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Indefinite linear systems

Recall Alison’s short course this morning...

• There exists a vector x such that xTAx = 0, x 6= 0.

• Both positive and negative eigenvalues; no natural energy norm that
can be used the way CG is derived; more difficult to handle...

• BUT, there are ways to handle indefinite linear systems in a nicer way
than handling general nonsymmetric linear systems.
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Not a walk in the park

• ”There is a widely held view that iterative solution of indefinite
systems is much less reliable and much less efficient in general.”
(Wathen, Fischer and Silvester [1997].)

• ”When the original matrix is strongly indefinite, i.e. when it
has eigenvalues spread on both sides of the imaginary axis, the
usual Krylov subspace methods may fail. The conjugate Gradient
approach applied to the normal equations may then become a good
alternative.” (Saad [1996].)

It is fair to say that the one unifying opinion in 2003 is that
preconditioning is crucial. (Again, see Alison’s short course.)
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Saddle point linear systems

Ku =
(

A B
BT 0

) (
x
λ

)
=

(
c
d

)

The matrix A:

• square, (n× n), large, sparse, symmetric.

• in many cases is positive definite, but may be singular.

The matrix B:

• rectangular, (n×m), m < n.

• is assumed to have full column rank.
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No lack of associated applications

• Flow through electric networks.
• Navier-Stokes equations.
• Linear elasticity.
• Electromagnetics.
• Constrained least squares.
• Image processing.
• Data interpolation and surface fitting.
• Interior point methods.
• Structural analysis.
• Mixed finite element formulations.

and many more...
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A familiar PDE with a constraint

Given data f , find the velocity u and pressure p satisfying{
−ν∆u + (u · ∇)u +∇p = f

div u = 0

on a domain Ω ⊂ R2 or Ω ⊂ R3, with some boundary conditions, e.g.
u = g on ∂Ω.

Apply a fixed point iteration → obtain Oseen equations: (w is given){
−ν∆u + (w · ∇)u +∇p = f

div u = 0

5



Example: Quadratic Programming

Equality-constrained quadratic programs:

Minimize 1
2x

TAx− xT c subject to BTx = d.

Equivalent Lagrange Multipliers formulation: define

φ(x, y) = xTAx− xT c + λT (BTx− d)

and compute its stationary points:

∇φ = 0.
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A few observations

• Indefiniteness: The system is indefinite.

eT
k+1Kek+1 = 0.

• Nonsingularity:

– Want B to have full column rank, and want no intersection of the
null-spaces of A and BT .

– If Z is a basis for the null space of BT , the reduced Hessian
ZTAZ is positive definite (and B has full column rank), then K
is nonsingular.
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A few observations (cont.)

• Inertia: If A is positive definite, we have n positive eigenvalues and
m negative ones:(

A B
BT 0

)
=

(
I 0

BTA−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)
,

where S = −BTA−1B is the Schur complement.

In general,
i(K) = (m,m, 0) + i(ZTAZ).
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Solution methods

– Direct methods. (Duff, Bunch, Parlett, Kaufman,...)
– Schur complement techniques and preconditioned Krylov solvers.

(Golub, Wathen, Elman, Silvester, Ramage, Fischer...)
– Null-space and inertia controlling methods. (Fletcher, Murray, Gill,

Saunders, Forsgren, Wright...)
– Multiply second block-row by -1 and apply effective splitting. (Benzi,

Golub, Wathen, Dyn, Ferguson...)
– Uzawa and inexact Uzawa. (Arrow, Hurwicz, Uzawa, Bramble,

Pasciak, Elman, Golub,...)
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Difficulties with direct methods

• Cannot form usual Cholesky due to the indefiniteness.

• Not practical to use Gaussian Elimination with partial pivoting or a
variant, because the symmetry and sparsity structures are not taken
into account.
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Stable factorizations

• There are certain factorizations that are efficient for symmetric
matrices, but have to be careful:

– LDLT not particularly stable.
Example (Golub & Van Loan):

(
ε 1
1 0

)
=

(
1 0
1
ε 1

) (
ε 0

0 −1
ε

) (
1 0
1
ε 1

)T
,

– Stable methods (Bunch & Parlett [1971] and others) are based on
permutation matrices. The matrix D in LDLT is block diagonal with
either 1× 1 or 2× 2 block. (In our case, though, the sparsity structure
may be less favorable.) See, for example, Golub & Van Loan, Section
4.4, or Nocedal & Wright, Chapter 16.
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Difficulties with iterative methods

• As mentioned before, there are Krylov subspace solvers for indefinite
symmetric matrices; however when applied straightforwardly to
augmented systems no advantage of structure is fully taken.

