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Rough Outline

• Motivation: applications

• Review of some numerical PDE techniques

• Review of optimization techniques

• Optimization and PDEs

• Some specific examples
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Part 0 - Motivation: applications

Why PDE’s?

Why optimization?

Some applications
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Why PDE’s?

PDE’s describe many physical and biological phenomena
fluid flow, electromagnetics, elasticity ...

Numerical solution of PDE’s are used for simulations
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Example I - Hydrology

The pressure field is governed by the elliptic PDE

∇ · σ∇u = b

(with appropriate BC)

Simulation: Given some hydrolic conductivity σ and the source b
find the pressure field u
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Example II - Shape modeling

Find the stress field on a mechanical part
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Why Optimization

We do not want to solve A specific PDE

Find the “best” model

Applications:

imaging, inverse problems, optimal design ...
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Optimization: Example I - Hydrology
Optimization: Given some hydrolic conductivity σ and the pressure

field u find the contaminating source b

min
1
2
‖u− uobs‖2; s.t ∇ · σ∇u− b = 0
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Optimization: Example II - Shape

Find the shape of the mechanical part with the smallest stress field
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Part I - Review of numerical PDE’s

• In general

• Discretization of differential operators

• Solution
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In general

L(m;u) = q

where L is a differential operator which depends on some parameters
m.
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Classical examples
Elliptic

∇ · ρ(m)∇u = q; u|∂Ω = 0

Parabolic

ut −∇ · ρ(m)∇u = 0; u|∂Ω = 0; u(x, 0) = u0

Hyperbolic

utt −∇ · ρ(m)∇u = 0

u|∂Ω = 0 u(x, 0) = u0 ut(x, 0) = v0

13



Some things we will never agree on

• weak vs strong form

• Finite difference vs finite element

• Meshing - regular vs unstructured grid

Books: Thomas, Smith,LeVeque, Hughes, Oden, Jin ...
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Differential operators and their discretization
Building blocks for many PDE’s

• The gradient

∇ =
(

∂x

∂y

)

• The divergence
∇· =

(
∂x ∂y

)

• The mass matrix
σ(·)
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Discretization using finite difference - finite volume

In 1D ∇= d/dx;

Assume we have the grid 0 < h < 2h < ... < (n− 1)h < 1
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Then

v(jh) =
du

dx
|jh =

u((j + 1)h)− u(jh)
h

+O(h) =
u(jh)− u((j − 1)h)

h
+O(h)

=
u((j + 1)h)− u((j − 1)h)

h
+O(h2)

Central difference is more accurate

17



But:

Central difference has a non-trivial null-space

Can generate stability problems
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Solution - Use staggered grids

v((j +
1
2
)h) =

du

dx
|(j+1

2)h
=

u((j + 1)h)− u(jh)
h

+O(h2)

w(jh) =
dv

dx
|jh =

v((j + 1/2)h)− v((j − 1
2)h)

h
+O(h2)
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The discrete derivative operator

Two difference operators

D1 : primal grid→ dual grid

D2 : dual grid→ primal grid
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d

dxprimal
≈ D1 =


−1 1

−1 1
−1 1

−1 1



Easy to show

D2 = −DT
1 = −DT
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Properties of the discrete derivative operator

Our staggered grid difference operator mimics the continuous
derivative operator

inner product (Du, v) = −(u, D∗v)

null space De = 0
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Derivative operator in 2D: The gradient

Jx = ux ≈ Dxu

Jy = uy ≈ Dyu
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Derivative operator in 2D: The gradient

Dx =



−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1



Dy =


−1 1

−1 1
−1 1

−1 1



∇h =
(

Dx

Dy

)
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Derivative operator in 2D: The div

Define - mass-balance

∇h · J = h−1
(
(J+

x − J−
x ) + (J+

y − J−
y )

)
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Properties of the div-grad

Mimetic properties

∇h· = −∇T
h

∇h : cell center→ faces

∇h· : faces→ cell centers

inner product (∇h · J, u) = −(J,∇hu)

null space ∇he = 0
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The mass matrix

Matrix represents σ(·)
Note - If σ = 1 should look like identity

Where does the mass matrix appear?

