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Class Outline

• Seismic reflectivity

– An intermediary between rocks and waves

• The seismic shot record

– The basic recording

• Imaging condition

– Write a reflectivity estimate to the output space

• Wavefield extrapolators

– One-way for simplicity

• Anisotropy

– Parameterized in p space - natural for one-way methods

• Assignment

– Develop and implement an imaging system that will run in a reasonable amount of

time
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Introduction

• Imaging goals:

1. Resolve the spatial relationships between rock layers in a subsurface that can be

heterogeneous and anisotropic

2. Identify lithology and fluid content of layers
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Data and physics

• Data consists of seismic and prior geologic knowledge

• Physics controls how we assemble an image and estimate lithology using the data
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Seismic data

• Bang the ground and record the shaking

– Shaking comes directly from the source and from echos in the subsurface
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Geologic data

• Obtain a macro model of the subsurface from moveout analysis, log data, geologic

outcrop, previous experience, intuition ...
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Physics

• Build a physical model of wave propagation specific to our data acquisition

Sources +

Subsurface Reflections

Surface reflection Data

• Derive a wave equation that relates waves and lithology

• Derive a representation of waves consistent with seismic data and the wave equation
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Imaging

• To locate lithology of interest, manipulate the data according to the physics

• There are four main manipulations generally called imaging

1. Pure inversion – model independent

2. Constrained inversion – model dependent

3. Mapping from time to depth using Kirchhoff migration followed by inversion –

model dependent

4. Extrapolation of surface data into the subsurface using recursive migration followed

by inversion – model dependent

• The last of these is the focus of this class
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Part 1: Seismic data and reflectivity

• Seismic reflections, along with seismic noise, are recorded as seismic data

• Reflections are generated where incident wavefields encounter changes in ρ and/or v

• Because the intent is to apply recursive imaging to seismic data, it is convenient to

parameterize reflectivity with slowness instead of angle

• The recorded data in the form of a shot gather will be examined in detail to gain an

appreciation for the challenge of locating and identifying different lithologic units
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Reflectivity

• At the interface between differing lithologic units, the energy of an incident (I) seismic

wave is parceled out between reflection (R) and transmission (T ) of P-waves (ψP )

and S-waves (ψS)

ρI , vI
ρT , vT

ψPI ψPRψSR

ψPTψST

where ρi are the densities of the upper (i = 1) and lower (i = 2) lithologic layers,

and vi are the corresponding seismic velocities given by
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v =
[

〈p, p〉 + q
2
]−1

2
(1)

where, p ∈ <2 and q ∈ =1 are are slownesses in the horizontal and vertical directions

respectively

• From the above figure, energy is assigned to the various wave modes according to the

variation in ρ and q across the interface

• If we can relate the energy assigned to ψPR and ψSR to ρ and v analytically, we may

hope to say something geological using the data that we record

• Similarly for ψSI
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Equations and Boundary conditions

• To quantify ψPR at a point of reflection, we have at hand the following boundary

conditions

– Continuity of displacement

ψI + ψR = ψT (2)

– Continuity of traction

τI + τR = τT (3)

• Also, we have the following analytic relationships:

– Planewave representation of seismic wavefields

ψ (x, z, t) =
1

(2π)
2

∫

ϕ (p, ω) e
±iω[〈p,x〉+q(p)z−t]

dpdω (4)

– Hooke’s Law relating tractions τ to infinitesimal strains ε through the elastic

coefficients C

τij = Cijkl εk,l (5)
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where indecies i, j, k and l can take on values of 1, 2, and 3, and ε is related to

displacement u through

εkl =
1

2
[uk,l + ul,k] (6)

• For an elastic medium there are 36 dependent elastic coefficients – certain crystal

symmetries can significantly reduce this number

• Continuity of displacement (equation 2) is satisfied at the interface (z = 0) by

substituting a planewave (equation 4, constant p and ω) for the various ψ’s with the

result

ϕI + ϕR = ϕT (7)

