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ILU for General Matrices

Denote

Ak−1 =

(
bk f T

k
ek Ck

)

starting with A0 = A, and consider step k of the outer-product form
of Gaussian elimination

Ak−1 =

(
I 0

ekb−1
k I

)(
bk f T

k
0 Ak

)

where Ak = Ck − ekb−1
k f T

k .

To make the factorization incomplete, entries are dropped in Ak,

i.e., the factorization proceeds with Ãk = Ak + Rk.
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ILU for General Matrices

The dropped entries form −R in A = LU − R,
that is, Ri j = 0 if no dropping in position (i, j)

How to select which entries to drop?
− By position or by numerical size

Does the factorization exist? Remain positive?

Actual computation is row-wise (or column-wise) for L and U

Modified ILU (MILU)

LUe = Ae and (LU)−1 Ae = e

The entries dropped from Ak are added back to its diagonal

A further diagonal perturbation of size O(h2) is often used
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ILU for Difference Operators
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ILU for Difference Operators
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Make LU and A match on the nonzeros of A
Make the rowsums of LU and A match

Factorization can be written as (D + LA)D(D + UA)
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ILU for Difference Operators
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Increasingly larger stencils for L (Gustafsson, 1978)
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Convergence rate for 5-point Poisson problem

Grid num. equations IC(0)-PCG MIC(0)-PCG
32 × 32 1024 34 24
64 × 64 4096 66 35

128 × 128 16384 123 51
256 × 256 65536 246 74

κ = O(h−2) κ = O(h−2) κ = O(h−1)

O(h−1) steps O(h−1/2) steps
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Convergence rate for 5-point Poisson problem
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Earlier History

ILU for Difference Operators

Buleev (1960), Oliphant (1961), Varga (1961)

Stone (1968), Dupont, Kendall, and Rachford (1968)

ILU for General Matrices

Meijerink and Van der Vorst (1977)

Gustafsson (1978)

Kershaw (1978)

Dropping Strategies for General Matrices

Based on numerical size (Munksgaard, 1980, Zlatev, 1982)

Based on position (Watts, 1981)
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Dropping by position or “level”

A0 =

(
b f T

e C

)
, A1 = C − e f T/b

Let A0 have diagonal elements of size O(ε0) and off-diagonal
elements of size O(ε1), with ε < 1, represented by

A0 =




1 ε ε ε

ε 1 ε

ε ε 1 ε

ε ε 1


 , A1 =




(1 −ε
2) (ε −ε

2) (−ε
2)

(ε −ε
2) (1 −ε

2) (ε −ε
2)

(−ε
2) (ε −ε

2) (1 −ε
2)



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Dropping by position or “level”

Initial level-of-fill

level(0)
i j =

{
0 if ai j 6= 0
∞ otherwise

When an element is updated, update its level-of-fill

level(k)
i j = min(level(k−1)

ik + level(k−1)
k j + 1, level(k−1)

i j )

ILU(k): Retain the nonzeros with level ≤ k
In practice, the best k are 0, 1, and 2 for 2-D and 0 and 1 for 3-D
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Graph interpretation of “level-of-fill”
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56
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Numbers indicate order of elimination

Nonzero created at (4,6) from eliminating 1 and 2, since the
path (4, 2, 1, 6) exists

Level of fill-in is one less than the length of the shortest path
between 4 and 6 through 1 and 2; in this case, level = 2

Multilevel dropping strategies?
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Dropping by numerical size (Threshold ILU)

x

Do not know beforehand which nonzeros to keep

Define a drop tolerance τ ; Two places to drop nonzeros:
− small pivots, and small entries in L and U

To control the maximum size of L and U, restrict the
maximum number of nonzeros per row: ILUT (Saad, 1994)

PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.14/40



Existence

Definition. A is an M-matrix if A is nonsingular, ai j ≤ 0 for i 6= j,
and A−1 ≥ 0.

The ILU factorization exists for an M-matrix, using any
sparsity pattern including the diagonal (Meijerink and Van der
Vorst, 1977)

Same result for H-matrices (Varga, Saff, and Mehrman, 1980,
Manteuffel, 1980, Robert, 1982)

Note: the ILU factorization may break down or become
indefinite for a positive matrix; the IC factorization may not
exist for a SPD matrix
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Shifted factorization

Replace negative or zero pivots with small positive values
(Kershaw, 1978)

Shifted factorization: Factor A +αdiag(A). An α exists such
that this factorization exists (Manteuffel, 1980)
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Ajiz-Jennings factorization

If d is to be dropped, s > 0, the submatrix is modified by adding




. . .
s|d| −d

. . .
−d 1

s |d|
. . .




which is positive semidefinite. The modified matrix remains
positive definite and factorization cannot break down.
Ajiz and Jennings, 1984

Cf. diagonally compensated reduction (Axelsson and Kolotilina, 1994)
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Tismenetsky’s factorization

A =

(
b f T

e C

)
=

(
1 0

e/b I

)(
b 0
0 S

)(
1 f T/b
0 I

)

where S = C − e f T/b. Now define pe and pT
f as e/b and f T/b after

dropping. Tismenetsky’s factorization uses

S̃ = (−pe I ) A
(
−pT

f I
)T

= C + bpe pT
f − epT

f − pe f T

Tismenetsky, 1991, Kaporin, 1998

S̃ is SPD when A is SPD

Need to keep track of (pe − e/b) and (p f − f T/b)

Very effective, but high intermediate storage costs
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Factorization via A-orthogonalization

Use A-orthogonalization to produce ZT AZ = D, with Z upper-
triangular. The root-free Cholesky factor is L = AZD−1.

done active

A Z DLdone −1

=

Benzi and Tůma, 2002

Make incomplete by dropping in Z (and L)

Breakdowns can be avoided

Needs intermediate storage, but not as much as Tismenetsky’s

PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.19/40



Stability

When an ILU factorization fails to help convergence,
inaccuracy is often blamed

For nonsymmetric and indefinite matrices, instability of the LU
factors is a common problem, i.e., ‖L−1‖ and ‖U−1‖ are very
large

Note: R = LU − A and L−1AU−1 = I + L−1RU−1

Van der Vorst (1981), Elman (1986), Chow and Saad (1997)

This problem is rare in complete factorizations
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Unstable triangular factor




1

−2
. . .
. . . . . .

