗ F132 + F21 ⊗ F21 + F212 ⊗ F1 + F3132 ⊗ 1 .

One can easily check that the product and the comultiplication of PQSym are compatible, so that
PQSym is endowed with a bialgebra structure.

3.3. The Hopf algebra PQSym. Since PQSym is endowed with a bialgebra structure naturally
graded by the size of parking functions, one defines the antipode as the inverse of the identity for the
convolution product and then endow PQSym with a Hopf algebra structure.

The formula for the antipode can be written on the basis of Fa functions, as

(3.7) ν(Fa) =
∑

r;u1···ur=a;|ui|≥1

(−1)r FPark(u1)FPark(u2) · · ·FPark(ur)

For example,

(3.8) ν(F122) = −F122 + F1F11 + F12F1 − F3
1 = F212 + F221 − F213 − F231 − F321 .
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3.4. The graded dual PQSym∗. Let Ga = F∗a ∈ PQSym∗ be the dual basis of (Fa). If 〈 , 〉 denotes
the duality bracket, the product on PQSym∗ is given by

(3.9) Ga′Ga′′ =
∑

a

〈Ga′ ⊗Ga′′ ,∆Fa 〉Ga =
∑

a∈a′∗a′′

Ga ,

where the convolution a′∗a′′ of two parking functions is defined as

(3.10) a′∗a′′ =
∑

u,v;a=u·v,Park(u)=a′,Park(v)=a′′

a .

For example,

G12G11 = G1211 + G1222 + G1233 + G1311 + G1322

+ G1411 + G1422 + G2311 + G2411 + G3411 .
(3.11)

When restricted to permutations, it coincides with the convolution of [19, 15]. Remark that in particular,

(3.12) Gn
1 =

∑

a∈PFn

Ga .

Using the duality bracket once more, one easily gets the formula for the comultiplication of Ga as

(3.13) ∆Ga :=
∑

u,v;a∈udv

GPark(u) ⊗GPark(v) .

There also exists a direct way to define the comultiplication of Ga using the breakpoints of Gessel (see [22]).
In particular, the number of terms in the coproduct is equal to the number of breakpoints of the parking
function plus one.

For example,

∆G41252 = 1⊗G41252 + G1 ⊗G3141 + G122 ⊗G12

+ G4122 ⊗G1 + G41252 ⊗ 1 ,
(3.14)

whereas 41252 has 4 breakpoints : 1, 3, 4, and 5.

3.5. Algebraic structure. Let us say that a word w over N∗ is connected if it cannot be written as a
shifted concatenation w = u • v, and anti-connected if its mirror image w is connected.

Then, PQSym is free over the set

(3.15) {Fc | c ∈ PF, connected}

ans PQSym∗ is free over the set

(3.16) {Gd |d ∈ PF, anti-connected}

This property proves that PQSym and PQSym∗ are isomorphic as algebras. Moreover, it is possible
to build an isomorphism ϕ between PQSym and PQSym∗ that is compatible with the product and the
comultiplication. So PQSym is isomorphic to PQSym∗ as a Hopf algebra.

When restricted to FQSym, the isomorphism ϕ is defined by

(3.17) ϕ(Fσ) :=
∑

a,Std(a)=σ−1

Ga .
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The ordinary generating function for the numbers cn of connected parking functions is

∑

n≥1

cnt
n = 1−


∑

n≥0

(n+ 1)(n−1)tn



−1

= t+ 2 t2 + 11 t3 + 92 t4 + 1014 t5 + 13795 t6 + 223061 t7 + 4180785 t8

+ 89191196 t9 + 2135610879 t10 + 56749806356 t11 + 1658094051392 t12

+O
(
t13
)
.

(3.18)

3.6. Multiplicative Bases. Let a = a1 • a2 • · · · • ar be the maximal factorization of a into connected
parking functions. We set

(3.19) Fa = Fa1 · Fa2 · · ·Far ,

and

(3.20) Ga = Gar · · ·Ga1 .

By a triangular argument, one can easily see that (Fa) (resp. (Ga)), where a runs over the connected parking
functions, is a multiplicative basis of PQSym (resp. PQSym∗).

Now, if §a (resp. Ta) is the dual basis of Fa (resp. Ga) then

(3.21) {§c | c connected} and {Tc | c connected}
are bases of the primitive Lie algebras LPQ∗ (resp. LPQ) of PQSym∗ (resp. PQSym).

We conjecture, as in [3], that both Lie algebras are free, on generators whose degree generating function
is

1−
∏

n≥1

(1− tn)
cn = 1− (1− t)(1− t2)2(1− t3)11 · · ·

= t+ 2 t2 + 9 t3 + 80 t4 + 901 t5 + 12564 t6 + 206476 t7

+ 3918025 t8 + 84365187 t9 + 2034559143 t10 +O
(
t11
)
.

(3.22)

3.7. Catalan Hopf algebra (non-crossing partitions).
3.7.1. The Hopf algebra CQSym. Parking functions are known to be related to non-crossing partitions

(see [2, St, 22]). There is a simple bijection between non-decreasing parking functions and non-crossing
partitions. Starting with a non-crossing partition, e.g.,

(3.23) π = 13|2|45 ,

one replaces all the letters of each block by its minimum, and reorders them as a non-decreasing word

(3.24) 13|2|45Ω̃11244

which is a parking function. In the sequel, we identify non-decreasing parking functions and non-crossing
partitions via this bijection.

For a general a ∈ PFn, let NC(a) be the non-crossing partition corresponding to a↑ by the inverse
bijection, e.g., NC(42141) = π as above. Then, the elements of PQSym

(3.25) Pπ :=
∑

a;NC(a)=π

Fa

span a sub-algebra of PQSym, isomorphic to the algebra of the free semigroup of non-crossing partitions
under the operation of concatenation of diagrams,

(3.26) Pπ′

Pπ′′

= Pπ′•π′′

,
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that is equivalent to shifted concatenation on words. Notice that Pπ is the sum of all permutations of the
non-decreasing word corresponding to the given non-crossing partition. We call this algebra the Catalan
subalgebra of PQSym and denote it by CQSym. The comultiplication is given on the basis Pπ by

(3.27) ∆Pπ =
∑

u,v;(u.v)↑=π

PPark(u) ⊗PPark(v) ,

where u and v run over the set of non-decreasing words.
For example, one has

∆P1124 = 1⊗P1124 + P1 ⊗
(
P112 + P113 + P123

)
+ P11 ⊗P12

+ P12 ⊗
(
P11 + 2P12

)
+
(
P112 + P113 + P123

)
⊗P1 + P1124 ⊗ 1 .

(3.28)

One can easily check that the product and the comultiplication of CQSym are compatible, so that
CQSym is endowed with a graded bialgebra structure, and therefore, with a Hopf algebra structure. For-
mula (3.27) immediately proves that the coalgebra CQSym is co-commutative.

3.7.2. The dual Hopf algebra CQSym∗. Let us denote byMπ the dual basis of Pπ in the commutative
algebra CQSym∗. Remark that CQSym∗ is the quotient of PQSym∗ by the relations Ga ≡ Gb if a↑ = b↑.
It is then immediate (see Equation (3.9)) that the multiplication is this basis is given by

(3.29) Mπ′Mπ′′ =
∑

π;π∈π′∗π′′

Mπ↑ .

For example,

M12M11 =M1112 +M1113 +M1114 +M1123 +M1124

+M1134 +M1222 +M1223 +M1224 +M1233 .
(3.30)

This algebra can be embedded in the polynomial algebra C[x1, x2, . . .] by

(3.31) Mπ =
∑

a(w)=π

w ,

where w is the commutative image of w (i.e., i 7→ xi).
For example,

(3.32) M111 =
∑

i

x3
i .

(3.33) M112 =
∑

i

x2
i xi+1 .

(3.34) M113 =
∑

i,j;j≥i+2

x2
i xj .

(3.35) M122 =
∑

i,j;i<j

xix
2
j .

(3.36) M123 =
∑

i,j,k;i<j<k

xixjxk .

Notice that M111 = M3; M112 +M113 = M21 ; M122 = M12 and M123 = M111. In general, if
π = π1 • · · ·•πr is the factorization of π in connected parking functions, let ik := |πk | and c(π) := (i1, · · · , ik)
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a composition of n. Then

(3.37) γ(MI) :=
∑

c(π)=I

Mπ

gives an embedding of QSym into CQSym∗.
3.7.3. Catalan Ribbon functions. In the classical case, the non-commu-tative complete fonctions split into

a sum of ribbon Schur functions, using a simple order on compositions. To get an analogous construction in
our case, we define a partial order on non-decreasing parking functions.

Let π be a non-decreasing parking function and Ev(π) be its evaluation vector. The successors of π
are the non-decreasing parking functions whose evaluations are given by the following algorithm: given two
non-zero elements of Ev(π) with only zeroes between them, replace the left one by the sum of both and the
right one by 0.

For example, the successors of 113346 are 111146, 113336, and 113344.
By transitive closure, the successor map gives rise to a partial order on non-decreasing parking functions.

We will write π � π′ if π′ is obtained from π by successive applications of successor maps.
Now, define the Catalan Ribbon functions by

(3.38) Pπ =:
∑

π′�π

Rπ′ .

This last equation completely defines the Rπ.

The product of two R functions is then

(3.39) Rπ′Rπ′′ = Rπ′•π′′ + Rπ′.π′′ ,

where . is the shifted concatenation defined by shifting all elements of π′′ by the difference between the
greatest and the smallest element of π′.

For example,

(3.40) R11224R113 = R11224668 + R11224446 .

3.8. Compositions. Recall that non-crossing partitions can be classified according to the factorization
π = π1 • · · · • πr into irreducible non-crossing partitions. We set

(3.41) VI :=
∑

c(π)=I

Pπ

as an element of PQSym. If one defines Vn = V(n), we have

(3.42) Vn =
∑

a∈PPFn

Fa

and

(3.43) VI = Vi1 · · ·Vir =
∑

a∈PPFI

Fa .

At this point, it is useful to observe that if C(w) denotes the descent composition of a word w, the map

(3.44) η : Fa 7→ FC(a) ,

which is a Hopf algebra morphism PQSymΩ̃QSym, maps VI to the Frobenius characteristic of the under-
lying permutation representation of Sn on PPFI .

(3.45) η(VI ) =
∑

a∈PPFI

FC(a) = ch(PPFI) .



J.-C. Novelli and J.-Y. Thibon 223

As a consequence, the number of parking functions of type I with descent set J is equal to the scalar
product of symmetric functions

(3.46) 〈rJ , f I〉
where f I = fi1 · · · fir = ch(PPFI) and rJ is the ribbon Schur function. This extends Prop. 3.2.(a) of [21].
Remark that in particular,

(3.47) FPFn
:=

∑

a∈PFn

Fa =
∑

I�n

VI ,

a realisation of Equation (2.4) as an identity in PQSym. By inversion, one obtains

(3.48) FPPFn
=
∑

I�n

(−1)n−l(I)FPFI
,

where

(3.49) PFI := PFi1 d PFi2 d · · · d PFir .

These identities are easily visualized on the encoding of parking functions with skew Young diagrams as
in [17] or in [7].

The transpose γ∗ of the map γ defined in Equation (3.37), is the map

ch :CQSym∗Ω̃Sym

Pπ 7→ Sc(π) .
(3.50)

which sends Pπ to the characteristic non-commutative symmetric function of the natural projective Hn(0)-
module with basis {a ∈ PFn|NC(a) = π}.

Then,

(3.51) g :=
∑

n≥0

gn :=
∑

n≥0

ch(FPFn) =
∑

I

ch(V I).

is the series obtained by applying the non-commutative Lagrange inversion formula of [6, 18] to the gener-
ating series of complete functions, i.e., g is the unique solution of the equation

(3.52) g = 1 + S1g + S2g
2 + · · · =

∑

n≥0

Sng
n .

3.9. Schröder Hopf algebra (planar trees). Let ≡ denote the hypoplactic congruence (see [11, 16]),
and denote by P(w) the hypoplactic P -symbol of a word w (its quasi-ribbon). P -symbols of parking functions
are called parking quasi-ribbons.

With a parking quasi-ribbon q, we associate the element

(3.53) Pq :=
∑

P (a)=q

Fa .

Then, the Pq form the basis of a Hopf sub-algebra of PQSym, denoted by SQSym. Its dual SQSym∗ is
the quotient PQSym/J where J is the two-sided ideal generated by

(3.54) {Ga −Ga′ |a ≡ a′} .
If Ga denoted the equivalence class of Ga modulo J , the dual basis of (Pq) is

(3.55) Qq := Ga ,

where a is any parking function such that a ≡ q.
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The dimension of the component of degree n of SQSym and SQSym∗ is the little Schröder number (or
super-Catalan) sn : their Hilbert series is

(3.56)
∑

n≥0

snt
n =

1 + t−
√

1− 6t+ t2

4t
= 1 + t+ 3t2 + 11t3 + 45t4 + · · ·

Indeed,

dim(SQSymn) =

〈∑

I�n

FI , ch(FPFn
)

〉

=

〈
1

2

n∑

k=0

ekhn−k,
1

n+ 1
hn((n+ 1)X)

〉

=
1

2n+ 2

n∑

k=0

(
n+ 1

k

)(
2n− k
n− k

)
= sn .

(3.57)

The embedding of Formula (3.17) induces an embedding

(3.58) QSym ' FQSym∗/(J ∩ FQSym∗)→ PQSym∗/J = SQSym∗ .

It is likely that SQSym is isomorphic to the free dendriform trialgebra of [13] as an algebra, but not as a
coalgebra.

3.10. PQSym∗ as a combinatorial Hopf algebra. Since FQSym can be embedded in PQSym,
we have a canonical Hopf embedding of Sym in PQSym given by

(3.59) Sn 7→ F12···n .

With parking functions, we have other possibilities: for example,

(3.60) j(Sn) := F11···1

is a Hopf embedding, whose dual j∗ maps PQSym∗ to QSym and therefore endows PQSym∗ with a different
structure of combinatorial Hopf algebra in the sense of [1].

On the dual side, the transpose η∗ of the map η defined in the previous section corresponds to the Hopf
embedding

(3.61) Sn 7→
∑

Std(a)=12···n
Ga

of Sym into PQSym∗, which is therefore the restriction of the self-duality isomorphism of formula (3.17)
to the Sym subalgebra Sn = F12···n of PQSym.

4. Realization of PQSym

It is possible to find a realization of PQSym in terms of (0, 1)-matrices, that is reminiscent of the
construction of MQSym (see [9, 3]), and that coincides with it when restricted to permutation matrices,
providing the natural embedding of FQSym in MQSym.

LetMn be the vector space spanned by symbols XM where M runs over (0, 1)-matrices with n columns
and an infinite number of rows, with n nonzero entries, so that at most n rows are nonzero.

Given such a matrix M , we define its vertical packing P = vp(M) as the finite matrix obtained by
removing the null rows of M .

For a vertically packed matrix P , we define

(4.1) MP =
∑

vp(M)=P

XM .
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Now, given a (0, 1)-matrix, we define its reading r(M) as the word obtained by reading its entries by
rows, from left to right and top to bottom and recording the numbers of the columns of the ones. For
example, the reading of the matrix

(4.2)

(
0110
1000
0100

)

is (2, 3, 1, 2).
A matrix M is said to be of parking type if r(M) is a parking function. Finally, for a parking function

a, we set

(4.3) Fa :=
∑

r(P )=a,P vertically packed

MP =
∑

r(M)=a

XM .

For example,

(4.4) F(1,2,2) = M � 110
010 � + M ��� 100

010
010 ���� .

The multiplication onM = ⊕nMn is defined by columnwise concatenation of the matrices:

(4.5) XMXN = XM ·N .

In order to explicit the product of MP by MQ, we first need a definition. Let P and Q be two vertically
packed matrices with respective heights p and q. The augmented shuffle of P and Q is defined as follows:
let r be an integer in [max(p, q), p + q]. One inserts zero rows in P and Q in all possible ways so that the
resulting matrices have p+ q rows. Let R be the matrix obtained by concatenation of such pairs of matrices.
The augmented shuffle consists in the set of such matrices R with nonzero rows. We denote this set by
](P,Q).

With this notation,

(4.6) MP MQ =
∑

R∈](P,Q)

MR ,

and also

(4.7) Fa′Fa′′ =
∑

a∈a′da′′

Fa ,

that is the same as Equation (3.1).

Finally, concerning the comultiplication, one has first to define the parkization Park(M) of a vertically
packed matrix M , which consists in iteratively removing column d(r(M)) until M becomes a parking matrix.

The comultiplication of a matrix MP is then defined as:

(4.8) ∆MP =
∑

Q·R=P

MPark(Q) ⊗MPark(R) ,

It is then easy to check that

(4.9) ∆Fa =
∑

u·v=a

FPark(u) ⊗ FPark(v) ,

which is the same as Equation (3.3).

4.1. Realization of FQSym. A parking matrix M is said to be a word matrix if there is exactly one
1 in each column. Then FQSym is the Hopf subalgebra generated by the parking word matrices.
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An Arctic Circle Theorem For Groves

T. Kyle Petersen and David Speyer

Abstract. In earlier work, Jockusch, Propp, and Shor proved a theorem describing the limiting

shape of the boundary between the uniformly tiled corners of a random tiling of an Aztec diamond

and the more unpredictable ‘temperate zone’ in the interior of the region. The so-called arctic circle

theorem made precise a phenomenon observed in random tilings of large Aztec diamonds.

Here we examine a related combinatorial model called groves. Created by Carroll and Speyer

as combinatorial interpretations for Laurent polynomials given by the cube recurrence, groves have

observable frozen regions which we describe precisely via asymptotic analysis of generating functions,

in the spirit of Pemantle and Wilson. Our methods also provide another way to prove the arctic

circle theorem for Aztec diamonds.

Résumé. Dans leurs travaux, Jockusch, Propp, et Shor ont prouvé un théorème décrivant la

forme limite de la frontière entre les coins uniformement pavés (“gelés”) d’un pavage aléatoire d’un

diamant aztèque et la zone “temperee” moins prévisible a l’intérieur du diamant. Le théorème du

cercle arctique a rendu précis un phénomène observé dans les pavages aléatoires de grands diamants

aztèques.

Nous examinons un modèle combinatoire relie appelé les bosquets. Créé par Carroll et Speyer

en tant qu’interprétation combinatoires pour des polynômes de Laurent donnés par la récurrence

du cube, les bosquets laissent apparâıtre des régions gelées que nous décrivons avec précision par

l’intermediaire de l’analyse asymptotique de fonctions génératrices, dans l’esprit de Pemantle et de

Wilson. Nos méthodes fournissent également une autre manière de prouver le théorème du cercle

arctique pour les diamants aztèques.

1. Introduction

Groves came into existence as combinatorial interpretations of rational functions generated by the cube
recurrence:

fi,j,kfi−1,j−1,k−1 = fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k,

where some initial functions are specified. Typically, fi,j,k := xi,j,k for some choice of (i, j, k) ∈ Z3 called
the initial conditions. Fomin and Zelevinsky [FZ] were able to show that for arbitrary initial conditions
the rational functions generated by the cube recurrence were in fact Laurent polynomials in the xi,j,k . The
introduction of groves by Carroll and Speyer [CS] gave a combinatorial proof of the surprising fact that each

1991 Mathematics Subject Classification. Primary 05A16, 60C05; Secondary 05E99, 82B20.
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228 AN ARCTIC CIRCLE THEOREM FOR GROVES

term of these polynomials has coefficient +1. In this paper we will only examine the family of groves on
standard initial conditions as described in Section 1.1.1

Before getting into the details of groves, let us first describe the motivation for this paper: random
domino tilings of large Aztec diamonds. An Aztec diamond of order n consists of the union of all unit
squares with integer vertices contained in the planar region { (x, y) | |x| + |y| ≤ n + 1 }. A domino tiling
of an Aztec diamond is an arrangement of 2 × 1 rectangles, or dominoes, that cover the diamond without
any overlapping. A random domino tiling of a large Aztec diamond consists of two qualitatively different
regions.2 As seen in the random tiling in Figure 1, the dominoes in the corners of the diamond are frozen in
a brickwork pattern, whereas the dominoes in the interior have a more random, temperate behavior. It was
shown in [JPS] and [CEP] that asymptotically, the boundary between the frozen and temperate regions in
a random tiling is given by the circle inscribed in the Aztec diamond. Since everything outside the circle is
expected to be frozen, it is referred to as the arctic circle.

Figure 1. A random domino tiling of an Aztec diamond of order 64

In this paper we shall see that groves on standard initial conditions exhibit a very similar behavior. A
grove, however, is not a type of tiling. In fact, as the name may suggest, a grove is a collection of trees. From
our point of view, groves are forests on a triangular lattice satisfying certain connectivity conditions on the
boundary. We will show that outside of the circle inscribed in the triangle, the trees of a large random grove
line up uniformly.

1Herein we will invoke some of the basic properties of groves without proof. For such arguments, as well as a general

treatment of groves and the cube recurrence, the reader is referred to [CS].
2By random we mean selected from the uniform distribution on all tilings of an Aztec diamond of order n, though other

probability distributions may be considered as well. See [CEP].
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Despite their superficial differences, groves and random domino tilings of Aztec diamonds are linked by
more than their asymptotic behavior. In fact it seems that their asymptotic behavior is similar because they
share a deeper link. The paper of Carroll and Speyer [CS] establishes that groves are encoded in terms of a
Laurent polynomial given by the cube recurrence. There is a more general form of the cube recurrence:

fi,j,kfi−1,j−1,k−1

= αfi−1,j,kfi,j−1,k−1 + βfi,j−1,kfi−1,j,k−1 + γfi,j,k−1fi−1,j−1,k,

where α, β, γ are constants. If α = β = γ = 1 we have the original form of the cube recurrence from whence
come groves. If α = β = 1 and γ = 0, we have (after re-indexing), the octahedron recurrence:

gi,j,n+1gi,j,n−1 = gi−1,j,ngi+1,j,n + gi,j−1,ngi,j+1,n,

with which we may encode tilings of Aztec diamonds. In Section 3, we will describe the role that this
recurrence plays in the large scale behavior of such tilings.

While the octahedron recurrence is important to us, it has not played a significant role in the study of
tilings of Aztec diamonds in the past. Rather, a local move called domino shuffling has been used. Domino
shuffling was introduced in [EKLP] and is generalized in [P]. It provides a method for generating tilings of
successively larger Aztec diamonds uniformly at random, and has been at least implicit in all probabilistic
analysis done to date. Section 1.3 will introduce an analogous local move for groves that we call grove
shuffling. Like domino shuffling, it will be key to our analysis.

For each of the two models discussed we have a global perspective and a local perspective. Laurent
polynomials tell the global story: all groves are encapsulated in f0,0,0 (from the cube recurrence), all tilings
in g0,0,n (from the octahedron recurrence). A specified shuffling algorithm tells the local story. In this paper
we combine these two points of view to build generating functions (for tilings of Aztec diamonds as well as
for groves), with which we can study asymptotic behavior.

1.1. Groves on standard initial conditions. The standard initial conditions of order n specify a
vertex set I(n) = C(n) ∪ B(n) where C(n) = { (i, j, k) ∈ Z3 | −n− 1 ≤ i+ j + k ≤ −n+ 1, i, j, k ≤ 0 } and
B(n) = { (i, j, k) ∈ Z3 | i+ j + k < −n− 1; i, j, k ≤ 0; and i, j, or k = 0 }. We draw its projection onto the
plane R3/(1, 1, 1) as shown in Figure 2 for the case n = 2, and in Figure 4 for the case n = 5. One way to
generate all groves of order n is to set fi,j,k := xi,j,k for all (i, j, k) ∈ I(n), and compute f0,0,0. Each term in
the resulting Laurent polynomial defines a grove as follows. Let G(n) be the graph on the vertex set I(n)
where vertex (i, j, k) has as its neighbors the vertices I(n)∩{ (i±1, j±1, k), (i±1, j, k±1), (i, j±1, k±1) }.
Pictorially, edges of G(n) connect vertices that lie diagonally across a rhombus.

The terms in f0,0,0 are Laurent monomials of the form

m(g) =
∏

(i,j,k)∈I(n)

x
deg(i,j,k)−2
i,j,k .

We have the following

Definition 1.1. The grove g defined by m(g) is the unique subgraph of G(n) containing no crossing edges

such that vertex (i, j, k) in I(n) has exactly deg(i, j, k) incident edges.
The uniqueness of the grove is a consequence of Theorem 3 in [CS]. For example, f0,0,0 on I(2) is

x−1,−1,0x0,0,−1

x−1,−1,−1
+
x−1,0,−1x0,−1,0

x−1,−1,−1
+
x0,−1,−1x−1,0,0

x−1,−1,−1
,

and the corresponding groves are shown in Figure 3.
For a more interesting example, one term of f0,0,0 on I(5) is

x−3,0,−2x−2,−1,−1x−1,−3,0x0,−2,−2

x−3,−1,−2x−2,−3,−1x−1,−2,−2
.
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Figure 2. Part of the standard initial conditions of order 2

Figure 3. The three groves of order 2.

Its corresponding grove, g, is shown in Figure 4. This grove has interesting connectivity properties; in fact
these properties are what distinguish groves from arbitrary subgraphs of G(n). Every vertex on the boundary
of C(n) (where cubes have been pushed down) is connected to another vertex on the boundary of C(n) if
and only if those vertices are equidistant to the nearest corner (i.e. where two coordinates are zero) of the
grove. Groves are acyclic — every connected component of a grove is a tree.

Notice that there are two types of edges: long edges and short edges, depending on whether the long or
short diagonal of a rhombus is used. It is shown in [CS] that every vertex in B(n) has degree 2 and only
uses its short edges. As a result, there are only finitely many long edges, and these determine the grove.
This observation leads to a more convenient way of looking at groves.

1.2. Simplified groves. We begin by constructing a modified form of the cube recurrence. Let ai,j ,
bk,j , ci,k be long edge variables. The variable ai,j is the label for the edge between vertices (i, j − 1, k + 1)
and (i− 1, j, k+ 1), bk,j is the label for the edge between (i− 1, j, k+ 1) and (i, j, k), and ci,k is the label for
the edge between (i, j, k) and (i, j − 1, k + 1). We write a modified form of the cube recurrence as follows:

fi,j,kfi−1,j−1,k−1 =bi,kci,jfi−1,j,kfi,j−1,k−1 + ci,jaj,kfi,j−1,kfi−1,j,k−1

+aj,kbi,kfi,j,k−1fi−1,j−1,k .
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Figure 4. A grove g of order 4, superimposed on I(4)

As we said, the long edges determine the grove, so rather than setting fi,j,k := xi,j,k for (i, j, k) ∈ I(n), we
set fi,j,k := 1 for (i, j, k) ∈ I(n). Then f0,0,0 is simply a polynomial in the edge variables ai,j , bi,j , ci,j . Each
term describes a unique grove, and we still produce every grove. This form of the cube recurrence is called
the edge variables version. We can draw a simpler picture of our groves by ignoring all short edges and all of
the vertices incident with them. In other words, specify a subset of the standard initial conditions of order
n, called the simplified initial conditions : I ′(n) = { (i, j, k) ∈ Z3 | i + j + k = −n, i, j, k ≤ 0 } ⊂ I(n). We
now represent our groves as graphs on this vertex set – a triangular lattice shown in Figure 5. Also in Figure
5 we see the same grove as in Figure 4, but with only the long edges included. In terms of edge variables,
this grove is given by

a0,0a0,1a0,2a1,0a1,1a2,1b0,0b0,1c0,0c0,1c1,0c2,0.

Another modification of the cube recurrence that we shall like to use is the edge-and-face variables
version. In the original version of the cube recurrence, the variables xi,j,k such that i+ j + k = −n+ 1 were
vertex variables. In the simplified picture, we call them the face variables of order n, for reasons which will
become clear. Rather than setting fi,j,k := 1 for all (i, j, k) in I(n), we give the face variables their formal
weights. That is, we set fi,j,k := 1 for (i, j, k) ∈ { (i, j, k) ∈ Z3 | −n − 1 ≤ i + j + k ≤ n, i, j, k ≤ 0 } and
fi,j,k := xi,j,k for (i, j, k) ∈ { (i, j, k) ∈ Z3 | i+j+k = −n+1, i, j, k ≤ 0 }. Generating f0,0,0 using these initial
conditions, we get a Laurent polynomial in the edge and face variables. The vertices of the simplified initial
conditions can be seen as forming n(n + 1)/2 downward-pointing equilateral triangles, each with top-left
vertex (i, j − 1, k + 1), top-right vertex (i− 1, j, k + 1), and bottom vertex (i, j, k). The face variables then
correspond to each of these downward-pointing triangles. The triangle with (i, j, k) as its bottom vertex
has face variable xi,j,k+1. The exponent of the face variable is −1, 0, or 1, corresponding to whether the
downward-pointing triangle has, respectively, two, one, or zero edges present. Although the face variables
don’t tell us anything new about a particular grove, they will be useful later in deriving probabilities of edges
being present in random groves.
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Figure 5. On the left: I ′(4) drawn from I(4). On the right: a simplified grove drawn from

a standard grove.

1.3. Grove shuffling. We have given one definition for what groves are, and how they may be gen-
erated. The methods and notation introduced in the previous section will be very helpful for later proofs.
However, there is another tool we will like to use; an algorithm called grove shuffling (or cube-popping –
see [CS]). Grove shuffling not only gives a purely combinatorial definition of groves, but also a method for
generating groves of order n uniformly at random. Its inspiration comes from domino shuffling, due to Elkies,
Kuperberg, Larsen, and Propp [EKLP]. The use to which we put grove shuffling is directly motivated by
Jim Propp and his paper [P]. For proof that grove shuffling does indeed give rise to the same objects as the
terms of the Laurent polynomials given by the cube recurrence, see Carroll and Speyer [CS]. Here we will
only include a description of the algorithm.

