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The Need for Optimal Linear Solvers

Significant interest in simulating complex physical
systems with features, and hence solutions, that vary
on multiple scales

Accuracy constraints lead to discretizations with tens of
millions, or even billions, of degrees of freedom (DOFs)

3D Tsunami Model: 200 million cells
Transport: 500 million to 1 billion degrees of freedom

Without optimal methods, solving three-dimensional
problems can be prohibitively expensive
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Properties of Matrices

We consider (primarily) discretizations of the underlying
continuum models (differential equations) via finite
elements or finite differences

The matrices from these discretizations tend to be
sparse and ill-conditioned

The matrices inherit properties of the continuum model
(e.g. symmetry, definiteness)
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Stationary Iterative Methods

Stationary iterative methods choose approximations

� � ��� �

and iterate using the error equation

If

��� � � 	�
 � 


�� � � � �
 


, then 
 
� � � 
 
 � � 	 � � �
 
��

The Jacobi iteration chooses

�

to be the diagonal of

�

The Gauss-Seidel iteration chooses

�

to be the
lower-triangular part of

�

SOR chooses

�

from within a one-parameter family to
try and minimize � 	� � � ��
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Krylov Methods

Krylov methods find the optimal approximation to the
solution in a given subspace

Iteratively increase the size of the subspace to improve
accuracy

These methods are non-stationary: the results of an
iteration affect later iterations
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Classical Methods do not Suffice

10
0

10
2

10
4

10
6

10
8

10
10

10
0

10
5

10
10

10
15

10
20

10
25

10
30

Problem Size

E
st

im
at

ed
 R

eq
ui

re
d 

F
LO

P
s

Scalability of Linear Solvers

Cholesky
Band Cholesky
Jacobi
GS
SOR (ω

opt
)

CG−MIC(0)
Optimal

Solving PDEs with Multigrid Methods – p.8



Stationary Iterative Methods . . .

The Jacobi and Gauss-Seidel iterations do converge for
FE discretizations of elliptic operators, but are not
require

� 	 � �
� � operations for 3-D problems

These methods do, however, resolve some components
much faster than others

For example, for the Laplacian, it is the geometrically
smoothest components of the solution that are the
slowest to be resolved

For this reason, Jacobi and Gauss-Seidel are often
called smoothers - they smooth the error in the
approximation
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Smoother Performance
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Complementing Relaxation

If the error left after relaxing is smooth, it can be
accurately represented using fewer degrees of freedom

Problems with fewer degrees of freedom can be solved
with less effort

Error which appears smooth across many degrees of
freedom is more oscillatory when represented on fewer
degrees of freedom

We choose to represent such error using a subset of
the fine-grid degrees of freedom
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)
Relax

Use a smoothing process (such as Gauss-Seidel) to
eliminate oscillatory errors

Remaining error satisfies

� � � �
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Need to transfer residual to coarse-grid
use Restriction operator
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Level

1

2

Relax

Restriction

Use coarse grid correction to eliminate smooth errors
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

To solve for error on coarse-grid, use residual equation
� � � � � � � �

� �
� � �
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction

Solving on coarse-grid requires an operator on this grid
which well approximates the fine-grid operator

The coarse-grid operator can be formed by
rediscretization or using a variational principal
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation

Need to transfer correction to fine-grid
use Interpolation (Prolongation) operator

Often pick a form of interpolation (

�

) and take
restriction

� � � �

(theoretical benefits)
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation

A(1)x(1)=b(1)

Solve A(2)e(2)=r (2)

Level

1

2

Relax

Restriction Interpolation
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Multigrid Basics

Multigrid Methods achieve optimality through complementarity

Multigrid Components

Relaxation

Restriction

Coarse Grid Correction

Interpolation

Relaxation
Solve

Restrict

Relax

Restrict

Relax

Interpolate

Relax

Relax

Interpolate

Relax

Relax 1

Level

3

K

2

Obtain optimal efficiency through recursion
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Geometric Multigrid

Multigrid algorithms can be broadly classified by how
they pick their coarse grids

If we start with a geometrically regular grid, coarse
grids can easily be chosen
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Geometric Multigrid

Interpolation that is accurate for geometrically smooth
functions is easy to choose

Can use linear/bilinear/trilinear averaging to get values
at fine-grid points that are not also coarse-grid points

Restriction can be chosen either by simply taking the
fine-grid values at coarse-grid points (injection), or as
the transpose of interpolation

Coarse grid equations can be chosen by rediscretizing
the PDE on the coarser grid or . . .

