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Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods
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Latent Semantic Indexing (LSI)
Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Count fij = # times term i appears in document j

Term–Document Matrix ⎛⎜⎜⎜⎝
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞⎟⎟⎟⎠ = Am×n

Query Vector qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not
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QueryMatching
Which Document (or Web Page) Best Matches The Query?

How close is q to each column Ai?

Rank documents using ri = cos θi =
qTAi

‖q‖ ‖Ai‖
Computations

Normalize columns in A

For every query

Normalize qT

Compute rank of each Doc with rT = qTA

Return Doc i to user when ri ≥ tol

Use Truncated SVD To Filter & Compress

Use A ≈ ∑k
i=1 σiuivT

i (drop small σi’s)

rT = qTA ≈ ∑k
i=1 σi(qTui)vT

i
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Limitations

• Rankings are query dependent
Rank of each doc is recomputed for each query

• Only semantic content is used
Link structure completely ignored

• Difficult to add & delete documents
Requires updating & downdating SVD

• Determining optimal k is not easy
Empirical tuning required

• Doesn’t scale up well
Impractical for current www
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Google
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like a book index =⇒ terms point to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . ....
Ranking

• Determine a “PageRank” for each page Pi, Pj, Pk, Pl, . . .
Query independent — Based only on link structure

• Query matching
Q = Term1, T erm2, . . . produces Pi, Pj, Pk, Pl, . . .

• Return Pi, Pj, Pk, Pl, . . . to user in order of PageRank
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Google’s PageRank Idea
(Sergey Brin & Lawrence Page 1998)

• Rankings are not query dependent
Depend only on link structure

Off-line calculations

• Your page P has some rank r(P )

• Adjust r(P ) higher or lower depending on ranks of pages that point to P

• Importance is not number of in-links or out-links
One link to P from Yahoo! is important

Many links to P from me is not

• But if Yahoo! points to many places, the value of the link to P is diluted



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |



PageRank
The Definition

r(P ) =
∑
P∈BP

r(P )
|P |

BP = {all pages pointing to P}
|P | = number of out links from P

Successive Refinement

Start with r0(Pi) = 1/n for all pages P1, P2, . . ., Pn

Iteratively refine rankings for each page

r1(Pi) =
∑

P∈BPi

r0(P )
|P |

r2(Pi) =
∑

P∈BPi

r1(P )
|P |

. . .

rj+1(Pi) =
∑

P∈BPi

rj(P )
|P |
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In Matrix Notation
After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (row sums = 1)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)
πT

j+1 = πT
j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = stationary probability distribution
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RandomSurfer
Web Surfer Randomly Clicks On Links (Back button not a link)

Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on)

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Replace P by P̃ = αP + (1 − α)E where eij = 1/n α ≈ .85

Different E = evT and α allows customization & speedup
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Computing πT

A Big Problem

Solve πT = πTP (stationary distribution vector)

πT (I− P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

A Bigger Problem — Updating

Link structure of web is extremely dynamic

Links on CNN point to different pages every day (hour)

Links are added and deleted almost continuously

Google says just start from scratch every 3 to 4 weeks

Old results don’t help to restart (even if size doesn’t change)
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Unique Left-Hand Perron Vector
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Partition & Aggregate P =
[
P11 P12

P21 P22

]
Shift P by ρ −→ Schur Complements −→ Shift back by ρ

Perron Complements
S1 = P11 + P12(ρI− P22)−1P21 S2 = P22 + P21(ρI− P11)−1P12

Inherited Properties
Si ≥ 0

Si is irreducible

ρ(Si) = ρ = ρ(P)
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Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[
sT

1S1e sT
1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

A is irreducible

ρ(A) = ρ = ρ(P) = ρ(Si)