Grove shuffling can be thought of as a local move on the downward-pointing triangles of a simplified
grove according to whether a triangle has zero, one, or two edges present. See Figure 6. Let x be a generic
downward-pointing triangle with possible edges a, b, c as shown, and let x′ be an upward-pointing triangle,
concentric with x, with possible edges a′, b′, c′ as shown. There are three configurations of x with two edges:
ab, ac, bc. Grove shuffling takes each of these triangles and replaces them with an upward-pointing triangle
x′ having none of its possible edges present. There are three configurations of x with exactly one edge:
a, b, c. Each of these is replaced by the upward-pointing triangle x′ with only the parallel edge: a′, b′, c′,
respectively present. Lastly, there is one configuration of x with none of its possible edges present. This
triangle is replaced with the upward-pointing triangle x′ containing any two of its three possible edges:
a′b′, a′c′, b′c′, chosen randomly with probability 1/3. After we have turned every downward-pointing triangle
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Figure 6. Grove shuffling.

into an upward-pointing triangle, we add three new vertices to the corners of the grove so that we may shuffle
again.3

There is a unique grove of order 1. It has one downward-pointing triangle with zero edges. We now give
a purely combinatorial description of simplified groves on standard initial conditions of order n: they are all
the possible results of n− 1 iterations of grove shuffling, beginning with the grove of order 1. It is not hard

to show that there are 3bn
2/4c groves of order n. We can now make the following claim about grove shuffling.

Theorem 1.2. Beginning with the unique grove of order one, any grove of order n will be generated after

n − 1 iterations of grove shuffling with probability 1/3bn
2/4c. In other words, grove shuffling can be used to

generate groves uniformly at random.
The proof follows from some basic observations about grove shuffling.

1.4. Frozen regions. We now describe the phenomenon that we analyze in Section 2. First we observe
that edges are indexed relative to the corners perpendicular to them, so in fact the edges a and a′ in the
previous example have the same name: a = a′ = ai,j . Horizontal edges are indexed relative to the bottom
corner, and the diagonal edges are indexed relative to the top-right and top-left corners. In this way we can
think of grove-shuffling as more akin to domino shuffling [P]. Rather than replacing edges with parallel edges,
we “slide” edges toward the corners along perpendicular lines. When a downward-pointing triangle has two
edges, we remove both of those edges because they “annihilate” each other. When a downward-pointing
triangle has no edges, we create two new ones randomly.

With this viewpoint, we define an edge to be frozen if it cannot be annihilated under any further
iterations of grove shuffling. Clearly the bottom corner edge, a0,0, is frozen when present. Then the edge
ai,j is frozen exactly when the edges ai′,j′ are frozen, i ≤ i′ ≤ 0, j ≤ j′ ≤ 0. Diagonal edges behave similarly.
In Figure 7 all the highlighted edges are frozen.

3To see grove shuffling in action, visit

http://ups.physics.wisc.edu/˜hal/SSL/groveshuffler/
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Figure 7. Frozen regions of a random grove of order 12

We conclude this section by examining a picture of a large random grove generated by grove shuffling.
In Figure 8, we see that outside of a certain region, all of the edges are parallel. Moreover, the boundary
between the less uniform interior and the frozen regions in the corners seems to approximate a circle. Proving
that this boundary approaches a circle in the limit is the main goal of this paper.

Figure 8. A grove on standard initial conditions of order 100
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2. The arctic circle theorem

For any n, we can scale the initial conditions so that they resemble an equilateral triangle with sides of
length

√
2. We will show that outside of the circle inscribed in this triangle, there is homogeneity of the edges

in an appropriately scaled random grove of order n, with probability approaching 1 as n→∞. Specifically,
we will examine the limiting probability of finding a particular type of edge in a given location outside of
the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n− i− j − 1, be the probability that an(i, j),
the horizontal edge on triangle xi,j,k+1, is present in a random grove of order n. Similarly define probabilities
qn(k, i), rn(k, j) for the diagonal edges of the same triangle. Define En(i, j) = E(i, j, k + 1) = 1− pn(i, j)−
qn(k, i)− rn(k, j). The numbers En(i, j) are analogous to the creation rates discussed in [JPS], [CEP], and
[P]. We will also refer to them as creation rates. Interestingly, we can also realize the number En(i, j) as
the expected value of the exponent of the face variable xi,j,k+1. We prove the following formula for finding
the edge probability pn(i, j) in terms of creation rates.

Theorem 2.1. The horizontal edge probabilities are given recursively by pn(i, j) = pn−1(i, j) + 2
3En−1(i, j).

Thus, pn(i, j) =
2

3

n−1∑

l=1

El(i, j).

The proof relies only on observations made directly from grove shuffling. We also point out the similarity
between this statement and equation 1.5 of [CEP].

2.2. A generating function. We now know that to compute the probability of a particular edge being
present in a random grove, it will be enough to compute the creation rates El(i, j). In this section we derive a
generating function for computing these numbers as well as the related generating function for the horizontal
edge probabilities.

Let F (x, y, z) =
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk be the generating function for the creation rates. First

consider the uniformly weighted version of the cube recurrence:

fi,j,kfi−1,j−1,k−1

=
1

3
(fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k) .

Using this recurrence to calculate f0,0,0 we will get each monomial weighted uniformly, so that if we set all
the initial conditions equal to 1, f0,0,0 = 1. If we want the expectation of the exponent of the face variable
x = xi0,j0,k0 , we need only calculate the derivative of f0,0,0 with respect to this variable, then set all variables
equal to one. In other words,

E(i0, j0, k0) =
∂

∂x

(
f0,0,0

)∣∣∣
xi,j,k=1

Furthermore, we can calculate the intermediate creation rates for (i′, j′, k′) ∈ I(n′) with n′ < n by

E(i′, j′, k′) =
∂

∂x

(
fi′,j′,k′

)∣∣∣
xi,j,k=1
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(the proof only requires a re-labeling of vertices). With this in mind, let us differentiate the weighted cube
recurrence with respect to x:

f ′i,j,kfi−1,j−1,k−1 + fi,j,kf
′
i−1,j−1,k−1

=
1

3

(
f ′i−1,j,kfi,j−1,k−1 + fi−1,j,kf

′
i,j−1,k−1

)
+

1

3

(
f ′i,j−1,kfi−1,j,k−1 + fi,j−1,kf

′
i−1,j,k−1

)
+

1

3

(
f ′i,j,k−1fi−1,j−1,k + fi,j,k−1f

′
i−1,j−1,k

)
.

Now by setting xi,j,k = 1 for all (i, j, k), we get a linear recurrence for the expectations in question:

E(i, j, k) +E(i− 1, j − 1, k − 1)=
1

3
(E(i− 1, j, k) +E(i, j − 1, k − 1)) +

1

3
(E(i, j − 1, k) +E(i− 1, j, k − 1)) +

1

3
(E(i, j, k − 1) +E(i− 1, j − 1, k)) .

We can form the rational generating function in the variables x, y, z:

F (x, y, z)=
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk

=
1

1 + xyz − 1
3 (x + y + z + xy + xz + yz)

.

Now using the fact that p(i, j, k) = p(i, j, k + 1) + (2/3)E(i, j, k), we can derive the formula for the
probability generating function:

G(x, y, z)=
∑

i,j,k≥0

p(−i,−j,−k)xiyjzk

=
2F (x, y, z)

3(1− z) .

2.3. Asymptotic analysis. With our generating function in hand, we can prove our main theorem.
First let us embed a triangle in three-space by T := { (x, y, z) ∈ R3 | x, y, z ≤ 0, x + y + z = −1 }. This
is the triangle that we will scale I(n) to fit. A point (x, y, z) ∈ T is outside of the inscribed circle (what
will show is the arctic circle) if and only if the angle between the vector (x, y, z) and vector (−1,−1,−1) is

greater than cos−1(
√

2/3).
Notice that for any point (x, y, z) outside of the inscribed circle, we have either x ≤ y + z, y ≤ x + z,

or z ≤ x+ y, depending on the region in which (x, y, z) lies. We call the coordinates on the right hand side
small coordinates.

Theorem 2.2 (Weak Arctic Circle). Let (x0, y0, z0) be a point in T outside of the inscribed circle for which

z0 is a small coordinate. Let (in, jn, kn), in + jn + kn = −n− 1, be a sequence of nonpositive integer triples

such that

lim
nΩ̃∞

1

n+ 1
(in, jn, kn) = (x0, y0, z0).

Then lim
nΩ̃∞

p(in, jn, kn) = 0.

In other words, the theorem states that in the upper two regions of T outside of the arctic circle, the
probability of finding a horizontal edge goes to zero as the order of a (scaled) random grove goes to infinity.
By symmetry, there can be no diagonal edges in the lower region, and in order to satisfy the connectivity
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properties of groves, all the edges in the lower region must be horizontal. The following lemma is the heart
of the proof.

Lemma 2.3. Fix a point (x0, y0, z0) in T outside of the inscribed circle. Then there are real constants

A,B,C such that

p(−i,−j,−k) = O(e−(Ai+Bj+Ck))

for all i, j, k ≥ 0 and Ax0 +By0 + Cz0 < 0.
The proof of the lemma is the most subtle part of the argument. It relies on the Cauchy integral formula

and an examination of the singular variety of the generating function. Asymptotics of multivariate generating
functions is described in general in the sequence of papers [PW1], [PW2], [PW3], by Robin Pemantle and
Mark Wilson. Perhaps their techniques will lead to a stronger version of Theorem 2.2. In particular, we
hope for a theorem that describes the statistics throughout the grove, similar to Theorem 1 of [CEP].

3. Domino tilings of Aztec diamonds

We now draw parallels between the examination of the behavior of large groves on standard initial
conditions, and the behavior of tilings of large Aztec diamonds. This approach yields no new results for
Aztec diamonds, but presents an alternative approach to their study. In this section we derive a generating
function for the probabilities pn(i, j) that position (i, j) in a tiling of an Aztec diamond of order n is covered
by a particular type of horizontal domino. The asymptotics for the function we will derive are discussed as
an example in [PW1]. The first derivation of the function is due to Jim Propp and Dan Ionescu, though
their (different) derivation has never been published. Some recursive formulas for pn(i, j) are given in [P],
and are the inspiration for our derivation of the edge probabilities for groves. We list the analogous results.

Theorem 3.1 ([P]). The horizontal edge probabilities are given recursively by pn(i, j) = pn−1(i, j) +

1
2En−1(i, j). Thus, pn(i, j) =

1

2

n−1∑

l=1

El(i, j).

The theorem follows more or less directly from the definition of domino shuffling, where En(i, j) is the
net creation rate (see [EKLP], [P]).

By differentiating the uniformly weighted version of the octahedron recurrence

gi,j,n+1gi,j,n−1 =
1

2
(gi−1,j,ngi+1,j,n + gi,j−1,ngi,j+1,n) ,

and because

En(i0, j0) =
∂

∂x

(
g0,0,n

)∣∣∣
xi,j=1

we obtain

En+1(i, j) +En−1(i, j)=
1

2
(En(i− 1, j) +En(i+ 1, j)) +

1

2
(En(i, j − 1) +En(i, j + 1)) .

From this recurrence and Theorem 4 we get the generating function:

G(x, y, z)=
∑

n≥0

∑

|i|+|j|≤n

pn(i, j)xiyjzn

=
z/2

(1− yz)(1 + z2 − z
2 (x+ x−1 + y + y−1))

.

This is the form of the generating function used as an example in [PW1]. A weak arctic circle theorem
like ours for groves follows directly from that example. Probabilities throughout the diamond could be
extracted from this function in principle, though the analysis is more difficult.
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4. Further speculation on statistics of groves

As mentioned, we hope to apply the methods of Pemantle and Wilson to determine asymptotic proba-
bilities throughout a random grove. Based on computer experiments and the similarity of groves and Aztec
diamond tilings seen so far, we believe a formula for such probabilities exists.

Another future aim is to apply the methods of growth models and statistical mechanics to groves, in the
style of Johansson [J1], [J2]. One clever way for determining the boundary of the frozen region for Aztec
diamond tilings is to look at a frozen corner as a randomly growing Young diagram. See [JPS] for the first
description of this interpretation. A nearly identical projection of the frozen region of a grove yields some
sort of randomly growing Young diagram, but it seems to follow more intricate rules of growth than those
of Aztec diamond tilings.

In [CEP], the authors considered non-uniform distributions on the set of all tilings of the Aztec diamond.
In the shuffling algorithm, rather than having horizontal or vertical tiles chosen with equal probability, the
choice is biased towards one type of tile or the other. In this situation, there still appear frozen regions and
a temperate zone, but the boundary is no longer a circle, but an ellipse. By analogy, we have also considered
biased groves. Rather than making the random choice in grove shuffling be uniform, we make one choice
with probability α, another with probability β and the third with probability γ = 1 − α − β. This bias
emerges in the generating function for creation rates as:

F (x, y, z) =
1

1 + xyz − α(x + yz)− β(y + xz)− γ(z + xy)
.

The boundary from temperate zone to frozen regions generalizes from a circle to an ellipse just as in the
Aztec diamond case, here given by the intersection of the plane x+ y + z = −1 with the surface

rs+ rt+ st =
r2 + s2 + t2

2
,

where r = (1− α)x, s = (1− β)y, and t = (α+ β)z.
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The Equivariant Orlik-Solomon Algebra

Nicholas Proudfoot

Abstract. Given a real hyperplane arrangement A, the complement M(A) of the complexification

of A admits an action of � 2 by complex conjugation. We define the equivariant Orlik-Solomon

algebra of A to be the � 2-equivariant cohomology ring of M(A) with coefficients in � 2. We give

a combinatorial presentation of this ring, and interpret it as a deformation of the ordinary Orlik-

Solomon algebra into the Varchenko-Gel′ fand ring of locally constant � 2-valued functions on the

complement M � (A) of A in
� n. We also show that the � 2-equivariant homotopy type of M(A)

is determined by the oriented matroid of A. As an application, we give two examples of pairs of

arrangements A and A′ such thatM(A) andM(A′) have the same nonequivariant homotopy type,

but are distinguished by the equivariant Orlik-Solomon algebra.

1. Introduction

Let A = {H1, . . . , Hn} be an arrangement of n hyperplanes in Cd, with Hi = ω−1
i (0) for some affine

linear map ωi : CdΩ̃C. Let M(A) denote the complement of A in Cd. It is a fundamental problem in the
study of hyperplane arrangements to study the extent to which the topology ofM(A) is determined by the
combinatorics of A.

Let CA denote the central arrangement of hyperplanes in Cd+1 given by first adding a “hyperplane at
infinity” to A to produce an arrangement of hyperplanes in CP d, and then taking its cone. The pointed
matroid of A is defined to be the matroid of dependence relations among the hyperplanes of CA, along with
a specified basepoint corresponding to the cone over the hyperplane at infinity [F2]. Geometrically, the
pointed matroid encodes two types of data:

(1) which subsets S ⊆ {1, . . . , n} have the property that⋂
i∈S Hi = ∅, and

(2) which subsets S ⊆ {1, . . . , n} have the property that
codim

⋂
i∈S Hi > |S|.

Definition 1.1. The Orlik-Solomon algebra A(A;R) is the cohomology ring H∗(M(A);R) of the comple-

ment of the complexified arrangement with coefficients in the ring R.
For each i ≤ n, let ei = ω∗i [R+] ∈ A(A;R) be the pullback of the generator [R+] ∈ H1(C∗;R) under the

map ωi :M(A)Ω̃C∗ = C \ {0}. The following theorem, due to Orlik and Solomon, states that the elements
e1, . . . , en generate A(A;R), and gives explicit relations in terms of the pointed matroid of A. We give here
a simplified version by working only with the coefficient ring R = Z2, because this is the version that will
extend well to the equivariant setting.

1991 Mathematics Subject Classification. 52C35.

Key words and phrases. hyperplane arrangements, equivariant cohomology.

239



240 THE EQUIVARIANT ORLIK-SOLOMON ALGEBRA

Theorem 1.2. [OT] Consider the linear map ∂ =
∑n

i=1
∂

∂ei
from Z2[e1, . . . , en] to itself, lowering degree

by 1. The Orlik-Solomon algebra A(A; Z2) is isomorphic to Z2[e1, . . . , en]
/
I, where I is generated by the

following three families of relations:

1) e2i for i ∈ {1, . . . , n}

2)
∏

i∈S

ei if
⋂

i∈S

Hi = ∅

3) ∂
∏

i∈S

ei if
⋂

i∈S

Hi is nonempty with codimension greater than |S|.

Now suppose that our arrangement A is defined over the real numbers. More precisely, suppose that ωi

restricts to a map ωi : RdΩ̃R for all i. Let

H+
i = {p | ωi(p) ≥ 0} and H−i = {p | ωi(p) ≤ 0},

both half-spaces in Rd with boundary Hi. The pointed oriented matroid of A is defined to be the oriented
matroid with basepoint given by the dependence relations of CA. Like the pointed matroid, the pointed
oriented matroid also encodes two types of geometrical data:

(1) which pairs S+, S− ⊆ {1, . . . , n} have the property that
⋂

i∈S+ H
+
i ∩

⋂
j∈S− H

−
j = ∅, and

(2) which pairs S+, S− ⊆ {1, . . . , n} have the property that⋂
i∈S+ H

+
i ∩

⋂
j∈S− H

−
j is nonempty and contained in some hyperplane.

In this paper we study the action of Z2 = Gal(C/R) onM(A) by complex conjugation, with fixed point
setMR(A) ⊆ Rd equal to the complement of the real loci of the hyperplanes. This is an enhancement of the
topological data of A, just as the pointed oriented matroid is an enhancement of the combinatorial data. It
is therefore natural to make the following definition.

Definition 1.3. The equivariant Orlik-Solomon algebra A2(A,Z2) of a hyperplane arrangement defined over

R is the equivariant cohomology ring H∗
Z2

(M(A); Z2).
In Section 3 we give a presentation of the equivariant Orlik-Solomon algebra in terms of the pointed

oriented matroid of A, analogous to Theorem 1.2.1 Moreover, we interpret A2(A,Z2) as a deformation from
the ordinary Orlik-Solomon algebra A(A; Z) to the Varchenko-Gel ′fand ring V G(A; Z2), which is defined
to be the ring of locally constant functions from MR(A) to Z2. We thus recover by independent means
the presentation of V G(A; Z2) given in [VG], and provide a topological explanation for the parallels that
Varchenko and Gel′fand observe between the the rings A(A; Z) and V G(A; Z2). Note that, while the Orlik-
Solomon algebra is super-commutative and the Varchenko-Gel′fand ring is commutative, these two notions
agree in characteristic 2.

A celebrated theorem of Salvetti [Sa] says that if A is central and essential, then M(A) is homotopy
equivalent to a simplicial complex that can be constructed from the oriented matroid2 ofA (see [Sa], [Pa], and
[GR]). In Section 4, we show that this simplicial complex has a natural, combinatorially defined action of Z2,
and that the homotopy equivalence is equivariant with respect to this action. Hence the oriented matroid of
A in fact determines the equivariant homotopy type ofM(A). This observation provides an explanation for
the recent discovery of Huisman that the equivariant fundamental group of a line arrangement is determined
by its pointed oriented matroid [Hu].

We conclude by discussing three examples which illustrate the similarities and differences between the
equivariant and nonequivariant pictures. In Example 5.2 we consider the famous first example of two real
arrangements with different pointed matroids, but with homotopy equivalent complements [F1]. We show

1A special case of this presentation first appeared in [HP, 5.5], using the geometry of hypertoric varieties.
2If A is central, the oriented matroid and pointed oriented matroid encode the same data.
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that these two arrangements are distinguished by the equivariant Orlik-Solomon algebra, hence the homo-
topy equivalence cannot be made equivariant. In Example 5.4, we consider two arrangements whose pointed
oriented matroids are related by a flip [F1]. This implies that their complements are homotopy equivalent,
and that their unoriented pointed matroids are isomorphic, but once again their equivariant homotopy types
are distinguished by the equivariant Orlik-Solomon algebra. We conclude with a problem and a conjecture
regarding the relationship between the combinatorial data and the equivariant topology of a real arrangement.

Acknowledgments. The author is grateful to Graham Denham for pointing out the similarity between the
rings described in [HP] and [VG], and to Michael Falk for his help in understanding many examples.

2. Equivariant cohomology

In this section we review some basic definitions and results from [Bo]. Let X be a topological space
equipped with an action of a group G.

Definition 2.1. Let EG be a contractible space with a free G-action. Then we put

XG := X ×G EG = (X ×EG)/G

(well-defined up to homotopy equivalence), and define the G-equivariant cohomology of X

H∗G(X) := H∗(XG).

The G-equivariant map from X to a point induces a map on cohomology in the other direction, hence
H∗G(X) is a module over H∗G(pt) ∼= H∗(BG), where BG = EG/G is the classifying space for G. Indeed, H∗G
is a contravariant functor from the category of G-spaces to the category of H∗G(pt)-modules.

Example 2.2. If G = Z2, then we may take EG = S∞ and BG = S∞/Z2 = RP∞. Then H∗
Z2

(pt; Z2) =

H∗(RP∞; Z2) ∼= Z2[x].
Suppose that X is a finite-dimensional manifold, and let Y ⊆ X be a G-invariant submanifold. We

denote by [Y ] ∈ H∗G(X) the cohomology class represented in Borel-Moore homology by the finite-codimension
submanifold YG ⊆ XG. This will be our principal means of understanding specific equivariant cohomology
classes in this paper. We will need two technical theorems about equivariant cohomology, both of which we
state below. Let X be a Z2-space, and let F ⊆ X be the fixed point set.

Theorem 2.3. [Bo, §XII, 3.5] Suppose that F is nonempty, the induced action of Z2 on H∗(X ; Z2) is

trivial, and H∗(X ; Z2) is generated in degree 1. Then the Leray-Serre spectral sequence for the fiber bundle

X↪→XZ2Ω̃RP∞ collapses at the E2 term.

Corollary 2.4. Under the hypotheses of Theorem 2.3, any additive basis from H∗(X ; Z2) lifts to a Z2[x]-

basis for H∗
Z2

(X ; Z2) (and any set of lifts will do). In particular, H∗
Z2

(X ; Z2) is a free module over Z2[x].

Theorem 2.5. [Bo, §IV, 3.7(b)] The restriction map

H∗Z2
(X ; Z2)Ω̃H

∗
Z2

(F ; Z2) ∼= H∗(F ; Z2)[x]

is an isomorphism in all degrees greater than the dimension of X.
Corollary 2.4 says that we may interpret H∗

Z2
(X ; Z2) as a flat family of rings over the Z2 affine line. The

following corollary says that this family is a deformation of H∗(X ; Z2) into H∗(F ; Z2).

Corollary 2.6. Under the hypotheses of Theorem 2.3,

H∗(X ; Z2) ∼= H∗Z2
(X ; Z2)/〈x〉

and

H∗(F ; Z2) ∼= H∗Z2
(X ; Z2)/〈x− 1〉.
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Proof. The first statement follows immediately from Corollary 2.4. For the second statement, consider

the ring H∗
Z2

(X ; Z2)[x
−1] obtained by formally inverting x. Theorem 2.5 tells us that the restriction map

H∗Z2
(X ; Z2)[x

−1]Ω̃H∗Z2
(F ; Z2)[x

−1] ∼= H∗(F ; Z2)[x, x
−1]

is an isomorphism in high degree. But this map commutes with multiplication by x and x−1, so it must be

an isomorphism in every degree. Setting x equal to 1, we obtain the desired result. �

The following example will be fundamental to our applications.

Example 2.7. Let X = C∗, with Z2 acting by complex conjugation. Since X deformation-retracts equiv-

ariantly onto the compact space S1, Theorem 2.3 applies. The image of x under the standard map

Z2[x] = H∗
Z2

(pt,Z2)Ω̃H
∗
Z2

(X ; Z2) is the Z2-equivariant Euler class of the topologically trivial real line bundle

with a nontrivial Z2 action. This bundle has a Z2-equivariant section, transverse to the zero section, van-

ishing exactly on the real points of X , and is therefore represented by the submanifold R∗ ⊆ C∗. Abusing

notation, we will write x = [R∗] ∈ H∗
Z2

(X ; Z2). Let y = [R+] ∈ H∗
Z2

(X ; Z2). Then x − y is represented by

R−, therefore y(x − y) = 0. Corollary 2.4 says that H∗
Z2

(X ; Z2) is additively generated by x and y. Since

Z2[x, y]/〈y(x− y)〉 is already a free module of rank 2 over Z2[x], Corollary 2.4 tells us that there can be no

more relations.

3. The equivariant Orlik-Solomon algebra

We now give a combinatorial presentation of the equivariant Orlik-Solomon algebra.

Theorem 3.1. The ring A2(A; Z2) is isomorphic to Z2[e1, . . . , en, x]
/
J , where J is generated by the fol-

lowing three families of relations: 3

1) ei(x− ei) for i ∈ {1, . . . , n}

2)
∏

i∈S+

ei ×
∏

j∈S−

(x− ej) if
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j = ∅

3) x−1


∏

i∈S+

ei ×
∏

j∈S−

(x− ej)−
∏

i∈S+

(x− ei)×
∏

j∈S−

ej




if
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j is nonempty and contained

in some hyperplane Hk.

Proof. Let y = [R+] ∈ H∗
Z2

(C∗; Z2), and let

ei = ω∗i (y) ∈ A2(A; Z2),

represented by the submanifold

Y +
i = ω−1

i (R+).

Let x ∈ A2(A; Z2) be the image of the generator of H∗
Z2

(pt; Z2); by functoriality, we have x = ω∗i (x) for all

i. Recall from Example 2.7 that [R−] = x− y ∈ H∗
Z2

(C∗; Z2), hence

x− ei = ω∗(x− y) ∈ A2(A; Z2)

3Note that all of these relations are polynomial; the x−1 in the third relation cancels.
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is represented by the submanifold

Y −i = ω−1(R−).

Theorem 1.2 tells us that e1, . . . , en are lifts of ring generators for the ordinary Orlik-Solomon algebra

A(A; Z2). Since the manifolds Y +
i are stable under the action of Z2, the induced action of Z2 on A(A; Z2)

is trivial. The space M(A) has a compact Z2-equivariant deformation retract, therefore Corollary 2.3 tells

us that A2(A; Z2) is generated as a ring by the classes ei and x. We must now check that each of the three

families of generators of J do indeed vanish in A2(A; Z2), and that they generate all of the relations.

The first family of relations follows from the fact that Y +
i ∩Y −i = ∅ for all i ∈ {1, . . . , n}. For the second

family, we must show that if ⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j = ∅,

then ⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j = ∅.

Suppose that

p ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j ,

in other words ωi(p) ∈ R+ for all i ∈ S+ and ωj(p) ∈ R− for all j ∈ S−. Then the real part

Re(p) ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j ,

hence the intersection is not empty.

The argument for the third family is similar. First, note that since A2(A; Z2) is free over Z2[x], it is

sufficient to show that ∏

i∈S+

ei ×
∏

j∈S−

(x − ej)−
∏

i∈S+

(x− ei)×
∏

j∈S−

ej = 0.

We treat each of the two terms separately. Suppose that

p ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j .

Then, as above, we have

Re(p) ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j .

Furthermore, there exists δ > 0 such that for any q ∈ Rn of norm less than δ,

p+ q ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j ,

and hence

Re(p) + q ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−j .

Since {Re(p + q) | |q| < δ} is an open subset of Rn, the intersection
⋂

i∈S+ H
+
i ∩

⋂
j∈S− H

−
j cannot be

contained in a hyperplane. Hence we have
∏

i∈S+

ei ×
∏

j∈S−

(x− ej) =
∏

i∈S+

(x− ei)×
∏

j∈S−

ej = 0.
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Now we must show that we have found all of the relations. Let

ψ : Z2[e1, . . . , en, x]Ω̃Z2[e1, . . . , en]

be the map given by sending x to zero, and note that ψ(J ) = I. Now suppose that α ∈ Z2[e1, . . . , en, x]

is a relation in A2(A; Z2) that is not in the ideal J , and choose α of minimal degree. By Corollary 2.6 we

must have ψ(α) ∈ I, hence there exists β ∈ J with ψ(α − β) = 0. This implies that α − β = xγ for some

γ ∈ Z2[e1, . . . , en, x]. Since α and β are both relations in A2(A; Z2), and A2(A; Z2) is free over Z2[x], γ must

also be a relation. Since β is in J and α is not, γ cannot be in J . Since deg γ = degα− 1, we have reached

a contradiction. �

By Corollary 2.6, A2(A; Z2) is a flat family of rings parametErized by the affine line Spec Z2[x], special-
izing at x = 0 to H∗(M(A); Z2) = A(A; Z2), and at x = 1 to H∗(MR(A); Z2) = V G(A; Z2). In particular,
this provides a topological explanation for the fact that the dimension of the Orlik-Solomon algebra is equal
to the number of connected components ofMR(A). By setting x = 1 in Theorem 3.1 we obtain a nontrivial
presentation of V G(A; Z2), first given in the central case (over the integers) in [VG]. Varchenko and Gel′fand

interpret ei ∈ V G(A; Z2) as the ith Heaviside function MR(A)Ω̃R, restricting to 1 on MR(A) ∩H+
i and 0

on MR(A) ∩ H−i . These functions are easily seen to generate the ring V G(A; Z2), and the three families
of relations are clear, but the proof that there are no other relations is nontrivial. Varchenko and Gel′fand
observe that this presentation defines a filtration on V G(A; Z2) with A(A; Z2) as its associate graded. This
is also a consequence of Corollaries 2.4 and 2.6; this phenomenon is explored in greater detail in [Ca].

Remark 3.2. Our presentations of V G(A; Z2) and A2(A; Z2) depend on the coorientations of the hyper-

planes, while the isomorphism classes of the rings themselves do not. Reversing the orientation of the

hyperplane Hi corresponds to changing every appearance of ei to x− ei in the generators of J .

4. The Salvetti complex

Let A be an essential central arrangement in Rd. Salvetti [Sa] has constructed a simplicial complex
from a poset Sal(A), depending only on the oriented matroid of A, which is homotopy equivalent to the
complement M(A) of the complexification of A. In this section we define a combinatorial action of Z2 on
Sal(A), and show that the homotopy equivalence is equivariant.

The hyperplanes of A subdivide Rd into faces, open in their supports, which form a poset F ordered
by reverse inclusion. The minimal elements of F are the connected components of MR(A), and {0} is the
unique maximal element. The Salvetti poset Sal(A) is a poset consisting of elements of the form

{(F,C) | C minimal and C ≤ F}.

