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The problems

Let A be a given m x n matrix of rank r and let b

a given vector.

e Linear least squares:
Find x so that

|b — A%X||]2 = min.

e Least squares with linear constraints:
Find X so that

|b — A%X||2 = min
subject to

CT%x =0.

e Least squares with quadratic
constraints: Find X so that

|b — A%X||2 = min

subject to




Total least squares:
Find X, a matrix E, and a residual r so that

(I1B1% + |[#]3) = min

subject to

A

(A+E)x=b +1.

Least squares with linear and quadratic
constraints: Find X so that

|b — A%X||2 = min

subject to

CT%x =0 and ||%]|5 < .




Applications

e Statistical methods

Image processing

e Data interpolation and surface fitting

e Geophysical problems

o ...
Method of solution depends upon

e Sparsity of matrix
e Size of the problem
Accuracy required

Application




Program

e Linear least squares

— QR - decomposition

— Singular systems
e Least squares with linear constraints

Lagrange multiplier

Augmented Lagrangian approach

o GMRES applied to the KKT system
o Uzawa algorithm

Weighting method
Direct method

e Least squares with quadratic constraints

— Lagrange multipliers

o The SVD/Newton approach
o The quadratic eigenvalue approach

o Approximating the secular equation




e Total least squares

— Partial total least squares

— Regularized total least squares

e Least squares with linear and quadratic

constraints




1. Linear Least Squares

To solve the linear least squares problem

accurately, we perform the following steps.

Ry
0

QTA=R=

where R, is an upper triangular matrix.

Qb =

This will yield a solution even when A is not of
full rank.




The decomposition is performed via

1. Householder Transformations

2. Givens Rotations

3. Modified Gram-Schmidt Algorithm

We try to avoid using normal equations.

The QR factorization is useful for

e updating

e adding/deleting variables

e downdating.

Nevertheless the problem can be very ill -
conditioned.




Theorem Suppose X, I, X, and 1 satisfy
|AX —b|[z = min

|(A+dA)x — (b + db)||2 min,

f=b— A%, F=(b+6b)—(A+54)%,

where m > n and 0 # b.

If
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sin(f) = bl <1

with p = ||AX — b||2, then

2r2(A) n(0) 2 2
ge{ cos(0) + tan(f)ko(A) }—I—O( )
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bl < €(1+2k2(A)) min(1,m —n) + O(e*).




Singular Systems

To solve the linear least squares problem for
matrices A which doesn’t have full rank, perform

the following two steps.
e Compute a complete orthogonal factorization

R 0\ .
A=Q Z
0 0

where QTQ =1,,, Z1'Z =1,,, and R is an

r X r upper triangular matrix.

e Compute the pseudo-inverse AT of A

R 0
At =7 QT

1)
2)

Then X = ATb is the solution of

|b — AX||s = min and [|X||2 = min.




2. Least Squares with Linear Constraints
Consider

|b — Ax||s = min
st. CTx=0

2.1 Lagrange multipliers

P(x; ) = ||b — Ax||5 +2xTCA

grad ¥ = 0 when

AT Ax + C )\
CTx

ATA C X ATb
ct 0 A 0

This system is known as the KKT system.




Direct method for the Lagrange multiplier
approach

Let X = (AT A)~1ATb denote the solution of the
unconstrained least squares problem. Then the
first equation of the KKT system reads

x (ATA)1ATb — (AT A)TON
X —

(AT A)~tex
which together with the second equation leads to
CT(ATA)™'CA =
CTR/YRD™ICA =

The QR factorization of (R1)~!1C can be
efficiently used for this solution.




2.2 Augmented Lagrangian approach
Original KKT system

AT Ax + CA ATb
CTx 0.

Since CW(C''x = 0, can rewrite system as

(ATA+CwWCh)x+CA ATb
CTx 0

Useful when A7 A is (almost) singular.

Picking the right W:

e Sparsity considerations (e.g. use only certain

columns of C).
e Obtain positive definiteness of the (1,1) block.

e Scaling/Balancing. For example set W = ~I,

Y= laTal
[CT2




Estimating the condition number

Theorem. Suppose that A is a m x n matrix, C
is a full column rank n x p matrix (p < n), and W

is a p X p matrix. Define

ATA+cCcwCt C
AW) =
ct 0
Then for any W # 0 such that A(W) is
nonsingular, the following holds:

0 O
ATTW)=A""1 - — where A = A(0).

Possible benefits: Allows a tight upper bound
for the condition number, based solely on norms

associated with A:

k2 (AW)) < k2(A) + [WIIIC]I7 + oW,

where o > 0 depends on ||A||2, [[A71]|2 and ||C]|2.




Convergence for W = ~«I

Apply nonpreconditioned GMRES (no restart) to
A(W) (system size is 1856 x 1856, (1,1) block size
is 1344 x 1344)
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Conv. history for v =1 (red) and v = 0 (blue).

The larger -y is, the more ill-conditioned the ma-

trix is, but convergence may be faster.




Choice of the parameter

Randomly generated 130 x 130 matrices, with
100 x 100 (1,1) blocks.

Condition numbers
Condition numbers

0 5 - -5 0 10
109, ¥ 109, ¥

(a) semidefinite AT A  (b) positive definite AT A

Condition numbers of the (1,1) block (’*’), the
whole KKT matrix ('o’), and the Schur
complement (’x’), as a function of .

e Sensible choice is crucial if the (1,1) block is
singular; the modification of the linear system
makes a big difference.