• Without preconditioning, Krylov subspace solvers perform poorly.

• Sometimes it is worthwhile doing ’unthinkable’ things... Like
destroying the symmetry! (E.g. Permute rows in above 2×2 example;
or multiply second block row by -1: Benzi, Golub, Bai.)
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Solution approaches

What Hamlet REALLY asked:

To eliminate, or not to eliminate, THIS is the question!

• Solve for λ first, then compute x.

• Solve for x first, then compute λ.

• Solve for each in an alternating fashion.

• Solve simultaneously for both x and λ.
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Schur complement techniques

• Solve for λ first, then compute x.
Performing block Gaussian elimination we get

BTA−1Bλ = BTA−1c− d.

– The cost will mainly depend on the cost of inverting A (and on how
large n and m are).

– Recovering x is cheap.
– The approach is termed a range-space technique, or a

displacement method.
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Comments

– Unfortunately in most cases computing the Schur complement is
prohibitively expensive due to the cost of inverting A.

– The above will not work at all if A is singular, and will work poorly if A
is ill-conditioned.

– However let’s cheer up:
∗ cases where A is easy to invert do exist (structural analysis, electric

networks - see Strang [1986,1988]).
∗ Cases where A−1 is pretty much known explicitly (Quasi-Newton

method).
∗ Cases where m is so small that the number of backsolves for

forming the Schur Complement is nice and small.
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Elimination of constraints
• Solve for x first, then compute λ.

– Direct elimination: reduce B to upper trapezoidal form via the QR
factorization, or Gaussian Elimination with complete pivoting. As a
result, obtain a reduced unconstrained least square problem.

– Null Space method:
∗ x is expressed as x = Y xY + ZxZ, where

BTZ = 0 and [Y |Z] is nonsingular.
∗ By algebraic manipulations we obtain ZTAZxz = −ZTAY xY +

ZT c.
∗ Advantage: we do not rely on nonsingularity of A.

Disadvantage: It might be expensive to compute the null-space
matrix Z and to form ZTAZ.

See Gill, Murray & Wright [1981], for an early discussion.
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Direct attack of system

• Methods based on forming the SVD, or the generalized SVD
associated with the matrices A and B, in order to simplify the original
linear system. (Golub, Gander & Von Mat [1989], others.

• The method of weighting and augmented Lagrangian methods.
Give a large weight to certain constraints (though it may cause ill-
conditioning because of scaling) or insertion of penalty terms.
(Powell & Reid [1969], Hestenes [1969], Powell [1969], Polyak [1970],
Miele et. al. [1972], Lawson & Hanson [1974], Berksekas [1975], Van
Loan [1985], and references therein.)

• Generate two sequences for the approximations of the unknowns and
the Lagrange multipliers.
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Preconditioning using the Schur complement

• Preconditioning the augmented system by a block diagonal matrix,
typically associated with the Schur complement. (Elman et. al. ,
Saad et. al. , and others.)

• Effective and elegant approximations to the Schur Complement (in
the context of Navier-Stokes equations) by Elman et. al.: Associate
Schur complement to the mass matrix.
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Uzawa algorithm (Arrow, Hurwicz, Uzawa [1958])

Construct a sequence of approximations to x and y, as follows:
For k = 0, 1, . . .

Solve Axk+1 = c−Byk

Compute yk+1 = yk + αBTxk+1

1. Optimal value of parameter α is 2
λmin(S)+λmax(S), where S = BTA−1B

is the Schur complement.

2. There is no need to find the exact solution of the ’inner’ system.
(Bank, Welfert & Yserentant [1990], Elman & Golub [1994], Bramble,
Pasciak & Vassilev [1997])
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K may have an Ill-Conditioned or Singular (1, 1) Block.

• Domain decomposition methods applied to linear elasticity and
structural mechanics problems. (Farhat & Roux , Klawonn &
Widlund.)

• Construction of smooth surfaces from aggregated data; computation
of thin plate splines.
(Dyn & Ferguson, Sibson & Stone.)

• Electromagnetics and magnetostatics problems. (Perugia, Simoncini
& Arioli.)

• Geophysical inverse problems.
(Haber & Ascher.)
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We concentrate on:

[Joint work with Gene Golub]

1. ”Preprocessing”: eliminating the singularity of the (1,1) Block.

