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Overview

(Depth) migration ↔ inversion of a reflectivity function

Goal : study media with multipathing, different types of imaging

Overview

1. Phase space localization of singularities

2. Modeling

3. Imaging of constant source/offset data

4. Imaging with full data

5. Angle common image gathers

2



1. Phase space localization of singularities



Wave front set

Location and orientation of events, wave fronts.

Let f(x) be a function of x ∈ Rn. The wave front set WF(f)
is a subset of Rn × Rn, that contain positions and directions of
singularities. Directions: if (x, kx) in WF(f) then line (x, λkx), λ > 0
in WF(f).

To determine whether (x, kx) in WF(f)

1. Localize in x, consider φf =/ 0ϕ
x

2. Fourier transform x → kx of φf

3. Look at decay of Fourier transform in a small cone around kx

- strong decay: smooth at (x, kx)
- otherwise: singularity at (x, kx)

Examples: 1. Discontinuity along a curve
WF(f) = {(x, v) |x ∈ L, v ⊥ L at x}

L

2. Point singularity WF(δ) = {(0, v) | v ∈ Rn, v 6= 0}
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Mapping of singularities

E.g. mapping of events by a migration operator.

Consider operator F mapping g 7→ f ; f(x) =
∫

F (x, y)g(y) dy.
Assume F a Fourier integral operator

F (x, y) =
∫

A(x, y, θ)eiΦ(x,y,θ) dθ

Then F maps WF(g) to WF(f)

1. Compute WF-set of F

WF(F ) ⊆ {(x, y,∇xΦ,∇yΦ) | (x, y, θ) in set ∇θΦ = 0}.
2. Compute canonical relation

Λ′F = {[(x, kx), (y, ky)] | (x, y, kx,−ky) ∈ WF(F )}
3. Map WF(g) via canonical relation to get WF(f), by “set map-

ping”

function relation
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2. Modeling



Green’s function

Wave equation with smooth wave speed c0(x)

(c0(x)
−2∂2

t −∆)u(x, t) = g(x, t), u|t<0 = 0.

Green’s function for solution

u(x, t) = G0g(x, t) =
∫

Rn

∫ t

0
G0(x, x0, t− t0)g(x0, t0) dx0 dt0.

Singularities propagate along rays

5

4

3

2

1

For longer times and complex media
caustics and multiple wave fronts
develop.

Contributions from smooth wave fronts G
(j)
0 :

Multiple traveltimes T1
(j)(x, x0), amplitudes A(j)(x, x0), KMAH-

index σ(j)(x, x0), j = 1,2, . . .

G
(j)
0 (x, x0, t) =

1

2π

∫
A(j)(x, x0, ω) eiω(t−T1

(j)(x,x0)) dω

with A(j) = (−)(−iω)
n−3
2 (−i sgn(ω))σ(j)

A
(j)
0 (x, x0) + lower order.
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Modeling : Born approximation

Two ingredients

• c0, background medium, that is smooth (C∞)

• δc, medium perturbation, contains the discontinuous.

Incoming wave field with source g, assume g(x, t) = δ(t)δ(x− s).

uinc = G0g.

Reflected wave field

urefl = G0

(
δc

2c30
∂2

t G0g

)

Define reflectivity f = 2δc
c0(x)3

.

Forward map from f to data, denoted by F

F : f 7→ d(s, r, t) =
∫ t

0

∫

Rn
G0(r, x, t− t′)∂2

t G0(x, s, t′)f(x) dxdt′,

for source pos. s, receiver pos. r, time t. Aim : reconstruct f .
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F is a Fourier integral operator

Assumption

• There are no rays that graze acquistion surface and enter region
of interest.

• There are no direct rays s to r, over time t that enter the region
of interest and satisfy (s, r, t) in acquisition set.

Theorem (Rakesh ’88, Ten Kroode et al. ’98) Then the operator F :
f 7→ d is a Fourier integral operator. The canonical relation Λ′F
contains all

[(s, r, t, ks, kr,−ω), (x, kx)]

such that, with αs, αr, α, β unit vectors in the ray directions,

rays connect x and s and x and r

ks = ωc(s)−1αs,‖
kr = ωc(r)−1αr,‖
kx = ωc(x)−1(α + β).