Solving PDEs with Multigrid Methods – p.14



Variational Multigrid

Multigrid with

� � � �

and

��� � � � �

is called a
variational formulation

Terminology comes from minimization form of

�
 � �

:

� 	�� � �
�

� � ��	� � 
 � � �� � 



 � �� 
 � ����� � � 	�� �

Given an approximation � to the solution on the fine
level, it can be shown that the optimal coarse grid
correction

��� solves

	 � � � �� � � � � 	 � � �� �
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Nested Multigrid

Properties of Multigrid are most easily understood in
the case of nested grids

This means that not only each coarse grid a subset of
the finer grid, but that the coarse-grid operators are also
appropriately nested

To have this, consider a finite element framework
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Nested Framework

Consider the bilinear form

� 	��� � � on a finite-dimensional
space

Let � � � �� � � � � � � �

Define

� 
 � 
 � 
 s.t.

� 	� � �� � � � 
 � � � 
 	� � ��
 


� 
 � � � 
 s.t.

� 	 � 
 � � �� � � 	� � �� 	� 
 �� ��
 


� 
 � � � 
 s.t.

� � 
 � � � 
 � �� � � 
 	� 
 �� ��
 


Consider on each grid a smoother,

� 
 � 
 � 
, with

� � � � � �
�
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Nested Approximate Inverses

Want to construct the approximate inverse

�

to
� � � �

on � �

Do this recursively, by defining approximate inverses

� 


for

� 


On the coarsest grid we perform an exact solve, so

� � � �� �
�

For � 
 
,
Take 
 � � � �


 �

Take 
 � � 
 � � � 
 � � � 
 � � 	
� � � 
 
 � �

Define

� 
 � � 
 �

� � 
 	
� � � 
 
 �

�
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Stationarity

Now, consider the grid

�

error-propagation matrix

� � � 
 � 


Can show that

� � � 
 � 
 � 
 � 	� � � 
 � 
 � 
� 	� � � 
 � � � 
 � � � 
 � � � 	� � � 
 � 
 � 
�
�

So, taking

� 
 � � 
 � 
 � 
 have

� � � � � 	� � � �� 	� � � �� � � � � � 	� � � � � 	� � � �
� � � � � 	� � � �� �

So, nested multigrid is a stationary linear iteration
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Convergence Theory

For finite elements, the above theory leads to an
optimal convergence result

For a bounded, open, connected domain
� 
 � �

with a
smooth enough boundary

� �

and an
� �

-elliptic bilinear
form

� 	��� � � , the nested multigrid method using
Gauss-Seidel relaxation converges (in the norm
induced by

� 	��� � � ) in a fixed, finite number of iterations

� � � 	 	� � � � � �� �	� � � � 	 � � �
�

� � 	��	� � �

Moreover, each iteration has cost bounded by

� 	 ��

.

Fourier analysis gives similar results for finite difference
discretizations
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Numerical Results
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Numerical Results
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Numerical Results
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Complications

Difficult to work out appropriate interpolation for
arbitrary geometries

Some problems don’t have associated geometry (e.g.
graph problems)

Linear interpolation is not optimal across material
boundaries (discontinuities in PDE coefficients)

Linear interpolation is inefficient in cases of strong
anisotropy or convection
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Philosophy

All of the above problems can be solved by tweaking
the standard, geometric multigrid algorithm

Different smoothers and different interpolations can be
used (although theory may no longer hold)

Each problem requires its own tuning

Instead, we concentrate on developing an algorithm
which is nearly-optimal on a larger number of problems
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Algebraic Multigrid

In the absence of geometric information, choices can
be made based on algebraic information

Interpolation and coarse grids must be chosen based
on the ability to interpolate a suitable correction