(a) ...by using the Augmented Lagrangian method.
(b) ...by reducing the system size. (Will not describe.)

2. Positive definite block preconditioners. (Preserve inertia, maintain
symmetry, but certainly not clear if are superior to indefinite
preconditioners.)
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Augmented Lagrangian Approach

{
Ax + Bλ = c
BTx = d

Since BWBTx = BWd, can transform system into{
(A + BWBT )x + Bλ = c + BWd
BTx = d

Connection to optimization: Fletcher, Hestenes, Powell, others...

Application to BVPs: Fortin, Glowinski, others...
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Connection to Optimization

Constrained minimization problems:

minimize f(x) subject to ci(x) = 0

• A popular class of methods: introduce a penalty parameter:

Q(x;µ) = f(x) +
1
2µ

∑
c2
i (x).

• Driving µ to zero penalizes constraint violations.
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• Introducing explicit Lagrange multipliers reduces the ill-conditioning
inherent in the penalty formulation:

L(x;µ;λ) = f(x)−
∑

λici(x) +
1
2µ

∑
c2
i (x).

See e.g. Nocedal & Wright, Chapter 17.
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Spectral Analysis ( W = γI)

• The eigenvalues: Strong connection between the eigenvalues of
K(W ) and the generalized eigenvalues of the problem λAx = BBTx.
There exists an n × n matrix G such that A = GGT and BBT =
GΛGT , where Λ are the generalized eigenvalues, and

(
A + γBBT B
BT 0

)
=

(
G 0
0 V

)(
I + γΣΣT Σ
ΣT 0

)(
GT 0
0 V T

)
.

• Clustering: The m negative eigenvalues of K(γ) tend to cluster near
to −1

γ .
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• Dependence of κ2(K) on γ:

κ(K(γ)) ≈ κ(K(0)) · κ
(

diag
[(

1 + γλi

√
λi√

λi 0

)])
,

κ(K(γ))
γ2

→ ‖B‖22 6= 0 as γ →∞.
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The Inverse

Proposition. Suppose that A is a general n×n matrix, B and C are full
column rank n×m matrices (m ≤ n), and W is a m×m matrix. Define

K(W ) :=
(

A + BWCT B
CT 0

)
.

Then for any W 6= 0 such that K(W ) is nonsingular, the following holds:
(we denote K ≡ K(0))

K−1(W ) = K−1 −
(

0 0
0 W

)
.

Possible benefits: Tight bound for condition number without additional
work.
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Picking the Right W:

(
A + BWBT B

BT 0

) (
x
λ

)
=

(
c + BWd

d

)

• Sparsity considerations (e.g. use only certain columns of B).

• Obtain positive definiteness of the (1,1) block.

• Scaling/Balancing. Examples:

– Set W = γI, where γ = ‖A‖
‖B‖2.

– Pick W to be a ’scaling operator’.
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Block Preconditioning

Challenge: How to precondition while having in mind the structure of
the matrix.
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Indefinite block preconditioning

Constraint Preconditioning: Keller, Gould and Wathen (2000), Golub
and Wathen (1998), Luksan and Vlcek (1998), Perugia and Simoncini
(2000), Rozloznik and Simoncini (2002), and others.

M =
(

G B
BT 0

)
.

• Eigenvalue 1 with multiplicity 2m. Rest of eigenvalues strongly
related to the generalized eigenvalue problem ZTAZx = λZTGZx.

• Some more results related to eigenvalue bounds and eigenvector
distribution.

• Detailed convergence analysis for Krylov solvers.
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Positive Definite Block Preconditioning
Motivation: (Murphy, Golub & Wathen [1998])

M =
(

A 0
0 BTA−1B

)
.

M−1K has at most four nonzero distinct eigenvalues: 0, 1, 1
2 ±

√
5

2 .
Hence a minimum residual Krylov solver will terminate within four
iterations.

However:
• Computing the Schur complement may be very expensive.

• The Schur complement may be ’inappropriate’ in terms of the
corresponding differential operator.

• The Schur complement may not exist altogether.
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A natural way to generalize the above while avoiding
the difficulties

We consider

M =
(

M 0
0 BTN−1B

)
,

where M is much easier to invert.

See also De Sturler and Liesen, 2003.