The partial order is determined by putting (F ′, C ′) ≤ (F,C) if and only if F ′ ≤ F and C ′ = F ′C, where the
latter equality means that C and C ′ lie on the same side of every hyperplane containing F ′. The Salvetti
complex |Sal(A)| is defined to be the order complex of this poset.

The poset Sal(A) admits an action of Z2 given by setting (F,C)∗ = (F, C̃), where C̃ is obtained from
C by reflecting it over all of the hyperplanes that contain F . In [GR], Sal(A) is defined as a subset of the
set of all functions from the ground set of the oriented matroid to the set {±1,±i}. In this language, our
Z2-action is simply complex conjugation, and is easily seen to be an invariant of the oriented matroid. This
action induces an action of Z2 on the Salvetti complex |Sal(A)|.
Theorem 4.1. The complex |Sal(A)| is equivariantly homotopy equivalent to M(A). In particular, the

equivariant homotopy type of M(A) is determined by the oriented matroid associated to A.
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Proof. For every F ∈ F , choose a point x(F ) ∈ F ⊆ Rd. Each element of Sal(A) determines a vertex

in the complex |Sal(A)|. For all (F,C) ∈ Sal(A), let

V (F,C) =








∑

C′≤F

λC′x(C ′)

∣∣∣∣ λC′ > 0



 if F 6= {0}

Rd if F = {0},
and let

W (F,C) = {x ∈ Rd | x and C lie on the same side

of every hyperplane containing F}.
Paris [Pa] shows that

U =
{
V (F,C) + iW (F,C)

∣∣∣ (F,C) ∈ Sal(A)
}

is an open cover of M(A) with nerve |Sal(A)|, and that any nonempty intersection of open sets from U is

contractible, hence concluding that M(A) is homotopy equivalent to |Sal(A)|. To extend this proof to the

equivariant context, we need only observe that W (F, C̃) = W (F,C), and V (F, C̃) = −V (F,C). Both of

these equalities are clear from the definitions. �
Remark 4.2. The Salvetti complex may be defined for an arbitrary oriented matroid, which may not be

realizable by a hyperplane arrangement (see for example [BLSWZ]. We can then define the equivariant

Orlik-Solomon algebra of an arbitrary oriented matroid to be the Z2-equivariant cohomology ring of its

Salvetti complex. Theorem 4.1 implies that this definition agrees with our original one if the oriented

matroid is realizable.

5. Examples

In this section we discuss three examples. In the first and third, the equivariant Orlik-Solomon algebra
successfully distinguishes two arrangements with (nonequivariantly) homotopy equivalent complements. In
the second example, the equivariant Orlik-Solomon algebra fails to distinguish two combinatorially distinct
arrangements. In all three, we work with affine arrangements to keep dimensions as low as possible. The
analogous central examples can be understood via the following proposition.

Proposition 5.1. There is a Z2-equivariant diffeomorphism M(CA) ∼=M(A)× C∗, and

A2(CA; Z2) ∼= A2(A; Z2)⊗Z2[x] Z2[x, y]/y(x− y).

Proof. The standard diffeomorphism M(CA) ∼= M(A) × C∗, found for example in [OT], is Z2-

equivariant. The second half of the proposition is simply the statement of the equivariant Künneth theorem

[Se, 7.4], combined with Example 2.7. �

Example 5.2. The example of Figure 1 was introduced by Falk [F1, 3.1]. The arrangements A and A′ have

nonisomorphic pointed matroids, but their complements are homotopy equivalent. In particular, they cannot

be distinguished by their Orlik-Solomon algebras. We show that their equivariant Orlik-Solomon algebras are

nonisomorphic, therefore the homotopy equivalence between their complements cannot be Z2-equivariant.

Choose coorientations so that the intersections ∩i≤5H
−
i are equal to the shaded regions. Then

A2(A; Z2) = Z2[e1, . . . , e5, x]/J and A2(A′; Z2) = Z2[e1, . . . , e5, x]/J ′,
where

J =

�
e1(x− e1), . . . , e5(x− e5), e1e2, e1(x− e3)e4, e1e3e5, e1e4e5, e2e3(x− e4),

e2(x− e4)(x− e5), e2(x− e3)(x− e5), e3e4 + e3e5 + e4e5 + e4x �
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A A′

Figure 1. Two arrangements whose complements are homotopy equivalent, but not equivariantly.

and

J ′ =

�
e1(x− e1), . . . , e5(x− e5), e1e2e4, e1e2e5, e1e3e4, e1e3e5, e1e4(x− e5), e2(x− e3)e4,

e2(x− e3)e5, e2(x− e4)e5, e1e2 + e1e3 + e2e3 + e2x, e3e4 + e3e5 + e4e5 + e4x � .

Using Macaulay 2 [M2], we have found that the element e2 + e3 ∈ A2(A′; Z2) has its annihilator ideal

generated by e4 + e5, e3 + e5 +x, and e2e5, and that no linear element in A2(A; Z2) has its annihilator ideal

generated by two linear elements and one quadratic element. Hence the two graded rings are not isomorphic.

These two arrangements are generic rank 2 truncations of a pair of rank 3 arrangementsA3 and A′3 which

have diffeomorphic complements by a general construction relating parallel connections to direct sums (see

[EF, Thm 2] and [F2, 3.8]). The first arrangement A3 is given by the equation (x+1)(x−1)y(y+z)(y−z) =

0, with A obtained from A3 by setting z = x. The second arrangement A′3 is given by the equation

(2x+ y− z)(2x− y+ z)x(x− y)(x+ y) = 0, with A′ obtained from A′3 by setting z = 1. The diffeomorphism

betweenM(A3) andM(A′3) given in [EF] is easily seen to be Z2-equivariant, as it is essentially derived from

repeated applications of the diffeomorphism of Proposition 5.1. Furthermore, it is not hard to produce an

explicit isomorphism between A2(A3; Z2) and A2(A′3; Z2). This shows that a theorem of Pendergrass [F2,

3.11], which states that truncation of matroids preserves isomorphisms of Orlik-Solomon algebras, does not

extend to the equivariant setting.

Example 5.3. Consider the two arrangements of lines in R2 shown in Figure 2. Choose coorientations such

4

1

3

1

2

2

3

4PSfrag replacements

A A′

Figure 2. Two combinatorially distinct arrangements with isomorphic equivariant Orlik-

Solomon algebras.

that the intersections ∩i≤4H
−
i are equal to the two shaded regions. Then A2(A; Z2) is isomorphic to

Z2[e1, . . . , e4, x]
/
〈e1(x− e1), . . . , e4(x− e4), e2e3, e1(x− e2)e4, e1e3e4〉
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and H∗
Z2

(M(A′); Z2) is isomorphic to

� 2[e1, . . . , e4, x] � 〈e1(x− e1), . . . , e4(x− e4), e2e3, (x− e1)e2(x− e4), e1e3e4〉 .

There is an isomorphism φ : A2(A; Z2)Ω̃A2(A′; Z2) of graded Z2[x]-modules given by the equations

φ(e1) = e1 + e2, φ(e2) = e2 + e3 + x, φ(e3) = e3, and φ(e4) = e2 + e4.

The pointed oriented matroids associated to A and A′ are not isomorphic, hence the equivariant Orlik-

Solomon algebra is not a complete invariant.
The pointed oriented matroids corresponding to the arrangements in Example 5.3, or the oriented

matroids of the cones of these two arrangements, are related by a flip. Geometrically, this means that A′
can be obtained from A by translating one of the hyperplanes from one side of a vertex to another. (For
a precise definition of flips, see [BLSWZ, §7.3].) Falk [F1] has shown that any two real line arrangements
related by a flip have homotopy equivalent complements, and Example 5.3 suggests that this phenomenon
might extend to the equivariant setting. The following example shows that it does not.

Example 5.4. Consider the two line arrangements shown in Figure 3, obtained from Example 5.3 by adding

a vertical line on the far left to each arrangement.4 Clearly A and A′ are still related by a flip. We have

4

1

3

1

2

2

3

4

55

PSfrag replacements

A A′

Figure 3. Two arrangements related by a flip with nonisomorphic Orlik-Solomon algebras.

A2(A; Z2) ∼= Z2[~e, x]

/〈
e1(x− e1), e2(x− e2), e3(x− e3), e4(x − e4),
e5(x− e5), e2e3, (x− e1)e5, e1(x− e2)e4,

e1e3e4, (x− e2)e4e5, e3e4e5

〉

and

A2(A′; Z2) ∼= Z2[~e, x]

/〈
e1(x− e1), e2(x− e2), e3(x − e3), e4(x− e4),
e5(x− e5), e2e3, (x− e1)e5, (x− e1)e2(x− e4),

e1e3e4, (x− e2)e4e5, e3e4e5

〉
.

We have checked, using Macaulay 2 [M2], that the annihilator of the element e2 ∈ A2(A; Z2) is generated

by two linear elements (namely e3 and x− e2) and nothing else, while none of the (finitely many) elements

of A2(A′; Z2) has this property. Hence the two rings are not isomorphic, and M(A) is not equivariantly

homotopy equivalent toM(A′). From this example we conclude that the equivariant Orlik-Solomon algebra

of an arrangement is not determined by the pointed unoriented matroid.

Problem 5.5. In Example 5.3, are M(A) and M(A′) equivariantly homotopy equivalent?

4This example appeared first in [HP].
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The answer is likely no, and one tool for showing this may be the equivariant fundamental group
πZ2

1 (M(A)) := π1(M(A)Z2), whereM(A)Z2 is defined in Definition 2.1. This group is a semidirect product
of π1(M(A)) with Z2, where Z2 acts on π1(M(A)) by inverting the standard generators. Huisman [Hu] has
given a presentation of this group when d = 2.

All of the arrangements that we have discussed, aside from the rank 3 arrangements to which we refer
at the end of Example 5.2, have connected pointed matroids. Eschenbrenner and Falk [EF] conjecture that
if A is a complex central arrangement with connected matroid, then the matroid of A is determined by
the homotopy type of M(A). Assuming a negative answer to Problem 5.5, we conclude with the following
analogous conjecture.

Conjecture 5.6. If A is a real central arrangement with connected matroid, then the oriented matroid of

A is determined by the equivariant homotopy type of M(A).
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A Polynomiality Property for Littlewood-Richardson Coefficients

Etienne Rassart

Abstract. We present a polynomiality property of the Littlewood-Richardson coefficients cν
λµ. The

coefficients are shown to be given by polynomials in λ, µ and ν on the cones of the chamber complex

of a vector partition function. We give bounds on the degree of the polynomials depending on the

maximum allowed number of parts of the partitions λ, µ and ν. We first express the Littlewood-

Richardson coefficients as a vector partition function. We then define a hyperplane arrangement

from Steinberg’s formula, over whose regions the Littlewood-Richardson coefficients are given by

polynomials, and relate this arrangement to the chamber complex of the partition function. As

an easy consequence, we get a new proof of the fact that cNν
Nλ Nµ is given by a polynomial in N ,

which partially establishes the conjecture of King, Tollu and Toumazet [KTT03] that cNν
Nλ Nµ is a

polynomial in N with nonnegative rational coefficients.

Résumé. Nous présentons une propriété de polynomialité des coefficients de Littlewood-Richardson

cν
λµ. Nous démontrons que ces coefficients sont donnés par des fonctions polynomiales en λ, µ et ν

dans les cônes du complexe d’une fonction de partition vectorielle. Nous donnons des bornes sur les

degrés de ces polynômes en termes du nombre de parts des partitions λ, µ and ν. Nous exprimons

premièrement les coefficients de Littlewood-Richardson en termes d’une fonction de partition vec-

torielle. Nous définissons ensuite un arrangement d’hyperplans à partir de la formule de Steinberg,

sur les régions duquel les coefficients de Littlewood-Richardson sont donnés par des polynômes, puis

faisons le lien entre cet arrangement et le complexe de cônes de la fonction de partition vectorielle.

Comme conséquence simple, nous obtenons une preuve élémentaire du fait que cNν
Nλ Nµ est donné

par un polynôme en N , ce qui établit partiellement une conjecture de King, Tollu et Toumazet

[KTT03], voulant que cNν
Nλ Nµ soit un polynôme en N avec des coefficients rationnels nonnégatifs.

1. Introduction

Littlewood-Richardson coefficients appear in many fields of mathematics. In combinatorics, they appear
in the theory of symmetric functions (see [Mac95, Sta99]). The Schur symmetric functions form a linear
basis of the ring of symmetric functions, and the Littlewood-Richardson coefficients express the multiplication
rule,

(1.1) sλ · sµ =
∑

ν

cνλµsν ,

1991 Mathematics Subject Classification. Primary 05E15; Secondary 05E05, 52B20.

Key words and phrases. algebraic combinatorics, tensor product multiplicities, vector partition functions.
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as well as how to write skew Schur functions in terms of the Schur function basis:

(1.2) sν/λ =
∑

µ

cνλµsµ .

In the representation theory of the general and special linear groups, the characters of the irreducible
polynomial representations of GLkC are Schur functions in appropriate variables [FH91, Mac95]. As such,
the Littlewood-Richardson coefficient cνλµ gives the multiplicity with which the irreducible representation Vν

of GLkC appears in the tensor product of the irreducible representations Vλ and Vµ:

(1.3) Vλ ⊗ Vµ =
⊕

ν

cνλµVν .

Littlewood-Richardson coefficients also appear in algebraic geometry: Schubert classes form a linear
basis of the cohomology ring of the Grassmannian, and the Littlewood-Richardson coefficients again express
the multiplication rule [Ful97]:

(1.4) σλ · σµ =
∑

ν

cνλµσν .

In previous work with Billey and Guillemin [BGR03], we studied the Kostka numbersKλµ, which appear
when expressing the Schur function sλ in terms of the monomial symmetric functions: sλ =

∑
µKλµmµ.

Kostka numbers also give the weight multiplicities in the weight space decomposition Vλ =
⊕

µ

(
Vλ

)
µ

of the

irreducible representation Vλ of slkC:

(1.5) Kλµ = dim
(
Vλ

)
µ
.

We showed there that the Kostka numbers are given by a vector partition function and that this implies
that the function (λ, µ) 7−→ Kλµ is quasipolynomial in the cones of a chamber complex. We then defined a
hyperplane arrangement, the Kostant arrangement, over whose regions this function was given by a poly-
nomial. This allowed us to prove that the quasipolynomials in the cones were actually polynomials. As a
corollary, we obtained an alternative proof to that of Kirillov that the function N 7→ KNλ Nµ is a polynomial
in N for every fixed λ and µ.

In [KTT03], King, Tollu and Toumazet conjecture that the Littlewood-Richardson coefficients exhibit
a similar “stretching” property:

Conjecture 1.1. (King, Tollu, Toumazet [KTT03]) For all partitions λ, µ and ν such that cν
λµ > 0

there exists a polynomial P ν
λµ(N) in N with nonnegative rational coefficients such that P ν

λµ(0) = 1 and

P ν
λµ(N) = cNν

Nλ Nµ for all positive integers N .

In [DW02], Derksen and Weyman prove the polynomiality part of this conjecture using semi-invariants
of quivers. They call the functions P ν

λµ(N) (for fixed λ, µ and ν), Littlewood-Richardson polynomials.

Here we extend the results of [BGR03] to the case of Littlewood-Richardson coefficients. We first
express Littlewood-Richardson coefficients as a vector partition function (Theorem 2.3). This is done using a
combinatorial model (the hive model [Buc00, KT99]) for computing the Littlewood-Richardson coefficients.
This means that these coefficients are quasipolynomial in λ, µ and ν over the conical cells of a chamber
complex LRk.

From Steinberg’s formula [Ste61], giving the multiplicities with which irreducible representations appear
in the decomposition into irreducibles of the tensor product of two irreducible representations of a complex
semisimple Lie algebra, we then define a hyperplane arrangement, the Steinberg arrangement SAk. We show
that the Littlewood-Richardson coefficients are given by a polynomial over the regions of this arrangement
(Proposition 3.3).

Finally, by comparing the chamber complex LRk with the Steinberg arrangement SAk, we are able to
show that the quasipolynomials in the cones of LRk are actually polynomials in λ, µ and ν, and we provide
degree bounds (Theorem 4.1). Because we are working in cones, this provides an alternative proof to that of
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[DW02] of the polynomiality part of the conjecture of King, Tollu and Toumazet; we don’t know whether
the polynomials P ν

λµ have nonegative coefficients or not. However, we get global polynomiality results in a

chamber complex instead of polynomiality on fixed rays. We understand that Knutson [Knu03] also proved
polynomiality in cones using symplectic geometry techniques.

1.1. Type A root systems and Littlewood-Richardson coefficients. The simple Lie algebra slkC
(of type Ak−1) is the subalgebra of glkC ∼= End(Ck) consisting of traceless k × k matrices over C. We will
take as its Cartan subalgebra h its subspace of traceless diagonal matrices. The roots and weights live
in the dual h∗ of h, which can be identified with the subspace x1 + · · · + xk = 0 of Rk. The roots are
{ei − ej : 1 ≤ i 6= j ≤ k}, and we will choose the positive ones to be ∆+ = {ei − ej : 1 ≤ i < j ≤ k}. The
simple roots are then αi = ei − ei+1, for 1 ≤ i ≤ k − 1, and for these simple roots, the fundamental weights
are

(1.6) ωi =
1

k
(k − i, k − i, . . . , k − i︸ ︷︷ ︸

i times

,−i,−i, . . . ,−i︸ ︷︷ ︸
k − i times

) , 1 ≤ i ≤ k − 1 .

The fundamental weights are defined such that 〈αi, ωj〉 = δij , where 〈·, ·〉 is the usual dot product. The
integral span of the simple roots and the fundamental weights are the root lattice ΛR and the weight lattice
ΛW respectively. The root lattice is a finite index sublattice of the weight lattice, with index k − 1.

For our choice of positive roots, δ = 1
2

∑
α∈∆+

α =
∑k−1

j=1 ωj = 1
2 (k − 1, k − 3, . . . ,−(k − 3),−(k − 1)).

The Weyl group for slkC is the symmetric group Sk acting on {e1, . . . , ek} (i.e. σ(ei) = eσ(i)), and with the

choice of positive roots we made, the fundamental Weyl chamber will be C0 = {(λ1, . . . , λk) :
∑k

i=1 λi =
0 and λ1 ≥ · · · ≥ λk}. The action of the Weyl group preserves the root and weight lattices. Weights lying
in the fundamental Weyl chamber are called dominant, and we will call elements of the Weyl orbits of the
fundamentals weights conjugates of fundamental weights.

The finite dimensional representations of slkC, or SLkC, are indexed by the dominant weights ΛW ∩C0,
and for a given dominant weight λ, there is a unique irreducible representation ρλ : slkC → gl(Vλ) with
highest weight λ, up to isomorphism. The finite dimensional polynomial representations of glkC, or GLkC,
are indexed by partitions with at most k parts, that is by sequences (λ1, . . . , λk) of integers satisfying
λ1 ≥ · · · ≥ λk ≥ 0. Two irreducible representations Vλ and Vµ of glkC restrict to the same irreducible
representation of slkC if λi−µi is some constant independent of i for all i. So the irreducible representations
of slkC correspond to equivalence classes of irreducible representations of glkC. Consider the map λ 7→ λ̄
given by

(1.7) (λ1, . . . , λk) 7−→ (λ1, . . . , λk)−
∑
λi

k
(1, 1, . . . , 1)︸ ︷︷ ︸

k times

.

Then the representations Vλ of glkC restricts to the irreducible representation Vλ̄ of slkC. Details about
the construction of the irreducible representations of SLkC and GLkC are well-known and can be found in
[Ful97] or [FH91], for example. We will denote by |λ| the sum

∑
λi (so λ is a partition of the integer |λ|).

We will also let l(λ) denote the number of nonzero parts of λ.
Given two irreducible representations Vλ and Vµ of GLkC, their tensor product Vλ ⊗ Vµ is again a

representation of GLkC, and we can decompose it in terms of irreducibles of GLkC:

(1.8) Vλ ⊗ Vµ =
⊕

ν

cνλµVν ,

where cνλµVν = Vν
⊕cν

λµ , for some nonnegative integer numbers cνλµ, called the Littlewood-Richardson coef-

ficients. The direct sum ranges over all partitions ν, but cνλµ = 0 unless |λ| + |µ| = |ν| and λ and µ are
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contained in ν. We have a similar decomposition for the tensor product of two irreducible representations
of slkC:

(1.9) Vλ̄ ⊗ Vµ̄ =
⊕

ν̄

mν̄
λ̄µ̄Vν̄ ,

for nonnegative integers mν̄
λ̄µ̄

, where the sum ranges over all dominant weights ν̄ ∈ C0.

There is a general formula due to Steinberg [Hum72, Ste61] giving the multiplicity with which an
irreducible representation Vν occurs in the tensor product of two irreducible representations Vλ and Vµ of a
complex semisimple Lie algebra. This will give us a way of computing the mν̄

λ̄µ̄
, and also the cνλµ, but first

we have to define the Kostant partitition function.

Definition 1.2. The Kostant partition function for a root system ∆, given a choice of positive roots ∆+, is

the function

(1.10) K(v) =
∣∣∣
{

(kα)α∈∆+ ∈ N|∆+| :
∑

α∈∆+

kαα = v
}∣∣∣ ,

i.e. K(v) is the number of ways that v can be written as a sum of positive roots.

Theorem 1.3. (Steinberg [Ste61])

(1.11) mν̄
λ̄µ̄ =

∑

σ∈Sk

∑

τ∈Sk

(−1)inv(στ)K(σ(λ̄ + δ) + τ(µ̄+ δ)− (ν̄ + 2δ)) ,

where inv(ψ) is the number of inversions of the permutation ψ.
Restricting equation (1.8) to SLkC, we get

(1.12) Vλ̄ ⊗ Vµ̄ =
∑

ν

cνλµVν̄ ,

and comparing with (1.9) gives

(1.13) cνλµ = mν̄
λ̄µ̄ .

Hence Steinberg’s formula also computes the Littlewood-Richardson coefficients, and we can further simplify
things by noticing that if we let 1k denote the vector (1, 1, . . . , 1) ∈ Rk, then

σ(λ̄+ δ) + τ(µ̄ + δ)− (ν̄ + 2δ)

=σ(λ̄) + τ(µ̄)− ν̄ + σ(δ) + τ(δ) − 2δ

=σ(λ − |λ|
k

1k) + τ(µ− |µ|
k

1k)− (ν − |ν|
k

1k) + σ(δ) + τ(δ) − 2δ

=σ(λ) − |λ|
k

1k + τ(µ)− |µ|
k

1k − ν +
|ν|
k

1k + σ(δ) + τ(δ) − 2δ

=σ(λ + δ) + τ(µ+ δ)− (ν + 2δ) +
1

k
(|ν| − |λ| − |µ|)1k

=σ(λ + δ) + τ(µ+ δ)− (ν + 2δ) .

In view of (1.11) and (1.13), this gives

(1.14) cνλµ =
∑

σ∈Sk

∑

τ∈Sk

(−1)inv(στ)K(σ(λ+ δ) + τ(µ+ δ)− (ν + 2δ)) .

In Section 3, we will use this formula to define a hyperplane arrangement over whose regions the
Littlewood-Richardson coefficients are given by polynomials in λ, µ and ν.
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1.2. Partition functions and chamber complexes. Partition functions arise in the representation
theory of the semisimple Lie algebras in the form of Kostant’s partition function, which sends a vector in the
root lattice to the number of ways it can be written down as a linear combination with nonnegative integer
coefficients of the positive roots. The Kostant partition function is a simple example of a more general class
of functions, called vector partition functions.

Definition 1.4. Let M be a d×n matrix over the integers, such that kerM ∩Rn
≥0 = 0. The vector partition

function (or simply partition function) associated to M is the function

φM :Zd−→N
b 7→ |{x ∈ Nn : Mx = b}|

The condition kerM ∩ Rn
≥0 = 0 forces the set {x ∈ Nn : Mx = b} to have finite size, or equivalently,

the set {x ∈ Rn
≥0 : Mx = b} to be compact, in which case it is a polytope Pb, and the partition function is

the number of integral points (lattice points) inside it.
Also, if we let M1, . . . ,Mn denote the columns of M (as column-vectors), and x = (x1, . . . , xn) ∈ Rn

≥0,

then Mx = x1M1 +x2M2 + · · ·+xnMn and for this to be equal to b, b has to lie in the cone pos(M) spanned
by the vectors Mi. So φM vanishes outside of pos(M).

It is well-known that partition functions are piecewise quasipolynomial, and that the domains of quasipoly-
nomiality form a complex of convex polyhedral cones, called the chamber complex. Sturmfels gives a very
clear explanation in [Stu95] of this phenomenon. The explicit description of the chamber complex is due to
Alekseevskaya, Gel’fand and Zelevinskĭı [AGZ98]. There is a special class of matrices for which partition
functions take a much simpler form. Call an integer d× n matrix M of full rank d unimodular if every non-
singular d × d submatrix has determinant ±1. For unimodular matrices, the chamber complex determines
domains of polynomiality instead of quasipolynomiality [Stu95].

It is useful for what follows to describe how to obtain the chamber complex of a partition function.
Let M be a d × n integer matrix of full rank d and φM its associated partition function. For any subset
σ ⊆ {1, . . . , n}, denote by Mσ the submatrix of M with column set σ, and let τσ = pos(Mσ), the cone
spanned by the columns of Mσ . Define the set B of bases of M to be

B = {σ ⊆ {1, . . . , n} : |σ| = d and rank(Mσ) = d} .
B indexes the invertible d× d submatrices of M . The chamber complex of φM is the common refinement of
all the cones τσ , as σ ranges over B (see [AGZ98]). A theorem of Sturmfels [Stu95] describes exactly how
partition functions are quasipolynomial over the chambers of that complex.

If we let MAn be the matrix whose columns are the positive roots ∆
(An)
+ of An, written in the basis of

simple roots, then we can write Kostant’s partition function in the matrix form defined above as

KAn(v) = φMAn
(v) .

The following lemma is a well-known fact about MAn and can be deduced from general results on
matrices with columns of 0’s and 1’s where the 1’s come in a consecutive block (see [Sch86]).

Lemma 1.5. The matrix MAn is unimodular for all n.
MAn unimodular means that the Kostant partition functions for An is polynomial instead of quasipoly-

nomial on the cells of the chamber complex. In general, for M unimodular, the polynomial pieces have
degree at most the number of columns of the matrix minus its rank (see [Stu95]). In our case, MAn has
rank n and as many columns as An has positive roots,

(
n+1

2

)
. Hence the Kostant partition function for An

is piecewise polynomial of degree at most
(
n+1

2

)
− n =

(
n
2

)
.

Remark 1.6. In view of Steinberg’s formula (1.11), this means that the Littlewood-Richardson coefficients

are given by a piecewise polynomial function of degree at most
(
n
2

)
in the three sets of variables λ, µ and ν,

if these partitions have at most n+ 1 parts. This will be made precise in Sections 3 and 4
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2. A vector partition function for the Littlewood-Richardson coefficients

There are many combinatorial ways to compute the Littlewood-
Richardson coefficients, in particular the Littlewood-Richardson rule [Sta99], honeycombs [KT99] and
Berenstein-Zelevinsky triangles [BZ92]. The model that is most convenient for us is the hive model
[Buc00, KT99].

Definition 2.1. A k-hive is an array of numbers aij with 0 ≤ i, j ≤ k and i + j ≤ k. We will represent

hives in matrix form. For example, a 4-hive is

(2.1)

a00 a01 a02 a03 a04

a10 a11 a12 a13

a20 a21 a22

a30 a31

a40

We will call a hive integral if all its entries are nonnegative integers
Following the terminology of [KTT03], we will call hive conditions (HC) the conditions

(2.2)

j j + 1

i • •

i+ 1 • •

j j + 1

i •

i+ 1 • •

i+ 2 •

j j + 1j + 2

i • •

i+ 1 • •

where in each diagram, the sum of the boxed entries is at least as large as the sum of the other two entries.
In terms of the aij , (HC) is

ai+1 j + ai j+1≥aij + ai+1 j+1(2.3)

ai+1 j + ai+1 j+1≥ai+2 j + ai j+1(2.4)

ai j+1 + ai+1 j+1≥ai+1 j + ai j+2(2.5)

for i+ j ≤ k − 2.

Proposition 2.2. (Knutson-Tao [KT99], Fulton [Buc00]) For λ, µ and ν partitions with at most k

parts and |λ|+ |µ| = |ν|, the Littlewood-Richardson coefficient cν
λµ is the number of integral k-hives satisfying

(HC) and the boundary conditions

(2.6)

a00 =0 ,

a0j =λ1 + · · ·+ λj 1 ≤ j ≤ k
ai0 =ν1 + · · ·+ νi 1 ≤ i ≤ k

am,k−m = |λ|+ µ1 + · · ·+ µm 1 ≤ m ≤ k .
Once the boundary conditions are imposed, we are left with a system of inequalitites in the nonnegative

integral variables aij for 1 ≤ i, j ≤ k − 1 and i + j ≤ k − 1. There are n(k) = 3
(
k
2

)
inequalities. If we let

these aij take real values, the inequalitites define a rational polytope Qν
λµ, and the Littlewood-Richardson

coefficient corresponding to the boundary conditions is the number of integral (lattice) points inside Qν
λµ.
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Given a d-dimensional rational polytope Q in Rn, we will denote by mQ the polytope Q blown up
by a factor of m. The function m ∈ N 7→ |mQ ∩ Zn| is called the Ehrhart function of Q, and is known
[Ehr77, Sta99] to be a quasipolynomial of degree d in m. Furthermore, if Q is integral, the Ehrhart
function is a degree d polynomial in m. This means that the function

(2.7) N 7−→ cNν
Nλ Nµ

is the Ehrhart quasipolynomial of the polytope Qν
λµ. It is known that Qν

λµ is not integral in general (see

examples in [KTT03]).
This describes the behavior of the Littlewood-Richardson coefficients on a ray in (λ, µ, ν)-space, but

we will get more general results by showing that we can find a vector partition function that gives these
coefficients. We will then be able to work with conical chambers in (λ, µ, ν)-space instead of simple rays.
This is accomplished in a way very similar to the one introduced for the weight multiplicities in [BGR03],
and this case is even simpler because the variables aij are already constrained to be nonnegative.

