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Overview
(Depth) migration <« inversion of a reflectivity function
Goal : study media with multipathing, different types of imaging
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1. Phase space localization of singularities



Wave front set

Location and orientation of events, wave fronts.

Let f(xz) be a function of x € R™. The wave front set WF(f)
iIs a subset of R™ x R™, that contain positions and directions of
singularities. Directions: if (x,kz) in WF(f) then line (x, \kz), A >0

in WFE(f).

To determine whether (z,kz) in WF(f) X
1. Localize in z, consider ¢f “otg
2. Fourier transform x — ky of ¢f

3. Look at decay of Fourier transform in a small cone around k,

- strong decay: smooth at (z, kz)
- otherwise: singularity at (z, kz)

L
Examples: 1. Discontinuity along a curve )Y?L%

WF(f) = {(x,v)|x € L,v L L at =}
2. Point singularity WF(§) = {(0,v) |v € R™ v # 0}



Mapping of singularities
E.g. mapping of events by a migration operator.

Consider operator F mapping g+— f ; f(z) = [ F(xz,y)g(y) dy.
Assume F' a Fourier integral operator

F(a,y) = [ Az,y,0)e @50 dg
Then F maps WF(g) to WF(f)

1. Compute WF-set of F
WF(F) C{(z,y, VP, VyP) | (z,y,0) in set Vod = 0}.

2. Compute canonical relation
/\/ — {[(QZ, kCU)a (ya ky)] | (ZC,y, kx? —ky) S WF(F)}

3. Map WF(g) via canonical relation to get WF(f), by ‘“set map-
pingll

////_o\;//"/./ \\\ /// .,\A_\—————/F‘/‘. \\\

function '\ ;t relation ' /Z: . !

'
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2. Modeling



Green’s function

Wave equation with smooth wave speed cg(x)
(co(z) 207 — D)u(z,t) = g(x,t), ulyco=0.
Green’s function for solution
u(x,t) = Gog(x,t) = /n /Ot Go(x, xg,t — tg)g(xo, tg) dzg dig.
Singularities propagate along rays
For longer times and complex media

caustics and multiple wave fronts
develop.

Contributions from smooth wave fronts ng):
Multiple traveltimes Tl(j)(a:,xg), amplitudes A(j)(a:,azo), KMAH-
index J(j)(:v,azo), j=1,2,...
ng)(a:',:vg,t) = %/A(j)(:v,wo,w) elw(t-T1V(z20)) g,
: N . =3, ) 1 (7)
with AU) = (=) (—iw) 2 (—isgn(w))?” A§"’ (z,z0) + lower order.
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Modeling : Born approximation

Two ingredients

e cg, background medium, that is smooth (C*°)

e Jc, medium perturbation, contains the discontinuous.

Incoming wave field with source g, assume g(xz,t) = 6(t)dé(x — s).
uinc = Gog-
Reflected wave field

oc
urefl = Go (2—3t Gog>
&)

Define reflectivity f = _20c_

co(z)3"

Forward map from f to data, denoted by F
F:f—d(snrt) = /O /nGo(r,a:,t — t/)(?tQGo(:c,s,t/)f(a:) dz dt’,
for source pos. s, receiver pos. r, time t. Aim . reconstruct f.
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F' i1s a Fourier integral operator

Assumption

e T here are no rays that graze acquistion surface and enter region
of interest.

e [ here are no direct rays s to r, over time t that enter the region
of interest and satisfy (s,r,t) in acquisition set.

Theorem (Rakesh '88, Ten Kroode et al. '98) Then the operator F' :
f — d is a Fourier integral operator. The canonical relation /\’F
contains all

[(87 r, t) kSa kTa —CU), (:Ca km)]
such that, with ag, oy, o, 8 unit vectors in the ray directions,

rays connect x and s and z and r

ks = wc(s)_la&H
kr = wc(r)_lozr’H

ke = we(x) o+ ).




Restricted forward map

Restricted data reconstruction problems

e from constant source data dsource(r,t) (for some given s)

e from constant offset data dgfrset(m,t), for some given offset
h =r — s, where m is the midpoint m = 7“‘53

If [(s,7,t, ks, kr, —w), (x,kz)] € N, then

[(rra t) k"'"a —CU), (ZU, kQZ)] S /\/source if s as given:

[((m, t, km, —w), (x, k)] E/\offset if h =r — s as given,

Additional assumption

e (oOffset) matrix e )(3 r) has maximal rank.

7 7/8

10



Generalized Radon transform

Define two way traveltime functions
T (z,5,r) = T (2,r) + T (2, 9),
Non-caustic contributions
d(s,r,t) =~ Z//IRA(i’j)(a:,s,r,w)eiw(T(i’j)(x’S’r)_t) f(z) dx dw
1,]

~ Z/Ag’j)(a:, S,T) Hilba(i)_l_a(j) 8?’_1 6(t — T(i’j)(wa s,r))f(z)dx
i ) > ’
-+ lower order

integration over isochrons

Generalized Radon transform : Integration over isochrons (plus
amplitude factors, derivatives, Hilbert transform).

