Numerical Methods for 1ll-Posed
Problems

Tufts University, Medford, MA



Outline

Definition of DIPP’s, sample problem

On the need for

Krylov subspace regularization

Choosing regularization parameters
Preconditioning, structured matrices
Hybrid approaches

Summary



Background

An problem is JUZeR=IeN if it IS NOt unique or it IS

not a continuous function of the data
[Hadamard, '23].

First-kind Fredholm integral equations

/Q K (s, ) f(£)dt = g(s).

are ll-posed.



Motivation

Why linear ill-posed problems?

Applications where model is appropriate:
Image deblurring

Computerized tomography
Tractable
Initial guesses for nonlinear inverse problems

Nonlinear problems may need specialized
regularization technigues



Discrete Ill-Posed Problem

Solve for fi..., given A, g and the model

Aftrue = Otrue T € = ¢,

where A € R™" m > n Is full rank.

Properties

Decaying singular values, no gap

Noise is unknown (white), but ||e|| /|| girue|| < 1
m,n are large

Discrete Picard condition holds



Gravity Test Problem

f(t): mass distribution depth d,
g(s): vertical component of gravity field




Need for Regularization

Let A=USV" =) o]
=

The solutionto Af = g = ¢"*° + e:

n T true

. U; g |
J = Uj (%
) oF) oF)
=




Picard Plot

gravity, .1 percent noise
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Exact Solution
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Truncated SVD

Instead, take the solution

kT

- U; g
freg — U;
o

1=1

SVD for large problems!



Optimal TSVD Solution
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Krylov Subspace Methods

Ki.(B,v) = span{v, Bv, B*v, ..., B* v}

Conjugate Gradient J&1zbI:)}

e =arg min Iz = flla

MINRES JERSIulnE{e)

(k) — are min |4z —
f gzeKk(Ag | gll2

LSOR (or CGLS)

(k) A
f argzelck(%lgﬂ || Z 9H2



Krylov Subspace Methods

Each iteration “costs" 1 or 2 mat-vecs and a
few dot-products, saxpys.

lterates, basis vectors updated via short-term

recurrences = o\ storage §

Convergence rate (to f) depends on
clustering of spectrum.



LSOR as a regularization method

LSQR minimizes the norm of the residual,
Af%) — g, at every iteration = decreasing
function of k.

. | forue — £O ,
Relative errors T (=l another story |
true



P71
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LSOR

S
~

fO=3" ¢Wed)

=il - i

where ¢*) ¢ TT*.

Study of convergence In regularization case
different gl RV EIETIELWVAES

See [Hanke '95] analysis in Hilbert space
setting.

Use analysis of the residual [K. and Stewart
'99, K. "00].
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Residual Polynomials

Residual poly p¥)(¢) = 1 — (¢ >( t), & p*)(0) = 1,
[r®| = [p*(AA*)g| = [|p*(ZET)TTg]|

residual polynomials




Plots of |[UTr*)

residual components
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Regularization and LSQR

Summary of regularizing properties:

Residual polynomial residual
norm at each step.

There Is more to reduce over the signal
subspace early on.

A root near a small singular value would
cause the residual norm to increase.

Once residual norm falls much below ||e
solution becomes
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Regularization Parameter k

Incomplete list of options:

[Morozov '66]:

Choose kso ||Af%) —g| ~ |le

[Golub, Heath, Wahba, '79]:
minimize ||Af%) — ¢|| /7T (k)
[Hansen & O’Leary '93]:

“Corner” of (log | Af™ — g]|,log || /™)

[Hansen, K. & Kjeldsen, '02]:
miny, max(csd(f*), AfF) — g)).




Gravity, L-curve

corner at k = 18 Is optimal

L—curve after 40 iterations
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Preconditioning

Assume, for simplicity, A Is square:
M'Af =M 1g
AM™f =g, y= Mzx
MTAM f = Mg, y = Myx

Inverses usually formed {ggell{#1i\A:
Mty =y, v= My

so “solves" with M must Qe fast, Jow storage.

