
An Introduction to PDE Constrained Optimization

Eldad Haber

Dept of Computer Science and Mathematics,
Emory University

Aug 2003

1

Rough Outline

• Motivation: applications

• Review of some numerical PDE techniques

• Review of optimization techniques

• Optimization and PDEs

• Some specific examples

2

Part 0 - Motivation: applications

Why PDE’s?

Why optimization?

Some applications

3

Why PDE’s?

PDE’s describe many physical and biological phenomena
fluid flow, electromagnetics, elasticity ...

Numerical solution of PDE’s are used for simulations

4

Example I - Hydrology

The pressure field is governed by the elliptic PDE

∇ · σ∇u = b

(with appropriate BC)

Simulation: Given some hydrolic conductivity σ and the source b
find the pressure field u

5

6

Example II - Shape modeling

Find the stress field on a mechanical part

7

Why Optimization

We do not want to solve A specific PDE

Find the “best” model

Applications:

imaging, inverse problems, optimal design ...

8

Optimization: Example I - Hydrology
Optimization: Given some hydrolic conductivity σ and the pressure

field u find the contaminating source b

min
1
2
‖u− uobs‖2; s.t ∇ · σ∇u− b = 0

9

Optimization: Example II - Shape

Find the shape of the mechanical part with the smallest stress field

10

Part I - Review of numerical PDE’s

• In general

• Discretization of differential operators

• Solution

11

In general

L(m;u) = q

where L is a differential operator which depends on some parameters
m.

12

Classical examples
Elliptic

∇ · ρ(m)∇u = q; u|∂Ω = 0

Parabolic

ut −∇ · ρ(m)∇u = 0; u|∂Ω = 0; u(x, 0) = u0

Hyperbolic

utt −∇ · ρ(m)∇u = 0

u|∂Ω = 0 u(x, 0) = u0 ut(x, 0) = v0

13

Some things we will never agree on

• weak vs strong form

• Finite difference vs finite element

• Meshing - regular vs unstructured grid

Books: Thomas, Smith,LeVeque, Hughes, Oden, Jin ...

14

Differential operators and their discretization
Building blocks for many PDE’s

• The gradient

∇ =
(

∂x

∂y

)

• The divergence
∇· =

(
∂x ∂y

)

• The mass matrix
σ(·)

15

Discretization using finite difference - finite volume

In 1D ∇= d/dx;

Assume we have the grid 0 < h < 2h < ... < (n− 1)h < 1

16

Then

v(jh) =
du

dx
|jh =

u((j + 1)h)− u(jh)
h

+O(h) =
u(jh)− u((j − 1)h)

h
+O(h)

=
u((j + 1)h)− u((j − 1)h)

h
+O(h2)

Central difference is more accurate

17

But:

Central difference has a non-trivial null-space

Can generate stability problems

18

Solution - Use staggered grids

v((j +
1
2
)h) =

du

dx
|(j+1

2)h
=

u((j + 1)h)− u(jh)
h

+O(h2)

w(jh) =
dv

dx
|jh =

v((j + 1/2)h)− v((j − 1
2)h)

h
+O(h2)

19

The discrete derivative operator

Two difference operators

D1 : primal grid→ dual grid

D2 : dual grid→ primal grid

20

d

dxprimal
≈ D1 =


−1 1

−1 1
−1 1

−1 1



Easy to show

D2 = −DT
1 = −DT

21

Properties of the discrete derivative operator

Our staggered grid difference operator mimics the continuous
derivative operator

inner product (Du, v) = −(u, D∗v)

null space De = 0

22

Derivative operator in 2D: The gradient

Jx = ux ≈ Dxu

Jy = uy ≈ Dyu

23

Derivative operator in 2D: The gradient

Dx =



−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1



Dy =


−1 1

−1 1
−1 1

−1 1



∇h =
(

Dx

Dy

)

24

Derivative operator in 2D: The div

Define - mass-balance

∇h · J = h−1
(
(J+

x − J−
x) + (J+

y − J−
y)

)
25

Properties of the div-grad

Mimetic properties

∇h· = −∇T
h

∇h : cell center→ faces

∇h· : faces→ cell centers

inner product (∇h · J, u) = −(J,∇hu)

null space ∇he = 0

26

The mass matrix

Matrix represents σ(·)
Note - If σ = 1 should look like identity

Where does the mass matrix appear?

