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It is now possible to find out where you are.

Gilbert Strang

The Mathematics of GPS,

SIAM News of June 1997
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Outline

• Computation of GPS relative position estimates

– Introduction to GPS

– The mathematical model

– A recursive least squares method

– Real data tests

• Computation of a test statistic in data quality control

– Generalized likelihood ratio test statistic

– A numerically stable method
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Part I:

Computation of GPS Relative Position Estimates

Collaborator: Lan Yin, Cimmetry Systems, Inc., Montreal.
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Introduction to GPS (6)

What Is the Global Positioning System (GPS) ?

An all-weather, worldwide, continuous coverage, satellite based

navigation system, operated by the U. S. military.

GPS Segments:

• Space: 24 Satellites,

in 6 orbits at 20,200 km altitude.

• Control: 1 master control station,

6 monitor stations, 4 ground antennas.

• User: receivers and users.
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GPS Applications

GPS Military Uses:

GPS has become important for

nearly all military operations

and weapons systems.

GPS Civil Uses:

• Land/sea/air/space navigation
• Mapping / GIS

• Surveying

• Search and rescue

• Recreation

• Intelligent vehicle highway systems, . . . . . .
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How GPS Works

• The basis of GPS is

“trilateration”.

• In principle, if the distances

from 3 satellites to a receiver

can be measured, the receiver

position can be determined.

GPS Signal & Measurements:

Each satellite transmits signals on two frequencies: L1 & L2.

Superimposed on the carriers are C/A, P codes & navigation data.

Measurements:

• Code measurements; • carrier phase measurements.

Carrier phase measurements are much more complicated but

much more accurate than code measurements.
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GPS Signal Errors

• Satellite clock errors

• Satellite hardware delay

• Satellite orbit errors

• Ionospheric reflection

• Tropospheric reflection

• Multipath errors

• Receiver clock errors

• Receiver hardware delay

• Noise errors

The multipath errors and noise errors of code measurements are

usually ∼ 100× larger than those of carrier phase measurements.
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Physical Setting

• Point positioning: (simple, but precision is lower)

– One receiver.

• Relative positioning: (complicated, but precision is high)

– One stationary receiver with a known position;

one (roving) receiver with a position to be determined.

– They track the GPS signals at the same time.

– They are close enough (10 km say) — the received signals

have almost the same ionospheric and tropospheric errors.

– For real time applications, there is a radio link between

them.
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Geometry for two Receivers and one Satellite.
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Motivations and Goal

• Typical approach used in GPS:

Least squares based on measurement eqn. yk = Akxk + vk;

Kalman filtering based on

yk = Akxk+vk (meas eqn), xk+1 = Fkxk+wk (dynamic eqn)

Sometimes the dynamic eqns are artificially constructed.

• Most methods given in GPS literature do not address the

computer implementation issues.

• Efficiency is important—particularly for real time applications.

Numerical reliability is important—ill-conditioned problems

may arise.

Goal: present an efficient and numerically reliable

approach for relative positioning.
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The Mathematical Model (3)

Different combinations of measurements can be used for point and

relative positioning.

We consider relative positioning based on code and carrier

phase measurements from L1 signal.

Single difference (SD) technique:

Difference the carrier (and code) measurements from the same

satellite at two receivers to eliminate some common errors:

satellite clock error, satellite hardware delay, satellite orbit error,

ionospheric reflection and tropospheric reflection.
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Single Difference (SD) Measurement Equations

At time tk, for signal from satellite i

carrier: φik = λ−1(eik)
Txk + αi+βφk + µik, µik ∼ N (0, σ2

φ)

code: ρik = λ−1(eik)
Txk +βρk + νik, νik ∼ N (0, σ2

ρ)

φik: SD carrier phase measurement; ρik: SD code measurement;

λ: wavelength; µik: carrier phase noise; νik: code noise;

xk: baseline vector from receivers s to r, to be determined;

eik: unit vector from the midpoint of xk to satellite i;

αi: SD integer ambiguity, constant but unknown;

βφk : SD receiver clock error and hardware delay for carrier;

βρk : SD receiver clock error and hardware delay for code.
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Single Difference Measurement Equations, cont

carrier φik = λ−1(eik)
Txk + αi + βφk + µik, µik ∼ N (0, σ2

φ)

code ρik = λ−1(eik)
Txk + βρk + νik, νik ∼ N (0, σ2

ρ)

Suppose there are m visible satellites. Then we have 2m such eqs.

Write these in the matrix-vector form (e = [1, . . . , 1]T ):

carrier y
φ
k = Ek xk + a + eβφk + v

φ
k , v

φ
k ∼ N (0, σ2

φIm)

code y
ρ
k = Ek xk + eβρk + v

ρ
k, v

ρ
k ∼ N (0, σ2

ρIm)

Usually assume v
φ
k and v

ρ
l (k, l = 1, 2, . . .) are uncorrelated.

Note: Ek depends on xk, so the model is nonlinear.