αs

αs,||

αr

αr,||

x

kx

s r

β
α
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Restricted forward map

Restricted data reconstruction problems

• from constant source data dsource(r, t) (for some given s)

• from constant offset data doffset(m, t), for some given offset

h = r − s, where m is the midpoint m = r+s
2

If [(s, r, t, ks, kr,−ω), (x, kx)] ∈ Λ′F , then

[(r, t, kr,−ω), (x, kx)] ∈Λ′source if s as given,

[(m, t, km,−ω), (x, kx)] ∈Λ′offset if h = r − s as given,

with km = ks + kr.

Additional assumption

• (offset) matrix ∂
∂(x,α,β)(s−r) has maximal rank.

αs

αs,||

αr

αr,||

x

kx

s r

β
α
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Generalized Radon transform

Define two way traveltime functions

T (i,j)(x, s, r) = T
(i)
1 (x, r) + T

(j)
1 (x, s),

Non-caustic contributions

d(s, r, t) ≈
∑

i,j

∫ ∫

R
A(i,j)(x, s, r, ω)eiω(T (i,j)(x,s,r)−t) f(x) dxdω

≈
∑

i,j

∫
A

(i,j)
0 (x, s, r)Hilbσ(i)+σ(j)

∂n−1
t δ(t− T (i,j)(x, s, r))f(x) dx︸ ︷︷ ︸

integration over isochrons+ lower order

Generalized Radon transform : Integration over isochrons (plus
amplitude factors, derivatives, Hilbert transform).

i,j {x|T    (x,s,r)=t}(i,j)

s r
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Modeling with piecewise smooth media

Regions X1, X2, and interfaces S1,2. X1

X2
S1,2

θ

Conversion of incoming to reflected rays
by pseudodifferential operator (y coordinate in the interface)

urefl|S1,2
= R(y,−i∂y,−i∂t)uinc|S1,2

=
∫ ∫

R(y, ky,−ω)ûinc(ky, ω) dky dω.

to highest order R is the normalized reflection coefficient r(x, θ).

Singularities of solution, apart from tangent rays (head waves),
given by

urefl = G0,X1←S1,2

(
R(y,−i∂y,−i∂t)G0,S1,2←X1

g
)
.

Reconstruct

r(x, θ)(sing. fun. of S1,2)(x)

for some θ depending on c0, x and data.
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3. Imaging of constant source/offset data



Partial reconstruction only

Some (x, kx) not mapped to data

kx

reflector not in image

s

xLet ψ be a smooth cutoff (tapering

function) on acquisition set ψ = ψ(s, r, t)

ψ(s, r, t) =

{
0 for (s, r, t) outside acquisition set,
smoothly going to 1 inside acquisition set,

needed to avoid edge effects in migration.

Connect (s, x, kx) to (s, r, t) by rays

αs

αs,||

αr

αr,||

x

kx

s r

β
α

⇒ Ψsource(s, x, kx) smooth “cutoff” function of (x, kx),

Non-zero where (x, kx) illuminated (“observable”). Similar we have

a smooth cutoff function Ψoffset(h, x, kx).
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Adjoint mapping of singularities

For any operator F that maps f(x) to g(y), we have

[(y, ky), (x, kx)] ∈ Λ′F ⇔ [(x, kx), (y, ky)] ∈ Λ′F ∗.

Thus F ∗ maps observable singularities back to their original

position.

If [(y, ky), (x, kx)] ∈ Λ′F and [(y, ky), (x′, k′x)] ∈ Λ′F , then

(x, kx)
sing. in f

F−→ (y, ky)
sing. in d

F ∗−−→ (x′, k′x)
sing. in image

.

Possible kinematic artifacts when (x′, k′x) 6= (x, kx).

⇒ Injectivity conditions for absence of artifacts. For each (y, ky)

there must be at most one (x, kx).

⇒ Imaging equations to determine position of singularities in im-

age from the rays (i.e. Λ′F ) and knowledge of singularities in data.
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Imaging equations (constant source)

Migration formula: Modification of adjoint by factors leaving sin-

gularities in place (amplitudes, derivatives, Hilbert transform)

fsource(s, x) =
∑

(i,j)

∫
B(i,j)(x, s, r)Hilb−σ(i)−σ(j)

d(s, r, T (i,j)(x, s, r)) dr.

Define slowness ps = ks/ω, pr = kr/ω. Source slowness ps not

determined from data

In presence of multipathing (s, r, t, pr) do
rp

x

rs
αr

x’

not alwals determine reflection point.