S r

U XIT (x,s,0=t)
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Modeling with piecewise smooth media

Regions X1, X5, and interfaces S ». g@
X Si2

Conversion of incoming to reflected rays ?
by pseudodifferential operator (y coordinate in the interface)

Ureﬂ|51,2 = R(y, —iaya —iat)uinc|51,2
_ //R(y, ky, —w) e (ky, w) dky dw.

to highest order R is the normalized reflection coefficient r(x,9).

Singularities of solution, apart from tangent rays (head waves),
given by

urefl = G0, X7 S 5 (R(y, —i0y, _iat>GO,Sl,2<—Xlg>-
Reconstruct

r(z,0)(sing. fun. of S12)(x)
for some 6 depending on cg, * and data.
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3. Imaging of constant source/offset data



Partial reconstruction only

Some (x, k;) not mapped to data S

Let ¢» be a smooth cutoff (tapering
function) on acquisition set 1 = ¢ (s, 7, t) reflector not

W(s.m 1) = 4 0 for (s,n1) outside acquisition set,
>/ 771 smoothly going to 1 inside acquisition set,

needed to avoid edge effects in migration.

Connect (s,xz,kz) to (s, r,t) by rays s ||

= Wsource(s,x, kz) smooth “cutoff” function of (x, kz),

Non-zero where (x, kz) illuminated (“observable” ). Similar we have
a smooth cutoff function Wsreet(h, x, kz).

14



Adjoint mapping of singularities

For any operator F' that maps f(x) to g(y), we have

[(y, ky), (x,kz)] € Np < [(@, k), (y, ky)] € Nps.
Thus F* maps observable singularities back to their original

position.
If [(yaky)a (wokiﬁ)] S /\/F and [(yaky)7 (xla k:,c)] < /\/ J then

(@ ke)  F (yky) P (k) |
sing. in f sing. in d sing. in image

Possible kinematic artifacts when (2/,k..) #= (z, kz).

= Injectivity conditions for absence of artifacts. For each (y, ky)
there must be at most one (z, k).

= Imaging equations to determine position of singularities in im-
age from the rays (i.e. A%;) and knowledge of singularities in data.
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Imaging equations (constant source)

Migration formula: Modification of adjoint by factors leaving sin-
gularities in place (amplitudes, derivatives, Hilbert transform)

fsource(s,z) = > /B(i’j)(l’a 5,T) Hilp—' =o' d(s,r, T3 (2, s, 7)) dr.
(4,5)

Define slowness ps = ks/w, pr = kr/w. Source slowness ps not
determined from data

In presence of multipathing (s, r,t, pr) do
not alwals determine reflection point.

Imaging equations Assume t = Tq,t5(s, ) is an arrival in the data.
Equations for event positions in image z’.

T (2! 5,1) = Tgata(s,m),  ViTUP) = ViTyata.
3 egns. for 3 unknowns z’ (3-D) — solutions for several (3, 7)
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Constant source data imaging

Assumption (traveltime injectivity)
(s,r,t,pr) determine uniquely determine (z,«, 8).

Assumption (local condition or immersivity)

i Oky _ ( 92T 8T :
The matrix 1) (waraw ax> has maximal rank.

Theorem (Hansen '91) There is a microlocal inverse Hsource Such
that for all f

HsourceFsourcef = Wsource(s,x, —i0z) f

= (2m)™" /R” Wsource(s, , kaz)]?(k:c) dkz.

- Exact reconstruction of singularities where W(s,x,k;) = 1!
- Approximation modulo lower order error by Kirchhoff migration.
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Constant offset data imaging

Offset slowness pj, = (pr — ps)/2 not determined!

Pm—Ps+Pr

N\ /4‘ IGI‘
;_ S r/l’:/::

ps‘

Imaging equations (using traveltimes), for arrival t = Tqata(s, ) in
data

T(09) = T4ata; VT v, 705 = VsTdata + VrTdata-
3 eqns. for 3 unknowns z’ (3-D)

Inverse if

- (s,7,t,pm = (ps + pr)) uniquely determines (z,«, 8).
- Matrix 88]; ) has maximal rank.
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Multipathing : example

Identify kinematic artifacts by comparing migration and solving
imaging equations.

Example from (S. & Symes, '02), extending (Nolan & Symes, '96) to
offset and angle imaging.