. . . . . .
−2 1







x1
...

xi
...
...




=




b1
...
bi
...
...




Triangular solve recurrence:

xi = 2xi−1 + bi
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Unstable triangular solves

Measure log10 ‖(LU)−1e‖∞ (Chow and Saad, 1997)
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Another difficulty: Very small pivots

Lead to unstable factorizations, i.e., ‖L‖ and ‖U‖ are large

Which lead to numerically zero pivots (via swamping)

The small pivots might have been caused initially by
inaccuracy due to dropping
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Possible effect of small pivots
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Originally symmetric structure

Large, erroneous, off-diagonal entries are propagated
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Assessing a factorization

Statistic Meaning

condest ‖(LU)−1e‖∞ , e = (1, . . . , 1)T

1/pivot size of reciprocal of the smallest pivot

max(L+U) size of largest element in L and U

Inaccuracy
due to

dropping

unstable
triangular

solves

very
small
pivots

condest
1/

pi
vo

t
sm

al
l

la
rg

e
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PIMS Workshop on Numerical Linear Algebra and Applications, 2003, UCRL-PRES-155107 – p.25/40



Possible Remedies for Instability and Small Pivots

Stabilization

Shifted factorization: A +αdiag(A), best α is larger than the
one that makes factorization exist (Manteuffel, 1980)

Modify diagonals of L and U to make the factors diagonally
dominant (Van der Vorst, 1981, Munksgaard, 1980, Elman,
1989)

Replace small pivots: sign of the pivot matters

Other Techniques

Preserving symmetric structure

Pivoting

Reordering

Blocking
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Shifted factorization, nonsymmetric problem
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Static, structure-based orderings

Natural Reverse Cuthill-McKee Minimum degree
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Effect of ordering

Symmetric positive definite problems (Duff and Meurant, 1989)

Natural and RCM orderings work well

Minimum degree is better only with large amounts of fill-in

Nonsymmetric problems (Dutto, 1993, Benzi et al., 1997)

RCM ordering is generally best

Natural ordering generally worst
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Coefficient-dependent orderings

Very unstructured problems

ILUT with pivoting, called ILUTP (Saad, 1988)

Maximum product transversals (Duff and Koster, 1999)
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Anisotropy: complete U factor, two orderings
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Ordering along weak directions is better. This is counter-intuitive.
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Dynamic, coefficient-dependent ordering

Recall

Ak−1 =

(
bk f T

k
ek Ck

)

and
Ak = Ck − ekb−1

k f T
k , Ãk = Ak + Rk

Anisotropic problems

Given a sparsity pattern for the factorization, dynamically
choose an ordering for Ak−1 that will reduce some norm of Rk
(D’Azevedo, Forsyth, and Tang, 1991)
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Implementation considerations for Threshold ILU

x

Nonzeros in L part must be eliminated in topological order
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Crout version of ILU

Li, Saad, and Chow, 2002

Avoids the topological sort

Can produce a factorization with symmetric structure

Dropping based on L−1 and U−1 can be implemented

Cholesky and IC versions: Eisenstat, Schultz, and Sherman
(1981), Jones and Plassmann (1995)
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Skyline version of ILU

Let Ak+1 be the (k + 1)-st leading principal submatrix of A and
assume we have the decomposition Ak = LkDkUk. Compute the
factorization of Ak+1 via

(
Ak vk

wk αk+1

)
=

(
Lk 0
yk 1

)(
Dk 0
0 dk+1

)(
Uk zk

0 1

)
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Skyline version of ILU

(
Ak vk

wk αk+1

)
=

(
Lk 0
yk 1

)(
Dk 0
0 dk+1

)(
Uk zk

0 1

)

Compute:

zk = D−1
k L−1

k vk

yk = wkU−1
k D−1

k

dk+1 = αk+1 − ykDkzk.

Chow and Saad, 1997

Need sparse approximate solves

May need a companion structure for L and U

A running condition estimate ‖(LkUk)
−1‖∞ is available
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What we didn’t cover

Block variants

Block tridiagonal: Axelsson, Brinkkemper, and Il’in (1984),
Concus, Golub, and Meurant (1985), Kolotilina and
Yeremin (1986)
Dense blocks: Fan, Forsyth, McMacken, and Tang (1996),
Ng, Peyton, and Raghavan (1999)
BPKIT Software: Chow and Heroux (1998)

Multilevel versions
Brand and Heinemann (1989), Saad (1996), Botta, van der
Ploeg, and Wubs (1996), Saad and Zhang (1999), Saad,
Sosonkina, and Suchomel (2000)
Relation of block variants to multigrid methods
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What we didn’t cover (cont’d)

Parallel ILU for General Matrices
Multicoloring: Jones and Plassmann (1995)
Domain Decomposition: Saad and others (1994), Karypis
and Kumar (1996), Hysom and Pothen (1998)

Perturbed MILU
Beauwens, Notay, Magolu, Eijkhout, and others
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What we covered

Classical algorithms for ILU
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ILU for Difference Operators
Dropping by position
Dropping by numerical size

Existence problem and breakdown-free variants

Stability problem and remedies
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Some implementation considerations
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