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Problem: Linear Elasticity

(AN2M 4+ XG4+ K)v=0
M'=M>0 GT=-G KT'=K<O0

quadratic eigenvalue problem

large, sparse (finite elements)

Find few eigenvalues nearest imaginary axis
(and corresponding eigenvectors).



Problem: Optimal Control
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Hamiltonian Structure

e Our matrices are real.

e )\, \, —)\, —)\ occur together.

e Seen also in Hamiltonian matrices




Hamiltonian Matrices

H e R2n><2n

— 0 I 2nX2n
o[ o)

H is Hamiltonian iff JH is symmetric.

A K
H_[N _AT

where K = KT and N = N7



Linearization

NMMv+AGv+ Kv=0

Az — ANz =0

symmetric/skew-symmetric



Reduction to Hamiltonian Matrix

e A— AN (symmetric/skew-symmetric)

cw=wom (5= 0 1))

sometimes easy, always possible

e [ransform:

A—-ZRYJR
R TAR™Y _)J

JITRTAR™Y _ AT

o H=JT'RTAR1 is Hamiltonian.



Example



Sparse Representation of H
o Krylov subspace methods

e \We just need to apply the operator.
(M = LLT)
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Exploitable Structures

e Hamiltonian

H—l

HYH-rDY'H++DT

e skew-Hamiltonian
2

(H—+I)"YH+ 1)1

e symplectic

(H—rI)"Y(H+7I)

T = target shift

Note: (H —7I)~1 has none of these structures.
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Unsymmetric Lanczos Process

e Standard unsymmetric Lanczos effects a
(partial) similarity transformation

Alug o un]=]w e un] \

e partial similarity transformation:

Alw o w ] =[u o w ] [N

+Uk—|—15k€£
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e short Lanczos runs
(breakdowns!!, no look-ahead)

A[Ul uk]:[ul uk][\]

+upy18cer

e Get eigenvalues of [ \ ]

e Restart (implicitly)
IRA (Sorensen 1991), ARPACK

Restart Lanczos with HR
(Grimme/Sorensen/Van Dooren 1996)
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Structured Lanczos Methods

e Similarity transformation: S—1AS = A4

e S symplectic = structure preserved
o symplectic (Lie group)
o Hamiltonian (Lie algebra)
o skew-Hamiltonian (Jordan algebra)
e Conclusion: A “Lanczos’ process that builds

a symplectic similarity transformation will
preserve structure.

Vectors produced should be columns of a
symplectic matrix.
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Svymplectic Matrices

S e RQnXQn

sus=s (s=] 21])

S=|U V|

UT
VT

Ul'ju=0,VIigv =0 UlJv=1I

Subspaces are isotropic.

14



Isotropic Subspaces
yI'Jr=0forall z, ye U
U= [ul ce UL
UlJu =0

Structured methods build isotropic subspaces.
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Skew-Hamiltonian Case
Theorem: B skew Hamiltonian, £ =20 =

span{z, Bz, ..., B "1z} is isotropic.

e Conclusion: Krylov subspace methods
preserve skew-Hamiltonian structure auto-
matically.

e Examples: Arnoldi, unsymmetric Lanczos

e exact vs. floating-point arithmetic

16



Skew-Hamiltonian Arnoldi Process
e Isotropic Arnoldi process

J J
dj+1 = Baj — ) qihij — ) Jaiti;
i=1 i=1

e produces jsotropic subspaces:
Jqi,...,Jq, are orthogonal to q1,...,q:-

e T heory ti; =0
e Practice t;; = ¢ (roundoff)
e Enforcement of isotropy is crucial.

e Consequence: get each eigenvalue only once.
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Example

Method: Implicitly Restarted Arnoldi
(effective combination of Arnoldi and
subspace iteration)

Toy problem (n = 64); asking for 8
eigenvalues (right half-plane).

Target 7 = ¢ (not particularly good)

After 12 Arnoldi steps (no restart) ...
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e After one restart (12 more Arnoldi steps)

e Errors: 10714 10=7 1079, 1072

e After 7 iterations (restarts) algorithm stops
with 8 eigenvalues correct to ten decimal
places.

e Residuals: [|[(A2M + AG + K)v| < 10712
(o]l =1)
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Further EXxperience

Fortran/C code

n~?2x10°

Disadvantage: Eigenvectors cost extra.

(eigenvectors of H? vs. H)

We haven’t done
skew-Hamiltonian Lanczos.
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Hamiltonian Case

Bunse-Gerstner/Mehrmann 1986:

R

S~lgs = [

Further condensation: E = O,
D = diag{£1l---+1}.