Theorem 2.3. There are integer matrices Ek and Bk such that the function (λ, µ, ν) 7→ cνλµ for λ, µ, ν

partitions with at most k parts such that |λ|+ |µ| = |ν| and λ, µ ⊆ ν is given by

(2.8) cνλµ = φEk

(
Bk

(
λ
µ
ν

))
.

The chamber complex defined by Ek is much too big for our purposes. For one thing, its cones have
dimension n(k) = 3

(
k
2

)
, whereas (λ, µ, ν)-space is 3k-dimensional. To simplify things, we can first restrict

ourselves with the intersection of the complex of Ek with the subspace

(2.9) B(k) =

{(
Bk

(
λ
µ
ν

))
: λ, µ, ν ∈ Rk

}

of Rn(k) to get a complex Ck. Then we can pull back the cones along the transformation Bk to (λ, µ, ν)-space.
Cones in B(k) are given by inequalitites of the form

〈
vi, Bk

(
λ
µ
ν

)〉
≥ 0

for some directions vi ∈ Rn(k). But
〈
vi, Bk

(
λ
µ
ν

)〉
≥ 0 ⇔

〈
B T

k vi,

(
λ
µ
ν

)〉
≥ 0 ,

where B T
k is the transpose of Bk. So we can pull back the cones to get a complex B ∗k Ck in (λ, µ, ν)-space. As

a final simplification, we can note that cνλµ = 0 unless λ, µ ⊆ ν and |λ|+ |µ| = |ν| and that these conditions

define a cone C
(1)
k since the containment equations can be written λi, µi ≤ νi for 1 ≤ i ≤ k. The conditions

λ1 ≥ · · · ≥ λk ≥ 0, µ1 ≥ · · · ≥ µk ≥ 0 and ν1 ≥ · · · ≥ νk ≥ 0 also define a cone C
(2)
k .

Definition 2.4. We will call the intersection of the cones C
(1)
k and C

(2)
k with the rectified complex B ∗k Ck

the Littlewood-Richardson complex, and denote it LRk. This complex lives on the subspace |λ| + |µ| = |ν|
of R3k.

As a result of the general theory of vector partition functions, we get the following corollary.

Corollary 2.5. Under the conditions of the theorem above, the function (λ, µ, ν) 7→ cν
λµ is quasipolynomial

of degree at most 3
(
k
2

)
+ n(k)− rankEk = 3

(
k
2

)
over the chambers of the complex LRk.

We will explain in Section 4 that we actually get polynomials in the chambers.
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It rapidly becomes computationally hard to work out the chamber complex and the associated polyno-
mials; we present an example of how the computations are done on the simplest nontrivial example, k = 3,
in Section 5.

3. The Steinberg arrangement

In this section, we will construct a hyperplane arrangement whose regions are domains of polynomiality
for the Littlewood-Richardson coefficients. We will deduce the form of this arrangement from a closer look at
Steinberg’s formula (1.11) and the chamber complex of the Kostant partition function defined in Section 1.2.

The following lemma describes the set of normals to the hyperplanes supporting the cells of the chamber
complex for the Kostant partition function.

Lemma 3.1. The set of normals to the facets of the maximal cones of the chamber complex of the Kostant

partition function of An consists of all the conjugates of the fundamental weights.
To compute the Littlewood-Richardson coefficients using Steinberg’s formula (1.11), we look at the points

σ(λ + δ) + τ(µ + δ)− (ν + 2δ), as σ and τ range over the Weyl group Sk (we assume here that λ, µ and ν
have at most k parts and index irreducible representations of GLkC). Some of these points will lie inside the
chamber complex for the Kostant partition function and we compute the Littlewood-Richardson coefficients
by finding which cells contain them and evaluating the corresponding polynomials at those points. We will
call (λ, µ, ν) generic if none of the points σ(λ + δ) + τ(µ + δ) − (ν + 2δ) lies on a wall of the chamber
complex of the Kostant partition function. If we change a generic (λ, µ, ν) to (λ′, µ′, ν′) on the hyperplane

|λ|+|µ| = |ν| in such a way that none of the σ(λ+δ)+τ(µ+δ)−(ν+2δ) crosses a wall, we will obtain cν′

λ′µ′ by

evaluating the same polynomials. So there is a neighborhood of (λ, µ, ν) on which the Littlewood-Richardson
coefficients are given by the same polynomial in the variables λ, µ and ν.

Lemma 3.1 describes the walls of the chamber complex for the Kostant partition function in terms of
the normals to the hyperplanes (through the origin) supporting the facets of the maximal cells. Now a point
σ(λ + δ) + τ(µ + δ) − (ν + 2δ) will be on one of those walls (hyperplane though the origin) when its scalar
product with the hyperplane’s normal, say θ(ωj), vanishes, that is when

(3.1) 〈σ(λ + δ) + τ(µ+ δ)− (ν + 2δ), θ(ωj)〉 = 0

Consider the arrangement on the subspace |λ| + |µ| = |ν| of R3k consisting of all such hyperplanes, for
1 ≤ j ≤ k and σ, τ, θ ∈ Sk. For (λ, µ, ν) and (λ′, µ′, ν′) in the same region of this arrangement and any
fixed σ, τ ∈ Sk, the points σ(λ+ δ)+ τ(µ+ δ)− (ν +2δ) and σ(λ′+ δ)+ τ(µ′ + δ)− (ν′+2δ) lie on the same
side of every wall of the chamber complex for the Kostant partition function. We will call this arrangement
the Steinberg arrangement, and denote it SAk.

Definition 3.2. Fix a labelling on the chambers of the complex for the Kostant partition function, and let

p1, p2, . . . be the polynomials associated to the chambers. For generic λ, µ and ν, let vστ (λ, µ, ν) be the

label of the region containing the point σ(λ + δ) + τ(µ+ δ)− (ν + 2δ) (this label is unique for generic λ, µ

and ν). Define the type of λ, µ and ν to be the matrix

Type(λ, µ, ν) =
(
vστ (λ, µ, ν)

)
σ,τ∈Sk

,

for some fixed total order on Sk. Furthermore, define

(3.2) P (λ, µ, ν) =
∑

σ∈Sk

∑

τ∈Sk

(−1)inv(στ)pvστ (σ(λ + δ) + τ(µ+ δ)− (ν + 2δ)) .

Proposition 3.3. P (λ, µ, ν) is a polynomial function in λ, µ and ν on the interior of the regions of SAk

and gives the Littlewood-Richardson coefficients there.
The reason why Proposition 3.3 is restricted to the interior of the regions is that while polynomials

for adjacent regions of the chamber complex for the Kostant partition function have to coincide on the
intersection of their closures, there is a discontinuous jump in the value of the Kostant partition function
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(as a piecewise polynomial function) when going from a region on the boundary of the complex to region 0
(outside the complex).

To summarize, the hyperplanes of the Steinberg arrangement are defined by the equations

(3.3) 〈σ(λ + δ) + τ(µ+ δ)− (ν + 2δ), θ(ωj)〉 = 0

or

(3.4) 〈σ(λ) + τ(µ) − ν, θ(ωj)〉 = 〈2δ − σ(δ) − τ(δ), θ(ωj)〉 .

Note that the right hand side of (3.4) doesn’t depend on λ, µ and ν, and we will call it the δ-shift:

(3.5) s(σ, τ, θ, j) = 〈2δ − σ(δ)− τ(δ), θ(ωj )〉 .

4. Polynomiality in the chamber complex

We have now expressed the Littlewood-Richardson coefficients in two ways: as a quasipolynomial func-
tion over the cones of the chamber complex LRk, and as a polynomial function over the interior of the
regions of the hyperplane arrangement SAk. In this section, we relate the chamber complex to the hyper-
plane arrangement to show that the quasipolynomials are actually polynomials.

Theorem 4.1. The quasipolynomials giving the Littlewood-Richardson coefficients in the cones of the cham-

ber complex LRk are polynomials of total degree at most
(
k−1
2

)
in the three sets of variables λ = (λ1, . . . , λk),

µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk).
From this, we can deduce a “stretching” property for Littlewood–

Richardson coefficients.

Corollary 4.2. The Littlewood-Richardson coefficients cNν
Nλ Nµ are given by a polynomial in N with rational

coefficients. This polynomial has degree at most
(
k−1
2

)
in N .

Remark 4.3. King, Tollu and Toumazet conjectured in [KTT03] that the cNν
Nλ Nµ are polynomial in N with

nonnegative rational coefficients (Conjecture 1.1 above). Corollary 4.2 establishes this conjecture, except

for the nonnegativity of the coefficients. Derksen and Weyman [DW02] have a proof of this part of the

conjecture using semi-invariants of quivers, and Knutson [DW02, Knu03] a proof using symplectic geometry

techniques.
In fact, we can prove something stronger: we can perturb (λ, µ, ν) a bit and get a more global stretching

property.

Corollary 4.4. Let Υ be the set

(4.1) Υ = {(λ, µ, ν) : max{l(λ), l(µ), l(ν)} ≤ k, |λ|+ |µ| = |ν|, λ, µ ⊆ ν}.

For any generic (λ, µ, ν) ∈ Υ we can find a neighborhood U of that point over which the function

(4.2) (λ, µ, ν, t) ∈ (U ∩Υ)× N 7−→ ctνtλ tµ

is polynomial of degree at most
(
k−1
2

)
in t and

(
k−1

2

)
in the λ, µ and ν coordinates.
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5. An example: partitions with at most 3 parts

We want to find a vector partition function counting the number of integral 3-hives of the form

(5.1)

0 λ1 λ1 + λ2 |λ|

ν1 a11 |λ|+ µ1

ν1 + ν2 |ν| − µ3

|ν|

The hives conditions are given by

(5.2)
a11 ≤ ν1 + λ1 −a11 ≤ −λ2 − ν1 −a11 ≤ −λ1 − ν2

−a11 ≤ −λ1 − λ3 − µ1 a11 ≤ λ1 + λ2 + µ1−a11 ≤ −λ1 − λ2 − µ2

−a11 ≤ −λ1 − λ2 − λ3 − µ1 − µ2 + ν2−a11 ≤ µ2 − ν1 − ν2 a11 ≤ λ1 + λ2 + λ3 + µ1 + µ2 − ν3

This corresponds to the matrix system

(5.3) E3 ·




a11
s1
s2
...
s9


 = B3 ·




λ1
λ2
λ3
µ1
µ2
µ3
ν1
ν2
ν3




with

(5.4) E3 =




1100000000
−1010000000
−1001000000
−1000100000

1000010000
−1000001000
−1000000100
−1000000010

1000000001




and

(5.5) B3 =




1 0 0 0 0 0 1 0 0
−1 0−1−1 0 0 0 0 0
−1−1−1−1−1 0 0 1 0

0−1 0 0 0 0−1 0 0
1 1 0 1 0 0 0 0 0
0 0 0 0 1 0−1−1 0
−1 0 0 0 0 0 0−1 0
−1−1 0 0−1 0 0 0 0

1 1 1 1 1 0 0 0−1




.

Note that µ3 doesn’t not appear in this system. This is because it is determined by |λ| + |µ| = |ν|; we
could have chosen another variable to disappear.

To get the chamber complex for the vector partition function associated to E3, we have to find the sets
of columns determining maximal nonsingular square matrices in E3. These determine the bases cones whose
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common refinement gives the chamber complex. In our case, all subsets of 9 columns determine a nonsingular
matrix, so we get 10 base cones. We can find their common refinement using a symbolic calculator like Maple
or Mathematica; here we used Maple (version 8) and the package convex by Matthias Franz [Fra01]. We
find the chamber complex LR3 by rectifying the cones to (λ, µ, ν)-space using B T

3 and intersecting them

with the cones C
(1)
3 and C

(2)
3 . The list of rays of the cones of LR3

a1 = ( 1 1 1 | 0 0 0 | 1 1 1 ) a2 = ( 0 0 0 | 1 1 1 | 1 1 1 )

b = ( 2 1 0 | 2 1 0 | 3 2 1 )

c = ( 1 1 0 | 1 1 0 | 2 1 1 )

d1 = ( 1 1 0 | 1 0 0 | 1 1 1 ) d2 = ( 1 0 0 | 1 1 0 | 1 1 1 )

e1 = ( 1 1 0 | 0 0 0 | 1 1 0 ) e2 = ( 0 0 0 | 1 1 0 | 1 1 0 )

f = ( 1 0 0 | 1 0 0 | 1 1 0 )

g1 = ( 1 0 0 | 0 0 0 | 1 0 0 ) g2 = ( 0 0 0 | 1 0 0 | 1 0 0 )

where the bars separate the entries corresponding to the sets of variables λ, µ and ν.
The following table gives the maximal (8-dimensional) cones of LR3, as well as the polynomial associated

to each (computed by polynomial interpolation).
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Cone Positive hull description Polynomial

κ1 pos(a1, a2, b, c, d1, d2, e1, e2) 1− λ2 − µ2 + ν1

κ2 pos(a1, a2, b, c, d1, d2, g1, g2) 1 + ν2 − ν3

κ3 pos(a1, a2, b, c, e1, e2, g1, g2) 1 + λ1 + µ1 − ν1

κ4 pos(a1, a2, b, d1, d2, e1, e2, f) 1 + ν1 − ν2

κ5 pos(a1, a2, b, d1, d2, f, g1, g2) 1 + λ2 + µ2 − ν3

κ6 pos(a1, a2, b, e1, e2, f, g1, g2) 1− λ3 − µ3 + ν3

κ7 pos(a1, a2, b, c, d1, d2, e1, g1) 1 + λ3 + µ1 − ν3
κ8 pos(a1, a2, b, c, d1, d2, e2, g2) 1 + λ1 + µ3 − ν3

κ9 pos(a1, a2, b, c, d1, e1, e2, g2) 1 + λ1 − λ2

κ10 pos(a1, a2, b, c, d2, e1, e2, g1) 1 + µ1 − µ2

κ11 pos(a1, a2, b, c, d1, e1, g1, g2) 1− λ2 − µ3 + ν2

κ12 pos(a1, a2, b, c, d2, e2, g1, g2) 1− λ3 − µ2 + ν2

κ13 pos(a1, a2, b, d1, d2, e1, f, g1) 1− λ1 − µ3 + ν3

κ14 pos(a1, a2, b, d1, d2, e2, f, g2) 1− λ3 − µ1 + ν3

κ15 pos(a1, a2, b, d1, e1, f, g1, g2) 1 + µ2 − µ3

κ16 pos(a1, a2, b, d2, e2, f, g1, g2) 1 + λ2 − λ3

κ17 pos(a1, a2, b, d1, e1, e2, f, g2) 1 + λ1 + µ2 − ν2
κ18 pos(a1, a2, b, d2, e1, e2, f, g1) 1 + λ2 + µ1 − ν2

Remark 5.1. The symmetry cνλµ = cνµλ implies that we can interchange the λ and µ coordinates. This

corresponds to a symmetry of the chamber complex LR3 under this transformation. This is why some of

the rays and cones have been grouped in pairs.

Remark 5.2. We observe from the form of the polynomials in the table above that the equation

(5.6) cNν
Nλ Nµ = 1 +N(cνλµ − 1)

holds for l(λ), l(µ), l(ν) ≤ 3. This was previously observed in [KTT03].
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Cambrian Lattices

Nathan Reading

Abstract. For an arbitrary finite Coxeter group W , we define the family of Cambrian lattices for

W as quotients of the weak order on W with respect to certain lattice congruences. We associate

to each Cambrian lattice a complete fan, which we conjecture is the normal fan of a polytope com-

binatorially isomorphic to the generalized associahedron for W . In types A and B, we obtain, by

means of a fiber-polytope construction, combinatorial realizations of the Cambrian lattices in terms

of triangulations and in terms of permutations. Using this combinatorial information, we prove

that in types A and B the Cambrian fans are combinatorially isomorphic to the normal fans of the

generalized associahedra, and that one of the Cambrian fans is linearly isomorphic to Fomin and

Zelevinsky’s construction of the normal fan as a “cluster fan.” Our construction does not require

a crystallographic Coxeter group and therefore suggests a definition, at least on the level of cellular

spheres, of a generalized associahedron for any finite Coxeter group. The Tamari lattice is one of the

Cambrian lattices of type A, and two “Tamari” lattices in type B are identified, and characterized

in terms of signed pattern avoidance. We also show that intervals in Cambrian lattices are either

contractible or homotopy equivalent to spheres.

Résumé. Pour un groupe fini arbitraire de Coxeter W , nous définissons la famille des treil-

lis cambriens pour W comme des quotients de l’ordre faible sur W par certaines congruences de

treillis. Nous associons à chaque treillis cambrien un éventail complet et nous conjecturons que

cet éventail est l’éventail normal d’un polytope isomorphe, au sens combinatoire, à un associèdre

généralisé. Dans le cas des types A et B, nous obtenons, par une construction de fibre-polytope, des

réalisations combinatoires des treillis cambriens en termes de triangulations et en termes de per-

mutations. En utilisant cette information combinatoire, nous montrons que, dans le cas des types

A et B, les éventails cambriens sont isomorphes, au sens combinatoire, aux éventails normaux des

associaèdre généralisés, et qu’un des éventails cambriens est linéairement isomorphe à l’éventail

normal construit par Fomin et Zelevinsky sous forme de l’éventail des amas. Notre construction

n’exige pas que le groupe de Coxeter soit cristallographique et suggère une définition, du moins au

niveau des sphères cellulaires, d’un associaèdre généralisé pour tout groupe fini de Coxeter. Le treil-

lis de Tamari est un des treillis cambriens du type A, et deux “treillis de Tamari” dans le type B

sont identifiés, et caractérisés en termes des permutations signées à motifs exclus. Nous prouvons

également que les intervalles dans les treillis cambriens sont soit contractibles, soit équivalent aux

sphères, par homotopie.
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1. Overview

The Catalan numbers Cn = (1/(n + 1))
(
2n
n

)
count a variety of combinatorial objects [18, Excercise

6.19] including triangulations of a convex (n + 2)-gon. A finite Coxeter group W is a finite group that
can be presented as a group generated by Euclidean reflections, and a root system associated to W is a
collection of roots, that is, normal vectors to the reflecting hyperplanes satisfying certain conditions. The
W -permutohedron is the zonotope which is the Minkowsi sum of the roots. There is a W -Catalan number
associated to any W , and the ordinary Catalan numbers are associated to irreducible Coxeter groups of type
A (the symmetric groups). The associahedron or Stasheff polytope is a polytope whose vertices are counted
by the Catalan numbers. Chapoton, Fomin and Zelevinsky [6, 7] have recently generalized the associahedron
to all finite Coxeter groups which are crystallographic. Earlier, the type-B associahedron, or cyclohedron,
was defined by Bott and Taubes [5] and Simion [16].

A related Catalan structure is the Tamari lattice, whose Hasse diagram is the 1-skeleton of the associa-
hedron. Simion [16, §5] asked if the vertices of the type-B associahedron could be partially ordered so as to
obtain a lattice whose Hasse diagram is the 1-skeleton of the type-B associahedron. Reiner [15, Remark 5.4]
used an equivariant fiber polytope construction to identify a family of maps from the type-B permutohedron
to the type-B associahedron, in analogy to well-known maps in type A. He asked whether one of these maps
can be used to define a partial order on the vertices of the type-B associahedron with similar properties to
the Tamari lattice, such that the map from the type-B permutohedron to the type-B associahedron shared
the pleasant properties of the corresponding map in type A (see [4, §9]).

The (right) weak order is a partial order on a Coxeter group W , and is a lattice when W is finite [3].
On the symmetric group of permutations, one moves up in the weak order by switching two adjacent entries
so as to put them out of order. The starting point of the present research is the observation that the
Tamari lattice is a lattice-homomorphic image of the weak order on the symmetric group. This fact has,
to our knowledge, never appeared in the literature, although essentially all the ingredients of a proof were
assembled by Björner and Wachs in [4]. This lattice-theoretic point of view suggests a search among Reiner’s
maps to determine which induces a lattice homomorphism on the weak order. Surprisingly, for each of these
maps, one can choose a vertex of the type-B permutohedron to label as the identity element so that the
map induces a lattice homomorphism. Thus each of Reiner’s maps defines a lattice structure on the type-B
associahedron. Furthermore, the analogous family of maps in type A yields a family of lattices on vertices
of the type-A associahedron. A close look at the lattice homomorphisms in types A and B leads to a
type-free generalization of these families of lattices which we call Cambrian lattices. The name “Cambrian”
can be justified by a geological analogy: The Cambrian layer of rocks marks a dramatic increase in the
diversity of the fossil record and thus the sudden profusion of Catalan-related lattices arising from the single
(Pre-Cambrian) example of the Tamari lattice might fittingly be called Cambrian.

A congruence on a lattice L is an equivalence relation on L which respects the operations of meet and join
in the same way that, for example, a congruence on the integers respects addition and multiplication. The
congruences on a finite lattice L are in particular partitions, so we can partially order the set of congruences
of L by refinement. This partial order is known to be a distributive lattice [8]. In particular, it is a lattice,
so one can specify a set of equivalences, and ask for the smallest congruence containing those equivalences.

A finite Coxeter group has a diagram G, a graph whose vertices are a certain set of generating reflections,
with edges labeled by pairwise orders m(s, t) of the generators. The pairwise order m(s, t) is the smallest
integer such that (st)m(s,t) = 1. If m(s, t) is 2 then there is no edge in G connecting s and t. An orientation
~G of G is a directed graph with the same vertex set as G, with one directed edge for each edge of G. Thus if G

has e edges, there are 2e orientations of G. For each orientation ~G of G, there is a Cambrian lattice, defined

as follows. For a directed edge sΩ̃t in ~G, require that t be equivalent to the element of W represented by the

word tsts · · · with m(s, t)− 1 letters. The Cambrian congruence associated to ~G is the smallest congruence

of the (right) weak order on W satisfying this requirement for each directed edge in ~G. The Cambrian lattice
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C(~G) is defined to be the (right) weak order on W modulo the Cambrian congruence associated to ~G. Two
Cambrian lattices are isomorphic (respectively anti-isomorphic) exactly when the associated diagrams are
isomorphic (respectively anti-isomorphic), taking edge labelings into account.

For any finite Coxeter group W , let F be the fan defined by the reflecting hyperplanes of W . One can
identify the maximal cones of F with the elements ofW . In [12] a fan FΘ is defined for any lattice congruence
Θ of the weak order on W , such that the maximal cones of FΘ are the unions over congruence classes of the
maximal cones of F . The lattice quotient W/Θ is a lattice whose elements are the maximal cones of FΘ.

Let F(~G) be the Cambrian fan constructed in this way from the Cambrian congruence associated to ~G.

Conjecture 1.1. For any finite Coxeter group W and any orientation ~G of the associated Coxeter diagram,

the fan F(~G) associated to the Cambrian lattice C( ~G) is the normal fan of a convex polytope which is

combinatorially isomorphic to the generalized associahedron for W .
Each statement in the following conjecture is would be implied by Conjecture 1.1, and proofs of any of

these weaker conjectures would be interesting. Statements b.–e. are weakenings of a.

Conjecture 1.2. For any Coxeter group W with digram G:

a. Given any orientation ~G of G, the fan F( ~G) is combinatorially isomorphic to the normal fan of

the generalized associahedron for W .

b. Given any orientation ~G of G, the fan F( ~G) is combinatorially isomorphic to the normal fan of

some polytope.

c. All Cambrian fans arising from different orientations of G are combinatorially isomorphic.

d. All Cambrian fans arising from different orientations of G have the same number of maximal cones.

e. F(~G) is simplicial for any orientation ~G of G.

The fan FΘ is PL for any Θ, so that in particular F( ~G) has a dual cellular sphere Γ( ~G). If Conjecture 1.1

holds, then in particular, Γ( ~G) is a polytope, and the Cambrian fans offer an alternate definition of the
generalized associahedra. In the absence of a proof of Conjecture 1.1, we will nonetheless refer to the

dual spheres Γ(~G) as generalized associahedra. This construction lifts the restriction to crystallographic
Coxeter groups imposed by the definition in [7], giving the first definition of associahedra of types H and I.
The associahedra for H3 and I2(m) constructed from Cambrian lattices have the numbers of faces of each
dimension one would expect from generalized associahedra, and the facets of the H3 associahedron are the
correct generalized associahedra of lower dimension. The I2(m)-associahedron is an (m + 2)-gon and the
1-skeleton of the H3-associahedron is pictured in Figure 1.

The Cambrian lattices and fans have the following properties which follow from the results of [12]. First,

C(~G) is a partial order induced on the maximal cones of F( ~G) by a linear functional, and the Hasse diagram

of C(~G) is isomorphic to the 1-skeleton of the dual sphere Γ( ~G). The set of cones containing a given face F

of F(~G) is an interval in C( ~G) called a facial interval. Non-facial intervals in C( ~G) are contractible and facial
intervals are homotopy-equivalent to spheres with the dimension of the sphere depending on the dimension

of the corresponding face of F( ~G). If F(~G) is indeed simplicial, the corresponding simplicial sphere is flag

and any linear extension of C( ~G) is a shelling of the corresponding simplicial sphere. If F( ~G) is indeed
polytopal, then since it refines the normal fan of F , the associated polytope in a Minkowski summand of the
W -permutohedron.

Because disconnected Coxeter diagrams lead to direct product decompositions of all of the relevant
objects, it is enough to prove Conjecture 1.1 in the case of connected Coxeter diagrams, or equivalently
irreducible Coxeter groups. We use (equivariant) fiber polytope constructions to work out the combinatorics
of Cambrian lattices of types A and B in detail, both in terms of triangulations and in terms of permutations.
In particular, we prove that:

Theorem 1.3. Conjecture 1.2.a holds when W is of type A or B.
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Figure 1. The 1-skeleton of the H3-associahedron. The vertex at infinity completes the

three unbounded regions to heptagons.

Fomin’s and Zelevinsky’s definition [7] of generalized associahedra is in terms of clusters of roots in the
root system Φ associated to W . For the purposes of this extended abstract, it suffices to say the following
about clusters. One begins with a bipartition G = I+ ∪ I− of the Coxeter diagram for W , and uses the
bipartition to construct piecewise linear maps τ+ and τ− acting on the root space of Φ, and generating a
dihedral group of piecewise linear maps. These two maps are used to define the clusters, certain subsets of Φ
whose cardinality is the rank of W . The cluster fan is the fan whose maximal cones are the cones generated
by the clusters, and the W -associahedron is defined as the polytope whose normal fan is the cluster fan. In
particular, the clusters index the vertices of the generalized associahedron for W , and the edges are pairs
of clusters which differ by exchanging one root. Using τ+ and τ− to compare the roots that are exchanged
along an edge, we define a partial order on the clusters called the cluster poset.

Naturally associated to the bipartition G = I+ ∪ I− is an orientation of G which we denote I+ −→ I−,
and call a bipartite orientation. Specifically, any edge in G connects an element s of I+ to an element t of

I−, and we direct the edge sΩ̃t.

Conjecture 1.4. The Cambrian fan for the orientation I+ −→ I− is linearly isomorphic to the cluster fan,

and the Cambrian lattice for the same orientation is the cluster poset.
This conjecture would in particular imply that the cluster poset is a lattice, that it is induced on the

vertices of the generalized associahedron by a linear functional, that its Hasse diagram is isomorphic to the
1-skeleton of the generalized associahedron, and that it has the pleasant homotopy and shelling properties
described above. General proofs of any of these weaker statements would also be interesting.

Conjecture 1.4 can be proven in types A and B. This provides a proof of Conjecture 1.1 in the special

case where ~G is a bipartite orientation of the diagram of a Coxeter group of type A or B. As further support
for Conjecture 1.4, we prove the following fact which would be a consequence of Conjecture 1.4.

Theorem 1.5. The cluster fan refines a fan that is linearly isomorphic to the normal fan of the W -

permutohedron.
In light of the combinatorial description of Cambrian lattices of type A which will be given in Section 2,

the Tamari lattice is the type-A Cambrian lattice associated to a path directed linearly, that is, with the
arrows all pointing the same direction. Call this the Tamari orientation of the diagram. By the symmetry
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of the path and the fact that directed diagram anti-automorphisms induce lattice anti-automorphisms, we
recover the fact that the Tamari lattice is self-dual. The Coxeter diagram for type B is a path as well, but has
an asymmetric edge-labeling. There are two Tamari orientations, linear orientations of the type B diagram,
yielding two “Type-B Tamari lattices,” which are not isomorphic but dual to each other. In support of their
claim to the title of “Tamari” is the fact that they can be constructed as the restriction of the weak order
to signed permutations avoiding certain signed patterns (Proposition 2.6). The type-A Tamari lattice has a
well-known realization in terms of pattern-avoidance. Because the type-B Tamari elements are counted by
the type-B Catalan numbers, this result has some bearing on a question posed by Simion in the introduction
to [17], which asked for signed permutation analogues of counting formulas for restricted permutations.
Thomas [20], working independently and roughly simultaneously, used one of Reiner’s maps to construct
the type-B Tamari lattice and proposed a type-D Tamari lattice.

Stasheff and Schnider [19] gave a realization of the type-A associahedron by specifying facet hyper-
planes, and Loday [11] determined the vertices of this realization. The Cambrian fan for the type-A Tamari
orientation is the normal fan of this realization of the associahedron, thus proving Conjecture 1.1 for the
Tamari orientation in type A. Thus in type A, the Cambrian fans interpolate between the cluster fan and
the normal fan of Stasheff’s and Shnider’s realization of the associahedron.

In general, the quotient of a lattice L with respect to some congruence is isomorphic to an induced
subposet of L, but need not be a sublattice. However, in types A and B, the Cambrian lattices are sublattices
of the weak order. This fact was proven for the Tamari lattices in [4].

Conjecture 1.6. For any finite Coxeter group W and any orientation ~G of the associated Coxeter diagram,

the Cambrian lattice C( ~G) is a sublattice of the weak order on W .
The Cambrian lattices also inherit any lattice property from the weak order which is preserved by

homomorphisms. Notably, the Cambrian lattices are congruence uniform, generalizing a theorem of Geyer [9]
on the Tamari lattice.