IMS Worksh
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Preconditioning

In non-noisy case:

Preconditioned matrix has singular values
clustered away from O.

eqg.if M~ A, then M A~ 1

In noisy case:
O \YAHIVES (1@ part of spectrum
corresponding to signal subspace!

Preconditioning should not mix signal and
noise subspace!



Preconditioning for Regularization

Consider
M*Af =M1y

If M ~ A, then Mg~ A 'g, which is

by noise!




An “Optimal™ Preconditioner

let A=UXV!I =U

Then

0
0 X, ;

M=U !
0 I
M1'A=V )

vT




Preconditioning and Matrix Structure

Toeplitz:

BTTB: | . . .. |, Tyis Toeplitz.




Preconditioning and Matrix Structure

Use

rank-revealing factorization PaRESEzLs[f-l [ZAIE

Approx. by A; ® A; and use SVD
[Kamm & Nagy '98]

Circulant (BCCB) approximations
[Hanke, Nagy, Plemmons ’93]

Fast, complete-pivoted LDU factorization of
transformed matrix [K. & O’Leary 99, K. '99]



Example
A is non-separable 128° x 1282, ~ .1 % noise

original circuit image
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Example, cont

blurred, noisy circuit image

° °
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Relative Error Comparison

relative error plot, Circuit image
=== unpreconditioned ||
- preconditioned

100 150 200 250 300 350 L18[8) /s workshop 2003 - p.30



Restoration

reconstructed (opt k=25)
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Hybrid Approach (LSQR)

LSQR detalls §

AVk Uk_|_1Bk

where

Vk — [U17U27 IO ,Uk], Uk — [Ul, S ,Uk] have
orthonormal columns

By is (k+1) x k lower bidiagonal matrix.
Columns of V,, span K, (AT A, ATD)



LSOR

Also, u; = fe;. SO

(k) — ' As —
f g min ATQ)H z2—4lls

becomes

y® = argmin | Byy — Berll2, P = Vi
yceRk

The problem inherits properties of the
original!



Hybrid Methods

The hybrid approach [O’Leary & Simmons '81]:

Regularize the problem

e.g. use TSVD to form yff;;

The reqgularized solution is fﬁfg — kaﬁg



Advantages of Hybrid Approach

Advantages

Cheap If £ Is small (preconditioning)

Choose the regularization parameter using
your favorite method [K. & O’Leary '01]

Insensitivity to &



Tikhonov Regularization

Tikhonov regularized Jelgelell=Iagh

min {[|Af = bll3 + N||Lf]12]
or

: A b
min f—
f AL 0 ;

Conditioning depends on



Tikhonov Regularization and LSQR

Il standard form RIS

(kM) — 1
= amin ||

Whlsl(=

O
I

/Ck(ATA + )\2[, ATb)
Ki(AT A, ATD)



Tikhonov and LSQR

However

B
(A — arg min i

Y yERF Vi

— [l R[e[EEY applicable here!




Example
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Saturn example

L—-curve, hybrid-Tikhonov, Saturn, k=300
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Saturn example

Error as function of A, k=300
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Saturn Example

Error if optimal A chosen ea. it
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Saturn Example
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Tikhonov Regularization, L # 1

If \ Is known, use LSQR to iteratively solve

min
f

_ ALT _
min A
z Vi

A
AL

f—

b

2

[Hanke & Vogel '99]
Otherwise, to standard form:

b

FLE Y



Choosing A

If iterative solver used, L', is applied [{isls10.

A computed by e.g. GCV, L-curve, on
projected problem

L-ribbon [Calvetti, Golub & Reichel '99], or

curvature-ribbon [Calvettl, Hansen, & Reichel
'02]




Alternatives

When

A nhot known a priori,

computing/applying LL not feasible,

preconditioner for

A
L

known or not needed

use Iiterative LSQR-like approach that
require transformation to standard form
[Hansen, Jacobsen, & K. '03]



Summary

Krylov-subspace methods can be
regularization methods

Need to choose stopping parameter

May need to to be efficient

Cluster of the spectrum
Do not mix signal and noise subspace

Hybrid approaches an alternative

Can include prior information with a Tikhonov
approach
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