• Satisfaction of continuity of tractions (equation 3) is a little more difficult, so the

following simplifying example is instructive

PIMS 12



Rob Ferguson UT, Austin

Fluid/fluid

• A boundary between two inviscid media provides a simple scenario that we can analyze

to gain insight

ρI , qI
ρR, qT

ψPI ψPR

ψPT

– This will lead us to an imaging condition and a very useful approach to prestack depth

migration

• Only the trace of ε is non-zero, the Lamé parameter µ = 0, and Hooke’s Law is

greatly simplified

τii = λεii = λui,i (8)
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• ... and at the fluid/fluid interface, only tractions normal to the boundary are conserved

τ33 = λu3,3 (9)

and

λI [u3,3;I + u3,3;R] = λTu3,3;T (10)

• Upon substitution of the planewave (equation 4) for u, conservation of tractions at

the interface (z = 0) is written

λI qI (p, ω) [ϕI (p, ω) − ϕR (p, ω)]

= λT qT (p, ω)ϕT (p, ω) (11)

• Now, by defining

R (p, ω) =
ϕR (p, ω)

ϕI (p, ω)
(12)

and

T (p, ω) =
ϕT (p, ω)

ϕI (p, ω)
(13)

equations (7) and (11) give us 2 equations in 2 unknowns (R and T)
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• Solving for R

R (p, ω) =
λI qI (p, ω) − λT qT (p, ω)

λI qI (p, ω) + λT qT (p, ω)
(14)

... and for T

T (p, ω) =
2λI qI (p, ω)

λI qI (p, ω) + λT qT (p, ω)
(15)

• R is the reflection coefficient and controls the percentage of downgoing ψI that is

converted into upgoing ψR

• T is the transmission coefficient and controls the percentage of downgoing ψI that

is converted into transmitted ψT

• Though R and T are derived here for the special case of a fluid/fluid interface, some

general statements can be made:

– Because R and T depend on p = sin θ
v

, they are angle dependent

– Planewaves are multiplied by R and T

ϕR (p, ω) = R (p, ω)ϕI (p, ω) (16)

ϕT (p, ω) = T (p, ω)ϕI (p, ω) (17)
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– Monochromatic wavefields are convolved with R and T

ψR (x, ω) = R (x, ω) ∗ ψI (x, ω) (18)

ψT (x, ω) = T (x, ω) ∗ ψI (x, ω) (19)
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The seismic shot record

The seismic shot record is the fundamental measure in a seismic survey.

• Through derivation of R and T above, relationships are established between seismic

waves and rock properties

– Wave amplitudes are a measure of R and T at interfaces, and R and T are related

analytically to ρ and v of the bounding media

• Recorded wavefields are a superposition of all wave modes originating at all points in

the subsurface including:

– Reflected P- and S-waves

– Refracted P- and S-waves (qP and qS are complex valued)

– Surface multiples, internal multiples

– Surface waves (land) (qP and qS are complex valued)

• To restrict ourselves to the current practice of seismic imaging, we will concentrate on

reflected waves and eliminate all waves corresponding to complex q
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• For reflected arrivals (q ≥ 0), the following process occurs:
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1. A seismic source ψI is excited
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2. The source propagates Down to z = ∆z

ϕI (p,∆z) = [DψI (x0, 0)] (p,∆z) (20)

D is a wavefield extrapolator that incorporates the anisotropy and heterogeneity of the

medium between ∆z and 0, as well as the x0 → p transform
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3. At ∆z, part of ψI is converted to ψR

ϕR (p,∆z) = R (p,∆z)ϕI (p,∆z) (21)

(multiplication when p = pI = pR)

PIMS 21



Rob Ferguson UT, Austin

Distance (m)

D
ep

th
 (

m
)

φ
R

 (p, ∆ z) = [ R φ
I
 (p

I
, ∆ z) ] (p, ∆ z)