For a finite Coxeter group W , let the (left) descent map des : W Ω̃2S be the map which associates to each
w ∈W its (left) descent set. This map is a lattice homomorphism from the (right) weak order on W onto a
boolean algebra [10] (see also [13]). The homomorphism η from the weak order to a Cambrian lattice factors
through the map des in the sense that there is a lattice homomorphism also called des from the Cambrian
lattice to 2S such that des ◦ η = des : W Ω̃2S. In types A and B we identify this map on triangulations.

2. Combinatorics of Cambrian lattices of type A

Space does not permit us to elaborate on every assertion made in the overview. We will conclude
this extended abstract by describing combinatorial realizations of the Cambrian lattices of type A which
arise naturally from a fiber polytope construction, and adding a few words about type B. For background
information on these fiber polytope constructions, see [1, 2, 15].

Consider a tower of surjective linear maps of polytopes

∆n+1 σ−→ Qn+2
ρ−→ I,

where I is a 1-dimensional polytope, Qn+2 is a polygon with n + 2 vertices, and ∆n+1 is the (n + 1)-
dimensional simplex whose vertices are the coordinate vectors e0, e1, . . . , en+1 in Rn+2. When n has already
been specified, we will sometimes refer to these polytopes simply as ∆ and Q. Let ai := ρ(σ(ei)) and
vi := σ(ei), and suppose that a0 < a1 < · · · < an+1. Let f be a non-trivial linear functional on ker ρ.
We may as well take ρ to be an orthogonal projection of Q onto the line segment whose endpoints are v0

and vn+1 and think of f as giving the positive or negative “height” of each vertex of Qn+2 above that line
segment. We abbreviate fi := f(σ(ei)) and use the shorthand i to denote an i ∈ [n] with fi ≥ 0. In this
case we will call vi an up vertex and i an up index. Similarly, i will denote an i ∈ [n] with fi ≤ 0, called a
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down index. Thus for example the phrase “Let i ∈ [n]” means “Let i ∈ [n] have fi ≤ 0.” For any H ⊆ [n],

let H = {i ∈ H} and let H =
{
i ∈ H

}
.

The fiber polytope Σ(∆
ρ◦σ−→ I) is a cube whose vertices correspond to triangulations of the point

configuration {a0, a1, . . . , an+1}. Such a triangulation can be thought of as a subset H of [n] where H is
the set of points (other than the endpoints of I) appearing as vertices of the triangulation. We will write
H = {i1, i2, . . . , ik} ⊆ [n], with 0 = i0 < i1 < i2 < · · · < ik < ik+1 = n+ 1.

The iterated fiber polytope Σ(∆Ω̃QΩ̃I) is the f -monotone path polytope of Σ(∆
ρ◦σ−→ I). (In this case

it is known [2] that every f -monotone path is coherent.) The f -monotone paths are permutations, and

Σ(∆Ω̃QΩ̃I) is combinatorially isomorphic to the (An−1)-permutohedron [2]. Specifically, an f -monotone

path [n] = H0Ω̃H1Ω̃ · · · Ω̃Hn = [n] is associated to the permutation x1x2 · · ·xn where axi is the unique

element in the symmetric difference of Hi and Hi−1. Two such monotone paths are connected by an edge

in Σ(∆Ω̃QΩ̃I) if they differ in only one vertex. Thus edges correspond to cover relations in the (right) weak
order.

The fiber polytope Σ(∆n+1 σ−→ Qn+2) is combinatorially isomorphic [1] to the (An−1)-associa-hedron,

whose vertices are the triangulations of Q. By a general theorem in [2], the normal fan of Σ(∆Ω̃QΩ̃I) refines

that of Σ(∆Ω̃Q). In other words there is a map η : Σ(∆Ω̃QΩ̃I) −→ Σ(∆Ω̃Q) respecting the facial structure.
We are most interested in the restriction of η to the vertices of the permutohedron (i.e. to permutations),

so from now on η will refer to that restriction. The map η takes a permutation x = x1x2 · · ·xn to a
triangulation of Q, and has a characterization in terms of polygonal paths [2]. The edges of the triangulation
arise as a union of polygonal paths γ0, γ1, . . . , γn in Q such that each vertex of each path is a vertex of Q, and
such that each path visits vertices in the order given by their subscripts. Specifically, if x is the permutation
associated to the monotone path H0Ω̃H1Ω̃ · · · Ω̃Hn, then γi(x) visits the vertices {vj : j ∈ Hi} in the order
given by their subscripts. Alternately, let γ0(x) be the path from v0 to vn+1 passing through the points vi

for i ∈ [n] and define γi recursively: If xi is xi, define γi by deleting vxi from the list of vertices visited
by γi−1. If xi is xi, define γi by adding vxi to the list of vertices visited by γi−1. The union of the paths
γ0, γ1, . . . , γn is the union of the edges in the triangulation η(x).

The combinatorics of the map η from permutations to triangulations of Q derive from the sign of f on
each vertex of Q. Thus to be more exact, we should name the map ηf . Usually, however, the choice of f
will be fixed, so we will drop the subscript f and pick it up again when we want to emphasize the fact that
f can vary.

Theorem 2.1. The fibers of η are the congruence classes of a lattice congruence Θ on the weak order on

permutations.
Congruence classes of a congruence on a finite lattice L are all intervals, and the quotient of L mod

the congruence is isomorphic to the subposet induced on the set of bottom elements of congruence classes.
Thus, by identifying the set of triangulations of Q with the set of permutations which are the bottom of
their congruence class, we induce a partial order on the triangulations. The content of Theorem 2.1 is that
η is a lattice homomorphism from the weak order onto this partial order. We call the associated congruence
Θf .

Orientations ~G of the Coxeter diagram for An−1 correspond to choices of the linear functional f as

follows. Given f , define the orientation ~Gf to be sbΩ̃sb−1 for every b ∈ [2, n − 1] and sb−1Ω̃sb for every

b ∈ [2, n− 1]. By the reverse process, an orientation ~G specifies which indices in [2, n− 1] are up or down,
and the indices 1 and n can be arbitrarily chosen as up or down indices. Denote any polygon corresponding

to such a choice of up and down vertices as Q( ~G).
In [13], the author determined the congruence lattice of the weak order on Sn. Knowing the congruence

lattice allows us to prove the following:

Theorem 2.2. The quotient lattice Sn/Θf is the Cambrian lattice C( ~Gf ).
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Say that x contains the pattern 231 if there exist 1 ≤ i < j < k ≤ n with xk < xi < xj . Recall that this
means xk < xi < xj and fxi > 0. No conditions are placed on fxj or fxk

. Similarly, x contains the pattern
312 if there exist 1 ≤ i < j < k ≤ n with xj < xk < xi. If a permutation does not contain a given pattern,
we say it avoids that pattern.

Theorem 2.3. For ~G an orientation of the Coxeter diagram for An−1, the Cambrian lattice C( ~G) is iso-

morphic to the subposet of the (right) weak order on Sn consisting of permutations avoiding both 231 and

312, where up and down indices are determined by the vertices of Q( ~G).
The edges of the (An−1)-associahedron correspond to diagonal flips. The slope of a diagonal will refer

to the usual slope, relative to the convention that the positive horizontal direction is the direction of a ray
from v0 through vn+1 and the positive vertical direction is the positive direction of the functional f .

Theorem 2.4. For ~G an orientation of the Coxeter diagram for An−1, the Cambrian lattice C( ~G) is iso-

morphic to the partial order on triangulations of an (n + 2)-gon Q( ~G) whose cover relations are diagonal

flips, where going up in the cover relation corresponds to increasing the slope of the diagonal.
Also as a consequence of Theorem 2.2, we can prove the type-A case of Theorem 1.3. Finally, we have

the following theorem.

Theorem 2.5. For any orientation ~G of the Coxeter diagram associated to An−1, the Cambrian lattice C( ~G)

is a sublattice of the weak order on An−1.
An equivariant fiber-polytope construction produces combinatorial realizations which are related to the

type-A case by the standard “folding” construction. These folded lattices can be realized combinatorially by
centrally symmetric triangulations of a centrally symmetric polygon, or by restricted signed permutations.
However, the fact that these are combinatorial realizations of the Cambrian lattices does not follow from the
type-A proof by folding, but must be argued separately, using the characterization of the congruence lattice
of the weak order on Bn from [13].

When ~G is the diagram for a Coxeter group of type B, directed linearly from one endpoint to the other,

we call C(~G) a type-B Tamari lattice. The justification for the name comes from the fact that, in analogy to
type A, these are the unique Cambrian lattices of type B which can be defined via signed pattern avoidance,
without reference to up indices and down indices.

To any sequence (a1, a2, . . . , ap) of distinct nonzero integers, we associate a standard signed permutation
st(a1, a2, . . . , ap). This is the signed permutation π ∈ Bp such that πi < 0 if and only if ai < 0 and
|πi| < |πj | if and only if |ai| < |aj |. So for example st(7-3-51) = 4-2-31. Rephrasing [17], we say that a
signed permutation π contains a signed permutation τ if there is a subsequence of the entries of π whose
standard signed permutation is τ . Otherwise, say that π avoids τ .

Proposition 2.6. One of the type-B Tamari lattices is the sublattice of the weak order on signed permu-

tations consisting of signed permutations avoiding the signed patterns -2-1, 2-1, -231, -12-3, 12-3 and 231.

The other is the sublattice consisting of signed permutations avoiding -21, 1-2, -2-1-3, -13-2, 3-12 and 312.
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On a Class of Totally Nonnegative f-immanants

Brendon Rhoades and Mark Skandera

Abstract. We define a family of totally nonnegative polynomials of the form � f(σ)x1,σ(1) · · ·xn,σ(n)

and show that this family generalizes all known totally nonnegative polynomials of the form ∆J,J′(x)∆L,L′(x)−

∆I,I′ (x)∆K,K′(x), where ∆J,J′(x), . . . , ∆K,K′ (x) are matrix minors. We also give new conditions

on the sets J, . . . , K ′ which guarantee that the corresponding polynomials are totally nonnegative.

Résumé. Nous donons une famille de polynômes totallement nonnegatifs de la forme � f(σ)x1,σ(1) · · ·xn,σ(n)

et montrons que cette famille generalise tous les polynômes totalement nonnegatifs de la forme

∆J,J′(x)∆L,L′(x) −∆I,I′ (x)∆K,K′ (x), ou ∆J,J′(x), . . . , ∆K,K′ (x) sont des mineurs des maitrices.

Nous donons aussi des conditions nouvelles sur les ensembles J, . . . , K ′ qui guarantisent que les

polynômes correspondents sont totalement nonnegatifs.

1. Introduction

A real matrix is called totally nonnegative (TNN) if the determinant of each of its square submatrices
is nonnegative. Such matrices appear in many areas of mathematics and the concept of total nonnegativity
has been generalized to apply not only to matrices, but also to other mathematical objects (See e.g. [10]
and references there.) In particular, a polynomial p(x) in n2 variables x = (x1,1, . . . , xn,n) is called totally
nonnegative if it satisfies

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0

for every n×n TNN matrix A = [ai,j ]. Obvious examples are the n×n determinant and the k×k minors, i.e.
the determinants of k×k submatrices. Given subsets I = {i1, . . . , ik} and I ′ = {i′1, . . . , i′k} of [n] = {1, . . . , n}
we define the (I, I ′) minor to be the polynomial

∆I,I′(x) =
∑

σ∈Sk

(−1)inv(σ)xi1 ,i′σ(1)
· · ·xik ,i′σ(k)

.

Thus ∆I,I′(A) is the determinant of the submatrix of A corresponding to rows I and columns I ′.
Some recent interest in TNN polynomials concerns a collection of polynomials arising in the study of

canonical bases of quantum groups [3]. While this collection, known as the dual canonical basis of type An−1,
currently has no simple description, Lusztig [18] has proved that it consists entirely of TNN polynomials.
Berenstein, Gelfand, and Zelevinsky [4, 11] have developed machinery to enumerate the dual canonical
basis elements for small n, and further investigation suggests that these polynomials are expressable as
subtraction-free Laurent expressions in matrix minors [9].
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Progress on the problem of describing the dual canonical basis is obstructed somewhat by the scarcity of
nontrivial families of polynomials which are known to be TNN. Providing examples of such families, several
authors have conjectured and proved the total nonnegativity of polynomials called f -immanants, constructed
from functions f : Sn → R by

(1.1) Immf (x) =
∑

σ∈Sn

f(σ)x1,σ(1) · · ·xn,σ(n).

Stembridge proved the total nonnegativity of the immanants Immχλ(x) constructed from the irreducible

characters χλ : Sn → R of Sn [20, Cor. 3.3]. (See also [15].) These immanants are usually abbreviated
Immλ(x),

(1.2) Immλ(x) =
∑

σ∈Sn

χλ(σ)x1,σ(1) · · ·xn,σ(n).

Stembridge also proved the stronger result [20, Cor. 3.4] that the immanants

(1.3) Immλ(x)− deg(χλ) det(x)

are TNN, where deg(χλ) is the dimension of the Specht module Sλ, i.e. the number of standard Young
tableaux of shape λ.

Discovering another family of TNN immanants, Fallat et. al. [8, Thm. 4.6] characterized all TNN im-
manants of the form

(1.4) ∆J,J(x)∆J,J(x)−∆I,I(x)∆I,I(x),

where I = [n] r I , J = [n] r J . This result was later strengthened [19, Thm. 3.2] to include products of
nonprincipal minors

(1.5) ∆J,J′(x)∆J,J′(x)−∆I,I′(x)∆I,I′(x).

(For other work concerning TNN immanants, see [2, 7].)
More results of Stembridge [20, Sec. 2], [21, Sec. 5] suggest that certain quotients of the symmetric

group algebra provide important information about TNN polynomials in general. In this paper, we use such
a quotient which is isomorphic to the Temperley-Lieb algebra tn2 to define a family of functions

{fτ : Sn → R | τ a basis element of tn2}
and a family of corresponding TNN immanants {Immfτ } whose cone contains all immanants in the family
(1.5). We begin in Section 2 with some of the well-known combinatorics of total nonnegativity. Then in
Section 3 we introduce the Temperley-Lieb algebra and derive our main results. Finally in Section 4 we give
an improved criterion for deciding whether or not an immanant of the form (1.5) is TNN.

2. Total nonnegativity and planar networks

It is possible to prove that some polynomials p(x) are TNN by providing a combinatorial interpretation
for p(A) whenever A is a TNN matrix. Typically such a combinatorial interpretation involves a particular
class of digraphs which we will call planar networks.

We define a planar network of order n to be an acyclic planar directed multigraph G = (V,E) in which
2n boundary vertices are labeled counterclockwise as q1, . . . , qn, q

′
n, . . . , q

′
1. The vertices q1, . . . , qn are called

sources and the vertices q′1, . . . , q
′
n are called sinks. Each edge e ∈ E is weighted by a postive real weight

ω(e), and we will define the weight of a set F of edges to be the product of weights of edges in F ,

(2.1) ω(F ) =
∏

e∈F

ω(e).
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Figure 1. A planar network

More generally, we will define the weight a multiset of edges to be the analogous product in which weights
of edges may appear with multiplicities greater than one. If m = (me)e∈F is a vector of multiplicities which
defines a multiset of edges in F , we will denote the weight of this multiset by ω(F,m).

Given a planar network G of order n, we will define a subgraph H of G to be a planar subnetwork of G
if it is a planar network whose sources and sinks are precisely those of G. We will economize notation by
writing H ⊂ G to denote that H is a planar subnetwork of G.

We define the path matrix A = [ai,j ] of a planar network G by letting ai,j be the sum

ai,j =
∑

π

ω(π),

of weights of paths over all paths π from source i (qi) to sink j (q′j). The reader may verify that the path
matrix of the planar network in Figure 1 is

(2.2)



984 0
145 .4
003 .2
0002.4


 .

and that this matrix is TNN. (In figures we will assume that all edges are directed from left to right.)
The following famous theorem of Lindström and others [1] [5] [6] [13] [16] [17] explains the connection

between planar networks and TNN matrices. (See also [10].)

Theorem 2.1. An n × n matrix A is totally nonnegative if and only if it is the path matrix of a planar

network G of order n. Furthermore, for any k-element subsets I = {i1, . . . , ik}, I ′ = {i′1, . . . , i′k} of [n], the

(I, I ′) minor of A has the combinatorial interpretation

∆I,I′(A) =
∑

Π

ω(Π),

where the sum is over all k-tuples Π = (π1, . . . , πk) of paths in G which satisfy

(1) πj is a path from qij to q′i′j .
(2) πj and π` do not intersect for j 6= `.

The reader may verify that the graph in Figure 1 has three nonintersecting path families from {q1, q2}
to {q′1, q′3}, and that these families have weights 14, 21, and 6. Correspondingly, the ({1, 2}, {1, 3})-minor of
the path matrix (2.2) is 41 = 14 + 21 + 6.

Immediate consequences of Theorem 2.1 are combinatorial interpretations for certain TNN immanants.
Fix a planar network G and its path matrix A. The application of the monomial x1,σ(1) · · ·xn,σ(n) to A has
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Figure 2. Planar networks for the generators of Sn.

the interpretation

a1,σ(1) · · · an,σ(n) =
∑

Π

ω(Π),

where the sum is over path families Π = (π1, . . . , πn) in G in which πi is a path from qi to q′σ(i). We will say
that such a path family has type σ. Also, by choosing I = I ′ = [n] in Theorem 2.1, we have that

det(A) =
∑

H⊂G

ω(H),

where the sum is over all planar subnetworks H of G which are unions of n nonintersecting paths. With a
bit more work, one can derive a similar combinatorial interpretation for the TNN immanants (1.5),

∆J,J′(A)∆J,J′(A) −∆I,I′(A)∆I,I′(A) =
∑

H∈H
cHω(H),

for appropriate collections H of planar subnetworks which depend on the index sets I , J , etc., and for appro-
priate constants cH . (See [19, Cor. 3.3].) The problem of finding an analogous combinatorial interpretation
for the TNN immanants (1.2) and (1.3) remains open.

To construct more TNN polynomials, we shall examine the planar networks of order n which are unions
of n paths. We will say that a path family Π covers a planar network H = (V,E) if every edge in E belongs
to a path in Π. Since two different path families may cover the edges of a planar network with different
multiplicities, we introduce the following notation. Given a planar networkH = (V,E) of order n, a sequence
m = (me)e∈E of positive multiplicities, and a permutation σ in Sn, we define the number γ(G, σ,m) to be
the number of path families Π of type σ which cover H in such a way that each edge e belongs to exactly
me paths. Note that we may assume that the components of m belong to [n], since each edge of G will be
covered at least once and at most n times by n paths. To enumerate the path families which cover H , we
will associate to H an element β(H) in Z[Sn] which will serve as an unweighted path generating function,

β(H) =
∑

m

∑

σ∈Sn

γ(H, σ,m)σ,

where the first sum is over sequences m.
Certain planar networks which appear often in conjunction with the symmetric group are called wiring

diagrams. Specifically, to the generators s1, . . . , sn−1 of Sn we associate the planar networks in Figure 2.
Then to an expression

σ = si1 · · · sik
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Figure 3. A wiring diagram.

(a) (b)

Figure 4. A generalized wiring diagram and another planar network.

(not necessarily reduced), we associate the planar network formed by concatenation of the generator networks.
It is easy to see that there is at least one path family of type σ which covers a wiring diagram corresponding
to any expression for σ. (This family crosses paths at every opportunity.) Furthermore, the path generating
function for this planar network

(1 + si1) · · · (1 + sik
).

It is easy to see that any family of n paths which covers a wiring diagram of order n covers each edge
exactly once. Figure 3 shows the wiring diagram associated to the expression s1s2s1s1s3 (in S4). The reader
can verify that the corresponding path generating function is

2(s3 + s1s3 + s2s3 + s1s2s3 + s2s1s3 + s1s2s1s3).

Three necessary conditions for a planar network to be a wiring diagram are the following.

(1) No vertex is contained in three paths.
(2) No edge is contained in two paths.
(3) Path intersections occur in an unambiguous left-to-right order.

Relaxing the first two conditions, we have planar networks such as that in Figure 4 (a).
We will define a planar network of order n to be a generalized wiring diagram (of order n) if it is a union

of n paths, no three of which intersect in a single vertex.
It is easy to see that the form of a given wiring diagram determines a unique sequence m of multiplicities

with which edges are covered.

Lemma 2.2. Let H be a generalized wiring diagram. If a path family Π and a path family Π′ cover the

edges of H with multiplicity sequences m and m′, respectively, then m = m′.

Proof. Omitted. �
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Figure 5. Generators of tnλ.

The path generating functions of generalized wiring diagrams factor just as those of wiring diagrams.
On the other hand, the path generating functions of arbitrary unions of n paths do not factor this way.
Figure 4 (b) shows a planar network whose path generating function is 1 + s2 + s3 + s2s3 + s3s2 + s2s3s2.
We will denote by u[i,j] the element of Z[Sn] which is a sum of permutations in the subgroup generated by
si, . . . , sj−1.

Lemma 2.3. Let H be a planar network which is a union of n paths. If H is a generalized wiring diagram

then β(H) factors as

β(H) = (1 + si1) · · · (1 + sik
)

for some generators si1 , . . . , sik
of Sn. If H is not a generalized wiring diagram, then β(H) can be expressed

as a sum of terms of the form

u[i1,j1] · · ·u[ik,jk],

where in each such term we have i` ≤ j` − 2 for at least one index `.

Proof. Omitted. �

3. Main results

Given an integer λ, we define the Temperley-Lieb algebra tnλ to be the Z-algebra generated by elements
t1, . . . , tn−1 subject to the relations

t2i = λti, for i = 1, . . . , n− 1,

titjti = ti, if |i− j| = 1,

titj = tjti, if |i− j| ≥ 2.

The rank of tnλ as a Z-module is well known to be the nth Catalan number Cn = 1
n+1

(
2n
n

)
.

tn2 is isomorphic to the quotient Z[Sn]/I , where I is the ideal generated by u[1,3], u[2,4], . . . , u[n−2,n].
(See [12, Sec. 2.1].) The isomorphism is given by

θ : Z[Sn]→ tn2,

si 7→ ti − 1.

We will call the elements of the multiplicative monoid generated by t1, . . . , tn−1 the basis elements of tnλ.
Figure 5 shows pictorial representations of the basis elements of tnλ which were made popular by

Kauffman [14, Sec. 4]. Multiplication of generators corresonds to concatenation of diagrams, with cycles
contributing λ. Figure 6 shows the multiplication t1t2t1t1t3 = λt1t3 in T4(λ). (We “tighten” long curves to
simplify the picture.)
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=

Figure 6. Multiplication in tnλ.

For any basis element τ of tn2, define fτ : Sn → R to be the function which maps σ to the coefficient of
τ in θ(σ).

Given a planar network H which is a union of n paths, define the element φλ(H) of tnλ by

φλ(H) = θ(β(H)).

If H is a generalized wiring diagram, then by Lemma 2.3, we have that

φλ(H) = θ(1 + si1) · · · θ(1 + sik
) = ti1 · · · tik

for some indices i1, . . . , ik ∈ [n] and therefore that

φλ(H) = λjτ

for some nonnegative integer j and some basis element τ = φ1(H) of tnλ. We will denote the exponent by
α(H),

φλ(H) = λα(H)φ1(H).

If, on the other hand, H is not a generalized wiring diagram, then by Lemma 2.3 we have that β(H) is equal
to a sum of Z[Sn] elements which belong to the kernel of θ. It follows in this case that φλ(H) = 0. If H is a
generalized wiring diagram, then φλ(H) can be computed pictorially as follows.

(1) Contract any doubly covered subpath to a single vertex.
(2) For each vertex v of indegree two and outdegree two, create vertex v ′ with indegree two and vertex

v′′ with outdegree two.
(3) Interpret the resulting graph as an element of tnλ. (See Figures 3 and 6.)

Lemma 3.1. Let H be a planar network which is a union of n paths. For any basis element τ of tn2 we

have
∑

Π

fτ (type(Π)) =

{
2α(H) if φ1(H) = τ ,

0 otherwise,

where the sum is over path families Π which cover H.

Proof. Note that we have
∑

Π

fτ (type(Π)) =
∑

m

∑

σ∈Sn

γ(H, σ,m),

which is equal to the coefficient of τ in

(3.1) θ

(∑

m

∑

σ∈Sn

γ(H, σ,m)σ

)
= θ(β(H)) = φ2(H).

This coefficient is 2α(H) if φ1(H) = τ and is zero otherwise. �
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We may now state and prove our main result.

Theorem 3.2. For any basis element τ of tn2, the fτ -immanant Immfτ (x) is totally nonnegative. In

particular, let G be a planar network of order n and let A be its path matrix. Then we have

Immfτ (A) =
∑

H⊂G

2α(H)ω(H,m),

where the sum is over all planar subnetworks H of G which are generalized wiring diagrams and which satisfy

φ1(H) = τ , and m is the vector of edge multiplicities which is uniquely determined by H.

Proof. We have

Immfτ (A) =
∑

σ∈Sn

fτ (σ)a1,σ(1) · · · an,σ(n)

=
∑

σ∈Sn

fτ (σ)
∑

H⊂G

∑

m

ω(H,m)γ(H, σ,m),

where the second sum is over all planar subnetworks H of G which are unions of n paths. Changing the

order of summation, we have

Immfτ (A) =
∑

H⊂G

∑

m

ω(H,m)
∑

σ∈Sn

fτ (σ)γ(H, σ,m)

=
∑

H⊂G

∑

m

ω(H,m)
∑

Π

fτ (type(Π)),

where the inner sum is over all path families Π which cover H with edge multiplicities m. By Lemma 3.1,

this inner sum is 2α(H) if H is a generalized wiring diagram, and zero otherwise. In the case that H is a

generalized wiring diagram, then Lemma 2.2 implies that the sequence m is completely determined by H ,

and we have our desired result.

�

4. Improved criterion

Now let us associate to each pair of k-subsets (I, I ′) of [n] a subset of the basis elements of tnλ. Labeling
the vertices of a basis element generator τ by q1, . . . , qn, q

′
n, . . . , q

′
1 (counterclockwise), let us say that τ is

compatible with the pair (I, I ′) if each edge is incident upon exactly one of the vertices {qi | i ∈ I}∪{q′j | j ∈ I ′}.
Theorem 4.1. Let I, I ′, J, J ′ be subsets of [n] satisfying |I | = |I ′| and |J | = |J ′|, and let R(I, I ′), R(J, J ′)
be the subsets of basis elements of tnλ which are compatible with (I, I ′) and (J, J ′), respectively. The im-

mananant ∆J,J′(x)∆J,J′(x) −∆I,I′(x)∆I,I′(x) is totally nonnegative if and only if R(I, I ′) is contained in

R(J, J ′). In particular, we have

∆J,J′(x)∆J,J′(x) −∆I,I′(x)∆I,I′(x) =
∑

τ∈R(J,J′)rR(I,I′)

Immfτ (x).

Proof. Omitted. �
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The weak and Kazhdan-Lusztig orders on standard Young tableaux

Victor Reiner and Muge Taskin

Abstract. Let SY Tn be the set of all standard Young tableaux with n cells. After recalling the

definition of a partial order on SY Tn first defined by Melnikov, which we call the weak order, we

prove two main results:

• Intervals in the weak order essentially describe the product in a Hopf algebra of tableaux defined

by Poirier and Reutenauer.

• The map sending a tableau to its descent set induces a homotopy equivalence of the proper parts

of either weak order or Kazhdan-Lusztig order on tableaux with the Boolean algebra 2[n−1]. In

particular, the Möbius function for either of these orders on tableaux is (−1)n−1.

The methods use in an essential way the Kazhdan-Lusztig order on SY Tn, and in some cases apply

to other orders between the weak order and KL-order.

1. Introduction

The weak order on standard Young tableaux was introduced by Melnikov [15] (who called it the induced
Duflo order), in connection with the Robinson-Schensted (RSK) correspondence and the weak Bruhat order
on permutations. Roughly speaking, this order is the weakest partial ordering on SY Tn, such that the map
from the weak Bruhat order on the symmetric group Sn which takes a permutation w to its RSK insertion
tableau P (w) is order preserving; see Figure 1 for n = 2, 3, 4, 5.

This order is closely related to the Kazhdan-Lusztig preorder on the symmetric group, and the partial
order on SY Tn that it induces, which we will call the KL order. In general, the weak order on SY Tn is
weaker than the KL order, although they are equivalent up to n = 5. The goal of this paper is to prove two
main results, Theorems 1.1 and 1.2, about the weak and KL orders on SY Tn.

The first result relates to algebra structures defined by Malvenuto and Reutenauer, Poirier and Reutenauer,
and is motivated by results of Loday and Ronco [13]; the same result was also asserted without proof in [8,
middle of p. 579]. Malvenuto and Reutenauer [14] defined a (Hopf) algebra structure on ZS = ⊕n≥0ZSn,
whose product sends a pair of permutations u, v to the sum of all shuffles sh(u, v) of u and v (after raising the
values of all letters in v by the length of u). Poirier and Reutenauer [17] observed that this product restricts
to a product on the subalgebra spanned by sums over Knuth/plactic classes in Sn (or right Kazhdan-Lusztig
cells), which are indexed by Young tableaux T . This defines the product T ∗ S in the Poirier-Reutenauer
Hopf algebra ZSY T = ⊕n≥0ZSY Tn. The following is proven in Section 3, where T/S and T\S are defined
more precisely.

Theorem 1.1.

T ∗ S =
∑

R∈SY Tn:
T/S≤weakR≤weakT\S

R

This research of both authors was partially supported by NSF grant DMS-9877047.
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Figure 1. The weak order and the KL-order on SY Tn, which coincide for for n = 2, 3, 4, 5

(but not in general).

where T/S and T\S are obtained by sliding S over T from the left and from the bottom respectively.
The second main result is about the Möbius function and homotopy type for the weak order and KL-

order on SY Tn. The weak Bruhat order on Sn is well-known to have each interval homotopy equivalent to
either a sphere or a point, and hence have Möbius function values all in {±1, 0}. This is false for intervals
in general in (SY Tn,≤ weak); see Figure 2 below. However, it is true for the interval from bottom to top.