Break ∇ · σ∇u = q into first order

∇ · J = q

σ−1J−∇u = 0

27

The mass matrix

The discrete system

∇h · J = q

σ−1
h J−∇hu = 0

σ−1
h is the value of the conductivity on cell faces

May need averaging ...

28

Put it all together I

We have introduced mimetic discretization for the operators∇· ,∇, σ

We can now build

• Laplacian ∆ = ∇ · ∇ ↔ ∆h = ∇h · ∇h

five point discrete Laplacian

h−2

 1
1 −4 1

1



• div-grad ∇ · σ∇ ↔ ∇h · Sh∇h

29

Put it all together II

Elliptic PDE: ∇h · Sh(m)∇hu = A(m)u = q

For Parabolic and hyperbolic get the ODE’s

Parabolic PDE:

∇h · Sh(m)∇hu = A(m)u = ut; u(0) = u0

Hyperbolic PDE:

∇h · Sh(m)∇hu = A(m)u = utt; u(0) = u0; u′(0) = v0

30

Discretization in time

Method of lines - treat as ODE’s

For stiff system (heat) use implicit (say midpoint)

∆t−1(un+1 − un) =
1
2
A(m)(un+1 + un)

For hyperbolic system use explicit (say leap-frog)

∆t−2(un+1 − 2un + un−1) = A(m)un

31

Implicit vs Explicit

Issues to think of

In general:

• Imp are unconditionally stable while Exp are not.

• Imp involve matrix inversion while Exp not

Typical stability for Exp method (CFL)

c∆t = ∆x (hyperbolic)

c∆t = ∆x2 (parabolic)

32

Discretization in time

In the implicit case, the problem in time for all times can be written as

Â(m) =


I − 1

2A(m)
1
2A− I I − 1

2A(m)
. .

. .
1
2A− I I − 1

2A(m)



33

Issues for time discretization

Implicit methods are unconditionally stable

Explicit methods are not!

Stability of an explicit method depends on the parameter m, the time
step ∆t and the spacing ∆x

(Return to this point later)

34

A note on boundary conditions

Rule of thumb: 90% of code development is in the Boundary Conditions.

May be nontrivial but very important in order to get the correct
results.

Could alter the equations (e.g. PML for hyperbolic systems)

35

Properties of many matrices that evolve from PDE’s

Diagonally dominant (no convection)

Eigenvalues cluster at infinity

Problem becomes more ill-conditioned as grid refined

36

Solution techniques - briefly

Krylov-Krylov-Krylov (MG) (See short course by Ramage)

But

Usually too slow without a decent preconditioner.

If possible, use the fact that the matrix is diagonally dominant

M−1Au = M−1q

37

Part II - Review of numerical optimization

• In general

• Unconstrained optimization

• Constrained optimization

38

In general

min
m∈Ω

f(m)

Ω = {m ∈ IRn|ci(m) = 0, i ∈ E , ci(m) ≥ 0, i ∈ I}

Here we will consider only equality constraints

39

Some things we never agree on

• continuous vs discrete optimization

• global vs local optimization

• stochastic vs deterministic optimization

• unconstrained and constrained optimization

Books: Nocedal-Wright; Fletcher; Gill, Murray & Wright; Luenberger, ...

40

Unconstrained optimization

min
m∈IRn

f(m)

Look for an isolated local minimizer m∗

First order necessary conditions: m∗ must be a stationary point

∇f(m∗) = 0 (gradient)

Second order necessary conditions: that the Hessian ∇2f(m∗) be
positive semi-definite; sufficient if positive definite.

41

Numerical algorithm

Starting from an initial iterate m0, generate iterates m1,m2, . . . ,mk, . . .
such that

f(mk) > f(mk+1) (sufficiently)

At mk, generate a direction p = pk and determine a step-size α = αk

s.t.

mk+1 = mk + αkpk.

42

Strategies
Line search: First determine a descent direction pk s.t.

pT
k ∇f(mk) < 0.

Then determine αk to approximately solve

min
α

f(mk + αpk).

Trust region: Determine p and control its size simultaneously

min
p

Mk(mk + p) s.t. ‖p‖ ≤ ∆

Mk(mk + p) = fk + pT∇fk +
1
2
pTBkp

43

Descent directions:

• pk = −∇fk Steepest descent

• pk = −[∇2fk]−1∇fk Newton

• pk = −B−1
k ∇fk; Bk any positive definite matrix

Quasi-Newton: Maintain positive definite Bk, update at each step, in
place of true Hessian.

44

Large scale problems

Use CG for Hkp = −∇fk (inner iteration; often requires
preconditioning). Yields Newton-CG etc.