3000 4000 5000 6000 7000 8000 9000

0

500

1000

1500

4. If arbitrary geologic dip is encountered so that, all directions p 6= pI must be accounted

for

ϕR (p,∆z) = [RϕI (pI,∆z)] (p,∆z) (22)

(R is now some kind of operator)
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5. Reflected wavefield ϕR propagates Upward

ψR (x0, 0) = [UϕR (p,∆z)] (x0, 0) (23)

U is a wavefield extrapolator that incorporates the anisotropy and heterogeneity of the

medium between ∆z and 0, as well as the p → x0 transform
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Non-specular vs. specular reflections

• So far, discussion of R has been restricted to point reflectors

• If linear reflectors can be represented as a set of point reflectors, then ψR can be

represented as a superposition of ψRj from j point reflectors
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Part 2: Imaging conditions and wavefield extrapolators

• In recursive seismic imaging, the imaging condition and the wavefield extrapolators

are critical to ensuring the legitimacy of the estimate of R

• From the model of the shot record, the imaging condition will be seen to be the point

at which the downgoing wave is converted into an upgoing wave

– Imaging condition is a term common in geophysics and means simply ”...estimate

R and write it to the output space...”

• The wavefield extrapolators are simply the operators D and U used to carry ψI to a

reflection point (imaging condition), and from there up to the surface
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Dip dependent reflectivity

• In the p domain, multiplicative R was worked out for a horizontal reflector

pI p = pI

• For scatterers, (step 4 from the section above) an explicit relationship between pI and

p is required

pIp 6= pI
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Effective p

• For p 6= pI effective slowness pe is computed based on the following picture
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vpE = sin

(

θI + θR

2

)

=

√

1 − cos (θI + θR)

2
, (half angle formula)

=

√

1 − cos θI cos θR + sin θI sin θR

2
, (addition formula)

(24)

then, using sin θ = vp and cos θ = vq the effective slowness pE is:

pE = <
{

1

v
√

2

√

1 − v2 (pIp− qIq)

}

(25)

• Real valued pE restricts ψI to downgoing wavefields

• Vertical slowness q is given in terms of p as
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q =
1

v

√

1 − (vp)
2

= <{q} + i |= {q}| (26)

• Equation (26) ensuers that only reflections are considered
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Apply dip-dependent R

• Consider reflection from the next level in our model
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• Incident wavefield ψI now comes from all directions

• Reflected ψR in the p direction from a single point is now a superposition of scaled

ψI ’s
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ϕR for a single p

ϕR
[ϕp]

=
[

Rp,−n ... Rp,0 ... Rp,n

]

ϕI














ϕ−n
...

ϕ0
...

ϕn















(27)

Subscripts for p are used for simplicity, and index n corresponds to the spatial Nyquist

frequency n∆p
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ϕR for all ps

ϕR














ϕ−n
...

ϕ0
...

ϕn















=















R−n,−n · · · · · · · · · R−n,n
... . . . ...
... R0,0

...
... . . . ...

Rn,−n · · · · · · · · · Rn,n















ϕI














ϕ−n
...

ϕ0
...

ϕn















(28)

where subscript n corresponds to the spatial Nyquist frequency

• Equation (28) can be written compactly in vector notation

~ϕR =
~~R ~ϕI (29)
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All shot records

• R as given by equations (29) and (28) are for one monochromatic shot record

• Because a seismic survey involves many shot records with significant overlap, each

reflection point is sensed multiple times
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• For each reflection point, all sources and receivers can be included in the vector

relationship

[

~ϕR1
~ϕR2

· · ·
]

=
~~R

[

~ϕI1 ~ϕI2 · · ·
]

(30)

or more compactly,
~~ϕR =

~~R ~~ϕI (31)
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Estimate R

• From equation (31) we have representation of all reflected wavefield in terms of all

incident wavefields and angle dependent R

• So, for a reflection point, if all ϕR and ϕI are known, R can be computed by inversion