The Aggregation/Disaggregation Theorem

Left-hand Perron vector for A = (α1, α2)
=⇒

Left-hand Perron vector for P = (α1sT
1 | α2sT

2 )
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Specialization

ρ(P) = 1

S1 = P11 + P12(I− P22)−1P21 S2 = P22 + P21(I− P11)−1P12

Each Si is stochastic

Each Si is irreducible

Si is transition matrix for censored Markov chain (stochastic complements)

sT
i is a conditional stationary probability distribution (censored probability distribution)

A =
[
sT

1S1e sT
1S2e

sT
2S1e sT

2S2e

]
is stochastic

A is irreducible

Aggregation/Disaggregation For Markov Chains

Stationary distribution for P is πT = (α1sT
1 | α2sT

2 )

α1 and α2 are the stationary probabilities for A
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Qm×m (known) φT = (φ1, φ2, . . ., φm) (known) φTQ = φT

Updated Data

Pn×n (known) πT = (π1, π2, . . ., πn) (unknown) πTP = πT

Separate States Likely To Be Most Affected

G = {most affected} G = {less affected} S = G ∪ G

Newly created states go into G (Deleted states accounted for in P)

Neighborhood graph considerations

Transient analysis (Chien, Dwork, Kumar, Sivakumar, 2002)

[xT
0 ]i=

{
1/j for the j states not added or deleted

0 otherwise

Iterate xT
k = x

T
k−1P a few times to obtain xT

f

Include state i in G whenever [xT
f ]i ≥ tolerance
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πT = (π1, . . .πg |πg+1, . . ., πn)

Perron Complements

p11
. . .pgg are 1 × 1 =⇒ Perron complements = 1

=⇒ censored distributions = 1

One significant complement S2 = P22 + P21(I− P11)−1P12

One significant censored dist sT
2S2 = sT

2

A/D Theorem =⇒ sT
2 = (πg+1, . . ., πn)/

∑n
i=g+1 πi
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Trouble! Always A Big Problem

g = |G| small =⇒ |G| big =⇒ S2 = P22 + P21(I− P11)−1P12 large

g = |G| big =⇒ A large
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Approximate Aggregation
Assumption

Updating involves relatively few states

g = |G| is relatively small =⇒ A =
[
P11 P12e

sT
2P21 1 − sT

2P21e

]
(g+1)×(g+1)

is small

Approximation

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn) =⇒ sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

A ≈ Ã =
[
P11 P12e

s̃T
2P21 1 − s̃T

2P21e

]
αT ≈ α̃T =

(
α̃1, . . ., α̃g, α̃g+1

)
πT ≈ π̃T =

(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Use G in an approximate aggregation step to generate approx solution π̃T



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Use G in an approximate aggregation step to generate approx solution π̃T

Smooth the result ˜̃πT = π̃TP



Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Use G in an approximate aggregation step to generate approx solution π̃T

Smooth the result ˜̃πT = π̃TP

Use ˜̃πT as input to another approximate aggregation step
...
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More Detailed Iterative A / D
Initialization

Partition updated chain S = G ∪ G — reorder & partition P =
[

P11 P12

P21 P22

]
ωT ←− components from φT corresponding to states in G

sT ←− ωT/(ωTe)

Iterate Until Convergence

A ←−
[

P11 P12e

sTP21 1 − sTP21e

]
( g=|G| )

αT ←−
(
α1, . . ., αg, αg+1

)
(stationary distribution for A)

π̃T ←−
(
α1, . . ., αg |αg+1sT

)
πT ←− π̃TP = (πT

1 |πT
2 ) (smoothing)

If ‖πT − π̃T‖ < tol, then quit

else sT ←− πT
2/πT

2e and repeat
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Convergence
Theorem

Iterates πT
k from A/D algorithm converge to stationary distribution πT for P

Converges for all partitions S = G ∪ G

Rate of convergence is exactly rate at which powers Sn
2 converge

S2 = P22+P21(I−P11)−1P12

Dictated by Jordan structure of subdominant eigenvalues of S2

If λ2(S2) is simple, then πT
k → πT at the rate at which λn

2 → 0

(expect R=− log10 |λ2| digits of accuracy to be eventually gained on each iteration)