Imaging equations Assume t = Tdata(s, r) is an arrival in the data.

Equations for event positions in image x′.

T (i,j)(x′, s, r) = Tdata(s, r), ∇rT
(i,j) = ∇rTdata.

3 eqns. for 3 unknowns x′ (3-D) → solutions for several (i, j)
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Constant source data imaging

Assumption (traveltime injectivity)

(s, r, t, pr) determine uniquely determine (x, α, β).

Assumption (local condition or immersivity)

The matrix ∂kx
∂(r,ω) =

(
ω ∂2T

∂r∂x
∂T
∂x

)
has maximal rank.

Theorem (Hansen ’91) There is a microlocal inverse Hsource such

that for all f

HsourceFsourcef = Ψsource(s, x,−i∂x)f

= (2π)−n
∫

Rn
Ψsource(s, x, kx)f̂(kx) dkx.

- Exact reconstruction of singularities where Ψ(s, x, kx) = 1!

- Approximation modulo lower order error by Kirchhoff migration.
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Constant offset data imaging

Offset slowness ph = (pr − ps)/2 not determined!

rpsp

sp rppm +=
αr

xx’

s r

Imaging equations (using traveltimes), for arrival t = Tdata(s, r) in
data

T (i,j) = Tdata, ∇sT
(i,j) +∇rT

(i,j) = ∇sTdata +∇rTdata.

3 eqns. for 3 unknowns x′ (3-D)

Inverse if
- (s, r, t, pm = (ps + pr)) uniquely determines (x, α, β).
- Matrix ∂kx

∂(h,ω) has maximal rank.
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Multipathing : example

Identify kinematic artifacts by comparing migration and solving

imaging equations.

Example from (S. & Symes, ’02), extending (Nolan & Symes, ’96) to

offset and angle imaging.

2

1

0

zHkmL

-1 0 1
x HkmL

1.0 km�s
0.6 km�s
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Rays and wave fronts

2

1

0

zHkmL

-1 0 1
x HkmL

12

3
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Data (single source)

5

4

timeHsL

-2 -1 0 1 2
receiver position HkmL
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Constant offset image

2

1

0

zHkmL

0 1
x HkmL

2.4

2

1.6

zHkmL

0 0.4 0.8
x HkmL

Multiple ray pairs lead to both correct and incorrect events in image
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Offset common image gather

Varying offset, fixed horizontal position x1 = 0.3 km

2.4

2

1.6

zHkmL

0 1 2
offset HkmL

3,2

1,3

3,1

1,2

2,1

3,3

1,1

travel time # s,r

With constant source/offset binning we practically have to exclude
caustics.
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4. Imaging with full data



Least squares

Assume source and receivers covering surface. Then data is 5-

dimensional data for a 3-dimensional image.

Overdetermined problem → least squares : find fLS that mini-

mizes

‖FfLS − d‖2.

Implies that

F ∗FfLS = F ∗d.

(1) compute normal operator N = F ∗F
(2) Compute a (possibly regularized) inverse 〈F ∗F 〉−1, then

fLS = 〈F ∗F 〉−1F ∗d.

Issues : - Mapping of singularities

- Amplitude factor
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Injectivity condition and imaging equations

Imaging methods has access to s, r, t, ps, pr. Take-off directions
αs, αr are uniquely determined.

Traveltime Injectivity Condition (s, r, t, αs, αr) determine uniquely
(x, α, β).

Non-uniquene solutions x, and x′ if

(1) x, x′ on ray determined by s, αs

αs αr

x’

α
x

β

s r

(2) x, x′ on ray determined by r, αr

(3) travel time equal between

x and x′ along two rays

Imaging equations : 5 eqns, 3 unknowns (3-D)

T (i,j)(x′, s, r) = Tdata(s, r),

∇sT
(i,j) = ∇sTdata, ∇rT

(i,j) = ∇rTdata.

Artifacts more rare
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Normal operator

Theorem (Ten Kroode, Smit & Verdel ’98) Assume Traveltime Injec-

tivity Condition, then the operator N = F ∗F is a pseudodifferential

operator of order n− 1, i.e. of the form

Nf = (2π)−n
∫

Rn
eix·kxN(x, kx)f̂(kx) dkx.