Break ∇ · σ∇u = q into first order

∇ · J = q

σ−1J−∇u = 0
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The mass matrix

The discrete system

∇h · J = q

σ−1
h J−∇hu = 0

σ−1
h is the value of the conductivity on cell faces

May need averaging ...
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Put it all together I

We have introduced mimetic discretization for the operators∇· ,∇, σ

We can now build

• Laplacian ∆ = ∇ · ∇ ↔ ∆h = ∇h · ∇h

five point discrete Laplacian

h−2

 1
1 −4 1

1



• div-grad ∇ · σ∇ ↔ ∇h · Sh∇h
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Put it all together II

Elliptic PDE: ∇h · Sh(m)∇hu = A(m)u = q

For Parabolic and hyperbolic get the ODE’s

Parabolic PDE:

∇h · Sh(m)∇hu = A(m)u = ut; u(0) = u0

Hyperbolic PDE:

∇h · Sh(m)∇hu = A(m)u = utt; u(0) = u0; u′(0) = v0
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Discretization in time

Method of lines - treat as ODE’s

For stiff system (heat) use implicit (say midpoint)

∆t−1(un+1 − un) =
1
2
A(m)(un+1 + un)

For hyperbolic system use explicit (say leap-frog)

∆t−2(un+1 − 2un + un−1) = A(m)un
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Implicit vs Explicit

Issues to think of

In general:

• Imp are unconditionally stable while Exp are not.

• Imp involve matrix inversion while Exp not

Typical stability for Exp method (CFL)

c∆t = ∆x (hyperbolic)

c∆t = ∆x2 (parabolic)

32



Discretization in time

In the implicit case, the problem in time for all times can be written as

Â(m) =


I − 1

2A(m)
1
2A− I I − 1

2A(m)
. .

. .
1
2A− I I − 1

2A(m)


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Issues for time discretization

Implicit methods are unconditionally stable

Explicit methods are not!

Stability of an explicit method depends on the parameter m, the time
step ∆t and the spacing ∆x

(Return to this point later)
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A note on boundary conditions

Rule of thumb: 90% of code development is in the Boundary Conditions.

May be nontrivial but very important in order to get the correct
results.

Could alter the equations (e.g. PML for hyperbolic systems)
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Properties of many matrices that evolve from PDE’s

Diagonally dominant (no convection)

Eigenvalues cluster at infinity

Problem becomes more ill-conditioned as grid refined
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Solution techniques - briefly

Krylov-Krylov-Krylov (MG) (See short course by Ramage)

But

Usually too slow without a decent preconditioner.

If possible, use the fact that the matrix is diagonally dominant

M−1Au = M−1q
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Part II - Review of numerical optimization

• In general

• Unconstrained optimization

• Constrained optimization
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In general

min
m∈Ω

f(m)

Ω = {m ∈ IRn|ci(m) = 0, i ∈ E , ci(m) ≥ 0, i ∈ I}

Here we will consider only equality constraints
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Some things we never agree on

• continuous vs discrete optimization

• global vs local optimization

• stochastic vs deterministic optimization

• unconstrained and constrained optimization

Books: Nocedal-Wright; Fletcher; Gill, Murray & Wright; Luenberger, ...
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Unconstrained optimization

min
m∈IRn

f(m)

Look for an isolated local minimizer m∗

First order necessary conditions: m∗ must be a stationary point

∇f(m∗) = 0 (gradient)

Second order necessary conditions: that the Hessian ∇2f(m∗) be
positive semi-definite; sufficient if positive definite.
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Numerical algorithm

Starting from an initial iterate m0, generate iterates m1,m2, . . . ,mk, . . .
such that

f(mk) > f(mk+1) (sufficiently)

At mk, generate a direction p = pk and determine a step-size α = αk

s.t.

mk+1 = mk + αkpk.
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Strategies
Line search: First determine a descent direction pk s.t.

pT
k ∇f(mk) < 0.

Then determine αk to approximately solve

min
α

f(mk + αpk).

Trust region: Determine p and control its size simultaneously

min
p

Mk(mk + p) s.t. ‖p‖ ≤ ∆

Mk(mk + p) = fk + pT∇fk +
1
2
pTBkp
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Descent directions:

• pk = −∇fk Steepest descent

• pk = −[∇2fk]−1∇fk Newton

• pk = −B−1
k ∇fk; Bk any positive definite matrix

Quasi-Newton: Maintain positive definite Bk, update at each step, in
place of true Hessian.
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Large scale problems

Use CG for Hkp = −∇fk (inner iteration; often requires
preconditioning). Yields Newton-CG etc.