Theorem 1.2. Let ≤ be any partial order on SY Tn that lies between ≤weak and ≤KL (e.g. ≤weak or ≤KL

itself).

Then the map of sets SY Tn 7→ 2[n−1] sending a tableau to its descent set is order-preserving, and induces

a homotopy equivalence of proper parts. In particular, µ(0̂, 1̂) = (−1)n−1 for any such order.
To clarify the context and motivation for Theorems 1.1 and 1.2, we recall two commutative diagrams

appearing in the work of Loday and Ronco [13]

(1.1)
Sn−→Yn
↘ ↓

2[n−1]

ZS←−ZY
↖ ↑

Σ
.

In the left diagram, Yn denotes the set of plane binary trees with n vertices. The horizontal map sends a
permutation w to a certain tree T (w), and has been considered in many contexts (see e.g. [22, §1.3], [5,
§9]). The southeast map Sn → 2[n−1] sends a permutation w to its descent set DesL(w). These maps of sets
become order-preserving if one orders Sn by weak order, Yn by the Tamari order (see [5, §9]), and 2[n−1] by
inclusion. In [5, Remark 9.12], Björner and Wachs (essentially) show that the triangle on the left induces a
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diagram of homotopy equivalences on the proper parts of the posets involved. Theorem 1.2 and the stronger
assertion in Corollary 4.3 below give the analogue of this statement in which one replaces (Yn,≤Tamari) by
(SY Tn,≤weak). We were further motivated in proving Theorem 1.2 by the results of Aguiar and Sottile
[1], where the Möbius function of the weak order on Sn plays a role in understanding the structure of the
Malvenuto-Reutenauer algebra.

The second diagram in (1.1) consists of induced inclusions of Hopf algebras, in which ZS is the
Malvenuto-Reutenauer algebra, ZY is a subalgebra isomorphic to Loday and Ronco’s free dendriform algebra
on one generator [12], and Σ is a subalgebra known as the algebra of noncommutative symmetric functions.
In [13], Loday and Ronco proved a description of the product structure for each of these three algebras very
much analogous to Theorem 1.1, which should be viewed as the analogue replacing ZY by ZSY T .

The analogy between the standard Young tableaux SY Tn and the plane binary trees Yn is tightened
further by recent work of Hivert, Novelli and Thibon [8]. They show that the planar binary trees Yn can be
interpreted as the plactic monoid structure given by a Knuth-like relation similar to the interperation of the
set of standard Young tableaux as Knuth/plactic classes.

2. Definition and properties of the weak order on SY Tn

Before giving the definition of the weak order, it is necessary to recall the Robinson-Schensted (RSK)
correspondence; see [18, §3] for more details and references on RSK. The RSK correspondence is a bijection
between Sn and {(P,Q) : P,Q ∈ SY Tn of same shape}. Here P and Q are called the insertion and recording
tableau respectively. Knuth [11] defined an equivalence relation ∼

K
on Sn with the property that σ∼

K
τ if and

only if they have the same insertion tableaux P (σ) = P (τ).
It turns out that RSK is closely related to the Kazhdan-Lusztig preorders on Sn. Recall that a preorder

on a set X is a binary relation ≤ which is reflexive (x ≤ x) and transitive (x ≤ y, y ≤ z implies x ≤ z). It
need not be antisymmetric, that is, the equivalence relation x ∼ y defined by x ≤ y, y ≤ x need not have
singleton equivalence classes. Note that a preorder induces a partial order on the set X/∼ of equivalence
classes. Kazhdan and Lusztig [9] introduced two preorders (the left and right KL preorders) on Coxeter
groups. In this paper we will denote by ≤op

KL the opposite of the usual KL right preorder on Sn. For
example, with our convention, the identity element 1 and the longest element w0 satisfy 1 ≤op

KL w0. It turns
out [9] (and explicitly in [6, p. 54]) that the associated equivalence relation for this KL preorder is the
Knuth equivalence ∼

K
. Hence an equivalence class (usually called either a Knuth class or plactic class or a

Kazhdan-Lusztig right cell in Sn) corresponds to a tableau T in SY Tn. Denote this equivalence class CT .
We denote by (SY Tn,≤op

KL) the partial order induced by the KL preorder.

Proposition 2.1. Let ≤ be any preorder on Sn which is weaker than ≤op
KL. Then ≤ induces an order on

SY Tn, by taking the transitive closure of the relation which has S ≤ T whenever σ ≤ τ for some σ, τ in Sn

with P (σ) = S, P (τ) = T .

Furthermore, the map (S,≤)→ (SY Tn,≤) sending σ 7→ P (σ) is order-preserving.

Proof. Straightforward, but omitted in this extended abstract. �

We now recall the (right) weak (Bruhat) order ≤weak Sn. It is the transitive closure of the relation
σ ≤weak τ if τ = σ · si for some i with σi < σi+1, and where si is the adjacent transposition (i i+ 1). The
weak order has an alternative characterization [3, Prop. 3.1] in terms of (left) inversion sets

InvL(σ) := {(i, j) : 1 ≤ i < j ≤ n and σ−1(i) > σ−1(j)},
namely σ ≤weak τ if and only if InvL(σ) ⊂ InvL(τ).

It is known [9, page 171] that the (right) weak order ≤weak on Sn is weaker than the (right) KL preorder
≤op

KL on Sn, leading to the following definition.
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Definition 2.2. The weak order (SY Tn,≤weak), first introduced by Melnikov [15] under the name induced

Duflo order, is the partial order induced by (Sn,≤weak) via Proposition 2.1.
Implicitly the definition of (SY Tn,≤weak) involves taking transitive closure; the necessity of this is

illustrated by the following example (cf. Melnikov [15, Example 4.3.1]).

Example 2.3. Let R =
125
34 , S =

145
2
3

, T =
14
25
3

with

CR = {31425, 34125, 31452, 34152, 34512},
CS = {32145, 32415, 32451, 34215, 34251, 34521},
CT = {32154, 32514, 35214, 32541, 35241}.

Here R <weak S since 34125 <weak 34215 = 34125 · s3, and S <weak T since 32145 <weak 32154 = 32145 · s4.
Therefore R < T .

On the other hand, for every ρ ∈ CR one has (2, 4) ∈ InvL(ρ), whereas for every τ ∈ CT one has

(2, 4) /∈ InvL(τ). This shows that there is no ρ ∈ CR and τ ∈ CT such that ρ <R τ .
It happens that (SY Tn,≤weak) and (SY Tn,≤op

KL) coincide for n ≤ 5, but the following examples show
that they differ for n = 6.

Example 2.4. Let

S =
123
456, T1 =

125
36
4

, T2 =
136
24
5

Computer calculations show that S ≤op
KL T1, T2, but S 6≤weak T1, T2. By using the anti-automorphism of

≤op
KL,≤weak that transposes a standard Young tableau (see Proposition 2.6) one obtains two more examples

of pairs of tableaux which are comparable in ≤op
KL, but not in ≤weak. These are the only such examples in

SY T6.
An important property of both ≤weak and ≤op

KL are their interactions with descent sets. The (left)
descent set of a permutation σ is defined by

DesL(σ) := {(i, i+ 1) : 1 ≤ i ≤ n− 1 and σ−1(i) > σ−1(i+ 1)}
= InvL(σ) ∩ S

where S = {(i, i + 1) : 1 ≤ i ≤ n − 1}. In what follows, we will often identify the set S of adjacent
transposition with the numbers [n− 1] := {1, 2, . . . , n− 1} via the obvious map (i, i+ 1) 7→ i.

Property (i) in the next proposition is well-known [9, Prop. 2.4], and property (ii) follows from the
characterization of ≤weak by inclusion of left inversion sets.

Proposition 2.5. For σ, τ in Sn,

(i) σ ≤op
KL τ implies DesL(σ) ⊂ DesL(τ).

(ii) σ ≤weak τ implies DesL(σ) ⊂ DesL(τ).

As a consequence of this proposition (or well-known properties of RSK), the left descent set DesL(−) is
constant on Knuth classes CT ; the descent set of the standard Young tableau T is described intrinsically by

Des(T ) := {(i, i+ 1) : 1 ≤ i ≤ n− 1 and

i+ 1 appears in a row below i in T}.
For the record, we note here some well-known symmetries of ≤weak and ≤op

KL on SY Tn, and some obvious

order-preserving maps to other posets. Let (2[n−1],⊆) be the Boolean algebra of all subsets of [n−1] ordered
by inclusion. Let (Parn,≤dom) denote the set of all partitions of the number n ordered by dominance, that
is, λ ≤dom µ if

λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk for all k.

Proposition 2.6. The following maps are order-preserving:
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(i) The map

(SY Tn,≤weak)→ (2[n−1],⊆)

sending a tableau T to its descent set Des(T ).

(ii) The same map

(SY Tn,≤op
KL)→ (2[n−1],⊆).

(iii) The map

(SY Tn,≤weak)→ (Parn,≤dom)opp

sending T to its shape λ(T ), where here (−)opp denotes the opposite or dual poset.

Also, Schützenberger’s evacuation map [20] on SY Tn gives a poset automorphism of both ≤weak and ≤op
KL,

and the transpose map on SY Tn gives a poset anti-automorphism of both.

Proof. The first two assertions are immediate from Proposition 2.5 (i) and (ii). For (iii), one can apply

Greene’s Theorem [7].

The assertions about transposing and evacuation follow from the fact that the involutive maps

w 7→ w0w and w 7→ ww0

are antiautomorphisms of both (Sn,≤op
KL) [6] and (Sn,≤weak). Hence w 7→ w0ww0 is an automorphism of

both. On the other hand P (ww0) is just the transpose tableau of P (w) [19] and P (w0ww0) is nothing but

the evacuation of P (w) [20]. �

3. The Hopf Algebra of SY Tn

Malvenuto and Reutenauer, in [14] construct two graded Hopf algebra structure on the Z module of all
permutations ZS = ⊕n≥0ZSn which are dual to each other, and shown to be free as associative algebras
by Poirier and Reutenauer in [17]. The product structure of the one that concerns us here is given by,

α ∗ β = sh(α, β) where β is obtained by increasing the indices of β by the length of α and sh denotes the
shuffle product.

Poirier and Reutenauer also show that Z module of all plactic classes {PCT }T∈SY T , where PCT =∑
P (α)=T α becomes a Hopf subalgebra of permutations and the product is given by the formula

(3.1) PCT ∗ PCT ′ =
∑

P (α)=T
P (β)=T ′

sh(α, β)

Then the bijection sending each plactic class to its defining tableau gives us a Hopf algebra structure on
the Z module of all standard Young tableaux, ZSY T = ⊕n≥0ZSY Tn.

For example,
PC1

2

∗ PC12 = sh(21, 34)= PC134
2

+ PC14
2
3

since sh(21, 34) = 2134 + 2314 + 2341 + 3241 + 3421. In other words,

1
2 ∗ 12 =

134
2 +

14
2
3
.

Another approach to calculate the product of two tableaux is given in [17] where Poirier and Reutenauer
explain this product using jeu de taquin slides. Our goal is to show that it can also be described by a formula
using partial orders, analogous to a result of Loday and Ronco [13, Thm. 4.1]. To state their result, given
σ ∈ Sk and τ ∈ S`, with n := k + `, let τ be obtained from τ by adding k to each letter. Then let σ/τ and
σ\τ denote the concatenations of σ, τ and of τ , σ, respectively.
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Theorem 3.1. For τ ∈ Sk and σ ∈ S`, with n := k+ `, one has in the Malvenuto-Reutenauer Hopf algebra

τ ∗ σ =
∑

ρ∈Sn:
σ/τ≤ρ≤σ\τ

ρ.

Equivalently, the shuffles sh(σ, τ) are the interval [σ/τ, σ\τ ]≤weak
.

The next definition identifies a crucial property for transporting the Loday and Ronco result to SY Tn.

Definition 3.2. Given σ in Sn, and k ∈ [n], let I and Ic be the initial and final segments I = [k] and

Ic = [n]− [k] = [k + 1, n] of the alphabet [n]. Let σI and σIc be the subwords of σ obtained by restricting

to the alphabets I and Ic. Let std(σIc) in Sn−k be the word obtained from σIc by subtracting k from each

letter.

Say that a family of preorders ≤ on Sn for all n restricts to initial and final segments if σ ≤ τ implies

σI ≤ τI and std(σIc) ≤ std(τIc).
We need analogous definitions for tableaux. Given a tableaux T and k ∈ [n] with initial and final

segments I = [k], Ic as before, let TI denote subtableau of T obtained by restricting to the values in I . Let
std(TIc) denote the tableau obtained by first restricting T to its skew subtableau on the values in I c, then
lowering all these entries by k, and then sliding into normal shape by jeu-de-taquin [21].

The following are two basic facts about RSK, Knuth equivalence, and jeu-de-taquin are essentially due
to Knuth and Schützenberger; see Knuth [10, Section 5.1.4] for detailed explanations.

Lemma 3.3. Given ρ ∈ Sn and k ∈ [n], let I = [k], Ic be initial and final segments as before. Then

(i) P (wI) = P (w)I , and

(ii) std(P (w)Ic) = P (std(wIc)).

Let σ ∈ Sk, τ ∈ S`. When P (σ) = S and P (τ) = T , let T denote the result of adding k to every entry
of T . It is easily seen that P (σ/τ) = S/T and P (σ\τ) = S\T , where S/T (respectively, S\T ) is the tableaux
whose columns (resp. rows) are obtained by concatenating the columns (resp. rows) of S and T . Note also
that Lemma 3.3 shows

(S/T )I = S st((S/T )Ic) = T

(S\T )I = S st((S\T )Ic) = T.

The following theorem is a consequence of Lemma 3.3, Proposition 2.1 and Theorem 3.1. For the sake
of space we omit the detailed proof.

Theorem 3.4. Let ≤ be a family of preorders on Sn for all n that

(a) lies between ≤weak and ≤op
KL, and

(b) restricts to initial and final segments.

Let (SY Tn,≤) denote the partial order on tableaux which it induces as in Proposition 2.1.

Then in the Poirier-Reutenauer Hopf algebra,

S ∗ T =
∑

R∈SY Tn:
S/T≤R≤S\T

R.

Proof of Theorem 1.1. The poset (Sn,≤weak) satisfies both hypotheses of Theorem 3.4: it lies between itself
and ≤op

KL, and its characterization via inclusion of left inversion sets shows immediately that it restricts to
initial and final segments. �
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Example 3.5. Let T =
12
3 and S = P (β) =

1
2. Then the product on the corresponding the plactic classes

gives

T ∗ S =
12
3 ∗ 1

2 =
124
35 +

124
3
5

+
12
34
5

+

12
3
4
5

.

On the other hand, T/S =
124
35 and T\S =

12
3
4
5

. The Hasse diagram of SY T5 in Figure 1 shows that the

product above is equal to the sum of all tableaux in the interval [T/S, T\S]≤weak
.

4. Möbius function and homotopy equivalences

In this section, we prove Theorem 1.2, but in greater generality. We will view the the commutative
diagram

(4.1)
Sn−→SY Tn
↘ ↓

2[n−1]

as an instance of the following set-up, involving closure relations, equivalence relations, order-preserving
maps, and the topology of posets. For background on poset topology, see [2].

Let P be a partial order and p 7→ p̄ a closure relation on P , that is,

¯̄p = p̄, p ≤P p̄ and p ≤P q implies p̄ ≤P q̄.

It is well-known that in this instance, the order-preserving closure map P → P has the property that its
associated simplicial map of order complexes ∆(P )→ ∆(P ) is a strong deformation retraction.

Now assume ∼ be an equivalence relation on P such that, as maps of sets, the closure map P → P
factors through the quotient map P → P/∼. Equivalently, the vertical map below is well-defined, and makes
the diagram commute:

(4.2)
P −→P/∼
↘ ↓

P

Proposition 4.1. In the above situation, partially order P by the restriction of ≤P , and assume that P/∼
has been given a partial order ≤ in such a way that the horizontal and vertical maps in the (4.2) are also

order-preserving.

Then the commutative diagram of associated simplicial maps of order complexes are all homotopy equiv-

alences.

Proof. The proof is omitted for the sake of space. �

Lemma 4.2. Given any subset D ⊂ [n− 1], there exists a maximum element τ(D) in (Sn,≤weak) for the

descent class

Des−1
L (D) := {σ ∈ Sn : DesL(σ) = D}.

Consequently, the map Sn → Sn defined by σ 7→ τ(DesL(σ)) is a closure relation, with image isomorphic to

(2[n−1],⊆).

Proof. It is known that [3, page 98-100] Des−1
L (D) := {σ ∈ Sn : DesL(σ) = D} is actually an interval

of the weak Bruhat order on Sn. The rest follows from this fact easily. �
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127
3
4
5
6
8

127
34
5
6
8

127
38
4
5
6

124
37
5
6
8

127
36
4
5
8

124
367
5
8

1247
36
5
8

8
5
4
3
12671247

3
5
6

124
37
58
6

127
34
56
8

8

Figure 2. An interval in (SY T8,≤weak), having Mobius function −2.

Corollary 4.3. Order Sn by ≤weak and 2[n−1] by ⊆, and let ≤ be any order on SY Tn such that the

commuting diagram (4.1) has all the maps order-preserving.

Then these restrict to a commuting diagram of order-preserving maps on the proper parts, each of which

induces a homotopy equivalence of order complexes. Consequently, µ(0̂, 1̂) = (−1)n−1 for each of the three

orders.

Proof. Straightforward from Proposition 4.1 and Lemma 4.2, but omitted in this extended abstract. �

Proof of Theorem 1.2. Any partial order ≤ on SY Tn between ≤weak and ≤op
KL satisfies the hypotheses of

Corollary 4.3. �

The example shown in Figure 2 illustrates that the Möbius function values need not all lie in {±1, 0}
for ≤weak on SY Tn.

Remark 4.4. In light of Theorems 1.2 and 3.4 one might ask if there are other natural orders on SY Tn

which lie between ≤weak and ≤op
KL? And if so, do any of them restrict to initial and final segments?

Conjecture 4.5. The Kazhdan-Lusztig order ≤KL on SY Tn restricts to initial and final segments. Equiv-

alently, the Kazhdan-Lusztig right pre-order on Sn restricts to initial and final segments.

By the evacuation symmetry on ≤KL (see Proposition 2.6), one need only check that it restricts to initial

segments. Computer calculations have verified this for SY Tn with n ≤ 7.

Remark 4.6. One might ask to what extent the definitions and results in this paper apply to other Coxeter

systems (W,S). The weak order on W is well-defined, as are the KL-cells (replacing SY Tn) and the KL-

order, so Proposition 2.1, Definition 2.2 make sense and remain valid. Proposition 2.5 is also well-known

([9]; see [6, Fact 7]), and hence Proposition 2.6(i),(ii) remain valid.

For the analysis of Möbius function and homotopy types, the crucial Lemma 4.2 was proven by Bjorner

and Wachs [4, Theorem 6.1] for all finite Coxeter groups W . Hence Corollary 4.3 and Theorem 1.2 are valid

also in this generality, with the same proof.
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Deformed Universal Characters for Classical and Affine Algebras and the

X = M = K Conjecture

Mark Shimozono and Mike Zabrocki

Abstract. Creation operators are given for three distinguished bases of the type BCD universal

character ring of Koike and Terada. Deformed versions of these operators create symmetric func-

tions whose expansion in the universal character basis, has coefficient polynomials K ∈ � ≥0[q].

We conjecture that for every nonexceptional affine root system, these polynomials coincide with the

graded tensor product multiplicities for affine characters that occur in the X = M conjecture of

Hatayama, Kuniba, Okado, Takagi, Tsuboi, and Yamada, which asserts the equality of an affine

crystal theoretic formula X with a rigged configuration fermionic formula M .

Résumé. Nous donnons les opérateurs qui créent trois bases spéciales du type BCD de l’anneau

des caractères de Koike et Terada. Les versions difformes de ces opérateurs créent les fonctions

symétriques avec les coefficients K ∈ � ≥0[q]. Nous conjecturons que pour tous les systèmes des

racines affines et non-exceptionnels, ces polynômes cöıncident avec les multiplicités des produit ten-

soriels des charactres affines qui apparaissent dans le conjecture X = M de Hatayama, Kuniba,

Okado, Takagi, Tsuboi, et Yamada. Cette conjecture affirme qu’une formule pour X liée aux crys-

taux affines, est égale à une formule fermionique des configurations ‘gréées’ pour M .

1. Introduction

It is well-known that the ring Λ of symmetric functions is the universal character ring of type A, with
universal characters given by the Schur functions. That is, for every n ∈ Z>0 there is a ring epimorphism
Λ→ R(GL(n)) from Λ onto the ring of polynomial representations of GL(n), which sends the Schur function
sλ to the isomorphism class of the irreducible GL(n)-module of highest weight λ.

Using identities of Littlewood [13], Koike and Terada [12] showed that that the common universal
character ring for types B, C, and D, is isomorphic to Λ, constructing two distinguished bases which
correspond to the irreducible characters of the symplectic and orthogonal groups. These bases have the
same structure constants under a suitable labeling of dominant weights by partitions. This ring captures the
behavior (as the rank goes to infinity) of the representation ring of the simple Lie group, or more precisely,
the subring generated by the vector representation.

There is a third basis of Λ with the same structure constants as the above two bases. This basis is
implicitly defined by Kleber [7], who showed that up to a constraint involving Schur function expansions,
these are the only three bases of Λ with the given set of structure constants. This basis also appears with
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a slight deformation in [11, def 6.4, eq (7.2.6)]. It is noteworthy that [7] was motivated by identities for
characters of finite dimensional modules over affine algebras, and that one only sees the third basis upon

considering the twisted affine root system D
(2)
n+1.

Bernstein’s creation operator Br is a degree r linear endomorphism of Λ. The operators Br create the
Schur basis by adding a row at a time to a Schur function, in the sense that Bλ1Bλ2 · · ·Bλk

1 = sλ where
λ = (λ1, . . . , λk). Jing [3] defined a q-analogue of Bernstein’s operator and showed that they create the Hall-
Littlewood symmetric functions. In [22] the authors defined parabolic analogues of Jing’s Hall-Littlewood
creation operators and showed that they create symmetric functions, which, when expanded in the Schur
basis, have coefficients given by the generalized Kostka polynomials of [21].

We consider the analogous constructions for the three bases of the BCD universal character ring using
the general q-analogue of a symmetric function operator given in [23]. Such operators create q-analogues of
products of universal characters. In the row-adding case one obtains polynomials with nonnegative integer
coefficients, but in the parabolic case the nonnegativity fails. Corresponding to the three bases of the BCD
universal character ring, we define three analogues of the type A deformed parabolic creation operators, and
observe that the coefficients are polynomials with nonnegative coefficients which we call K.

To identify the polynomials K we turn to affine algebras. Kirillov and Reshetikhin [8] defined a family of
finite-dimensional modules over Yangians and conjectured that tensor products multiplicities of such modules,
are given by a fermionic formula. This inspired Hatayama, Kuniba, Okado, Takagi, Tsuboi, and Y. Yamada
[2] [1] to formulate the X = M conjecture. First, they conjecture the existence of a family of irreducible
finite-dimensional modules over quantum affine algebras called Kirillov-Reshetikhin (KR) modules. Using
the theory of affine crystal graphs, they define a formula X , which is a q-analogue of the multiplicities of the
restriction to the canonical simple Lie subalgebra, of the tensor product of KR modules. They also define
the fermionic formula M by generalizing to any affine root system, the q-analogue of the fermionic formula
in [8]. They then assert that X = M .

We observe that for each infinite family of affine root systems, the formula M has a stable limit as the
rank goes to infinity. Using the stable M polynomials we define a symmetric function called a universal
affine character, which corresponds to the character of a tensor product of KR modules for large rank. We
conjecture that X = M = K. There are eight infinite families of affine root systems if one distinguishes the

two ways to achieve A
(2)
2n based on whether the 0 root is short (denoted A

(2)
2n ) or extra long (written A

(2)†
2n ). In

this stable limit we observe that there are only four distinct families of universal affine characters, which are
in natural correspondence with the four bases of symmetric functions given by the Schur functions and the
three other aforementioned bases. For any of the four families, the corresponding K polynomials are related
to those of type A in a simple way. Moreover the K polynomials satisfy a Macdonald-type level-rank duality.
Via the X = M = K conjecture these observations have remarkable implications for the affine characters.

2. Plethystic formulae

Let Λ be the ring of symmetric functions, to which we apply the ‘plethystic notation’. Instead of defining
this notation precisely, we list most of the necessary identities in this section; see also subsection 3.3. Assume
that the letters X,Y, Z and W represent sums of monomials with coefficient 1 and expressions like x ∈ X
indicate that x is a single monomial in the multiset X . Let Λ̂ be the completion of Λ given by formal sums
f0 + f1 + f2 + . . . where fi ∈ Λ has degree i.

2.1. Cauchy kernel. There is an element Ω ∈ Λ̂ defined by

(2.1) Ω[X − Y ] =

∏
y∈Y (1− y)∏
x∈X(1− x) =


∑

r≥0

(−1)rs(1r)[Y ]




∑

r≥0

sr[X ]


 .
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It satisfies Ω[X + Y ] = Ω[X ]Ω[Y ]. The reproducing kernel for 〈· , ·〉 is

(2.2) Ω[XY ] =
∑

λ

sλ[X ]sλ[Y ].

2.2. Skewing operators. Given P [X ] ∈ Λ, the skewing operator P [X ]⊥ ∈ End(Λ) is the linear
operator that is adjoint to multiplication by P [X ]:

(2.3) P [X ]⊥(Ω[XY ]) = Ω[XY ]P [Y ].

By linearity it follows that for all P [X ] ∈ Λ,

(2.4) Ω[XZ]⊥(P [X ]) = P [X + Z]

For all P [X ] ∈ Λ one obtains the operator identity

(2.5) Ω[XW ]⊥ ◦ P [X ] = P [X +W ] ◦ Ω[XW ]⊥

where P [X ] denotes multiplication by P [X ] ∈ Λ.

2.3. Coproduct. The coproduct ∆ : Λ → Λ ⊗ Λ may be computed as follows. For P ∈ Λ, expand
P [X + Y ] as a sum of products of the form P1[X ]P2[Y ]: P [X + Y ] =

∑
(P ) P1[X ]P2[Y ]. Then ∆(P ) =∑

(P ) P1 ⊗ P2.

The skewing operators P⊥ act on products via the coproduct:

(2.6) P⊥(QR) =
∑

(P )

P⊥1 (Q)P⊥2 (R).

2.4. Deforming an operator on Λ. Given any operator V ∈ End(Λ), one of the authors [23] defined

its t-analogue Ṽ ∈ End(Λ) by

(2.7) Ṽ (P [X ]) = V Y (P [tX + (1− t)Y ])|Y→X

where V Y acts on the Y variables and Y → X is the substitution map. Applying this construction to
V = Ω[XZ] ◦ Ω[XW ]⊥, we have that for P [X ] ∈ Λ,

Ṽ (P [X ]) = Ω[XZ]Ω[XW (1− t)]⊥P [X ].

By linearity, for all P [X ], Q[X ] ∈ Λ, if V = P [X ] ◦Q[X ]⊥, then

(2.8) Ṽ = P [X ] ◦Q[X(1− t)]⊥.
At t = 0 the operator V is recovered:

(2.9) Ṽ |t=0 = P [X ] ◦Q[X ]⊥ = V.

At t = 1, the operator

(2.10) Ṽ |t=1 = P [X ]Q[0]

is multiplication by P [X ]Q[0].
Let er[X ] = s(1r)[X ] be the elementary symmetric function. The following result is used in later proofs.

Proposition 2.1.

(2.11) Ω[We2[X ]]⊥ ◦ Ω[ZX ] = Ω[ZX +We2[Z]]Ω[W (e2[X ] + ZX)]⊥.
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3. Four bases of symmetric functions

3.1. Littlewood’s formulae. Let

f∅[X ] = 0

f [X ] = s1[X ] + e2[X ]

f [X ] = e2[X ]

f [X ] = s2[X ].

(3.1)

To explain the notation, for ♦ ∈ {∅, , , }, let P♦ be the set of partitions that can be tiled using the
shape ♦. That is, P∅ = {∅} is the singleton set containing the empty partition, P = P is the set of all

partitions, P is the set of partitions with even rows, and P is the set of partitions with even columns.
Littlewood proved that

(3.2) Ω[f♦] =
∑

λ∈P♦

sλ[X ].

3.2. Definition of the four bases. For λ ∈ P define

(3.3) s♦λ [X ] = Ω[−f♦]⊥sλ[X ].

All of the four families {s♦λ | λ ∈ P} are bases of Λ, due to the inverse formula

(3.4) sλ[X ] = Ω[f♦]⊥s♦λ [X ].

Of course s∅

λ = sλ is the basis of Schur functions, which are the universal characters for the special/general

linear groups. The bases {sλ} and {sλ } appear in [12] as the universal characters for the symplectic and
orthogonal groups respectively. The basis {sλ} is not mentioned in [12] but appears implicitly in [7].

Example 3.1. The following elements may computed by the Littlewood-Richardson rule, (3.3), and Little-

wood’s inverse relations to (3.3) [15]. Each Schur function sµ will be represented by the Ferrers diagram of

the partition µ.

s(433) = − − + + +

− − − +

s(433) = − − + + −

s(433) = − − + + + − −

− − + + + − − +

(3.5)

3.3. Change of basis. In plethystic formulae let ε represent a variable that has been specialized to
the scalar −1. We will consider ε to be a special element with the property ε2 = 1 and

(3.6) Ω[εX − εY ] =

∏
y∈Y (1 + y)∏
x∈X(1 + x)

.

For ♦,♥ ∈ {∅, , , } define the linear isomorphism i♥♦ : Λ→ Λ by

(3.7) i♥♦(s♦λ [X ]) = s♥λ [X ]

for all λ. It is given by

(3.8) i♥♦ = Ω[f♦ − f♥]⊥.
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Proposition 3.2. For all P ∈ Λ,

i P [X ] = P [X − 1] i P [X ] = P [X + 1](3.9)

i P [X ] = P [X − 1− ε] i P [X ] = P [X + 1 + ε](3.10)

i P [X ] = P [X − ε] i P [X ] = P [X + ε](3.11)

Since substitution maps are algebra homomorphisms, one has the following result, which was obtained
in [12] for and . The full result is proved in [7], although the basis sλ[X ] is not explicitly mentioned.