~~R =
[

~~ϕ
†
I
~~ϕI

]−1
~~ϕ

†
I
~~ϕR (32)

• Seismic imaging, also called seismic migration, by recursive methods refers to the

process of estimating R for all points in the subsurface

• So, for point x, z in the subsurface:

1. Compute spectrum ϕI (p, z) for each wavefield ψI (x0, 0) using forward wavefield

extrapolator D

2. Compute ϕR (p, z) for each ψR (x, 0) using reverse wavefield extrapolator U−1

3. Compute R using equation (32)

PIMS 35



Rob Ferguson UT, Austin

4. Sum and normalize R over ω

5. Write to the output array

• In migration, steps 4 and 5 are the imaging condition

– Each ω provides an estimate of R, and summing averages them
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Wavefield extrapolators

• Until this point, discussion has concentrated on:

– Modeling: compute reflected wavefield ψR from incident wavefield ψI and

reflectivity R

– Imaging: compute R from ψI and ψR

• For modeling and imaging, ψI and ψR must be computed from wavefields at the

surface

– For ψI we need a model of the source near the source location

– For ψR we have the recorded wavefield

• Extrapolators U and D are required to move the wavefields around

• The choice of extrapolator depends on:

– Knowledge of the variation of ρ and v between the surface and the target

∗ If known poorly, and exact extrapolator may not tolerate error compared to an

approximate operator
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– Computer power available

∗ An approximate extrapolator may have better run times compared to an exact

operator

• Generally, recursion based imaging methods use one-way operators derived from the

wave equation

– Two-way operators (finite differences or eignvalue decomposition) are not favored

due to long run times and low tolerance for error, though they are very often used

in modeling
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One-way wavefield extrapolation

• From Taylor series, a monochromatic wavefield ψ (z + ∆z) can be obtained from a

wavefield ψ (z) recorded at the surface

ψ (z + ∆z) =

∞
∑

j=0

(∆z)
j

j!
∂
j
zψ (z) (33)

• To find the required ∂jz, begin with the exact description of ∂2
z from the Helmholtz

equation

∂
2
zψ (z) = −

[

(

ω

v

)2

+ ∂
2
x

]

ψ (z) (34)

• Replacing ψ on the right hand side with the inverse transform of it’s spectrum
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ψ (x, z) =
1

(2π)
2

∫

ϕ (p, z) e
−i〈ωp,x〉

dp (35)

we have

∂
2
zψ (x, z) = − 1

(2π)
2

∫

[

(

ω

v

)2

+ ∂
2
x

]

ϕ (p, z) e
−i〈ωp,x〉

dp (36)

• Note, by moving v inside the p → x transform isotropic v is assumed

• In equation (36), ∂2
x acts only on the Radon kernal

∂
2
zψ (x, z) =

− 1

(2π)
2

∫

ϕ (p, z)

[

(

ω

v

)2

− ω
2 〈p, p〉

]

e
−i〈ωp,x〉

dp

=
1

(2π)
2

∫

ϕ (p, z) [iω q (p)]
2
e
−i〈ωp,x〉

dp

(37)
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where

q (p) =
1

v

√

1 − v2 〈p, p〉

= <{q (p)} + i sign {∆zω} |= {q (p)}| (38)

• In extrapolation, q is a phase term φ = iω∆zq, and the second line of equation (38)

ensures φ (={q} 6= 0) is real and negative

– Also, q parameterized as above introduces dispersion when v = v [1 + iγ] for

γ << 1

• From equation (37), infer that

∂
j
zψ (x, z) ≈ 1

(2π)
2

∫

[±iω q (p)]
j
ϕ (p, z) e

−i〈ωp,x〉
dp (39)
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Accuracy of depth derivatives ∂nz

• The prescription for ∂nz given by equation (39) is exact for n = 2, but it is approximate

for all n 6= 2

• To see this, compare two applications of ∂z to ∂2
z

∂z∂zψ (x, z) =
1

(2π)
2

∫

ϕ (p, z) c (x, p) e
iω〈p,x〉

dp (40)

where, from the composition formula for two pseudo-differential operators

c (x, p) = [iω q (x, p)]
2
+ (iω)

