Geophysical Inversion – Provehito in Altum! (Probe the Depths)

Larry Lines

Department of Geology and Geophysics University of Calgary

Photo by courtesy of Deborah Spratt

Inversion Topics in This Talk

- Imaging Rock Boundaries
- Imaging Using Rays (Kirchhoff Migration)
- Imaging FD Wave Equation Calculations (Reverse-Time Migration)
- Estimating Anisotropic Velocity Models and Images
- AVO Inversion for Rock Properties
- Conclusions

Inversion: From Waves to Rocks

Inversion is the process of finding an earth model whose response matches available data.

Benefits of Migration

- focuses events
- steepens dipping events, moves energy updip
- broadens synforms, collapses antiforms
- reduces size of Fresnel zone
- suppresses random noise
- overall effect is section that may be interpreted with significantly more confidence than stacked section

Prestack depth migration

Shot Gathers – Point Diffractor

Impulse Response – 2 traces

Image – Impulse Response Sums

Kirchhoff Depth Migration

- traveltimes to define diffraction obtained through:
 - raytracing rays modelled to propagate through velocity model, bend according to Snell's Law, interpolate to grid

- direct solution of eikonal equation onto a regular

grid

$$\left(\frac{\partial \tau}{\partial x}\right)^2 + \left(\frac{\partial \tau}{\partial z}\right)^2 = \frac{1}{c^2}$$

Tectono-stratigraphic interpretation Line B

FD Calculations for Reverse-time Depth Migration

- Divide the subsurface into velocity cells.
- Time-reverse seismic trace values to supply timevarying surface boundary conditions.
- Choose cell size, h, fine enough to avoid grid dispersion.
- Choose time sampling and cell size to avoid instability.
- Backward propagate wavefield using FD wave equation calculations.

Finite-differencing of the wave equation

FD Evaluation of Derivatives

• Second derivatives are evaluated by finitedifferences.

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{h^2} \left[u(x_0 + h) + u(x_0 - h) - 2u(x_0) \right]$$

Stability Condition

• Choose

$$\frac{v \Delta t}{h} \le \sqrt{\frac{a_1}{a_2}}$$

- Where a₁= sum of absolute values of FD weights of second derivative in time
- And where a₂=sum of absolute values of FD weights of second derivatives in space

Characteristics of Reverse-time Migration

- General
- Accurate
- Relatively easy to code
- Computational Cost O(Nx*Ny*Nz*Nt)
- Expensive

Thrust Fault Models

• Fault Bend Fold

• Fault Propagation Fold

Unmigrated seismic data

Depth Migrated Data

• Migration (FBF)

• Migration (FPF)

Parallel Processing

 Comparison of Scalar, Vector, Parallel-Vector and Parallel Processing

SEG/EAGE Salt Model

Figure 3. 3-D reverse-time migration image of SEG/EAGE salt data at crossline360, y=7.18km.

FAmig_crossline360 Figure 4. 3-D first arrival Kirchhoff migration image of SEG/EAGE salt data at crossline360, y=7.18km.

Vertical transverse isotropy (VTI)

Lateral position error in target

hinterland

foreland

TTI overburden model

TTI overburden model sections

TTI overburden model anisotropic depth migration

Processing Vestrum (Kelman)

CIG displays at different velocity iterations

Seismic interpretation on the final PSDM image of the Shaw-Basing field survey

Influence of seismic anisotropy

Building anisotropic velocity model (V_o , ε , δ , θ)

🕇 Lab

- **★** Refraction seismic and Multi-offset VSP surveys
- ★ Logging method
- **h** Inversions of surface seismic data
- **+** Parameter scanning technique

Parameter scanning of epsilon

Correlation between well information and anisotropic PSDM

Theory – AVO

Use linear approximation of the Zoeppritz equations (Aki and Richards, 1980)

$$\begin{bmatrix} d(\theta_1) \\ d(\theta_2) \\ \vdots \\ d(\theta_N) \end{bmatrix} = \begin{bmatrix} \left(\frac{1}{2}\sec^2\theta_1\right) & -\left(4\gamma^2\sin^2\theta_1\right) & \frac{1}{2}\left(1-4\gamma^2\sin^2\theta_1\right) \\ \left(\frac{1}{2}\sec^2\theta_2\right) & -\left(4\gamma^2\sin^2\theta_2\right) & \frac{1}{2}\left(1-4\gamma^2\sin^2\theta_2\right) \\ \vdots & \vdots \\ \left(\frac{1}{2}\sec^2\theta_N\right) & -\left(4\gamma^2\sin^2\theta_N\right) & \frac{1}{2}\left(1-4\gamma^2\sin^2\theta_N\right) \end{bmatrix} \begin{bmatrix} R_{v_p} \\ R_{v_s} \\ R_d \end{bmatrix}$$

Or

Where θ = average angle of incidence, d(θ) is offset dependent data γ ratio of S velocity to P velocity

 R_{Vp} , R_{Vs} , R_d are the change over the average p-wave velocity, s-wave velocity and density respectively

Conclusions

- Prestack migration from topography requires an accurate velocity model
- Seismic processing prior to migration is important
- Prestack depth migration requires velocity model iteration and interpretation
- When seismic anisotropy is significant, use anisotropic depth migration

Conclusions

- Reverse-time depth migration is general, accurate and effective.
- Reverse-time depth migration is expensive and time consuming.
- The migrations can be made tractable and affordable by parallel processing.

Acknowledgements

- * NSERC
- * Chris Blackwood
- * Don Lawton
- * Lanlan Yan
- * Dr. Helen Isaac
- * Dr. Debbie Spratt
- * Robert Vestrum
- * Sam Gray
- * Shawn Rushton
- * Kwangjin Yoon
- * Jon Downton
- * CREWES, FRP Sponsors

Look forward to future applications