Use our estimate of xk−1 to compute an approximation to Ek

— usually good enough. From now on, assume Ek is known.
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A Recursive LS Method (10)

Background for the LS estimation

A standard linear model (A has full column rank):

y = Ax + v, v ∼ N (0, σ2I),

The best linear unbiased estimate (BLUE) of x solves

min
x
‖Ax− y‖22.

Solve the LS problem by (Householder) QR factn (see Golub ’65):

QTA =




R

0



 , Q = [Q1,Q2] orthogonal, R upper triangular

The LS solution and residual satisfy

x̂ = R−1QT
1 y, E{x̂} = x, cov{x̂} = σ2(RTR)−1

r = y −Ax̂ = Q2Q
T
2 y, E{r} = 0, cov{r} = σ2QT

2 Q2.
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Orthogonal transformation approach for position estimation

Use orthogonal transformations to recursively estimate xk

based on the model

carrier y
φ
k = Ek xk + a + eβφk + v

φ
k , v

φ
k ∼ N (0, σ2

φIm),

code y
ρ
k = Ek xk + eβρk + v

ρ
k, v

ρ
k ∼ N (0, σ2

ρIm).

k = 1, 2, . . . .

• Orthogonal transformations are numerically reliable.

• Orthogonal transformations can keep the noise vectors

uncorrelated.
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Eliminating βφk and βρk from the model:

Let P be a Householder transformation: Pe =
√
m [1, 0, ..., 0]T .

Apply P ≡




pT

P̄



 to y
φ
k = Ek xk + a + eβφk + v

φ
k :




pTy

φ
k

P̄ y
φ
k



 =




pTEk

P̄Ek



xk +




pT

P̄



a +




1

0




√
mβφk +




pTv

φ
k

P̄ v
φ
k



 .

Drop the 1st equation

P̄ y
φ
k = P̄Ekxk + P̄ a + P̄ v

φ
k , P̄ v

φ
k ∼ N (0, σ2

φIm−1).

Since P̄ is (m− 1)×m, a ∈ <m cannot be determined.

Introduce the double difference integer ambiguity vector

z ≡ [α2 − α1, α3 − α1, . . . , αm − α1]T ∈ <m−1,

where satellite 1 is chosen to be the ‘reference satellite’.
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Can show

P̄ a = Fz, F = Im−1 −
1

m−√meeT nonsingular.

So P̄ y
φ
k = P̄Ekxk + P̄ a + P̄ v

φ
k becomes

P̄ y
φ
k = P̄Ekxk + Fz + P̄ v

φ
k , P̄ v

φ
k ∼ N (0, σ2

φIm−1). (1)

Similarly, applying P̄ to y
ρ
k = Ek xk + eβρk + v

ρ
k gives

P̄ y
ρ
k = P̄Ekxk + P̄ v

ρ
k, P̄ v

ρ
k ∼ N (0, σ2

ρIm−1). (2)

Let σ =
σφ
σρ

. Combine (1) and (2):




P̄ y

φ
k

σP̄ y
ρ
k



 =




P̄Ek

σP̄Ek



xk+




F

0



 z+




P̄ v

φ
k

σP̄ v
ρ
k



 ,




P̄ v

φ
k

σP̄ v
ρ
k



 ∼ N (0, σ2
φI)
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For simplicity, ignore the noise vector and use ‘≈’ to replace ‘=’.



P̄ y

φ
k

σP̄ y
ρ
k



 ≈




P̄Ek

σP̄Ek



xk +




F

0



 z (3)

Transform the coefficient matrix of xk to upper triangular

Compute the QR factorization:

QT
k




P̄Ek

σP̄Ek



 =




Rk

0





3

3

2m− 5

Note: Make full use of the structure of the matrix for efficiency.

Then apply QT
k to (3), with obvious notation:




yk

ȳk



 ≈




Rk

0



xk +




Gk

Ḡk



 z
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


yk

ȳk



 ≈




Rk

0



xk +




Gk

Ḡk



 z

Combine these for k = 1, 2, . . . , and reorder:
















y1

...

yk

ȳ1

...

ȳk

















≈

















R1
G1

. . .
...

Rk Gk

Ḡ1
...

Ḡk





























x1

x2

...

xk

z













(4)

First estimate z from the lower part of (4);

then estimate x1, . . . ,xk from the upper part of (4).
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Recursively computing the LS estimate of z






Ḡ1
...

Ḡk




 z≈






ȳ1
...

ȳk






Suppose at tk−1 we have obtained the orthogonal transformations:

UT
k−1






Ḡ1
...

Ḡk−1




 =




Sk−1

0



 , UT
k−1






ȳ1
...

ȳk−1




 =




bk−1

b̄k−1



 ,

Uk−1: orthogonal, Sk−1: nonsingular upper triangular.

At tk, after obtaining Ḡk and ȳk, perform

Ũ
T

k

[

Sk−1

Ḡk

]

=

[

Sk

0

]

, Ũ
T

k

[

bk−1

ȳk

]

=

[

bk

b̂k

]

Ũk : orthogonal, Sk : nonsingular upper triangular.
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Thus






Ḡ1
...