2
∞

∑

j=1

ij

j!
∂
j
pq (x, p) ∂

j
xq (x, p) (41)

• The series terms in equation (41) represent error

– Error is a function of the variation of q with x and p
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• Here are some generalizations

1. ∂z is exact for invariant isotropic-media,

2. ∂jz is exact for invariant isotropic-media,

3. ∂z is approximate for variable isotropic/anisotropic-media,

4. ∂jz is approximate for variable isotropic/anisotropic-media

• Note, generalizations 2 and 4 can be proved independently
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Replace ∂nz in the series for ψ (z + ∆z)

• Returning to the series description for ψ (z + ∆z), substitute equation (39) for ∂nzψ

ψ (x, z + ∆z) =

1

(2π)
2

∫

ϕ (p, z)







∞
∑

j=0

1

j!
[iωq (x, p) ∆z]

j







e
−i〈ωp,x〉

dp

(42)

• Recognizing the exponential in the { } braces above

ψ (x, z + ∆z) =
1

(2π)
2

∫

ϕ (p, z) e
i∆zωq(x,p)

e
−i〈ωp,x〉

dp (43)

note that +q has been selected to be consistent with the sign on ∆z
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• Equation (43) provides wavefield ψ (z + ∆z) from spectrum ϕ (z) coincident with a

p → x transform – it is suitable for the U extrapolator of the model of the shot record

• A development similar to the above leads to a second extrapolator

ϕ (p, z + ∆z) =

∫

ψ (x, z) e
i∆zωq(x,p)

e
i〈ωp,x〉

dx (44)

• Equation (44) computes ϕ (z + ∆z) based on input ψ (z) coincident with a x → p

transform – it is suitable for the D extrapolator of the model of the shot record
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Up and down going waves

• For heterogeneous anisotropic media, equation (43) provides an approximate form for

extrapolator D

[Dψ (x, z)] (p, z + ∆z) =

∫

ψ (x, z) e
i∆zωq(x,p)

e
−i〈ωp,x〉

dx (45)

• Extrapolator U is given by equation (44)

[Uϕ (p, z + ∆z)] (x, z) =
1

(2π)
2

∫

ϕ (p, z + ∆z) e
i∆zωq(x,p)

e
−i〈ωp,x〉

dp (46)
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Reverse the up going waves

If spectra ϕI and ϕR can be estimated for all points in the subsurface, R (p) can be

computed for all points in the subsurface Spectrum ϕI (z + ∆z) can be computed using

D and a model of the source ϕ (z), but spectrum ϕR (z + ∆z) must be computed by

reversing wavefield ψR (z) and transforming x → p

• ϕI is computed by extrapolating a model of the source using D

ϕI (p, z + ∆z) = [Dψ (x, z)] (p, z + ∆z) (47)

• ϕR is computed by reversing the recorded wavefield using U−1

ϕR (p, z + ∆z) =
[

U
−1
ψR (x, z)

]

(p, z + ∆z) (48)

where,

U
−1

=
[

U
†
U

]−1

U
†

(49)
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Summary of assumptions for wavefield extrapolator

• Along the way some assumptions were made

– Isotropic v was assumed for exact ∂2
z

– Stationary v in x and z was assumed for approximate ∂nz
• Q: Can we relax the assumptions of stationarity and isotropy of v?