Coarse grid operators must be chosen based on the
fine-grid operator - Galerkin coarsening may be the
most natural choice
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Smoothness

Without geometric information, we can’t talk about a
vector being “smooth” in the same sense

We define a vector, � , to be algebraically smooth if it is
slow to be reduced by relaxation on

��� � �

For a stationary iteration

� � � �

, this means that	� � � �� � � � , or

� ��� � in some measure

In practice, ask that

� 	� � � �� � �

� � � � �

�, so ask that

� � ���� ��� 
 � �� � � 


In general, we think of � as being algebraically smooth if��� � in some measure
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Influence and Dependence

Classical (Ruge-Stueben) AMG focuses on how one
gridpoint affects another

Two gridpoints,

�

and

�

are said to be strongly
connected if �� � is large

In particular, for fixed

� � �

, we say
�

strongly influences

�

if

� �� � � � � � �	

 
�� �

� � 
 � �

We say

�

strongly depends on

�

if

� �
� � � � � � �	

 
�� �

� �� 
 �
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Coarsening Heuristics

An good choice of a coarse grid is one which can be
effectively used to complement relaxation

That is, we want to choose a coarse grid to allow us to
correct the algebraically smooth components on the
fine grid

Ideally, to interpolate to a point
�

, we would want to have
values at all points that it strongly depends on

In practice, this would yield far too many coarse-grid
points

Instead, we say that for each point

�

that strongly
influences

�

, either
�

is a coarse grid point or it is itself
strongly dependent on one coarse-grid neighbour of

�
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Coarsening Heuristics

We must also, however, balance the desire for a good
interpolation with the need to have a small coarse-grid

To do this, we insist that the set of coarse points is a
maximal subset of the fine-grid such that no coarse-grid
point strongly depends on another coarse-grid point

Implementing these heuristics is accomplished using a
colouring algorithm
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Defining Interpolation

For each fine-grid point,

�

, we want to interpolate its
values from neighbouring coarse-grid points
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�, the Neighbourhood of

�

Coarse Grid Points

Fine Grid Points
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Defining Interpolation

For each fine-grid point,

�

, we want to interpolate its
values from neighbouring coarse-grid points

We consider an interpolation operator that must be
accurate for algebraically smooth components, so we
start by considering

	 ��� � � � �

, or

�� � � � � �
� � ��
�

�� � � � �

 � ��

�� 
 � 


Must get rid of connections to points

� 
 ��
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Defining Interpolation

Points

� 
 �� can be either strongly or weakly
connected to

�

If

�

is weakly connected, it isn’t important in
interpolation, so collapse to the diagonal (i.e. consider

� 
 � � � )

If

�

is strongly connected, then we’ve ensured it is
strongly dependent on something in

��

So, approximate � 
 by a weighted average of � �� � 
 ��

� 
 �
� � �
�

� 
 � � �

� � �
�

� 
 �
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Theoretical Aspects

The AMG iteration is still stationary

Relies implicitly on properties of M-matrices or
positive-type matrices

Convergence theory much harder

Still a

� 	 ��

or

� 	 � �
� 
 ��

solver
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Improvements

Resulting algorithm can easily handle jumps in
coefficients

No need to know underlying geometry

Can be adapted to handle anisotropy

Can be modified to handle more complicated problems,
e.g. Elasticity, Stokes Flow, Maxwell’s Equations,
Hyperbolic PDEs, . . .
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Numerical Results

We start with 2 test problems on

� �� � � �

, both from
bilinear FE discretizations

Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

Problem 2 is � � � � 	
 � �� ��� 	�
 � �� � �
with Dirichlet BCs

on the left and right and Neumann BCs on top and
bottom, and

� 	�
 � �� �

� � � 	
 � �� 
 � �
�� �
�

� �

�
otherwise
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Numerical Results

Convergence Factors for AMG

�

Problem 1 Problem 2� �� �

0.09 0.14� �� �

0.10 0.13� � � ��

0.14 0.16� � �� �

0.13 0.15� �� � �

0.15 0.21
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Complications

Each new type of problem requires a new adaptation

Coupled Systems become complicated - should tune
AMG to each piece of the system

Very hard to predict what tuning will be necessary

Many knobs to turn
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AMG Assumptions