Inexact Newton-type

Terminate iterative procedure for inner iteration before convergence.

Typically must require at least

‖rk‖ ≤ ηk‖∇fk‖ 0 ≤ ηk ≤ η < 1

rk = Bkpk + ∇fk

(for faster convergence may need ηk → 0 or ηk = O(‖∇fk‖)

45

Quasi-Newton methods

Replace Hkp = −∇fk with

Bkp = −∇fk; Bk =
L∑

i=1

ρiuiu
T
i

Most successful: L-BFGS

• Easy to solve Bkp = −∇fk

• Can store only a limited number of vectors

46

Equality Constrained optimization

min
m∈Ω

f(m;u)

s.t C(m; , u) = 0

Lagrangian

L(m, u,λ) = f(m;u)−
∑

i

λiCi(m;u)

47

A(m)u-q=0

m

u

48

Constraint qualification: Assume

{B = [Cm(m∗;u∗), Cu(m∗;u∗)],)}

is linearly independent (i.e. the matrix BT has full column rank).

First order necessary conditions (KKT):

∇mf(m∗, u∗) + CT
mλ∗ = 0

∇uf(m∗, u∗) + CT
u λ∗ = 0

C(m∗;u∗) = 0

49

Approaches and methods

Constraint elimination

u = G(m) ↔ C(m;u) = 0

min f(m;G(m))

Penalty

min f(m;u) +
1
2µ

∑
i

C2
i (m;u), µ > 0

min f(m;u) +
1
µ

∑
i

|Ci(m;u)|, µ > 0

50

Augmented Lagrangian

minLA = f(m)−
∑

i

λiCi(m;u) +
1
2µ

∑
i

C2
i (m;u), µ > 0

51

Sequential Quadratic Programming (SQP)

min
pm,pu

f(m, u) +
(
∇mfT

k ∇ufT
k

) (
pm

pu

)
+

1
2

(
pT
m pT

u

)
Wk

(
pm

pu

)
s.t. Cmpm + Cupu + ck = 0

Objective approximates Lagrangian (Wk ≈ ∇2L).

Line search using merit function weighing objective and insfeasibilities,
e.g.,

f(m;u) +
1
µ

∑
i

|Ci(m;u)|

52

Linear systems in SQP(
Wk BT

k

Bk 0

) (
p
λ

)
= −

(
fk

ck

)

SQP - Solve and update

Difficulties

Bk can be very large (PDE)

The system can be strongly coupled

Wk can be singular

The whole KKT system can be ill-conditioned

53

Part III - PDE’s and optimization

• What is special about PDE’s and optimization?

• How should we solve such problems?

– The PDE side
– The optimization side
– Combined view

54

PDE’s and optimization

Huge number of constraints (even for “small” problems)

Conditioning may be very bad

Usually - the “meat” of the problem is on the PDE side.

55

Model problem

Image processing, hydrology, impedance tomography ...

min φ(m;u) =
1
2
‖Qu− b‖2 + βR(m)

s.t ∇ · em∇u− q = 0

Popular choices for R(m)

TV - R(m) =
∫ √
|∇m|2 + γ2 dV

L2 - R(m) = 1
2

∫
(∇m)T (∇m) dV

56

Model problem - discretize then optimize

• Discretize the optimization problem first (grid h)

• Solve a discrete optimization problem

min φ(m;u) =
1
2
‖u− b‖2 +

1
2
βhd(∇hm)T (∇hm)

s.t ∇h · M(m)∇hu = A(m)u = q

57

Model problem - Constraint elimination

We can eliminate u = A(m)−1q

Obtain

min φ(m) =
1
2
‖A(m)−1q − b‖2 +

1
2
βhd(∇hm)T (∇hm)

• Unconstrained optimization

• Function evaluation involve solving a (large) linear system

• Gradient hard to evaluate

58

Model problem - The Constrained approach

Do not eliminate the constraints

L(m,u, λ) =
1
2
‖u− b‖2 +

1
2
βhd(∇hm)T (∇hm) + λT (A(m)u− q)

Gradient

Lu = u− b + A(m)Tλ = 0

Lm = βhd(∇T
h∇h)m +

(
∂(A(m)u)

∂m

)T

λ = 0

Lλ = A(m)u− q = 0

59

Model problem - The PDE view

A discretization of the coupled nonlinear PDE system

u− b + A(m)Tλ = 0

β(∇T
h∇h)m + G(m,u)Tλ = 0

A(m)u− q = 0

u− b +∇ · em∇λ = 0

−β∆m + (∇u)Tem(∇λ) = 0

∇ · em∇u− q = 0

G(m,u) =
(

∂(A(m)u)
∂m

)

60

Model problem - Newton’s method - KKT system

I AT

β(∇T
h∇h) GT

A G 0

 su

sm

sλ

 = rhs

 I ∇ · em∇
−β∆ (∇u)Tem∇

∇ · em∇ ∇ · ((∇u)em(·)) 0

 su

sm

sλ

 = rhs

61

Solving KKT systems I
Method I - If β large reorder as a block diagonal dominant.