– For ∆z → 0, v approaches stationarity in z

– For practicality, an approximate R relation will be used for recursive imaging –

perfect amplitudes cannot be demanded

– For the medium, ρ and v are only approximately known (or why would we be

imaging and inverting?) – perfect amplitudes and kinematics cannot be demanded

– The medium may vary slowly and ∂x terms in the error series may not be significant

– Similarly anisotropy

– Built upon the stationary assumption, reflections and mode-conversions not

generated – fewer spurious amplitudes in media where ρ and v are not known

• A: Low-resolution R is usually better than no image
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Thin layers and cracks

• Analytic descriptions for velocity in heterogeneous media are rare

• Common are analytic descriptions of anisotropy

• Some say that all rocks are fractured at all scales and, waves propagate anisotropically

(propagate at different speeds) depending on their orientation to the fractures

• Others say that stacks of thin isotropic layers (∆z < a seismic wavelength) constitute

anisotropic media Most agree that, besides being heterogeneous, rocks are anisotropic

• In many sedimentary environments, part of the anisotropy of rocks is the result of

compaction and lithification of sediments under gravitational loading

• Presumably, the tiny grains of the original sediments settle with their longest dimension

normal to gravity

• As sediments accumulate, pore space is closed, fluids are driven out, and the

dimensional sorting of grains is exaggerated

• Also, as seas advance and retreat, different sediments are deposited in layer upon layer

of often very thin accumulations
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• Sedimentary rocks, in particular shales, tend to be strongly anisotropic relative to an

axis normal to deposition
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Anisotropy

• In an elastic medium, conservation of force due to the passage of a seismic wave is

given by

ρüi =
∂

∂xj
τij (50)

where subscript i = 1, 2, or 3 is direction, j = 1, 2, or 3 is the side of an infinitesimal

cube of density ρ, u is displacement, ü is acceleration of particles within the cube, and

τ are pressures due to the passage of the wave that depend on direction, and upon what

face of the cube they are applied

• Using Hooke’s Law equation (5), equation (50) becomes

ρüi =
∂

∂xj
Cijkl

∂uk

∂xl
(51)
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• Assuming homogeneous C, equation (51) becomes

ρüi = Cijkl
∂

∂xj

∂uk

∂xl
(52)

• Using the plane wave description of equation (4), üi is

üi = (iω)
2
ui (53)

and the spatial derivatives uk,l are

∂

∂xj

∂uk

∂xl
= (iω)

2
ui
∂t̂

∂xj

∂t̂

∂xl
(54)

where

t̂ = p1x1 + p2x2 + p3x3 (55)

so that equation (52) can be written

∂

∂xj

∂uk

∂xl
= (iω)

2
ukpjpl (56)
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• Based on equation (52), and using equations (56) and (53), and defining ui = δikuk,

the solution for q = p3 can be determined by solving

Det

[

Cijkl

ρ
pjpl − δik

]

= 0 (57)

for p3

• The three solutions for p3 correspond to P-waves, and the fast and slow S-waves
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PIMS summer school 2003, Thursday assignment

In seismic imaging using recursive migration, an angle dependent estimate of reflectivity

is made for every point in the subsurface. This assignment is concerned with determining

the computational cost of the major steps, making assumptions to reduce the cost, and

creating a MATLAB program to image the shot gather produced Monday.

1. Part of the process of computing R is obtaining ϕI (z + ∆z) from downward

propagation of a model of the source ψI (z).

(a) If ϕI (z + ∆z) is computed using equation (45) estimate the number of

computations required in 2D.

(b) Assume q (x, p) = a (x)+b (p), modify equation (45) accordingly, and re-estimate

the number of computations.

2. The next step toward computingR is obtaining ϕR (z + ∆z) from reverse propagation

of the reflected wavefield ψR (z).

(a) If ϕR (z + ∆z) is computed using equation (46), what is the cost in 2D.
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(b) Assume q (x, p) = a (x)+b (p), modify equation (46) accordingly, and re-estimate

cost.

3. Suggest mathematical descriptions for a (x) and b (p).

4. Having obtained ϕI and ϕR efficiently, R is ready to be computed using matrix

equation (32).