For N(x, kx) we have

N(x, kx) = B(x,
kx

|kx|
)|kx|n−1 + B(x,− kx

|kx|
)|kx|n−1 + lower order.

with weight factor computed by
integration over subsurface coords.
scattering angle/azimuth(3-D)

θ2
θ1

ν

x

s r

B(x, ν) =
c0(x)3

16(4π)5

∫ ∫
dθ1 dθ2 ψ(s(x, ν, θ), t(x, ν, θ), t(x, ν, θ))

× sin(θ1)c0(r(x, ν, θ))c0(s(x, ν, θ))

cos(θ1/2) cos(αr(x, ν, θ)) cos(αs(x, ν, θ))
.
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Application in Kirchhoff migration

Map F ∗ is close to a generalized Radon transform + n−1 derivatives

(n dimension)

Need regularized inverse for each (x, ν).

Not infinite when B(x, ν) + B(x,−ν) → 0,

〈B(x, ν) + B(x,−ν)〉−1 ∼ B(x, ν) + B(x,−ν)

(B(x, ν) + B(x,−ν))2 + ε2
.

〈F ∗F 〉−1F ∗ can be approximated by a Radon transform (to highest

order away from caustic points)

fLS(x) ≈
∑

i,j

∫ ∫
(...)d(s, r, T (i,j)(x, s, r)) dsdr.

with (...) amplitudes and Hilbert transforms.
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Lens example

Medium

2

1

0

zHkmL

-1 0 1
x HkmL

1.0 km�s
0.6 km�s

Stacked image

2.4

2

1.6

zHkmL

0 0.4 0.8
x HkmL

Artifact free as predicted.

If present, artifacts are in general less singular than image, but not
always (S. ’00).
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Artifacts

Analysis from (S. ’00).
Solutions x′ and x are separated

αs αr

D1 D2

s r

x x’
Let

Fj = F restricted to Dj, j = 1,2.

Then

(F1 + F2)
∗(F1 + F2) = F ∗1F1 + F ∗2F2︸ ︷︷ ︸ + F ∗2F1 + F ∗1F2︸ ︷︷ ︸ .

image artifact

Results

• Artifacts are in general less singular than image

F ∗2F1 + F ∗1F2 is in general less singular than F ∗1F1 + F ∗2F2

(2-D : explicit estimates for frequency decay)

• In certain special situations artifacts are as strong as the
image
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5. Angle common image gathers



Angle common image gathers : introduction

Image sets fsource(s, x), foffset(h, x) not optimal

• Velocity analysis in complex media made difficult by artifacts.

– fsource(s, x) not independent of s, even for correct c0 due to

artifacts.

– foffset(h, x) not independent of h for correct c0.

• Identification of medium parameters at discontinuity.

The reflected signal in general has an angle dependent reflection

coefficient R(x, θ) → useful to have image as a function of angle

(AVA).
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Map

all data → set of images
θ

s r

→ images for each scattering angle θ

• Generalized Radon Transform (Kirchhoff) method

Kirchhoff type integration formula, with angle binning (De Hoop

et al.’94, Xu et al.’01, S. & Symes ’02).

• Wave equation using downward continuation of data by wave

equation methods, (De Bruin et al. ’90, Prucha et al. ’99, S. & De Hoop

’01).

• Related to mathematical ideas by Guillemin (’85) (S. & De Hoop

’02).
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Mapping of singularities, forward map and angle transform

(x,kx) space
6 dims.

,kθ space
10 dims.
(x, )θ,kx

=0θk

(s,r,t,ks,kr,ω) space
10 dims.

L

8 dims.

F

K
H

Traveltime Injectivity Condition → L has no selfintersections. Im-

plies existence of angle migration operators.

Non-uniqueness of angle migration operators.
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Kirchhoff angle CIG’s

Restrict Kirchhoff integral to constant

scattering angle (binning). Integration

along curve in the (s, r) plane (2-D), or a
θ2

θ1

ν

x

s r

surface (3-D)

fangle(θ, x) =
∫

dν B(x, ν, θ)H−σ(x,ν,θ)

× d(s(x, ν, θ), r(x, ν, θ), ts(x, ν, θ) + tr(x, ν, θ)).

where B is an amplitude factor.

Imaging equations : Assume event at t = Tdata(s, r).