[Precondition by the diagonal blocks]

A 0 G
I AT

GT β(∇T
h∇h)

 su

sλ

sm

 = rhs

∇ · em∇ ∇ · ((∇u)em(·))
I ∇ · em∇

(∇u)Tem∇ −β∆

 su

sλ

sm

 = rhs

62

Solving KKT systems II

Method II-III - If β small coupled systems of PDE’s

• Multigrid (for the coupled system)

• Preconditioners based on elimination (optimization based)

63

Easy to note that the KKT matrix can be decomposed to

A 0 G

I AT 0

0 GT βR′′

−1

=

A−1 0 −A−1GH−1
r

0 A−T −A−TJH−1
r

0 0 H−1
r

 ·

 I 0 0

A−1 I 0

−JTA−1 −GTA−T I



J = A−1G

Hr = JTJ + β∇T
h∇h

64

Solving KKT systems II

Preconditioners - Use PDE techniques to approximate
A−1 (multigrid, ILU ...)

Combine to approximate the decomposition of the KKT matrix

Use algebraic techniques (elimination, Schur complement) if needed

65

Solving KKT systems - recap

• Solving KKT systems may not be hard if they correspond to a sparse
decoupled PDE

• We should remember the dual view matrix-PDE

66

Globalization

Update
m← m + αsm; u← u + αsu; λ← λ + αsλ;

Line search using merit function weighing objective and insfeasibilities,
e.g.,

1
2
(u− b)2 + βR(m) +

1
µ
‖A(m)u− q‖1

67

Example I

Discretize on a 643 grid

β = 1e − 1 misfit = 0.1

nonlin it KKT it constr rel-grad
1 2 3e − 3 1e-2
2 3 2e − 4 4e-3
3 2 7e − 6 1e-3
4 2 9e − 7 3e-4

β = 1e − 2 misfit = 0.04

Nonlin it KKT it const grad
1 7 4e − 6 2e-3
2 5 6e − 7 7e-4

68

69

Model problem II - some pitfalls

Wave propagation in 1D

min φ(m;u) =
1
2
‖Qu− b‖2 + β‖∇m‖2

s.t muxx − utt = 0; u(0) = q0; ut(0) = 0

70

Model problem II

For simplicity here use leapfrog in time

B(m)un − (un+1 − 2un + un−1) = 0

Important Stability condition (CFL): m−1∆t < ∆x

71

In matrix notation

A(m)u =


I

I
−I B + 2I −I

−I B + 2I −I
−I B + 2I −I

−I B + 2I −I




u0

u1

.

.

.
un

 =


q0

q0

0
.
.
.

 = q

Note - to solve, no need for matrix inversion

72

Model problem II

The problem has the same form as before

min φ(m;u) =
1
2
‖Qu− b‖2 + β‖∇m‖2

s.t A(m)u = q

Try to use the same optimization techniques ...

73

Model problem II - numerical experiment

Numerical experiments
∆x = 1.56E− 2
∆t = 3.12E− 2
Initial m−1 = const = 0.2

CFL condition - 0.2×∆x > ∆t = 3.12E− 2

74

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3
True model
Recovered model

75

Model problem II - numerical experiment - What went
wrong

For the true m CFL is

mtrue ×∆x > ∆t

The true m generates instabilities!

76

Model problem II - numerical experiment II

Numerical experiments
∆x = 1.56E− 2
∆t = 5.0E− 3
Initial m−1 = const = 0.2

77

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5
True model
Recovered model

78

Model problem II - Recap

• Discretize and then optimize yield a solvable optimization problem

• The solution of the discrete problem had nothing to do withthe solution
of the continuous problem

• Need to think about the PDE when doing the optimization

79

Summary -PDE’s and optimization

• PDE’s and optimization are used for many problems

• To use optimization within a PDE framework need simplicity

• Think dual

• Use best of two worlds

• Many many open questions

80