(a) Estimate the cost in 2D (assume m shots and m receivers/shot)

(b) Assume R (p) = R (pI) and re-estimate the cost

(c) Assume R (p) = R and re-estimate the cost

5. Using the FFT provides significant computational savings when q is approximated as

a (x) + b (p). Are there any sacrifices using FFT in the computation of approximate

U , D? What about exact/approximate R?

6. Earlier in the class, students generated a shot record using a finite difference operator.

Using the following program outline, write a MATLAB program to recursively image

your shot record for the P - P mode. MATLAB function ps space.m will be provided

to extrapolate wavefields. Extra credit is awarded for cleverness and cunning.
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Pseudocode for recursive imaging

List of arrays:

I -- Model of source in (t, x)

R -- Shot record in (t, x)

M -- Velocity model in (z, x)

input(I, R, M)

fft(I) % FT t -> w

fft(R) % FT t -> w

for j = 1:nz % nz is the number of depths in M

temp1 = forward(I, M)

temp2 = reverse(R, M)

REFLECTIVITY(j,:) = image(temp1, temp2)

I = temp1

R = temp2

end

output(REFLECTIVITY)
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PIMS summer school 2003, Thursday assignment: answer key

In seismic imaging using recursive migration, an angle dependent estimate of reflectivity

is made for every point in the subsurface. This assignment is concerned with determining

the computational cost of the major steps, making assumptions to reduce the cost, and

creating a MATLAB program to image the shot gather produced Monday.
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1. Part of the process of computing R is obtaining ϕI (z + ∆z) from downward

propagation of a model of the source ψI (z).

(a) If ϕI (z + ∆z) is computed using equation (45) estimate the number of computations

required in 2D.

(b) Assume q (x, p) = a (x) + b (p), modify equation (45) accordingly, and re-estimate

the number of computations.

(a) A: Because of the dependence of q on p, the FFT can’t be used, and D costs as much

as a slow Fourier transform ∼ m2 for m receivers. Cost is ∼ m
2

(b) A: Using q (x, p) = a (x) + b (p), D becomes

[Dψ (x, z)] (p, z + ∆z) = e
i∆zωb(p)

∫

ψ (x, z) e
i∆zωa(x)

e
iωpx

dx. (58)

The FFT can be used, and cost is ∼ m log m.
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2. The next step toward computingR is obtaining ϕR (z + ∆z) from reverse propagation

of the reflected wavefield ψR (z).

(a) If ϕR (z + ∆z) is computed using equation (46), what is the cost in 2D.

(b) Assume q (x, p) = a (x) + b (p), modify equation (46) accordingly, and re-estimate

cost.

(a) A: Like D, the U will cost m2. For U−1 given by equation (49), however, U †U is

computed at a cost ∼ m3, add to that the cost ∼ m3 to invert the result, and add

another m3 to multiply u† by the inverse. Cost, then, is ∼ m
3.

(b) A: From equation (46), operator U † extrapolates in the reverse direction and applies

the x → p′ transform

[

U
†
ψ (x, z + ∆z)

]

(

p
′
, z

)

=
1

2π

∫

ψ (x, z + ∆z) e
−i∆zωq(x,p′)eiωp

′x
dp

′
.

(59)
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Using q (x, p) = a (x) + b (p), equation (59) becomes

[

U
†
ψ (x, z + ∆z)

]

(

p
′
, z

)

= e
−i∆zωa(x) 1

2π

∫

ψ (x, z + ∆z) e
−i∆zωb(p′)eiωp

′x
dp

′
,

(60)

and the FFT can be used at a cost ∼ m logm. Then, using

ψ (x, z + ∆z) = [Uϕ (p, z)] (x, z + ∆z) , (61)

substitute equation (61) into equation (60) to get

[

U
†
ψ (x, z + ∆z)

]

(

p
′
, z

)

= e
−i∆zωb(p′) 1

2π

∫

ϕ (p, z) e
i∆zωb(p)

δ
(

p
′ − p

)

dp,

= ϕ
(

p
′
, z

)

.