S=|U V|

|/ /u
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Condensed
Hamiltonian Lanczos Process

N\

HlU V|=|U V]

U=[uy up -] V=[vg vog ]

H’u,k = dek

Huvp = up_1bp_1 + ugap + up410g

ugp1by = Hvg — ugag — up—1bp—1

Vg+1dg+1 = Hug41

Coefficients are chosen so that
S = [ U V ] IS symplectic.

Collect coefficients.
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Equivalence

e H? is skew-Hamiltonian.

e Condensed Hamiltonian Lanczos applied to
H is theoretically equivalent to ordinary Lanc-
zos applied to H2.

e Hamiltonian algorithm costs half as many
matrix-vector multiplies.
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Isotropy

UTJU =0, (isotropic subspaces)
vTjv =o,

In (floating-point) practice, isotropy must
be enforced by J-reorthogonalization.

All vectors must be retained.

short Lanczos runs, restarts
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Implicitly Restarted

Hamiltonian Lanczos Process

e use SR, not QR
(Benner/Fassbender 1997)

e In condensed case, SR=HR
(Benner/Fassbender/W 1998)

e Use of HR yields significant simplification.
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Svymplectic Case

Structure

Eigenvalues of S appear in quartets

p, potom ot

Symplectic Lanczos process must extract
these simultaneously.

This is accomplished
by using both S and S—1.

S—1—=_jgsTy
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Symplectic Similarity

e symplectic butterfly form:
(Banse/Bunse-Gerstner 1994)

D1 Ty

—1 .
%4 SVV—[D2 o

-

N
AN

e Further condensation: Dy =0,
D> = diag{il R 1}, TH = —Do, ...

«W=|U V|

e S|UV]|=|U v}[

O —-D
D DT

|

|/ /u
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Condensed
Svymplectic Lanczos Process

N\
ANAN

slvvi]=|v V]

Suk — ’dek
Svp, = —ugdy, + vg_1bg_1 + vgag + vE41b
Up+1bk = Svp — vy — vp—1bk—1 + ugdy,

Upt1di4+1 = S opyq

Coefficients are chosen so that
[U V] is symplectic.

Collect coefficients.
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Equivalence

o S+ S~ 1 is skew-Hamiltonian.

e Condensed symplectic Lanczos applied to
S is theoretically equivalent to ordinary Lanc-
zos applied to S + S~ 1,

e Symplectic algorithm costs half as many
matrix-vector multiplies.
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Isotropy (rerun)

UT
VT

o v]=| 9]

ULJUu =0, (isotropic subspaces)
vIijv =o,

In (floating-point) practice, isotropy
be enforced by J-reorthogonalization.

All vectors must be retained.

short Lanczos runs, restarts

must
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Implicitly Restarted

Symplectic Lanczos Process

e use symplectic SR, not QR

e In condensed case, SR=HR
(Benner/Fassbender/W 1998)

e Use of HR yields significant simplification.
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Remarks on Stability

Both Hamiltonian and symplectic Lanczos
processes are potentially unstable.

Breakdowns can occur.

Are the answers worth anything?

right and left eigenvectors

residuals

condition numbers for eigenvalues

Don't skip these tests.

32



Example
e \2Mv 4+ AGv+ Kv=0

o n = 3423
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Compare various approaches:

e Hamiltonian(1) H1

e Hamiltonian(3) H Y(H—7I)"Y(H+7I)"1

e symplectic (H—7I)"YH 4+ D)

e unstructured (H —7I)~!
-+ ordinary Lanczos with implicit restarts

Get 6 smallest eigenvalues in right half-plane.
Tolerance = 10~8

Take 20 steps and restart with 10.
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No-Clue Case (7 = 0)

Method Solves | Eigvals Max.
Found Resid.

Hamiltonian(1) | 78 9 2 x 10~10

Unstructured 158 | 7+ 7 | 5x10~'

Unstructured code must find everything twice.
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Conservative Shift (r = 0.5)

Method Solves | Eigvals Max.
Found Resid.
Hamiltonian(1) | 78 9 2 x 10~10
Unstructured 138 | 7+ 2 | 3x107°
Hamiltonian(3) | 174 11 3x 1013
Symplectic 156 11 2 x 1078
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Aggressive Shift (r = 1.5)

Method Solves | Eigvals Max.
Found Resid.
Hamiltonian(1) | 78 9 2 x 1010
Unstructured 06 9 1x 10"
Hamiltonian(3) | 120 9 2 x 10712
Symplectic 156 11 2 x 1011
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The Last Slide

e \We have developed structure-preserving
implicitly-restarted Lanczos methods for
Hamiltonian and symplectic eigenvalue
problems.

e [ he structure-preserving methods are more
accurate than a comparable non-structured
method.

e By exploiting structure we can solve our
problems more economically.
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