Algebraic Multigrid methods attempt to mimic geometric
methods in their choices of interpolation operators and
coarse grids

Typically use a fixed, pointwise relaxation scheme

Classical (Ruge-Stueben) AMG assumes that
algebraically smooth error varies slowly along strong
connections

This is equivalent to assuming that algebraically smooth
error is essentially (locally) constant
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Importance of Interpolation

Complementarity is key in multigrid - error components
that are not quickly reduced by relaxation must be
reduced by coarse-grid correction

A component can only be corrected from the
coarse-grid if it is properly interpolated from that grid

Interpolation must be most accurate for components
that relaxation is slowest to resolve
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Choosing Interpolation

Seek to define interpolation to fit an algebraically
smooth vector

Algebraic smoothness means

	 ��� � � � �

or �� � � � � �
� � ��

�� � � �

� �
� � ��
�

�� � � � �

 � ��

�� 
 � 


To define interpolation, need to collapse connections
from

�� to

��
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Choosing Interpolation . . .

Seek to define interpolation to fit an algebraically
smooth vector

If

� 
 �� is connected to a set of

� 
 �� , we want to write

� 
 �
� � �
�

� 
 � � �

Then, using the definition of algebraic smoothness, we
have

�� � � � � �
� � �
�

�
� � � � �

 � �� � � �
�

�� 
 � 
 � � �

� �
� � �
�

�� � �

 � ��

�� 
 � 
 � � �

Solving PDEs with Multigrid Methods – p.43



Choosing ��

If we have a vector, 
 � � �

, such that

	 �
 � � � � 
 � �
and so

� 
 
 

� � �


 � �
� � �
�

� 
 � 

� � �

� �
� � � �
�

� 
 � 

� � �

�

Eliminate extra terms by replacing matrix entry � 
 
 with
arbitrary

� 
 


� 
 
 

� � �


 � �
� � �
�

� 
 � 

� � �

�
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Choosing � � . . .

Taking the value of

� 
 
 given here, we can write



� � �


 � �
� � �
�

� 
 �
� 
 




� � �

� �
� � �
�

� 
 � 

� � �




�� � �
�

� 
 �� 

� � �

��



� � �

�

Use this formula to collapse all algebraically smooth
error

� 
 �
� � �
�

��
��
�

� 
 � 

� � �




�� � �
�

� 
 �� 

� � �

��

��
��
�

� � �
� � �
�

� 
 � � �
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Adaptive Interpolation

So, we define interpolation to a fine grid point

�

as

� � � �
� � �
�

�� � �

 � ��

�� 
 � 
 �

�� �

� �

� �
� � ��
�

�� � �

 � ��

�� 

��
��
�

� 
 � 

� � �




�� � �
�

� 
 �� 

� � �

��

��
��
�

�� �

� �
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Relation to Ruge-Stueben

Ruge-Stueben AMG takes 
 � � �

� �

Substituting this into our interpolation formula gives

� � � �
� � �
�

�� � �

 � ��

�� 

��
��
�

� 
 �

�� � �
�

� 
 ��
��
��
�

�� �

� �

This is the same as the AMG strong-connection-only
interpolation formula
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Scaling Invariance

Combining our interpolation with pointwise relaxation
leads to an algorithm that is nearly insensitive to any
diagonal scaling

In particular, if

�

is scaled to

� � �

, and 
 � � �

is scaled to

� � � 
 � � �

, then we achieve the same convergence rates
for the scaled problem as for the unscaled problem

Difficulty lies in generating the scaled vector

� � � 
 � � �
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Determining

� � �

Choosing a good interpolation operator requires a good
approximation, 
 � � �

, to the algebraically-smoothest
vector of a given matrix

�

Such an approximation could be determined by
sufficient relaxation on a random initial guess with a
zero right-hand side

In practice, this requires too much computation to be
feasible

Instead, we use preliminary V-cycles to accelerate the
exposure of components for which