Inexact Newton-type

Terminate iterative procedure for inner iteration before convergence.

Typically must require at least

‖rk‖ ≤ ηk‖∇fk‖ 0 ≤ ηk ≤ η < 1

rk = Bkpk + ∇fk

(for faster convergence may need ηk → 0 or ηk = O(‖∇fk‖ )
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Quasi-Newton methods

Replace Hkp = −∇fk with

Bkp = −∇fk; Bk =
L∑

i=1

ρiuiu
T
i

Most successful: L-BFGS

• Easy to solve Bkp = −∇fk

• Can store only a limited number of vectors
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Equality Constrained optimization

min
m∈Ω

f(m;u)

s.t C(m; , u) = 0

Lagrangian

L(m, u,λ) = f(m;u)−
∑

i

λiCi(m;u)
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A(m)u-q=0

m

u
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Constraint qualification: Assume

{B = [Cm(m∗;u∗), Cu(m∗;u∗)], )}

is linearly independent (i.e. the matrix BT has full column rank).

First order necessary conditions (KKT):

∇mf(m∗, u∗) + CT
mλ∗ = 0

∇uf(m∗, u∗) + CT
u λ∗ = 0

C(m∗;u∗) = 0
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Approaches and methods

Constraint elimination

u = G(m) ↔ C(m;u) = 0

min f(m;G(m))

Penalty

min f(m;u) +
1
2µ

∑
i

C2
i (m;u), µ > 0

min f(m;u) +
1
µ

∑
i

|Ci(m;u)|, µ > 0
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Augmented Lagrangian

minLA = f(m)−
∑

i

λiCi(m;u) +
1
2µ

∑
i

C2
i (m;u), µ > 0
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Sequential Quadratic Programming (SQP)

min
pm,pu

f(m, u) +
(
∇mfT

k ∇ufT
k

) (
pm

pu

)
+

1
2

(
pT
m pT

u

)
Wk

(
pm

pu

)
s.t. Cmpm + Cupu + ck = 0

Objective approximates Lagrangian (Wk ≈ ∇2L).

Line search using merit function weighing objective and insfeasibilities,
e.g.,

f(m;u) +
1
µ

∑
i

|Ci(m;u)|
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Linear systems in SQP(
Wk BT

k

Bk 0

) (
p
λ

)
= −

(
fk

ck

)

SQP - Solve and update

Difficulties

Bk can be very large (PDE)

The system can be strongly coupled

Wk can be singular

The whole KKT system can be ill-conditioned
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Part III - PDE’s and optimization

• What is special about PDE’s and optimization?

• How should we solve such problems?

– The PDE side
– The optimization side
– Combined view
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PDE’s and optimization

Huge number of constraints (even for “small” problems)

Conditioning may be very bad

Usually - the “meat” of the problem is on the PDE side.
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Model problem

Image processing, hydrology, impedance tomography ...

min φ(m;u) =
1
2
‖Qu− b‖2 + βR(m)

s.t ∇ · em∇u− q = 0

Popular choices for R(m)

TV - R(m) =
∫ √
|∇m|2 + γ2 dV

L2 - R(m) = 1
2

∫
(∇m)T (∇m) dV
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Model problem - discretize then optimize

• Discretize the optimization problem first (grid h)

• Solve a discrete optimization problem

min φ(m;u) =
1
2
‖u− b‖2 +

1
2
βhd(∇hm)T (∇hm)

s.t ∇h · M(m)∇hu = A(m)u = q
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Model problem - Constraint elimination

We can eliminate u = A(m)−1q

Obtain

min φ(m) =
1
2
‖A(m)−1q − b‖2 +

1
2
βhd(∇hm)T (∇hm)

• Unconstrained optimization

• Function evaluation involve solving a (large) linear system

• Gradient hard to evaluate
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Model problem - The Constrained approach

Do not eliminate the constraints

L(m,u, λ) =
1
2
‖u− b‖2 +

1
2
βhd(∇hm)T (∇hm) + λT (A(m)u− q)

Gradient

Lu = u− b + A(m)Tλ = 0

Lm = βhd(∇T
h∇h)m +

(
∂(A(m)u)

∂m

)T

λ = 0

Lλ = A(m)u− q = 0
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Model problem - The PDE view

A discretization of the coupled nonlinear PDE system

u− b + A(m)Tλ = 0

β(∇T
h∇h)m + G(m,u)Tλ = 0

A(m)u− q = 0

u− b +∇ · em∇λ = 0

−β∆m + (∇u)Tem(∇λ) = 0

∇ · em∇u− q = 0

G(m,u) =
(

∂(A(m)u)
∂m

)
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Model problem - Newton’s method - KKT system

I AT

β(∇T
h∇h) GT

A G 0

 su

sm

sλ

 = rhs

 I ∇ · em∇
−β∆ (∇u)Tem∇

∇ · em∇ ∇ · ((∇u)em(·)) 0

 su

sm

sλ

 = rhs
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Solving KKT systems I
Method I - If β large reorder as a block diagonal dominant.