(62)

Operator U †U is simply identity I. Cost is ∼ m log m.
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3. Suggest mathematical descriptions for a (x) and b (p).

(a) A: In 2D, slowness q that is a function of space-variable and anisotropic velocity v is

defined by

q
2
=

1

v2

[

1 − (vp)
2
]

, (63)

where the x, p dependence of v is implicit. Introduce space-invariable q̄

q̄
2
=

1

v̄2

[

1 − (v̄p)
2
]

, (64)
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where the p dependence of v̄ is implicit. Subtract q̄ from equation(63)

q
2
= q̄

2
+ q

2 − q̄
2

= q̄
2
+

1

v2

[

1 − (vp)
2
]

− 1

v̄ 2

[

1 − (v̄p)
2
]

.

q = q̄

[

1 +
v̄ 2 − v2

(q̄vv̄)
2

]
1
2

= q̄

[

1 − 1

2

v2 − v̄ 2

(q̄vv̄)
2

− · · · − O∞
]

,

(65)

where
√

1 − x =
[

1 − 1
2x− · · · − O∞]

has been used. Slowness q can now be

separated into terms A and b, where

A = −1

2

v2 − v̄ 2

q̄ (vv̄)
2
− · · · − O∞

, (66)
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and

b (p) = q̄ (p) . (67)

In equation (66), to get rid of the p dependence, expand q̄ about p and truncate to

one term q̄ ∼ 1
v̄
. Then, expand v and v̄ about p = pconst and truncate them both

to single terms v̂ and ṽ respectively (compute the velocity of the effective medium –

usually p = 0)

a = −1

2

v̂ 2 − ṽ 2

v̂ 2ṽ
− · · · − O∞

, (68)

and, for computational practicality, truncate the series in equation (68) to n < ∞
terms

a (x) =
1

2

ṽ 2 − v̂ (x)
2

v̂ (x)
2
ṽ

+ · · · + On
. (69)

Explicitly in terms of p, b is

b (p) =
1

v̄ (p)

√

1 − (v̄ (p) p)
2
. (70)

Summary of velocities used here:

(a) v̂: Space variant, anisotropy of effective medium
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(b) ṽ: Space invariant, anisotropy of effective medium

(c) v̄: Space invariant, anisotropic
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4. Having obtained ϕI and ϕR efficiently, R is ready to be computed using matrix

equation (32).

(a) Estimate the cost in 2D (assume m shots and m receivers/shot)

(b) Assume R (p) = R (pI) and re-estimate the cost

(c) Assume R (p) = R and re-estimate the cost

(a) A: Equation (32) requires 3 matrix multiplies plus one matrix inversion. For m shots

and m receivers, the cost of the matrix multiplies is ∼ m3. The cost of the inversion

of a matrix is ∼ m3. Cost is ∼ m
3

(b) A: Reflectivity for horizontal reflectors lies on the trace of R where p = pI , and

equation (32) simplifies















ϕR,−n
...

ϕR,0
...

ϕR,n















=















R−nϕI,−n
...

R0ϕI,0
...

RnϕI,n















(71)
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R is then computed for each p for each shot and averaged using

R (p) =
1

N

∑

j

ϕR (p)j

ϕI (p)j
(72)

where subscript 1 ≤ j ≤ N indicates th jth of N shots. Cost is ∼ m
2.

(c) A: Angle independent reflectivity R (p) = R results in a very simple expression

R =
1

N

∑

j

ϕR

ϕI
. (73)

Equation (73) can be computed in x or p. Cost is ∼ m
2 - no improvement in cost for

a significant reduction in accuracy.
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5. Using the FFT provides significant computational savings when q is approximated as

a (x) + b (p). Are there any sacrifices using FFT in the computation of approximate

U , D? What about exact/approximate R?

• A: For isotropic media, U and D are unchanged, but for anisotropic media, v (p)

needs to be worked out as v (k, ω). Also, R (p) needs to be worked out as R (k, ω).

So, apart from a little algebra, no and no.
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