�
 � �
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Test Problems

We start with 2 test problems on

� �� � � �

, both from
bilinear FE discretizations

Problem 1 is Poisson with pure Dirichlet Boundary
Conditions

Problem 2 is � � � � 	
 � �� ��� 	�
 � �� � �
with Dirichlet BCs

on the left and right and Neumann BCs on top and
bottom, and

� 	�
 � �� �

� � � 	
 � �� 
 � �
�� �
�

� �

�
otherwise
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Test Problems

The second pair of problems come from diagonally
scaling Problems 1 and 2

To scale, we use the node-wise scaling function

� � � �� 	� � � �
 � � � �� 	 �� � � � � � � � � � �

This function gives variable scaling on each node, but
does not change its character with

�
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Numerical Results

Coarse grids are chosen geometrically, based on
full-coarsening

Coarse grid operators are determined by the Galerkin
condition.

Setup involves creation of a preliminary V-cycle, and
improvement on that cycle

Compute asymptotic convergence factor, then use this
to estimate number of V(1,1)-cycles needed to reduce
error by

� � � �

From number and cost of cycles (

�
� work units), can

estimate total cost of solution stage
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AMG-Equivalent Results

By fixing 
 � � �

� �

, we can generate results indicative of
AMG’s performance

Work Units for standard AMG

�

Problem 1 Problem 2 Problem 3 Problem 4� �� �

12.9 14.5 1297 59.4� �� �

13.4 15.6 4075 112.1� � � ��

13.6 14.9 6122 218.7� � �� �

13.8 16.4 6122 430.6� �� � �

13.9 15.2 7350 858.6� � � � � �

13.9 16.7 7350 1656
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Adapted Interpolation Results

Work Units using adapted AMG

�

Problem 1 Problem 2 Problem 3 Problem 4� �� �

12.9 14.9 12.9 14.9� �� �

13.4 15.6 13.5 15.3� � � ��

13.6 15.2 13.7 15.3� � �� �

13.8 16.4 13.8 16.4� �� � �

13.9 15.2 13.9 15.2� � � � � �

13.9 16.7 13.9 16.8
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Convergence Factors
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Full Adaptivity

Method still relies on having a good representative of an
algebraically smooth vector

If known a priori, then use it

If not, then develop the representative using the method
and adapt interpolation (and possibly coarse grids) as
information is available
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Relation to PCG

A simple version of the fully adaptive procedure mimics
PCG

Given 
 � , relax on

�
 � �

, so 
 � � �
 �
Define

� � � �
 � � , perform (two-level) multigrid correction

Error after correction is

� � � 	� � � � 	 � �
� � � � � � � � �
� �� � � �

Notice

� � � � � 	 � �
� � � � � � � � �
� �

is an

�

-orthogonal
projection onto the space

� �
 �
�

.
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Relation to PCG

At step

�

:
Relax on

�
 � �

with the current multigrid and initial
guess 
 
 � � , so


 
 � 	� � � 
 � � � �
 
 � � � 	� � � 
 � � � � 
 
 �

Define

� 
 � � � 
 � �� 
 
 � ,

� 
 � � 
 	 � 
 � � 
� � � � �

 �

New multigrid cycle is given by error propagation
matrix

� 
 � 	� � � 
� �� �

� 
 is an

�

-orthogonal projection onto

� 
 � � �
 �� � � 
 �� � � �� � 
 
 �
�
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Improvement on PCG

Instead of mimicking PCG, we define

�

so that the
coarse-grid system (

� � � �

) retains properties of the
fine-grid system

The vector 
 
 now becomes an indicator of error that is
both algebraically smooth and not sufficiently
addressed by coarse-grid correction

Updating interpolation is done so that it remains
accurate for 
 � through 
 
 � � , but also addresses 
 


Results to date indicate that

�

need be no larger than
the null-space of the differential operator
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Summary

For regular grids, with smooth PDE coefficients,
geometric MG works well

For irregular grids, discontinuous coefficients, algebraic
MG works well

For coupled systems, exotic bases, adaptive algebraic
MG offers hope

All are

� 	 ��

algorithms, constants are non-trivial, but
not prohibitive
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Current and Future Work

Developing a theory for self-correcting AMG

Developing a fully-algebraic version

Investigating better coarsening procedures (Compatible
Relaxation)

Natural extension to systems

Alternate smoothers
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