[Precondition by the diagonal blocks]

A 0 G
I AT

GT β(∇T
h∇h)

 su

sλ

sm

 = rhs

∇ · em∇ ∇ · ((∇u)em(·))
I ∇ · em∇

(∇u)Tem∇ −β∆

 su

sλ

sm

 = rhs
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Solving KKT systems II

Method II-III - If β small coupled systems of PDE’s

• Multigrid (for the coupled system)

• Preconditioners based on elimination (optimization based)
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Easy to note that the KKT matrix can be decomposed to

A 0 G

I AT 0

0 GT βR′′

−1

=

A−1 0 −A−1GH−1
r

0 A−T −A−TJH−1
r

0 0 H−1
r

 ·

 I 0 0

A−1 I 0

−JTA−1 −GTA−T I



J = A−1G

Hr = JTJ + β∇T
h∇h
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Solving KKT systems II

Preconditioners - Use PDE techniques to approximate
A−1 (multigrid, ILU ...)

Combine to approximate the decomposition of the KKT matrix

Use algebraic techniques (elimination, Schur complement) if needed
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Solving KKT systems - recap

• Solving KKT systems may not be hard if they correspond to a sparse
decoupled PDE

• We should remember the dual view matrix-PDE
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Globalization

Update
m← m + αsm; u← u + αsu; λ← λ + αsλ;

Line search using merit function weighing objective and insfeasibilities,
e.g.,

1
2
(u− b)2 + βR(m) +

1
µ
‖A(m)u− q‖1
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Example I

Discretize on a 643 grid

β = 1e − 1 misfit = 0.1

nonlin it KKT it constr rel-grad
1 2 3e − 3 1e-2
2 3 2e − 4 4e-3
3 2 7e − 6 1e-3
4 2 9e − 7 3e-4

β = 1e − 2 misfit = 0.04

Nonlin it KKT it const grad
1 7 4e − 6 2e-3
2 5 6e − 7 7e-4
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Model problem II - some pitfalls

Wave propagation in 1D

min φ(m;u) =
1
2
‖Qu− b‖2 + β‖∇m‖2

s.t muxx − utt = 0; u(0) = q0; ut(0) = 0
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Model problem II

For simplicity here use leapfrog in time

B(m)un − (un+1 − 2un + un−1) = 0

Important Stability condition (CFL): m−1∆t < ∆x
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In matrix notation

A(m)u =


I

I
−I B + 2I −I

−I B + 2I −I
−I B + 2I −I

−I B + 2I −I




u0

u1

.

.

.
un

 =


q0

q0

0
.
.
.

 = q

Note - to solve, no need for matrix inversion
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Model problem II

The problem has the same form as before

min φ(m;u) =
1
2
‖Qu− b‖2 + β‖∇m‖2

s.t A(m)u = q

Try to use the same optimization techniques ...
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Model problem II - numerical experiment

Numerical experiments
∆x = 1.56E− 2
∆t = 3.12E− 2
Initial m−1 = const = 0.2

CFL condition - 0.2×∆x > ∆t = 3.12E− 2
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Model problem II - numerical experiment - What went
wrong

For the true m CFL is

mtrue ×∆x > ∆t

The true m generates instabilities!
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Model problem II - numerical experiment II

Numerical experiments
∆x = 1.56E− 2
∆t = 5.0E− 3
Initial m−1 = const = 0.2
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Model problem II - Recap

• Discretize and then optimize yield a solvable optimization problem

• The solution of the discrete problem had nothing to do withthe solution
of the continuous problem

• Need to think about the PDE when doing the optimization
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Summary -PDE’s and optimization

• PDE’s and optimization are used for many problems

• To use optimization within a PDE framework need simplicity

• Think dual

• Use best of two worlds

• Many many open questions
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