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Agenda:

1. Partially linearized seismic inverse problem - the working en-

vironment of seismic processing

2. Velocity Analysis = solution method for partially linearized

inverse problem, based on invertible extended model

3. Strong lateral velocity variations ⇒ the usual extended mod-

els of MVA aren’t invertible

4. Extended model of shot-geophone migration is invertible,

even with strong lateral velocity variations!

5. Reverse time algorithm for shot-geophone migration
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Simple acoustic model of seismic reflection inverse problem:

given data dobs, find velocity field c (a function on the subsurface

X) so that

F[c] = dobs

F = forward map aka modeling operator aka ..., defined by

F[c](xr,xs, t) =
∂u

∂t
(xr, t;xs),

where acoustic potential field u(x, t;xs) solves(
1

c2
∂2

∂t2
−∇2

)
u = f(t)δ(x− xs)
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This problem is too hard!

Most useful progress based on these beliefs:

• If c = v(1 + r) where v is smooth and r oscillatory (or even

singular), then F[c] ' F[v] + DF[v](vr) (i.e. the Born ap-

proximation is accurate);

• In lots of places, the actual compressional velocity field in

the Earth has this nature.

[A good math problem: exactly how is the first bullet true? Lots

of numerical evidence, little mathematics.]
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Partially linearized seismic inverse problem: given observed

seismic data dobs, find smooth velocity v ∈ E(X), X ⊂ R3 oscil-

latory reflectivity r ∈ E ′(X) so that

DF[v](vr) = F [v]r ' dobs

where the acoustic potential field u and its perturbation δu solve(
1

v2

∂2

∂t2
−∇2

)
u = f(t)δ(x− xs),

(
1

v2

∂2

∂t2
−∇2

)
δu = 2r∇2u

plus suitable bdry and initial conditions.
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F [v]r =
∂δu

∂t

∣∣∣∣
Y

data acquisition manifold Y = {(xr, t;xs)} ⊂ R7, dimn Y ≤ 5

(many idealizations here!).

F [v] : E ′(X) → D′(Y ) is a linear map (FIO of order 1) (Rakesh

1988), but dependence on v is quite nonlinear, so this inverse

problem is nonlinear.
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Extension of F [v] (aka extended model): manifold X̄ and maps

χ : E ′(X) → E ′(X̄), F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r
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(Familiar) Example: the Convolutional Model

• Approximation of P. L. model, accurate when v, r functions

of z only

• data function of t, h = (xr − xs)/2 half-offset

• two-way traveltime τ(z, h), inverse ζ(t, h)

• if v =const. then τ(z, h) = 2
√

z2 + h2/v

F [v]r(t, h) =
∫

dt′ f(t− t′)r(ζ(t′, h))

(”inverse NMO, convolve with source”)
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Factor convolutional model through extension: replicate r for

each h

χ : r(z) 7→ r̄(z, h) = r(z)

then apply inverse NMO and convolve with source, independently

for each h

F̄ [v] : r̄(z, h) 7→ f ∗ r̄(ζ(t, h), h)
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Invertible extension: F̄ [v] has a right parametrix Ḡ[v], i.e.

I − F̄ [v]Ḡ[v]

is smoothing.

Example: for the convolutional model, Ḡ[v] is signature decon

followed by NMO, applied trace-by-trace.

NB: The trivial extension - X̄ = X, F̄ = F - is virtually never

invertible.
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Reformulation of inverse problem: given dobs, find v so that

Ḡ[v]dobs ∈ the range of χ.

Non-Gary Proof: that is, Ḡ[v]dobs = χr for some r, so dobs '
F̄ [v]Ḡ[v]dobs = F̄ [v]χr = F [v]r Q. E. D.

This is velocity analysis!

Example: Standard VA. Apply convolutional model to each mid-

point in CMP-binned data. Range of χ = r̄(z, h) independent of

h, i.e. flat. SO: twiddle v so that Ḡ[v]dobs shows flat events.