Application of the Uzawa algorithm

Arrow, Hurwicz, Uzawa [1958], Bank, Welfert &
Yserentant [1990], Elman € G. [1994], Bramble,
Pasciak & Vassilev [1997],

For k=0,1,...
solve AT Axj 1 = ATb — CAg
compute Agyr1 = Ag + ozCTxk.H

e Optimal a depends on extreme eigenvalues of
the Schur complement C* (AT A)~1C.

e No need to find the exact solution of the

‘iInner’ system.

In our formulation, two parameters are involved:
AT A is actually replaced by AT A +~CC?', and
hence both a and v need to be determined.

e Can show: any choice of v > 0 with
0 < a < 27 converges. The choice a = v

works well.




2.3 Weighting method

Instead of solving

|b — Ax||2 = min
st. CTx=0

consider the unconstrained problem:

(Ib — Ax[)3 + 12 CTx)3) = min

e Note: For large u the solution X(u) of the
unconstrained problem should be a good
approximation to the solution X of the
constrained problem.




Generalized Singular Value Decomposition

(GSVD)

U'AX = diag(ag,...,am)
victx = diag(y,... %)

sy Um|, V = [v1,Va, ..., Vp],

., Xn].

x; = 0 as u? — 0.

(Van Loan)




2.4 Direct method for
|b — Ax||3 = min, s.t. CTx = 0.
Compute the QR factorization of C

R p
0 n—op

QT C =
and set

AQT:(Ala 2)7 QX:
AV
p n—p

Then, the constrained problem becomes

||b — Aly — A2Z||2 = min, S.t. RTy = 0.

So, y = 0. Let z denote the solution of

||b — A2Z||2 = min,




3. Least squares with quadratic constraint
Consider the problem of finding X such that
|b — AX||2 = min
subject to the quadratic constraint
%2 = o’

X[l = a”.

3.1 Lagrange multipliers

Y(x,p) = |Ib— Ax|3 + u(llx|z — o)

grad v = 0 when

(ATA + ul)x ATh

XTX Oé2

which leads to the secular equation

bTA(ATA+ puI) 2A"b — o? = 0.




SVD /Newton approach

A=UxXV"T

n

2 ) 2 __
2 e

=1

Care must be taken to solve this equation.
Newton’s method can be very delicate.

Quadratic eigenvalue approach

Consider

(AT A+ pul)2 ATh
bl A o

Note,

1
((ATA + ul)? — ?(bTA)TbTA) u=0.

Thus, 1 can be found as an eigenvalue of a

quadratic eigenvalue problem with X = u/€.




Approximating the secular equation

Wanted: solution of
f(p) =bTA(AT A+ ul)72ATb = o2

Note, that

n 2

2__ Y
fw) ;ﬁ@ CEIE

On 0.2

(02 + 1)
I(p).

7 dp6(0)

This integral may be efficiently bounded by
employing the Lanczos scheme and exploiting the
connection of modified moments and the Gauss -

Radau rule

Li(p) < I(p) < Ur(p).




Total least squares (TLS)

Consider the problem of finding £ and # such that

(1B1% + 1#]3) = min

subject to the constraint
(A+E)X=b+,

where the m X n matrix A and the vector b are

known.

The constraint may be rewritten as follows

X X
(4,b) + (E,r) =0
—1 —1
or in compact notation
(C+ F)z =0, with z,,7 = —1.

Let rank C < n+1 and let C = ULV denote
the SVD of C. Then




Partial total least squares
Consider the special “error matrix”
E=(0 F
(\ ) 2)
p

and let again
C=(A,b), F=(E,r).
Compute the () R-decomposition

QT (C+ F) = R4 (?1,2 + E1 0
0 Cao+ Ess
to obtain
min | F'||% min [|Q" F||%

min (|| E12)|% + [| B2 ]|7) -

Then, the SVD
Coo =USVT

yields the wanted solution %7 = (§7;t7) with
1

Up+1,p+1

f=

Vpt1, 121,18 = —C1 ot.




Regularized total least squares

Note, that the TLS solution is equivalent to

b —Ax|3 . [[Cz]3

min 5~ = Inin
1+ [)x]3

= Umin(C)-

|13

For the regularized TLS we consider

2

b — Ax||2
in | ull> subject to x1 Vx = a?,

1+xTVx’

m

where V' is a given symmetric positive definite

matrix. Now, let

W =

and observe that

b Ax|3 _Cel3
1+xTVx zTWz

m

with ||z]|5 =1+ o?, zp41 = —1.




Least squares with linear and quadratic

constraints

With

y=Fz,B=F "C'"CF',c=e, F ',

v =1+4+a? and 8= —1

we may rewrite our regularized TLS problem in
terms of a least squares problem with linear and

quadratic constraints

T
. Y By
min , st lylls =92 cly =8

Lagrange multipiers
Y(y; \p) =y By = Ay'y — %) —2u(c’y - B).
grad 1 = 0 when

By — Ay — uc = 0.




Introducing the projection matrix

ccl Bc
P:I—mandd:m

we arrive at

(PB- M)y = -M

y'y = 7%

which leads to the secular equation
MdY(PB - AI)"1(PB - \I)d = ~°.

Instead, consider

(PB — \I)(PB — )\I)T Ad
Ad? 72

Note,

2
((PB — M) (PB - \I)! — )\—2ddT) u=0.
gl

Thus, A can be found as an eigenvalue of a
quadratic eigenvalue problem with §y = u/€.