Corollary 3.3. i♥♦ is an algebra isomorphism for ♦,♥ ∈ { , , }.

3.4. BCD structure constants and uniqueness of bases. Define the structure constants ♦cλµν by

(3.12) s♦µ [X ]s♦ν [X ] =
∑

λ

♦cλµνs
♦
λ [X ].

The coefficient ∅cλµν is the ordinary Littlewood-Richardson coefficient cλµν . By Corollary 3.3, the other three
sets of structure constants coincide; call this common structure constant dλµν .

Theorem 3.4. [7] Suppose {vλ} is a basis of Λ such that

(3.13) vµvν =
∑

λ

dλµνvλ

for all µ, ν and that

(3.14) sλ ∈ vλ +
∑

µ<λ

Z≥0 vµ

where µ ≤ λ means that µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i (but µ and λ need not have the same number

of cells). Then {vλ} must be one of the bases {sλ}, {sλ }, or {sλ}.
The structure constants dλµν can be expressed in terms of the Littlewood-Richardson coefficients cλ

µν

using the Newell-Littlewood formula.

Proposition 3.5. [14] [16]

(3.15) dλµν =
∑

ρ,σ,τ

cµρτc
ν
στ c

λ
ρσ .

Example 3.6. For ♦ ∈ { , , },
s♦(21)s

♦
(3) = s♦(2) + s♦(11) + s♦(4) + 2 s♦(31) + s♦(22) + s♦(211) + s♦(51) + s♦(42) + s♦(411) + s♦(321)

The well-known transpose symmetry of Littlewood-Richardson coefficients cλt

µtνt = cλµν immediately
implies the following result.

Corollary 3.7. [12] dλtµtνt = dλµν .

4. Bernstein operators for the bases s♦λ and determinants

4.1. The Schur basis. The Schur functions {sλ | λ ∈ P} are the unique family of symmetric functions,
which for λ = (r) are given by

(4.1)
∑

r∈Z

sr[X ]zr = Ω[zX ]

and for λ ∈ P are given by the Jacobi-Trudi determinant

(4.2) sλ[X ] = det |sλi−i+j [X ]|1≤i,j≤`(λ)
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where `(λ) is the number of parts of λ. One may define sν [X ] for ν ∈ Zn using (4.1) and (4.2).
Bernstein’s operators {Br | r ∈ Z} ⊂ End(Λ) are defined by

(4.3) B(z) =
∑

r∈Z

Brz
r = Ω[zX ]Ω[−z∗X ]⊥

where z∗ = 1/z. For ν ∈ Zn, define

Bν = Bν1 ◦Bν2 ◦ · · · ◦Bνn ∈ End(Λ).

It is well-known that

(4.4) Bν1 = sν [X ].

4.2. Creating the bases s♦. For ν ∈ Zn and Z = (z1, z2, . . . , zn), define B♦ν ∈ End(Λ) by

(4.5) B♦(Z) =
∑

ν∈Zn

zνB♦ν = i♦∅ ◦B(Z) ◦ i∅♦.

For ν ∈ Zn it follows from (4.4) and (3.7) that

(4.6) B♦ν1
· · ·B♦νn

1 = B♦ν 1 = s♦ν [X ].

The operator B♦(Z) has the following plethystic formula.

Proposition 4.1. For ♦ ∈ { , , },

(4.7) B♦(Z) = R(Z)Ω[−f♦[Z]]Ω[ZX ]Ω[−(Z + Z∗)X ]⊥,

where Z∗ = z∗1 + z∗2 + · · ·+ z∗n and

R(Z) =
∏

1≤i<j≤n

(1− zj/zi).

It follows that

B (Z) = Ω[−Z]B (Z)(4.8)

B (Z) = Ω[−(1 + ε)Z]B (Z)(4.9)

4.3. Determinantal formulae. Recall that the Schur functions satisfy the Jacobi-Trudi identity (4.2).

The other three bases satisfy a common determinantal formula due to Weyl for s and s . See [12, Thm.
2.3.3].

Proposition 4.2. For ♦ ∈ { , , } the basis {s♦λ | λ ∈ P} of Λ is characterized by

sr = sr

sr = sr − sr−1

sr = sr − sr−2

(4.10)

for r ∈ Z and

(4.11) s♦λ =
1

2
det
∣∣∣s♦λi−i+j + s♦λi−i−j+2

∣∣∣
1≤i,j≤`(λ)
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5. Hall-Littlewood symmetric functions and analogues

5.1. Deformed Schur basis. Define

(5.1) B̃(Z) =
∑

ν∈Zn

zνB̃ν

where B̃ν is the t-analogue of Bν given by equation (2.7). This is the “parabolic modified” analogue of Jing’s
Hall-Littlewood creation operator. It was studied in [22], where it is denoted by H t

ν . It is given by

(5.2) B̃(Z) = R(Z)Ω[ZX ]Ω[(t− 1)Z∗X ]⊥.

Let Z(1), . . . , Z(L) be a family of finite ordered alphabets and R1 through RL partitions such that the number
of parts of Rj is equal to the number of letters in Z(j) for all j. Define the symmetric functions BR[X ; t]
and polynomials cλ;R(t) by

(5.3) B̃R1 · · · B̃RL1 = BR[X ; t] =
∑

λ

sλ[X ]cλ;R(t).

The cλ;R(t) are the generalized Kostka polynomials of [21], as proved in [22].
By (2.9) and (4.4) we have

(5.4) BR[X ; 0] = BR1 · · ·BRL1 = s(R1,...,RL)[X ]

where (R1, . . . , RL) denotes the sequence of integers obtained by juxtaposing the parts of the partitions Rj .
By (2.10) and (4.4) we have

(5.5) BR[X ; 1] = sR1 [X ] · · · sRL [X ].

5.2. Deformed s♦λ basis. Let B̃♦ν be the t-analogue of B♦ν . For ♦ ∈ { , , } define

(5.6) B̃♦(Z) =
∑

ν∈Zn

zνB̃♦ν .

By (2.8), Proposition 4.1, (4.8) and (4.9),

B̃ (Z) = R(Z)Ω[−e2[Z]]Ω[ZX ]Ω[(Z + Z∗)(t− 1)X ]⊥

B̃ (Z) = B̃ (Z)Ω[−Z]

B̃ (Z) = B̃ (Z)Ω[−(1 + ε)Z].

(5.7)

For a sequence of partitions R = (R1, R2, . . . , RL), define the symmetric function B♦R[X ; t] and the polyno-

mials d♦λR(t) by

(5.8) B♦R[X ; t] = B̃♦R1
B̃♦R2
· · · B̃♦RL

1 =
∑

λ

d♦λR(t)s♦λ .

Theorem 5.1. d♦λR(t) is constant over ♦ ∈ { , , }.
Let us call these polynomials dλR(t). When R consists of single-rowed rectangles of sizes given by the

partition µ, write dλµ(t) instead of dλR(t).

Theorem 5.2. dλµ(t) ∈ Z≥0[t].
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Example 5.3. Let µ = (3, 2, 1). For ♦ ∈ { , , }, we will represent the function s♦λ by the diagram for

the partition λ superscripted by ♦. By Theorem 5.1 the expansion is independent of ♦.

B♦µ [X ; t] =
♦

+ t
♦

+ t
♦

+ (t2 + t)
♦

+ (t2 + t3)
♦

+ t4 ♦ + (t2 + t)
♦

+ t
♦

+ (2t2 + t+ t3)
♦

+ (t4 + t2 + t3) ♦ + (t2 + t3)
♦

+ (t4 + t2 + t3) ♦ + t4∅♦

6. Parabolic Hall-Littlewood operators and ♦-analogues

For each ♦ ∈ {∅, , , } we define a variant of the type A parabolic Hall-Littlewood creation operator

B̃ν . These will be the creation operators for the universal affine characters.

6.1. ♦-analogues of B̃ν. Write B̃♦t2(Z) for B̃♦(Z) with t replaced by t2. Let

(6.1) H♦(Z) =
∑

ν∈Zk

zνH♦ν = Ω[f♦[tX ]− f♦[X ]]⊥B̃t2(Z)Ω[f♦[X ]− f♦[tX ]]⊥.

Proposition 6.1. For ♦ ∈ {∅, , , },

(6.2) H♦(Z) = Ω[f♦[tZ]]B̃♦t2(Z).

6.2. TheK polynomials. Let R = (R1, R2, . . . , RL) be a sequence of partitions. For♦ ∈ {∅, , , }
define H♦R[X ; t] and K♦λ;R(t) by

(6.3) H♦R[X ; t] =
∑

λ

K♦λ;R(t) s♦λ [X ] = H♦R1
H♦R2

· · ·H♦RL
1.

Using (5.4) and (5.5) one obtains the specializations at t = 0 and t = 1, for all ♦.

H♦R[X ; 0] = s♦(R1,R2,...,RL)[X ](6.4)

H♦R[X ; 1] = sR1 [X ]sR2 [X ] · · · sRL [X ].(6.5)

Remark 6.2. For any ♦, H♦R[X ; t] is a t-deformation of the product of Schur functions, rather than s♦Ri
.

Note also that K∅

λ;R(t) = cλ;R(t2); see (5.3).

6.3. K♦ in terms of K∅. Let |R| =∑i |Ri|. Observe that

H♦R[X ; t] = Ω[f♦[tX ]− f♦[X ]]⊥H∅

R[X ; t].

It follows that for ♦ ∈ {∅, , , },

(6.6) K♦λ;R(t) = t|R|−|λ|
∑

τ∈P
|τ |=|R|

K∅

τ ;R(t)
∑

µ∈P♦

|µ|=|R|−|λ|

cτλµ.
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Example 6.3.

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + t2
(
1 + t+ t2

)
s(3)

+ t2 (1 + t) s(21) + t4
(
1 + t+ t2

)
s(1)

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + t3s(3) + t2s(21) + t4s(1)

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + ts(22) +
(
t+ t2

)
s(31)

+
(
t2 + t3

)
s(4) +

(
2 t2 + t3

)
s(21) +

(
t2 + 2 t3 + t4

)
s(3)

+ t3s(11) +
(
t3 + t4

)
s(2) + t4s(1)

6.4. Level-rank (transpose) duality. Let ||R|| =
∑

i<j |Ri ∩ Rj |, ∅ t = ∅, t = , t = , and
t = .

Proposition 6.4. Let R be a dominant sequence of rectangles (that is, one whose widths weakly decrease)

and R′ a dominant rearrangement of Rt. Then for all partitions λ,

(6.7) K♦
t

λt;R′(t) = t2(||R||+|R|−|λ|)K♦λ;R(t−1).

6.5. Connection between B♦ and H♦.
Proposition 6.5. Let R be the sequence of single-rowed partitions of sizes given by the partition µ. Then

HR[X ; t] = BR[X ; t2](6.8)

Kλ;R(t) = dλR(t2).(6.9)

7. Universal affine characters and X = M = K

Let g be any affine Lie algebra, say, of type X
(r)
N [6], with canonical simple Lie subalgebra g of rank n,

and let U ′q(g) and Uq(g) the corresponding quantized enveloping algebras. Motivated by the work of [8] on
finite-dimensional modules over Yangians, the papers [2] and [1] conjecture the existence of finite-dimensional
U ′q(g)-modules called Kirillov-Reshetikhin (KR) modules. In type A the restriction of a KR module to Uq(g)
has character given by a Schur function indexed by a rectangle. In general one can think of the KR-modules
as being indexed by rectangles, but the restriction of a KR module to Uq(g) is generally reducible. The KR
modules are conjectured to have a natural grading that is constant on Uq(g)-components.

The above two papers propose the X = M conjecture, which give two ways to compute the graded
multiplicity of a Uq(g)-irreducible in a tensor product of KR modules over U ′q(g). The symbols X and M
represent two families of polynomials that are indexed by a pair (R, λ) where R is a sequence of rectangles
which corresponds to a tensor product of KR modules, and λ is a partition which corresponds to a dominant
weight of g. The X formula can be stated entirely in terms of the affine crystal graph of a tensor product of
KR modules; its definition depends on the existence of KR modules and some of their conjectured properties.
The M formula is a q-analogue of the fermionic formula in [8], but extended to all affine root systems. It is
well-defined and independent of the existence of KR modules. See [2] and [1] for details on this remarkable
conjecture.

The X = M conjecture is only completely proved for type A [10] and in this case the polynomials are
essentially the generalized Kostka coefficients cλ;R(t) of equation (5.3). In general the KR modules have not
even been constructed, although strong additional hints on their structure have been provided by Kashiwara
[4] [5].
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Proposition 7.1. Consider a nonexceptional family {X (r)
N } of affine root systems. There is a well-defined

limiting polynomial

(7.1) lim
n→∞

MR,λ(t)

as the rank n goes to infinity. It depends only on R, λ, and the affine family of X
(r)
N . Moreover, there are

only four distinct families of such polynomials, which shall be named as follows.

(1) For A
(1)
n : M

∅

R,λ(t).

(2) For B
(1)
n , D

(1)
n , and A

(2)
2n−1: MR,λ(t).

(3) For C
(1)
n and A

(2)†
2n : MR,λ(t).

(4) For D
(2)
n+1 and A

(2)
2n : MR,λ(t).

The families are grouped according to the decomposition of a KR module upon restriction to Uq(g);
see the appendices of [2] [1]. We define the universal affine character associated to ♦ and R to be

the symmetric function
∑

λ M
♦
R,λ(t)s♦λ ; it corresponds to the graded character of the tensor product of KR

modules indexed by R in the large rank limit.

Conjecture 7.2. For R a dominant sequence of rectangles and all ♦ ∈ {∅, , , },

(7.2) K♦λ;R(t) = M
♦t

Rt,λt(t2/ε)

where ε = 1 except for ♦ = , in which case ε = 2.
At t = 1 this was essentially known [7]. However the formulae for the powers of t occurring in the affine

characters given either by X or the M formulae, do not at all suggest such a simple relationship. Perhaps
the virtual crystal methods of [17] can be used to prove Conjecture 7.2.

Equation (7.2) holds for ♦ = ∅ by combining [10] [18] [19] [20] [22]. It also holds for a single rectangle
in all nonexceptional affine types; see [1, Appendix A] and [2, Appendix A].

Observe that by combining Conjecture 7.2 and Proposition 6.4 one obtains the following conjecture.

Conjecture 7.3.

(7.3) M
♦
R;λ(t) = tε(||R||+|R|−|λ|)M

♦t

Rt,λt(t−1).

This was proved in [9] via a direct bijection for ♦ = ∅. This is a striking conjecture as it relates the
fermionic formulae of different types. This kind of relation is not apparent from the structure of the fermionic
formulae.
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Tamari Lattices and Non-crossing Partitions in Types B and D

Hugh Thomas

Abstract. The usual, or type An, Tamari lattice is a partial order on T A
n , the triangulations of

an (n + 3)-gon. We define a partial order on T B
n , the set of centrally symmetric triangulations of

a (2n + 2)-gon. We show that it is a lattice, and that it shares certain other nice properties of the

An Tamari lattice; it can therefore be considered the Bn Tamari lattice.

We define a bijection between T B
n and the non-crossing partitions of type Bn defined by Reiner.

Reiner has also defined the noncrossing partitions of type Dn as a subset of those of type Bn. We

show that the elements of T B
n which correspond to the noncrossing partitions of type Dn form a

lattice under the order induced from their inclusion in T B
n , which therefore can be considered the

Dn Tamari lattice.

This is a somewhat abridged version of a longer paper with the same title, available at www.arxiv.org/math.CO/0311334.

Résumé. Le treillis de Tamari standard (de type An) est un ordre partiel sur T A
n , les triangula-

tions d’un (n + 3)-gone. Nous définissons un ordre partiel sur T B
n , l’ensemble des triangulations

centralement symétriques d’un (2n + 2)-gone. Nous montrons que c’est un treillis et qu’il possède

aussi d’autres propriétés intéressantes similaires au treillis de Tamari de type An. Ce treillis peut

donc être considéré comme le treillis de Tamari de type Bn.

Nous définissons une bijection entre T B
n et les partages non-croisés de type Bn définis par

Reiner. Reiner a aussi défini les partages non-croisés de type Dn comme un sous-ensemble de ceux

de type Bn. Nous montrons que les éléments de T B
n qui correspondent aux partages non-croisés

de type Dn forment un treillis sous l’ordre induit par leur inclusion dans T B
n , qui peut donc être

considéré comme le treillis de Tamari de type Dn.

Cet exposé est une version plus courte d’un exposé du même titre qui est disponible sur www.arxiv.org/math.CO/0311334.

1. Introduction

Let TA
n denote the set of triangulations of an (n+ 3)-gon. By a triangulation of a polygon, we mean a

division of it into triangles by connecting pairs of its vertices with straight lines which do not cross in the
interior of the polygon. Conventionally, we will number the vertices of our (n + 3)-gon clockwise from 0 to
n+ 2, with a long top edge connecting vertices 0 and n+ 2. An example triangulation is shown in Figure 1
below.

Let S ∈ TA
n . As in [Lee], we colour the chords of S red and green, as follows. A chord C of S is the

diagonal of a quadrilateral Q(C) in S. If C is the diagonal of Q(C) which is connected to the vertex with

1991 Mathematics Subject Classification. Primary 05E15.

Key words and phrases. Tamari lattice, non-crossing partitions, classical types, left modularity, EL-labelling.
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the largest label, we colour it green; otherwise we colour it red. In Figure 1, the red chords are indicated by
thick lines.

6

4 2

3

1

0

5

Figure 1

We partially order TA
n by giving covering relations: T covers S if they coincide except that some green

chord in S has been replaced by the other diagonal of Q(C) (which is red). This is one way to construct
the Tamari lattice, which was introduced in [Tam] and which has since been studied by several authors (see
[HT, Pal, BW2]).

Although this is not clear from the elementary description given here, the Tamari lattice should be
thought of as being associated to type A. One indication of why can be found in [BW2], where it is shown
that TA

n is a quotient of the weak order on the symmetric group Sn+1 (the type An reflection group). Another
reason is that the elements of TA

n index clusters in the An root system (see [FZ]). Once one has the idea
that the Tamari lattice is type A, it is natural to ask whether there exist Tamari lattices in other types.

For reasons which we shall go into further below, the Bn triangulations, denoted TB
n , are the triangula-

tions of a (2n+2)-gon which are fixed under a half-turn rotation. These triangulations have already appeared
in the work of Simion [Sim], and in that of Fomin and Zelevinsky [FZ] where they index the clusters in the
Bn root system. One goal of our paper is to define a partial order on TB

n and to prove that it is a lattice.
The definition is analogous to that already given for the An Tamari lattice: it is given in terms of covering
relations, and S covers T in TB

n if S is obtained from T by replacing a symmetric pair of chords C, C̄ by the
other diagonals of Q(C), Q(C̄). The details of the definition are a trifle complicated, so we defer them for
the main body of the paper. This definition was arrived at independently and more or less simultaneously by
Reading [Rea]. He has also proved that TB

n is a lattice, using a rather different approach. Two alternative
partial orders on TB

n with similar (but somewhat easier to describe) covering relations were suggested by
Simion [Sim]; one is studied further in [San]. But since neither of these is a lattice, neither is completely
satisfying as a type B analogue of the usual Tamari lattice.

What objects should be considered the Dn triangulations is not as settled as in type Bn, although certain
information is known, such as the desired cardinality. One candidate is provided in [FZ], and used there to
index the clusters in the Dn root system. We follow a different approach. First, we find a bijection between
Bn triangulations and Bn non-crossing partitions, which were introduced by Reiner [Rei]. Motivated by
Reiner’s definition of non-crossing partitions for type Dn as a subset of those for type Bn (which has the
desired cardinality), we take our Dn triangulations TD

n to be the corresponding subset of TB
n . (It is not

clear whether there is any natural bijection between our TD
n and the Dn triangulations of [FZ].) Our second

chief result is to show that the order induced on TD
n from its inclusion in TB

n gives it a lattice structure
also. In fact, our approach to type Dn works for any of the interpolating pseudo-types indexing hyperplane
arrangements between Bn and Dn. (We shall recall the definition of these pseudo-types below.)

We show that TB
n and TD

n have an unrefinable chain of left modular elements, a property also shared
by the usual Tamari lattice [BS]. One consequence of this, due to Liu [Liu], is that these lattices have
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EL-labellings. Using these labellings, we show that, as for the usual Tamari lattice (see [BW2]), the order
complex of any interval is either homotopic to a sphere or contractible.

From the results in this paper one could proceed in two directions. One direction is to consider the
existence of Tamari lattices in all Coxeter types. The other direction is to investigate further the lattices
defined here, to see how many more of the properties of the usual Tamari lattice carry over.

2. Type B Triangulations

Recall that the Bn Weyl group consists of signed permutations of n. We can think of these as per-
mutations of {1, . . . , n, 1̄, . . . , n̄} fixed under interchanging i and ī for all 1 ≤ i ≤ n. By analogy, Bn

triangulations, TB
n , are defined to be type A triangulations of a (2n+ 2)-gon fixed under a half-turn. There

is general consensus that this is the correct definition of Bn triangulation: see [Sim, FZ].
We number the vertices of our standard (2n + 2)-gon counterclockwise from n + 1 to 1 and then from

n+ 1 to 1̄. A typical triangulation is shown in Figure 2.
We will frequently distinguish two types of chords: pure and mixed. A chord is pure if it connects two

barred vertices or two unbarred vertices; otherwise it is mixed. For S ∈ TB
n , consider a chord C of S. The

chord C is the diagonal of a quadrilateral, which we denote Q(C). If C is pure, then we colour it red if
Q(C) contains another vertex of the same type as those of C whose label is higher, and green otherwise.
If it is mixed, we colour it red if Q(C) contains an unbarred vertex whose label is higher than the label of
the unbarred vertex of C, or a barred vertex whose label is higher than the label of the barred vertex of C.
Otherwise we colour it green. In Figure 2, the red chords are indicated by thick lines.

2

4

7

5

4 3

1

7

6

52

1

3

6

Figure 2

For C a chord, we write C̄ for its symmetric partner (that is to say, the image of C under a half turn).
Observe that C and C̄ are assigned the same colour.

Lemma 2.1. Consider a chord C in a triangulation S. Let S ′ be the triangulation obtained by replacing C

by C ′, the other diagonal of Q(C), and also replacing C̄ by C̄ ′. Then the colours of C in S and C ′ in S′ are
opposite.
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We can now state the first main theorem of this paper (which, as was already remarked, was arrived at
and proved independently and more or less simultaneously by Reading [Rea]).

Theorem 2.2. There is a lattice structure on TB
n whose covering relations are given by S l T iff S and T

differ in that green chords C, C̄ in S are replaced in T by the other diagonals of Q(C) and Q(C̄) (which will

be red). Note that we allow C = C̄ (i.e. C being a diameter). We call this lattice the Bn Tamari lattice.
The first ingredient in our proof of Theorem 1 is some further analysis of the red and green chords of

triangulations.
Fix a triangulation S. For 1 ≤ i ≤ n, consider those chords of S which are attached to i and let Ci(S)

be the first of these encountered in searching clockwise starting at 1̄. If none is encountered before reaching
i−1, then Ci(S) is not defined. Let R(S) be the set of these chords, together with their symmetric partners.

Lemma 2.3. For any triangulation S, the chords in R(S) are red, the other chords of S are green, and S

is the unique triangulation whose red chords are exactly R(S).

3. Bracket Vectors in types A and B

We briefly recall some well-known facts about the type A Tamari lattice, which serve as motivation for
our work in type B.

Any triangulation S ∈ TA
n has a bracket vector

r(S) = (r1(S), . . . , rn+1(S)). Let ci(S) be the least vertex attached to i. Then ri(S) = i − 1 − ci(S).
For example, the bracket vector of the triangulation shown in Figure 1 is (0,0,0,2,4). This approach to
representing elements of the Tamari lattice goes back to [HT], though we make some different choices of
convention here.

Proposition 3.1. An (n+ 1)-tuple of positive integers is a bracket vector for some triangulation in T A
n iff

it satisfies the following two properties:

(i) For 1 ≤ i < j ≤ n+ 1, ri ≤ rj − (j − i) provided rj − (j − i) is non-negative.

(ii) 0 ≤ ri ≤ i− 1.
The order relation on triangulations has a simple interpretation in terms of bracket vectors, which we

summarize in the following proposition:

Proposition 3.2. The lattice structure on TA
n can be described as follows:

(i) S ≤ T iff ri(S) ≤ ri(T ) for all i.

(ii) r(S ∧ T )i = min(ri(S), ri(T )).

(iii) For x any n + 1-tuple of numbers satisfying only the second condition of Proposition 1, there is a

unique triangulation ↑(x) such that that for S ∈ TA
n ,

ri(S) ≥ xi for all i iff S ≥↑(x).
(iv) r(S ∨ T ) =↑(max(r(S), r(T ))), where max is taken coordinatewise.
We now proceed to describe a similar construction in type B. To a triangulation S ∈ TB

n we associate a
bracket vector r(S) = (r1(S), . . . , rn(S)), as follows. For 1 ≤ i ≤ n, let ci(S) denote the first vertex adjacent
to i encountered proceeding clockwise starting at 1̄. If the counter-clockwise distance from i− 1 to ci(S) is
less than or equal to n− 1, set ri(S) to be that distance. Otherwise, set ri(S) = ∗. Thus, the triangulation
shown in Figure 2 has bracket vector (0, ∗, 0, 0, 2, 0).

Conventions regarding ∗. ∗ is considered to be greater than any integer. ∗ plus an integer (or ∗) equals

∗.
Lemma 3.3. The map from TB

n to bracket vectors is injective.

Proposition 3.4. Bn bracket vectors are n-tuples of symbols

from [0, n− 1] ∪ {∗} characterized by the following two properties:

i) For 1 ≤ i < j ≤ n, ri ≤ rj − (j − i) if rj − (j − i) is non-negative.
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ii) If ∗ > ri ≥ i, then rn+i−ri = ∗.
We will now define an order on TB

n . For S, T ∈ TB
n , let S ≤ T iff for all i, ri(S) ≤ ri(T ).

Proposition 3.5. The covering relations in this order on TB
n are exactly those described by Theorem 1.

Our next goal is to show that the Bn Tamari order is really a lattice. Before we can do that, we need
some preliminary results.

Let Mn denote the n-tuples with entries in [0, n− 1] ∪ {∗}, with the Cartesian product order. Let M
(i)
n

denote the elements of Mn which satisfy condition (i) of Proposition 3. Let M
(ii)
n denote the elements of Mn

which satisfy condition (ii) of Proposition 3.

Proposition 3.6. There exist maps ↑: M (ii)
n → TB

n , ↓: M (i)
n → TB

n , which satisfy the following conditions:

f ≤ r(S) iff ↑(f) ≤ S
r(S) ≤ f iff S ≤↓(f).

Using these maps, we can prove that meet and join exist in TB
n by giving simple descriptions of them.

Proposition 3.7. The Tamari order on TB
n is a lattice. The lattice operations are as follows: For S, T ∈ TB

n ,

S ∨ T =↑(max(r(S), r(T ))) and S ∧ T =↓(min(r(S), r(T ))).
This completes the proof of Theorem 1. The Hasse diagram of T 3

B is shown in Figure 5, at the end of
the paper.

4. Non-crossing partitions

The An non-crossing partitions, NCA
n , are partitions of n+ 1 into sets such that if v1, . . . , vn+1 are n+ 1

points on a circle, labelled in cyclic order, and if B1, . . . , Br are the convex hulls of the sets of vertices
corresponding to the blocks of the partition, then the Bi are non-intersecting.

There is a bijection from TA
n to NCA

n as follows. For S ∈ TA
n , erase all the green chords of S and the

vertices 0 and n+2. Then move the endpoints of each red chord ij a little bit, the lower-numbered end point
a little clockwise, the higher-numbered endpoint a little counterclockwise (so i and j are both on the upper
side of the chord). These chords now divide the vertices in [n + 1] into subsets, which form a non-crossing
partition by construction. Figure 3 shows the triangulation from Figure 1, together with the non-crossing
partition which it induces: {14, 23, 5}

6

5

4

3

1

2

0

3

2

15

4

Figure 3

Note that the non-crossing partitions are often considered as being ordered by refinement; this order is
quite different from the Tamari order.

As defined by Reiner [Rei], the Bn non-crossing partitions, NCB
n , are partitions of the set 1, . . . , n,

1̄, . . . , n̄, which have the properties that the partition remains fixed under interchanging barred and unbarred
elements, and that if 2n points are chosen around a circle and labelled cyclically v1, . . . , vn, v1̄, . . . , vn̄, then
the convex hulls of the vertices corresponding to the blocks of the partition do not intersect.
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We now define a map ψ from TB
n to NCB

n , analogous to that in type A. Erase all green chords. Move
both endpoints of mixed red chords slightly counterclockwise. Move the endpoints of pure red chords slightly
together (so that the vertices both lie on the side of the chord which includes the larger part of the polygon).
Erase the vertices n+ 1 and n+ 1. The remaining vertices are now partitioned by the red chords, in what
is clearly a Bn non-crossing partition. Figure 4 shows the triangulation from Figure 2, together with the Bn

non-crossing partition which it induces: {12̄5̄6̄, 34, 1̄256, 3̄4̄}.
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1
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7
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1

3
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Figure 4

Proposition 4.1. The map ψ is a bijection from TB
n to NCB

n .

5. EL-Shellability

Recall that an element x of a lattice L is said to be left modular if, for all y < z ∈ L,

(y ∨ x) ∧ z = y ∨ (x ∧ z).
For 1 ≤ i ≤ n and t ∈ [1, n− 1] ∪ {∗}, let Si,t denote the triangulation with bracket vector as follows:

rj(Si,t) =

{∗ for j > i
t for j = i
0 for j < i.

Lemma 5.1. Si,t ∈ TB
n is left modular.

Since the Si,t together with 0̂ form an unrefinable chain, we have the following theorem:

Theorem 5.2. TB
n has an unrefinable chain of left modular elements.