Singular contribution when

T (i,j)(x, s, r) = Tdata(s, r),

∂s

∂ν

∂T (i,j)

∂s
+

∂r

∂ν

∂T (i,j)

∂r
=

∂s

∂ν

∂Tdata

∂s
+

∂r

∂ν

∂Tdata

∂r
.

3 eqs. for 3 unknowns (3-D), like constant source/offset gathers.

35



Scattering angle : example

Identify solutions to the imaging equations for the lens example for
two choices of (s, r, t, ps, pr) (S. & Symes, ’02).

2

1

0

zHkmL
-1 0 1 2

x HkmL

2

1

0

zHkmL
-2 -1 0 1 2

x HkmL
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Angle common image gather

horizonal

pos.

x = 0.3 km

2.4

2

1.6

zHkmL

0 20 40 60
angle HdegL

2,3

3,1

2,1

3,3

2,2

1,1

travel time # s,r

Strong kinematic artifacts in Kirchhoff angle migration!

Present also in more realistic examples (Marmousi like model of Xu

et al., gas lens model (Brandsberg-Dahl et al.))

Artifacts move out with angle; can sometimes be suppressed.
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“Wave equation” approach

Define subsurface half offset h.

Multiply Born formula by 1 =
∫
Rn−1 δ(h) dh

d(s, r, t) =
∫

Rn
+

∫ t

0

∫

Rn−1×{0}
G0(r, x + h, t̃)G0(x− h, s, t− t̃)

× f(x)δ(h)︸ ︷︷ ︸
fWE(h, x)

dhdtdx.

So we have linear map H

H : fWE 7→ d

fWE(h, x) = δ(h)f(x)

Compute fWE by inverting H, then

1. Imaging from fWE(h, x).

2. Angle transform by Radon transform (slant stack) fWE(h, x).

H is adjoint of survey sinking + restriction to t = 0
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Inversion of H

Double square root assumption If x is in domain of interest, and
there is (s, r, t) in acquisition set such that x and s and x and r are
connected by ray intervals of total time t, then the ray is nowhere
tangent to horizontal, i.e. along the two rays

∣∣∣∂xn
∂t | > ε.

Main idea (S. & De Hoop ’01) Possibly after applying a microlocal
cutoff, H is an invertible FIO on a part of phase space, such that

H∗d = (pseudodifferential operator)fWE(h, x).

Results

• Precise form, including amplitudes, of the inverse of H.

• Imaging operator

• Angle transform: Consider the composition with a Radon trans-
form
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Imaging equations

Use asymptotic expression for G0 (traveltimes)

H∗d(x, h) ≈
∑

i,j

∫
(...)d(s, r, t− T (i)(s, x− h)− T (j)(r, x + h)) dsdr.

with (...) operations that do not affect position of singularities.

No binning : Integration over all data for each (x, h).

Assume event in data, traveltime Tdata(s, r).

αs αr

s r

xn

x+hx−h

Imaging equations

T (i)(s, x− h) + T (j)(r, x + h) = Tdata(s, r)

∂T (i)

∂s
(s, x− h) =

∂Tdata

∂s
(s, r),

∂T (j)

∂r
(r, x + h) =

∂Tdata

∂r
(s, r).
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Back focusing at h = 0

Imaging equations
αs αr

s r

xn

x+hx−h
T (i)(s, x− h) + T (j)(r, x + h) = Tdata(s, r) (1)

∂T (i)

∂s
(s, x− h) =

∂Tdata

∂s
(s, r),

∂T (j)

∂r
(r, x + h) =

∂Tdata

∂r
(s, r) (2)

h = 0, x = xrefl is a solution to (1) and (2).

This solution is unique

1. takeoff angle αs determined by (2), so x−h is on the (s, αs) ray,

takeoff angle αr determined by (2), so x+h is on the (r, αr) ray.

One solution for each xn.

2. The traveltime equation (1) now determines the depth because

∂

∂xn
(T (i)(s, x− h)− T (j)(r, x + h)) > 0.
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Wave equation lens example

(picture by Biondo Biondi, Stanford Exploration Project)

Artifact free!
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Conclusions

• We presented mathematical results about imaging, or the re-

construction of reflectivity

– Under what assumptions this is possible

– Different imaging settings

• Multipathing leads to image artifacts in prestack migration using

binning approaches (common source binning, common offset

binning, or common angle binning)

• Artifacts are much more rare in the stacked image, and in

prestack wave equation migration.
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