The Game Has Changed

Goal now is to find a relatively small G to minimize λ2(S2)
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Experiments
Test Networks From Crawl Of Web (Supplied by Ronny Lempel & Cleve Moler)

Censorship (Sites concerning “censorship on the Net”)

562 nodes 736 links

Movies (Sites concerning “movies”)

451 nodes 713 links

MathWorks (Internal MathWorks website)

517 nodes 13,531 links

Abortion (Sites concerning “abortion”)

1,693 nodes 4,325 links

Genetics (Sites concerning “genetics”)

2,952 nodes 6,485 links
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Parameters
Number Of Nodes (States) Added

3

Number Of Nodes (States) Removed

50

Number Of Links Added (Different values have little effect on results)

10

Number Of Links Removed

20

Stopping Criterion

1-norm of residual < 10−10
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The Partition

Intuition⎧⎨⎩ Slow convergence in G

Fast convergence in G

⎫⎬⎭ −→ λ2(P22) small −→ λ2(S22) small

+ Slower converging components tend to be the big ones

The G Set

New states go into G

States corresponding to large entries in φT = (φ1, φ2, . . ., φm) −→ G

States corresponding to small entries −→ G



Steep Change In ϕT
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Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.68
10 38 1.66
15 38 1.56
20 20 1.06
25 20 1.05
50 10 .69
100 8 .55

300 6 .65
400 5 .70

nodes = 562 links = 736



Censorship

Power Method Iterative Aggregation

Iterations Time

38 1.40

|G| Iterations Time

5 38 1.68
10 38 1.66
15 38 1.56
20 20 1.06
25 20 1.05
50 10 .69
100 8 .55
200 6 .53
300 6 .65
400 5 .70

nodes = 562 links = 736



Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .39
10 12 .37
15 11 .36
20 11 .35

100 9 .33
200 8 .35
300 7 .39
400 6 .47

nodes = 451 links = 713



Movies

Power Method Iterative Aggregation

Iterations Time

17 .40

|G| Iterations Time

5 12 .39
10 12 .37
15 11 .36
20 11 .35
25 11 .31
50 9 .31
100 9 .33
200 8 .35
300 7 .39
400 6 .47

nodes = 451 links = 713



MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.18
10 52 1.29
15 52 1.23
20 42 1.05
25 20 1.13

300 11 .83
400 10 1.01

nodes = 517 links = 13,531



MathWorks

Power Method Iterative Aggregation

Iterations Time

54 1.25

|G| Iterations Time

5 53 1.18
10 52 1.29
15 52 1.23
20 42 1.05
25 20 1.13
50 18 .70
100 16 .70
200 13 .70
300 11 .83
400 10 1.01

nodes = 517 links = 13,531



Abortion

Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.56
10 105 36.02
15 107 38.05
20 107 38.45
25 97 34.81
50 53 18.80

250 12 5.62
500 6 5.21
750 5 10.22
1000 5 14.61

nodes = 1,693 links = 4,325
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Power Method Iterative Aggregation

Iterations Time

106 37.08

|G| Iterations Time

5 109 38.56
10 105 36.02
15 107 38.05
20 107 38.45
25 97 34.81
50 53 18.80
100 13 5.18
250 12 5.62
500 6 5.21
750 5 10.22
1000 5 14.61

nodes = 1,693 links = 4,325



Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.22
10 92 92.12
20 71 72.53
50 25 25.42
100 19 20.72
250 13 14.97

1000 5 17.76
1500 5 31.84

nodes = 2,952 links = 6,485



Genetics

Power Method Iterative Aggregation

Iterations Time

92 91.78

|G| Iterations Time

5 91 88.22
10 92 92.12
20 71 72.53
50 25 25.42
100 19 20.72
250 13 14.97
500 7 11.14
1000 5 17.76
1500 5 31.84

nodes = 2,952 links = 6,485
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Wide RangeOf Important Applications

PreliminaryWork

Improvements
Optimize G-set

Accelerate Smoothing

Thanks For Your Attention