The analogous fact that TA
n posesses a maximal chain of left modular elements was first proved by Blass

and Sagan [BS].
It was shown in [Liu] that a lattice having an unrefinable chain of left-modular elements has an EL-

labelling. In particular, this shows that the order complex of any interval in such a lattice is shellable
and hence contractible or homotopy equivalent to a wedge of spheres. For more on EL-labelling, and EL-
shellability, see [Bj, BW1, BW2].

Thus, Theorem 2 implies the following corollary:

Corollary 5.3. TB
n is EL-shellable.
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6. Homotopy types of intervals

As we have already remarked, the fact that TB
n is EL-shellable implies that the order complex of any

interval is either contractible or has the homotopy type of a wedge of spheres. In this section, we shall show
that it is in fact either contractible or homotopic to a single sphere. One reason that such a result is of
interest is that it implies that the Möbius function of any interval in TB

n is 0, −1, or 1.

Theorem 6.1. The order complex of an interval in TB
n is either contractible or homotopy equivalent to a

single sphere.
To sketch the proof of Theorem 3, we begin by recalling the EL-labelling of [Liu]. Let L be a lattice,

and let 0̂ = x0 l x1 l · · · l xr = 1̂ be an unrefinable chain of left modular elements. Let Wi be the set of
join irreducibles below xi but not below xi−1. For y < z in L, let W(y, z) be the set of irreducibles below z
but not below y. For any S l T in L, label the corresponding edge of the Hasse diagram by:

γ(S, T ) = min{i | Wi ∩W(S, T ) 6= ∅}.
Proposition 6.2 ([Liu]). For L a lattice with an unrefinable left modular chain, the labelling γ defined

above is an EL-labelling.
In order to interpret this labelling in our case, we need some results about the join-irreducibles of TB

n .
For 1 ≤ t ≤ i− 1, let Wi,t denote the triangulation whose bracket vector consists of t in the i-th place,

all the other entries being zero.
For i ≤ t < n, let Wi,t denote the triangulation defined by:

rj(Wi,t) =

{
t for j = i
∗ for j = n+ i− t
0 otherwise

Let Wi,∗ denote the triangulation whose bracket vector consists of a single ∗ in the i-th place, all the
other entries being zero.

Write W for the set of all the Wi,t.

Proposition 6.3. The join-irreducibles of TB
n are exactly W. The unique join-irreducible below Si,t and

not below any smaller Si′,t′ is Wi,t.
Recall from [BW2] that given a poset with an EL-labelling, the order complex of an interval [y, z] is

homotopic to a wedge of spheres, one for each unrefinable chain from y to z such that the labels strictly
decrease as one reads up the chain. Such chains are called decreasing chains.

Thus, Theorem 3 follows from the following lemma:

Lemma 6.4. For Y < Z ∈ TB
n , there is at most one decreasing chain from Y to Z.

7. Generalizing to Type BDS
n

Here we fix n and a subset S of [n]. We will be operating in type BDS
n , a concept introduced in [Rei]

which we now explain. This is not a type in the usual sense. Rather, it refers to a certain hyperplane
arrangement between those associated to Bn and Dn.

Recall that a root system gives rise to a hyperplane arrangement by taking all the hyperplanes through
the origin perpendicular to roots. The Bn arrangement therefore consists of all those hyperplanes defined
by xi ± xj = 0, together with those defined by xi = 0, for 1 ≤ i, j ≤ n, while the Dn arrangement consists
only of those hyperplanes defined by xi ± xj = 0 for 1 ≤ i, j ≤ n. Now, for S ⊂ [n], the BDS

n hyperplane
arrangement consists of those hyperplanes defined by xi ± xj = 0 together with xi = 0 for i 6∈ S. When
S = ∅ we recover Bn, while if S = [n] we recover Dn.

The Bn partitions, ΠB
n , are by definition those partitions of the set {1, . . . , n, 1̄, . . . , n̄} which are fixed

under the map interchanging i and ī, and such that there is at most one block which contains any i and ī
simultaneously. This is a suitable definition of ΠB

n because its elements are naturally in bijection with the

elements of the intersection lattice of the Bn arrangement. NCB
n is a subset of ΠB

n .
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The intersection lattice of the BDS
n hyperplane arrangement is a subset of that of type Bn. This allows a

natural definition of BDS
n partitions, ΠS

n , as a subset of ΠB
n . By this approach, one obtains that ΠS

n consists

of those partitions of ΠB
n which do not contain any block {i, ī} for i ∈ S. In [Rei], Reiner defined NCS

n , the

non-crossing partitions of type BDS
n , by NCS

n = NCB
n ∩ΠS

n . (For more details on the material sketched in
the preceding paragraphs, see [Rei].)

We now define T S
n to be those triangulations which correspond under ψ to partitions in NCS

n . We can
describe them more directly as follows:

Lemma 7.1. T S
n consists of those triangulations which do not contain the triangles i, ī, i+ 1 and i, ī, i+ 1

for any i ∈ S. T S
n can also be characterized as the set of triangulations T such that ri(T ) 6= n − 1 for any

i ∈ S.
The remainder of the paper is devoted to sketching the proof of the following theorem, which generalizes

Theorems 1, 2, and 3 to the broader context of type BDS
n .

Theorem 7.2. T S
n admits a lattice structure which is a quotient of that on TB

n . TS
n posesses an unrefinable

chain of left modular elements, which implies that it is EL-shellable. Further, the order complex of any

interval is either contractible or homotopic to a single sphere.
We define an equivalence relation ∼S on TB

n as follows: two non-identical triangulations are equivalent iff
they differ in that one of them, say T , is not in T S

n , and the other is the triangulation obtained by removing
the diameter of T and replacing it with the other possible diameter.

An equivalence relation ∼ on a lattice L is said to be a congruence relation if the lattice operations pass
to equivalence classes. In this case, there is an induced lattice structure on the equivalence classes (see [Gr]).

Lemma 7.3. The relation ∼S on TB
n is a congruence relation.

Since the equivalence classes of ∼S each contain a single element of T S
n , the induced lattice structure on

TB
n / ∼S gives rise to a lattice structure on T S

n .
(One could also define a partial order on T S

n by considering the order induced by its inclusion in TB
n . It

turns out that the order defined in this way coincides with the order we have already defined.)
It is immediate that the property of being left modular passes to equivalence classes, so T S

n has a maximal
chain of left modular elements, and is therefore EL-shellable. This maximal chain is shorter than that of
TB

n , because Si,n−1 ∼S Si,∗ for i ∈ S.
It is easy to see that the join irreducibles of T S

n are those Wi,t such that either i 6∈ S or t 6= n− 1; again,
they are in bijection with the elements of the left modular chain.

As in the type B case, the result on homotopy types of intervals follows by showing that there is at most
one decreasing chain in any interval in T S

n .
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Enumeration of Totally Positive Grassmann Cells

Lauren K. Williams

Abstract. In [6], Postnikov gave a combinatorially explicit cell decomposition of the totally non-

negative part of a Grassmannian, denoted Gr+
k,n, and showed that this set of cells is isomorphic as a

graded poset to many other interesting graded posets, such as the posets of decorated permutations,

Γ

-diagrams (certain 0− 1 tableau), and positroids. The main result of our work is an explicit gen-

erating function which enumerates the cells in Gr+
k,n according to their dimension. Equivalently,

we compute rank generating functions for the posets of decorated permutations,

Γ

-diagrams, and

positroids. As a corollary, we give a new proof that the Euler characteristic of Gr+
k,n is 1. Addi-

tionally, we use our result to produce a new q-analog of the Eulerian numbers, which interpolates

between the Eulerian numbers, the Narayana numbers, and the binomial coefficients.

Résumé. Postnikov a décrit explicitement dans [6], en termes combinatoires, la décomposition

cellulaire de la partie po-si-ti-ve (notée Gr+
k,n) d’une variété grassmannienne. Il a montré que cet

ensemble de cellules est isomorphe, en tant que treillis gradué, à de nombreux ensembles partielle-

ment ordonnés intéressants, comme les permutations décorées, les

Γ

-diagram-mes (qui sont certains

tableaux à coefficients 0, 1) ou les matröıdes positifs. Le résultat principal de notre travail est une

fonction génératrice explicite, qui dénombre les cellules de Gr+
k,n selon leur dimension. De façon

équivalente, nous calculons la fonction génératrice, pondérée par le rang, pour le treillis des permu-

tations décorées, des

Γ

-diagram-mes et des matröıdes positifs. Nous en déduisons comme corollaire

une nouvelle preuve que la caractéristique d’Euler de Gr+
k,n est 1. De plus, nous utilisons notre

résultat pour exhiber un nouveau q-analogue des nombres eulériens, qui s’interpole entre les nom-

bres eulériens, les nombres de Narayana et les coefficients binomiaux.

1. Introduction

The classical theory of total positivity concerns matrices in which all minors are nonnegative. While
this theory was pioneered by Gantmacher, Krein, and Schoenberg in the 1930s, the past decade has seen a
flurry of research in this area initiated by Lusztig [3, 4, 5], and continued by works of Fomin and Zelevinsky
[1], and Rietsch [7], among others.

Most recently, Postnikov [6] investigated the combinatorics of the totally nonnegative part of a Grass-
mannian Gr+k,n: he produced a combinatorially explicit cell decomposition of Gr+k,n, giving the set of cells of

Gr+k,n a natural structure of graded poset. Furthermore, he showed that this poset was isomorphic to many
other interesting combinatorial posets, such as the posets of decorated permutations,

Γ

-diagrams, positive

Key words and phrases. Grassmannian, total positivity, Eulerian numbers, q-analogs.

The author was supported by a National Defense Science and Engineering Graduate Fellowship.

313



314 ENUMERATION OF TOTALLY POSITIVE GRASSMANN CELLS

oriented matroids, and move-equivalence classes of planar oriented networks. In this paper we continue Post-
nikov’s study of the combinatorics of Gr+k,n: in particular, we enumerate the cells in the cell decomposition

of Gr+k,n according to their dimension. Equivalently, we compute the rank generating functions for all of the
above posets.

The totally nonnegative part of the Grassmannian of k-dimensional subspaces in Rn is defined as the
quotient Gr+k,n = GL+

k \Mat+(k, n), where GL+
k is the group of real k×k matrices with positive determinant,

and Mat+(k, n) is the set of real k × n-matrices of rank k with nonnegative maximal minors. If we specify
which maximal minors are strictly positive and which are equal to zero, we obtain a cellular decomposition
of Gr+k,n, as shown in [6]. We refer to the cells in this decomposition as totally positive cells. The set of
totally positive cells naturally has the structure of a graded poset: we say that one cell covers another if the
closure of the first cell contains the second, and the rank function is the dimension of each cell.

The main result of this paper is an explicit formula for the rank generating function Ak,n(q) of Gr+k,n.

Specifically, Ak,n(q) is defined to be the polynomial in q whose qr coefficient is the number of totally positive
cells in Gr+k,n which have dimension r. As a corollary of our main result, we give a new proof that the Euler

characteristic of Gr+k,n is 1. Additionally, using our result and exploiting the connection between totally

positive cells and permutations, we compute generating functions which enumerate (regular) permutations
according to two statistics. This leads to a new q-analog of the Eulerian numbers that has many interesting
combinatorial properties. For example, when we evaluate this q-analog at q = 1, 0, and −1, we obtain the
Eulerian numbers, the Narayana numbers, and the binomial coefficients. Finally, the connection with the
Narayana numbers suggests a way of incorporating noncrossing partitions into a larger family of “crossing”
partitions.

Let us fix some notation. Throughout this paper we use [i] to denote the q-analog of i, that is, [i] =
1+ q+ · · ·+ qi−1. (We will sometimes use [n] to refer to the set {1, . . . , n}, but the context should make our

meaning clear.) Additionally, [i]! :=
∏i

k=1[k] and
[
i
j

]
:= [i]!

[j]![i−j]! are the q-analogs of i! and
(

i
j

)
, respectively.

2.

Γ

-Diagrams

A partition λ = (λ1, . . . , λk) is a weakly decreasing sequence of nonnegative numbers. For a partition λ,
where

∑
λi = n, the Young diagram Yλ of shape λ is a left-justified diagram of n boxes, with λi boxes in

the ith row. Figure 1 shows a Young diagram of shape (4, 2, 1).

Figure 1. A Young diagram of shape (4, 2, 1)

Fix k and n. Then a

Γ

-diagram (λ,D)k,n is a partition λ contained in a k× (n− k) rectangle (which we

will denote by (n− k)k), together with a filling D : YλΩ̃{0, 1} which has the

Γ

-property: there is no 0 which
has a 1 above it and a 1 to its left. (Here, “above” means above and in the same column, and “to its left”
means to the left and in the same row.) In Figure 2 we give an example of a

Γ

-diagram. 1

We define the rank of (λ,D)k,n to be the number of 1’s in the filling D. Postnikov proved that there is
a one-to-one correspondence between

Γ

-diagrams (λ,D) contained in (n − k)k, and totally positive cells in
Gr+k,n, such that the dimension of a totally positive cell is equal to the rank of the corresponding

Γ

-diagram.
He proved this by providing a modified Gram-Schmidt algorithm A, which has the property that it maps a

1The symbol

Γ

is meant to remind the reader of the shape of the forbidden pattern, and should be pronounced as [le],

because of its relationship to the letter L. See [6] for some interesting numerological remarks on this symbol.
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k = 6, n = 17
λ = (10, 9, 9, 8, 5, 2) k

n− k

1 1
0 0 0 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 1
0 1 1 0 0 1 0 1 0 1

Figure 2. A

Γ

-diagram (λ,D)k,n

real k×n matrix of rank k with nonnegative maximal minors to another matrix whose entries are all positive
or 0, which has the

Γ

-property. In brief, the bijection between totally positive cells and

Γ

-diagrams maps a
matrix M (representing some totally positive cell) to a

Γ

-diagram whose 1’s represent the positive entries of
A(M).

Because of this correspondence, in order to compute Ak,n(q), we need to enumerate

Γ

-diagrams contained
in (n− k)k according to their number of 1’s.

3. Decorated Permutations and the Cyclic Bruhat Order

The poset of decorated permutations (also called the cyclic Bruhat order) was introduced by Postnikov
in [6]. A decorated permutation π̃ = (π, d) is a permutation π in the symmetric group Sn together with a
coloring (decoration) d of its fixed points π(i) = i by two colors. Usually we refer to these two colors as
“clockwise” and “counterclockwise,” for reasons which the next paragraph will make clear.

We represent a decorated permutation π̃ = (π,D), where π ∈ Sn, by its chord diagram, constructed as
follows. Put n equally spaced points around a circle, and label these points from 1 to n in clockwise order.
If π(i) = j then this is represented as a directed arrow, or chord, from i to j. If π(i) = i then we draw a
chord from i to i (i.e. a loop), and orient it either clockwise or counterclockwise, according to d. We refer
to the chord which begins at position i as Chord(i), and we use ij to denote the directed chord from i to j.
Also, if i, j ∈ {1, . . . , n}, we use Arc(i, j) to denote the set of points that we would encounter if we were to
travel clockwise from i to j, including i and j.

For example, the decorated permutation (3, 1, 5, 4, 8, 6, 7, 2) (written in list notation) with the fixed
points 4, 6, and 7 colored in counterclockwise, clockwise, and counterclockwise, respectively, is represented
by the chord diagram in Figure 3.

1

2

3

4

5

6

7

8

Figure 3. A chord diagram for a decorated permutation
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The symmetric group Sn acts on the permutations in Sn by conjugation. This action naturally extends to
an action of Sn on decorated permutations, if we specify that the action of Sn sends a clockwise (respectively,
counterclockwise) fixed point to a clockwise (respectively, counterclockwise) fixed point.

We say that a pair of chords in a chord diagram forms a crossing if they intersect inside the circle or on
its boundary.

Every crossing looks like Figure 4, where the point A may coincide with the point B, and the point C

A B

C D

Figure 4. A crossing

may coincide with the point D. A crossing is called a simple crossing if there are no other chords that go
from Arc(C,A) to Arc(B,D). Say that two chords are crossing if they form a crossing.

Let us also say that a pair of chords in a chord diagram forms an alignment if they are not crossing
and they are relatively located as in Figure 5. Here, again, the point A may coincide with the point B, and

A B

C D

Figure 5. An alignment

the point C may coincide with the point D. If A coincides with B then the chord from A to B should be a
counterclockwise loop in order to be considered an alignment with Chord(C). (Imagine what would happen
if we had a piece of string pointing from A to B, and then we moved the point B to A). And if C coincides
with D then the chord from C to D should be a clockwise loop in order to be considered an alignment with
Chord(A). As before, an alignment is a simple alignment if there are no other chords that go from Arc(C,A)
to Arc(B,D). We say that two chords are aligned if they form an alignment.

We now define a partial order on the set of decorated permutations. For two decorated permutations π1

and π2 of the same size n, we say that π1 covers π2, and write π1Ω̃π2, if the chord diagram of π1 contains
a pair of chords that forms a simple crossing and the chord diagram of π2 is obtained by changing them to
the pair of chords that forms a simple alignment: If the points A and B happen to coincide then the chord
from A to B in the chord diagram of π2 degenerates to a counterclockwise loop. And if the points C and D
coincide then the chord from C to D in the chord diagram of π2 becomes a clockwise loop. These degenerate
situations are illustrated in Figure 7.
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A B

C D

π1

A B

C D

π2

Figure 6. Covering relation

A = B

C D

π1

A = B

C D

π2

C = D

A B

π1

C = D

A B

π2

A = B

C = D
π1

A = B

C = D
π2

Figure 7. Degenerate covering relations

Let us define two statistics A and K on decorated permutations. For a decorated permutation π, the
numbers A(π) and K(π) are given by

A(π) = #{pairs of chords forming an alignment},
K(π) = #{i | π(i) > i}+ #{counterclockwise loops}.

In our previous example π = (3, 1, 5, 4, 8, 6, 7, 2) we have A = 11 and K = 5. The 11 alignments in π are
(13, 66), (21, 35), (21, 58), (21, 44), (21, 77), (35, 44), (35, 66), (44, 66), (58, 77), (66, 77), (66, 82).
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Lemma 3.1. [6] If π1 covers π2 then A(π1) = A(π2)− 1 and K(π1) = K(π2).
Note that if π1 covers π2 then the number of crossings in π1 is greater then the number of crossings in

π2. But the difference of these numbers is not always 1.
Lemma 3.1 implies that the transitive closure of the covering relation “Ω̃” has the structure of a partially

ordered set and this partially ordered set decomposes into n+1 incomparable components. For 0 ≤ k ≤ n, we
define the cyclic Bruhat order CBkn as the set of all decorated permutations π of size n such that K(π) = k

with the partial order relation obtained by the transitive closure of the covering relation “Ω̃”. By Lemma 3.1
the function A is the corank function for the cyclic Bruhat order CBkn.

The definitions of the covering relation and of the statistic A will not change if we rotate a chord diagram.
The definition of K depends on the order of the boundary points 1, . . . , n, but it is not hard to see that the
statistic K is invariant under the cyclic shift conjσ for the long cycle σ = (1, 2, . . . , n). Thus the order CBkn

is invariant under the action of the cyclic group Z/nZ on decorated permutations.
In [6], Postnikov proved that the number of totally positive cells in Gr+k,n of dimension r is equal to

the number of decorated permutations in CBkn of rank r. Thus, Ak,n(1) is the cardinality of CBkn, and the

coefficient of qk(n−k)−` in Ak,n(q) is the number of decorated permutations in CBkn with ` alignments.

4. The Rank Generating Function of Gr+k,n

Recall that the coefficient of qr in Ak,n(q) is the number of cells of dimension r in the cellular decom-

position of Gr+k,n. In this section we give an explicit expression for Ak,n(q), as well as expressions for the

generating functions Ak(q, x) :=
∑

nAk,n(q)xn and A(q, x, y) :=
∑

k≥1

∑
nAk,n(q)xnyk. Our main theorem

is the following:
Theorem 4.1.

A(q, x, y) =
−y

q(1− x)
+

�

i≥1

yi(q2i+1 − y)

qi2+i+1(qi − qi[i + 1]x + [i]xy)

Ak(q, x) =
k−1�

i=0

(−1)i+k xk−i−1[i]k−i−1

qki+i+1(1− [i + 1]x)k−i
+

k�

i=0

(−1)i+k xk−i[i]k−i

qki(1− [i + 1]x)k−i+1

Ak,n(q) =q−k2
k−1�

i=0

(−1)i

�
n

i � (qki[k − i]i[k − i + 1]n−i − q(k+1)i[k − i − 1]i[k − i]n−i)

=

k−1�

i=0

�
n

i � q−(k−i)2 ([i − k]i[k − i + 1]n−i − [i − k + 1]i[k − i]n−i).

Corollary 4.2. The Euler characteristic of the totally non-negative part of the Grassmannian Gr+
k,n is 1.

Recall that the Euler characteristic of a cell complex is defined to be
∑

i(−1)ifi, where fi is the number
of cells of dimension i. So to prove Corollary 4.2, simply set q = −1 in Theorem 4.1 and simplify.

One interesting ingredient in the proof of Theorem 4.1 is the following lemma. We prove this lemma by
interpreting the two equations as statements about partitions, and overpartitions, respectively. Alternatively,
Christian Krattenthaler has pointed out to us that this lemma follows from the 1φ1 summation described in
Appendix II.5 of [2].

Lemma 4.3.

(4.1)
∑

i≥0

(−1)iyiq(
i+1
2 )

i+1∏

r=1

1

1− qry
= 1.
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(4.2) (−1)jq−(j+1
2 )y−j

∑

i≥j

(−1)iq(
i+1
2 )
[
i
j

]
yi

i+1∏

r=1

1

1− qr+jy
= 1.

In Table 1, we have listed some of the values of Ak,n(q) for small k and n. It is easy to see from the
definition of

Γ

-diagrams that Ak,n(q) = An−k,n(q): one can reflect a

Γ

-diagram (λ,D)k,n of rank r over the
main diagonal to get another

Γ

-diagram (λ′, D′)n−k,n of rank r. Alternatively, one should be able to prove
the claim directly from the expression in Theorem 4.1, using some q-analog of Abel’s identity.

A1,1(q) 1
A1,2(q) q + 2
A1,3(q) q2 + 3q + 3
A1,4(q) q3 + 4q2 + 6q + 4
A2,4(q) q4 + 4q3 + 10q2 + 12q + 6
A2,5(q) q6 + 5q5 + 15q4 + 30q3 + 40q2 + 30q + 10
A2,6(q) q8 + 6q7 + 21q6 + 50q5 + 90q4 + 120q3 + 110q2 + 60q + 15
A3,6(q) q9 + 6q8 + 21q7 + 56q6 + 114q5 + 180q4 + 215q3 + 180q2 + 90q + 20
A3,7(q) q12 + 7q11 + 28q10 + 84q9 + 203q8 + 406q7 + 679q6 + 938q5 + 1050q4

+910q3 + 560q2 + 210q + 35

Table 1. Ak,n(q)

Note that it is possible to see directly from the definition that Gr+1,n is just some deformation of a simplex

with n vertices. This explains the simple form of A1,n(q).

5. A New q-Analog of the Eulerian Numbers

If π ∈ Sn, we say that π has a weak excedence at position i if π(i) ≥ i. The Eulerian number Ek,n is
the number of permutations in Sn which have k weak excedences. (One can define the Eulerian numbers in
terms of other statistics, such as descent, but this will not concern us here.)

Using the rank generating function for the poset of decorated permutations, we can enumerate (regular)
permutations according to two statistics: weak excedences and alignments. This gives us a new q-analog of
the Eulerian numbers.

Recall that the statistic K on decorated permutations was defined as

K(π) = #{i | π(i) > i}+ #{counterclockwise loops}.
Note that K is related to the notion of weak excedence in permutations. In fact, we can extend the definition
of weak excedence to decorated permutations by saying that a decorated permutation has a weak excedence
in position i, if π(i) > i, or if π(i) = i and d(i) is counterclockwise. This makes sense, since the limit of a
chord from 1 to 2 as 1 approaches 2, is a counterclockwise loop. Then K(π) is the number of weak excedences
in π.

We will call a decorated permutation regular if all of its fixed points are oriented counterclockwise. Thus,
a fixed point of a regular permutation will always be a weak excedence, as it should be. Recall that the
Eulerian number Ek,n is the number of permutations of [n] with k weak excedences. Earlier, we saw that

the coefficient of qk(n−k)−` in Ak,n(q) is the number of decorated permutations in CBkn with ` alignments.

By analogy, let Ek,n(q) be the polynomial in q whose coefficient of qk(n−k)−` is the number of (regular)
permutations with k weak excedences and ` alignments. Thus, the family Ek,n(q) will be a q-analog of the
Eulerian numbers.

We can relate decorated permutations to regular permutations via the following lemma.
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Lemma 5.1.

Ek,n(q) =

n∑

i=0

(−1)i

(
n

i

)
Ak,n−i(q).

Putting this together with Theorem 4.1, we get the following.

Corollary 5.2.

Ek,n(q) = qn−k2
k−1∑

i=0

(−1)i[k − i]nqki−k(

(
n

i

)
qk−i +

(
n

i− 1

)
).

Notice that by substituting q = 1 into the formula, we get

Ek,n =
k∑

i=0

(−1)i

(
n+ 1

i

)
(k − i)n,

the well-known exact formula for the Eulerian numbers.
Now we will investigate the properties of Ek,n(q). Actually, since Ek,n(q) is a multiple of qn−k, we first

define Êk,n(q) to be qk−nEk,n(q), and then work with this renormalized polynomial. Table 2 lists Êk,n(q)
for n = 4, 5, 6, 7.

Ê1,4(q) 1

Ê2,4(q) 6 + 4q + q2

Ê3,4(q) 6 + 4q + q2

Ê4,4(q) 1

Ê1,5(q) 1

Ê2,5(q) 10 + 10q + 5q2 + q3

Ê3,5(q) 20 + 25q + 15q2 + 5q3 + q4

Ê4,5(q) 10 + 10q + 5q2 + q3

Ê5,5(q) 1

Ê1,6(q) 1

Ê2,6(q) 15 + 20q + 15q2 + 6q3 + q4

Ê3,6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

Ê4,6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

Ê5,6(q) 15 + 20q + 15q2 + 6q3 + q4

Ê6,6(q) 1

Ê1,7(q) 1

Ê2,7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

Ê3,7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8

Ê4,7(q) 175+441q +588q2 +532q3 +364q4 +196q5 +84q6 +28q7 +7q8 + q9

Ê5,7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8

Ê6,7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

Ê7,7(q) 1

Table 2. Êk,n(q)

We can make a number of observations about these polynomials. For example, we can generalize the
well-known result that Ek,n = En+1−k,n, where Ek,n is the Eulerian number corresponding to the number
of permutations of Sn with k weak excedences.

Proposition 5.3. Êk,n(q) = Ên+1−k,n(q).



Lauren K. Williams 321

Proposition 5.4. [6] The coefficient of the highest degree term of Êk,n(q) is 1.

Proposition 5.5. Êk,n(−1) = ±
(
n−1
k−1

)
.

Proposition 5.6. Êk,n(q) is a polynomial of degree (k − 1)(n − k), and Êk,n(0) is the Narayana number

Nk,n = 1
n

(
n
k

)(
n

k−1

)
.

Corollary 5.7. Êk,n(q) interpolates between the Eulerian numbers, the Narayana numbers, and the binomial

coefficients, at q = 1, 0, and −1, respectively.

Remark 5.8. The coefficients of Êk,n(q) appear to be unimodal. However, these polynomials do not in

general have real zeroes.

6. Connection with Narayana Numbers

A noncrossing partition of the set [n] is a partition π of the set [n] with the property that if a < b < c < d
and some block B of π contains both a and c, while some block B ′ of π contains both b and d, then B = B′.
Graphically, we can represent a noncrossing partition on a circle which has n labeled points equally spaced
around it. We represent each block B as the polygon whose vertices are the elements of B. Then the
condition that π is noncrossing just means that no two blocks (polygons) intersect each other.

It is known that the number of noncrossing partitions of [n] which have k blocks is equal to the Narayana
number Nk,n = 1

n

(
n
k

)(
n

k−1

)
(see Exercise 68e in [8]).

To prove the following proposition we will find a bijection between permutations of Sn with k excedences
and the maximal number of alignments, and noncrossing partitions on [n].

Proposition 6.1. Fix k and n. Then (k−1)(n−k) is the maximal number of alignments that a permutation

in Sn with k weak excedences can have. The number of permutations in Sn with k weak excedences that

achieve the maximal number of alignments is the Narayana number Nk,n = 1
n

(
n
k

)(
n

k−1

)
.

To figure out what the maximal-alignment permutations look like, imagine starting from any given
permutation and applying the covering relations in the cyclic Bruhat order as many times as possible, such
that the result is a regular permutation. Note that of the four cases of the covering relation (illustrated
in section 3), we can use only the first and second cases. We cannot use the third and fourth operations
because these add clockwise fixed points, which are not allowed in regular permutations. It is easy to see
that after applying the first two operations as many times as possible, the resulting permutation will have
no crossings among its chords and all cycles will be directed counterclockwise.

The map from maximal-alignment permutations to noncrossing partitions is now obvious. We simply
take our permutation and then erase the directions on the edges. Since the covering relations in the cyclic
Bruhat order preserve the number of weak excedences, and since each counterclockwise cycle in a permutation
contributes one weak excedence, the resulting noncrossing partitions will all have k blocks. In Figure 8 we
show the permutations in S4 which have 2 weak excedences and 2 alignments, along with the corresponding
noncrossing partitions.

Conversely, if we start with a noncrossing partition on [n] which has k blocks, and then orient each cycle
counterclockwise, then this gives us a maximal-alignment permutation with k weak excedences.

Corollary 6.2. The number of permutations in Sn which have the maximal number of alignments, given

their weak excedences, is Cn = 1
n

(
2n

n+1

)
, the nth Catalan number.

Proof. It is known that
∑

k Nk,n = Cn. �

Remark 6.3. The bijection between maximal-alignment permutations and noncrossing partitions is espe-

cially interesting because the connection gives a way of incorporating noncrossing partitions into a larger

family of “crossing” partitions; this family of crossing partitions is a ranked poset, graded by alignments.
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Figure 8. The bijection between maximal-alignment permutations and noncrossing partitions
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