Caveats: in practice, be happy when Ḡ[v]dobs is in range of χ ex-

cept for wrong amplitudes, finite frequency effects, and obvious

(!) noise.
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The usual extended model behind Migration Velocity Analysis:

• v, r functions of all space variables

• χr(x,h) = r(x) (so r̄ ∈ range of χ ⇔ plots of r̄(·, ·, z, h) appear
flat)

•

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫
dx r̄(x,h)

∫
ds G(xr, t− s;x)u(xs, s;x)

(recall h = (xr − xs)/2)

NB: F̄ is “block diagonal” - family of operators (FIOs) parametrized
by h.
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• Beylkin (1985), Rakesh (1988): if ‖∇2v‖C0 “not too big”,

then the usual extension is invertible.

• Ḡ = common offset migration-inversion aka ray-Born inver-

sion aka true-amplitude migration etc. etc. Usually imple-

mented as generalized Radon transform = ”weighted diffrac-

tion stack” (Beylkin, Bleistein, DeHoop,...)

• Nolan, Stolk, WWS: if ‖∇2v‖C0 is too big, usual extension is

not invertible!
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Claerbout’s extended model = basis of survey sinking or shot-
geophone migration:

• χr(x,h) = r(x)δ(h), so r̄ ∈ range of χ ⇔ plots of r̄(·, ·, z, h)
appear focussed at h = 0

F̄ [v]r̄(xr,xs, t)

=
∂2

∂t2

∫
dx

∫
dh r̄(x,h)

∫
ds G(xr, t− s;x + h)u(xs, s;x− h)

• This extension is invertible, assuming (i) h3 = 0 (horizontal
offset only) and (ii) ”DSR hypothesis”: rays do not turn.
Then adjoint map is equivalent modulo elliptic ΨDO fac-
tor to shot-geophone migration via DSR equation [Stolk-
DeHoop 2001]
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Lens data, shot-geophone migration [B. Biondi, 2002]

Left: Image via DSR. Middle: Ḡ[v]d - well-focused (at h = 0),

i.e. in range of χ to extent possible. Right: Angle CIG.
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Alternate expression for extended S-G model:

F̄ [v]r̄(xr, t;xs) =
∂

∂t
δū(x, t;xs)|x=xr

where

(
1

v(x)2
∂2

∂t2
−∇2

x

)
δū(x, t;xs) =

∫
x+2Σd

dy r̄(x,y)u(y, t;xs)

Computing Ḡ[v]: instead of parametrix, be satisfied with adjoint -

the two differ by a ΨDO factor, which will not affect smoothness

of CIGs.
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Computing the adjoint: use the adjoint state method (WWS,
Biondi & Shan, SEG 2002).

Define adjoint state w:(
1

v(x)2
∂2

∂t2
−∇2

x

)
w(x, t;xs) =

∫
dxr d(xr, t;xs)δ(x− xr)

with w(x, t;xs) = 0, t >> 0. [This is exactly the backpropagated
field of standard reverse time prestack migration, cf. Lines talk.]

Then

F̄ [v]∗d(x,h) =
∫

dxs

∫
dt u(x + 2h, t;xs)w(x, t;xs)

[This is exactly the same computation as for standard reverse
time prestack, except that crosscorrelation occurs at an offset
2h].
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Some Loose Ends

• invertibility of S-G extended model only known under DSR
assumption with horizontal offsets [Stolk-DeHoop, 2001].
Vertical offsets are good when DSR breaks down, eg. to
image overhanging reflectors [Biondi, WWS 2002]. Current
best result: data focusses only at offset = 0 within a lim-
ited range off offsets; focussing at large offsets not ruled out
[WWS, 2002]. What actually happens?

• S-G extension amounts to construction of annihilators [cf.
DeHoop]. How can one characterize globally invertible anni-
hilator representations?

• quantification of non-membership in range of χ (DSO) -
which ones yield good optimization problems locally [Stolk-
WWS, IP 2003] or globally?
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Conclusions

• Most of contemporary SDP related partially linearized seismic
inverse problem

• Velocity analysis = approach to solution of PL seismic inverse
problem via invertible extended models

• Usual extended models (common offset, common shot, com-
mon angle,...) are not invertible when the velocity structure
is complex, due to multipathing

• The extended model of shot-geophone migration is invertible
even in the presence of multipathing

• Shot-geophone migration has a reverse-time implementation
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