X (km)
-+ o 1

Z 1 | .
(km)

1.0 km/s

0.6 km/s
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Rays and wave fronts

X (km)

-1 0

O | )
z 1-
(km) 4
~/—o _ _ -\
2 3
/4 A\




Data (single source)

receiver position (km)

time

()
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Constant offset image

X (km)

X (km)

2
(km) (km)

Multiple ray pairs lead to both correct and incorrect events in image
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Offset common image gather

Varying offset, fixed horizontal position 1 = 0.3 km

offset (km)
0 1 2

travel time # s,r

(km)

|

i

[}

L &
N WP NP WP

With constant source/offset binning we practically have to exclude
caustics.
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4. Imaging with full data



Least squares

Assume source and receivers covering surface. Then data is 5-
dimensional data for a 3-dimensional image.

Overdetermined problem — least squares : find f g that mini-
mizes

IFfLs — dlI”.
Implies that
F*Ff g = F*d.

(1) compute normal operator N = F*F
(2) Compute a (possibly regularized) inverse (F*F)~1, then

fls = (F*F)"1F*d.

Issues : - Mapping of singularities
- Amplitude factor
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Injectivity condition and imaging equations

Imaging methods has access to s,rt,ps,pr. Take-off directions
ag, o are uniquely determined.
Traveltime Injectivity Condition (s, r,t, as, ar) determine uniquely

(z,a,3).

Non-uniquene solutions z, and z’ if

(1) z, 2’ on ray determined by s, as
(2) z,z’ on ray determined by 7, ay

(3) travel time equal between
x and z’ along two rays

Imaging equations : 5 egns, 3 unknowns (3-D)
T (@) 5,1) = Tqata(s, 1),
V() = Vs1yatas v, T03) = Vrilgata-
Artifacts more rare
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Normal operator

Theorem (Ten Kroode, Smit & Verdel '98) Assume Traveltime Injec-
tivity Condition, then the operator N = F*F' is a pseudodifferential
operator of order n — 1, i.e. of the form

Nf=(2r)™" /Rn ek N (1, k) k) dia.
For N(x, kz) we have

ka

P |)|kx|” 1 + lower order.
x

N(z, k;) = B(x, W)Mn L4 B(z, -

with weight factor computed by
integration over subsurface coords.
scattering angle/azimuth(3-D)

co(x)3

16(4@5//(191 db2¢(s(z,v,0),t(z,v,0), t(z,v,0)) X

sin(61)co(r(xz,v,0))co(s(x,v,0))
cos(61/2) cos(a(z,v,0)) cos(as(x,v,0))

B(x,v) =
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Application in Kirchhoff migration

Map F* is close to a generalized Radon transform + n—1 derivatives
(n dimension)

Need regularized inverse for each (x,v).
Not infinite when B(x,v) + B(xz,—v) — 0O,
B(I‘,V) —I—B(I,—l/)
(B(x,v) + B(x,—v))2 + €2

(B(zx,v) + B(x, —v)) 1

(F*F}‘lF* can be approximated by a Radon transform (to highest
order away from caustic points)

fis(z) = Z//(...)d(s,r, T(i’j)(:c,s,'r’)) dsdr.
(2¥)

with (...) amplitudes and Hilbert transforms.
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Lens example

Stacked image

X (km)
0 0.4 0.8

Medium

X (km)
0

-1 1

1.0 km/s
z 1]
(km) . i z
0.6 km/s

(km)

Artifact free as predicted.

If present, artifacts are in general less singular than image, but not
always (S. '00).
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Artifacts

Ug o
Analysis from (S. '00). \S r/
Solutions 2’ and z are separated R /
Let

F; = F restricted to D;, j=1,2 D, DA
Then

(F1+ )" (F1+ F2) = F{F + F5F + FoFL + FiF>.
image artifact

Results

e Artifacts are in general less singular than image
F3Fy + F{F> is in general less singular than F{F; + F3F5
(2-D : explicit estimates for frequency decay)

e In certain special situations artifacts are as strong as the
image

30



5. Angle commmon image gathers



Angle common image gathers : introduction

Image sets fsource(s,x), foffset(h,x) not optimal

e Velocity analysis in complex media made difficult by artifacts.

— fsource(s, ) not independent of s, even for correct cg due to
artifacts.

— foffset (h, z) not independent of h for correct cg.

e Identification of medium parameters at discontinuity.
T he reflected signal in general has an angle dependent reflection
coefficient R(x,0) — useful to have image as a function of angle
(AVA).
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Map S r

all data — set of images

— images for each scattering angle 6

e Generalized Radon Transform (Kirchhoff) method
Kirchhoff type integration formula, with angle binning (De Hoop
et al.’94, Xu et al.’01, S. & Symes '02).

e \Wave equation using downward continuation of data by wave
equation methods, (De Bruin et al. '90, Prucha et al. '99, S. & De Hoop
'01).

e Related to mathematical ideas by Guillemin ('85) (S. & De Hoop
'02).
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Mapping of singularities, forward map and angle transform

- - - o

________________

F i
— | -
(X,kx) space T
- (Svr;t,k 1k ,(L)) Space
edms. e 10dims.
K\ | /
| =0 | | H

________________

(X,0,ky.kg) space
10 dlms

Traveltime Injectivity Condition — L has no selfintersections. Im-
plies existence of angle migration operators.