A natural choice here: M = N = A + BWBT .
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Spectrum analysis

Let λ be an eigenvalue of the preconditioned matrix M−1K, whose

associated eigenvector is
(

u
v

)
. Then setting w = M

1
2u we have:

[
λ2I − λM−1

2AM−1
2 −M−1

2B(BTM−1B)−1BTM−1
2

]
w = 0.

The matrix P = P 2 = M−1
2B(BTM−1B)−1BTM−1

2 is an orthogonal
projector onto range(M−1/2B).

Denoting C = M−1/2B, K = M−1/2AM−1/2, we have a quadratic
eigenvalue problem of the form

(λ2I − λK − P )z = 0.
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The choice M = A + γBBT

M =
(

A + γBBT 0
0 BT (A + γBBT )−1B

)
.
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Theorem. (With Varah.) The matrix P is a polynomial of degree m in
K, and the explicit mapping is given by

I − P = f(K),

where {λi} are the p nonzero (finite) eigenvalues of the generalized
eigenvalue problem Ax = λBBTx, and f is a Lagrange interpolant of
degree p:

f(t) =

∏
i

(
t− λi

λi + γ

)
∏

i

(
1− λi

λi + γ

).

Corrolary. n −m eigenvalues of the preconditioned matrix M−1K are
equal to 1. (Therefore, fast convergence of minimum residual Krylov
subspace solvers.)
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Corollary. If A is positive semidefinite, the eigenvalues of the
preconditioned matrix are bounded within the two intervals:

[−1,
1
2
−
√

5
2

]
⋃

[1,
1
2

+
√

5
2

].
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Example: A geophysical inverse problem. (Provided by
Eldad Haber.)

minimize

φ(u, m) =
1
2
‖Qu− b‖2 +

β

2
‖W (m−m0)‖2

subject to A(m)u = f.

The Lagrangian:

L(u, m, λ) =
1
2
‖Qu− b‖2 +

β

2
‖W (m−m0)‖2

+λT [A(m)u− f ].
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where λ is a vector of Lagrange multipliers.

The Hessian is given by

H(m,u, λ) =

 QTQ K(m,λ)T A(m)T

K(m,λ) βWTW + R(m,u, λ) G(m,u)T

A(m) G(m,u) 0

 .
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Sparsity pattern of matrix

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 9462
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Matrix, again

H(m,u, λ) =

 QTQ K(m,λ)T A(m)T

K(m,λ) βWTW + R(m,u, λ) G(m,u)T

A(m) G(m,u) 0

 .

A(m) - a discretization of a PDE, typically 2nd order.
f - source.
b - measured data.
R - Regularization operator.
m - Distributed parameter (conductivity, seismic velocity, porocity, etc.)
Q - Singular diagonal matrix, perhaps.
G - first order differential operator.
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Gauss-Newton plus null-space: (JTJ + βL)p = −g.
L is a differential operator and J is an integral operator.

Set R and K to zero.
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Illustration of Clustering Effect

−500 −450 −400 −350 −300 −250 −200 −150 −100 −50 0

γ=
0

−90 −80 −70 −60 −50 −40 −30 −20 −10 0

γ=
0.

01

Figure 1: The 729 negative eigenvalues of the original matrix, i.e. for
γ = 0, vs. those of a modified matrix with γ = 0.01. The eigenvalues
closest to zero are approximately -0.0019 in both cases.
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Comparison of Condition Numbers: Random matrix
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Comparison of Condition Numbers: Inverse problem
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Important observation: γ = ‖A‖2/‖B‖22 very close to optimal.
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Eigenvalues of preconditioned matrix
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Dependence on regularization parameter
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Figure 2: Convergence of preconditioned MINRES with a positive
definite block preconditioner, for β = 10−4 and for β = 10−8.

Insensitivity to regularization parameter is looking promising. But are
we just sweeping all the ill-conditioning under the rug?
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Matrix, yet again

H =

QTQ 0 AT

0 βWTW GT

A G 0

 .

A – Second order operator ; G – first order operator.

Two approaches:

1. Take A−1 as weight matrix.

2. Add [A;G] to first block row: Obtain decoupling (block triangular) but
lose symmetry.
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Results (un-optimized code)

β iter1 time1 (sec) iter2 time2 (sec)
1 14 80.7 14 43.4

1e-2 14 78.2 14 43.8
1e-4 14 72.5 15 51.8
1e-6 15 78.1 17 58.7
1e-8 12 74.4 88 335.5

Table 1: 1970 × 1970 matrix, with n = 1241, m=729, GMRES with
tolerance of 10−8.
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The End
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