Non-uniqueness of angle migration operators.
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Kirchhoff angle CIG’s

Restrict Kirchhoff integral to constant
scattering angle (binning). Integration
along curve in the (s,r) plane (2-D), or a
surface (3-D)

fangle(0,z) = /dl/B(a:,y, Q)H_U(OCW,@)
X d(S(QZ’ Y 9)’ ’I"(Qj‘, v, 9)7 ts(ZC, v, 9) _I_ t?“(xp vV, 9))

where B is an amplitude factor.

Imaging equations : Assume event at t = Ty5t5(s, 7).
Singular contribution when

T (,5,7) = Tyata(s, ),
8s T3 graT(d)  9sdTgara , Or OTgata
ov Os v Or  Ov Os +81/ or
3 egs. for 3 unknowns (3-D), like constant source/offset gathers.
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Scattering angle : example

Identify solutions to the imaging equations for the lens example for
two choices of (s,r,t,ps,pr) (S. & Symes, '02).

X (km)

z
(km)
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Angle common image gather

angle (deg)
0 20 40 60

travel time # s,r

horizonal

POS. z
k

r=0.3km "

Strong kinematic artifacts in Kirchhoff angle migration!

Present also in more realistic examples (Marmousi like model of Xu
et al., gas lens model (Brandsberg-Dahl et al.))

Artifacts move out with angle; can sometimes be suppressed.
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‘VWave equation’” approach

Define subsurface half offset h.
Multiply Born formula by 1 = [pa—1(h) dh

t
d(s,r,t) =/qu_/0 /Rn_lx{o}Go(r,x—I—h,f)Go(a:—h,s,t—f)

x f(x)d(h) dhdtdz.
fwe(h, )
So we have linear map H

H fWE — d
fweh,z) = d(h) f(x)

Compute fiwe by inverting H, then

1. Imaging from fiye(h,x).

2. Angle transform by Radon transform (slant stack) fwe(h,x).
H is adjoint of survey sinking -+ restriction to¢t =20
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Inversion of H

Double square root assumption If x is in domain of interest, and
there is (s,r,t) in acquisition set such that x and s and = and r are
connected by ray intervals of total time ¢, then the ray is nowhere
tangent to horizontal, i.e. along the two rays ‘%| > €.

Main idea (S. & De Hoop '01) Possibly after applying a microlocal
cutoff, H is an invertible FIO on a part of phase space, such that

H*d = (pseudodifferential operator) fiyg(h, ).

Results
e Precise form, including amplitudes, of the inverse of H.
e Imaging operator

e Angle transform: Consider the composition with a Radon trans-
form
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Imaging equations

Use asymptotic expression for Gg (traveltimes)

H*d(z, h) ~ Z/(...)d(s,r,t — T(i)(s, x —h) — T(j)(r, x + h))dsdr.
t,]
with (...) operations that do not affect position of singularities.

No binning : Integration over all data for each (x,h).

Assume event in data, traveltime Ty5t5(s, 7).
Imaging equations

T (5,2 — h) +TY (r,z + h) = Tyara(s,r)

o1 (%) 0T yt4 o1 () 0T yt4
—h) = 4+ h) =
0s (s,w ) 0s (S’T)’ or (r,w ) or
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Back focusing at h =0
S

Imaging equations

T (s, — h) + TY (r,z + h) = Tyara(s, )

o1 (1) OT gt oT ()

_h) =
(s —h) =9,

(r,x+h) =

h =0, x = xef IS a solution to (1) and (2).
T his solution is unique

1. takeoff angle as determined by (2), so z—h is on the (s, as) ray,
takeoff angle a, determined by (2), so x+h is on the (r, ay) ray.
One solution for each z,.

2. The traveltime equation (1) now determines the depth because

ai(T(i)(s,a: —h) = TW(r,z + h)) > 0.
Ln
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a

Artifact free!

Wave equation lens example

surface location {(m) Half Offset {m) Aperture angle {deg,
—2000 —1000 0 1000 =000 —500 0 500 —50 0 50

(picture by Biondo Biondi, Stanford Exploration Project)
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Conclusions

e We presented mathematical results about imaging, or the re-
construction of reflectivity
— Under what assumptions this is possible
— Different imaging settings

e Multipathing leads to image artifacts in prestack migration using
binning approaches (common source binning, common offset
binning, or common angle binning)

e Artifacts are much more rare in the stacked image, and in
prestack wave equation migration.
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