Ḡk




 z ≈






ȳ1
...

ȳk




 is transformed to




Sk

0



 z ≈




bk

b̂k



 .

Compute the LS estimate zk of z at tk by solving

Skzk = bk.

It is easy to show

cov{zk} = σ2
φ(S

T
k Sk)

−1.

Remarks:

• Here we regarded z as a real vector.

• To get centimeter accuracy quickly, we have to fix z as a vector

of integers. Then z will be regarded as known.

• The LAMBDA method (Teunissen ’93) uses cov{zk} to fix z.
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Computing the LS estimates of x1, . . .xk







y1

...

yk







≈








R1

. . .

Rk















x1

...

xk







+








G1

...

Gk








z

We compute x1|k,x2|k, . . . ,xk|k, the LS estimates of x1,x2, . . . ,xk

at time tk by solving the upper triangular systems

Rjxj|k = yj −Gjzk, j = 1, . . . , k.

Remarks:

• These can be solved in any order.

• xj|k for j ≤ k − 1 is called the smoothed estimate of xj .

• For real time applications, we may only want to find xk|k.
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Computing the error covariance matrices cov{xj|k − xj}
The equations used for estimating xj and z at time tk:




yj

bk



 =




Rj Gj

0 Sk








xj

z



+




uj

wk





noise

,




uj

wk



 ∼ N (0, σ2
φI). (5)

Let ZT
j|k




Rj Gj

0 Sk



=




Rj|k 0

R̄j|k Sj|k



 ,
Zj|k : Givens rotations

Rj|k, Sj|k : U.T.

Apply ZT
j|k to (5):

ZT
j|k




yj

bk



=




Rj|k 0

Rj|k Sj|k








xj

z



+ ZT
j|k




ūj

wk



 .

Can show

cov{xj|k − xj} = σ2
φ(R

T
j|kRj|k)

−1.
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Remarks (2)

• Cycle slip
Cycle slip is the change in ambiguities mainly caused by

temporary obstructions of the satellite signal.

We need incorporate an algorithm for cycle slip detection.

• Number of satellites
There may be different number of satellites at different epochs,

e.g., satellite rising and setting, cycle slip.

But we can modify our algorithm to handle such cases.

Two cases:

a. The ‘reference satellite’ at tk−1 goes down between tk−1 & tk.

b. The ‘reference satellite’ at tk−1 remains at tk.
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• Dual frequency receivers
Some receivers can measure carrier phase and code for both L1

and L2 carrier signals.

It is easy to modify our approach to include more measurement

equations.

• Kalman filtering
When a dynamic model for the roving receiver is available, we

can modify our approach to handle it.
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Real data tests (3)

• Two data sets were provided by VIASAT Geo-Technology Inc.

• The receivers were made by Canadian Marconi Company.

• Data set 1: The user was walking;

Data set 2: The user was riding a four wheel trail bike;

Both were in an open sky environment.

• The time interval between two consecutive epochs:

Data set 1: 1 second, Data set 2: 2 seconds.

• We took σ = σφ/σρ = 10−3.

• We used the position estimates obtained by VIASAT software

as the “true” positions. The software used a complex

positioning algorithm. It is believed the errors are about a few

centimeters.
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Part II:

Computation of a Test Statistic in

Data Quality Control

Collaborator: Christian Tiberius, Delft University of Technology.
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Data Quality Control

Motivations

• GPS signals may be corrupted.

• Using corrupted data may lead big errors in the position

estimates — too dangerous for some applications,

such as aircraft landing.

• The data need to be carefully validated by statistical testing.

• Data quality control is useful not only in GPS, but also in

many other applications.

Goal:

Provide a numerically stable method to compute the commonly

used generalized likelihood ratio test statistic.
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Example (2)

Suppose at some epoch, there are 5 visible satellites.

In a normal situation, the code measurements satisfy

H0 :













ρ1

ρ2

ρ3

ρ4

ρ5













meas

=













λ−1(e1)T 1

λ−1(e2)T 1

λ−1(e3)T 1

λ−1(e4)T 1

λ−1(e5)T 1
















x

βρ



+













ν1

ν2

ν3

ν4

ν5













noise

.
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If the signal from satellite 2 has a blunder (outlier), then

Ha :













ρ1

ρ2

ρ3

ρ4

ρ5













=













λ−1(e1)T 1

λ−1(e2)T 1

λ−1(e3)T 1

λ−1(e4)T 1

λ−1(e5)T 1
















x

βρ



+













0

1

0

0

0













∇+













ν1

ν2

ν3

ν4

ν5













,

c ≡ [0, 1, 0, 0, 0]T specifies the type of model error, ∇ is unknown.

Do a statistic test to determine whether the data supports or

rejects H0 on the basis of Ha .
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Test Statistic (4)

Consider a very general case.

Null hypothesis H0: The measurements satisfy the model

y = Ax + v, v ∼ N (0, σ2V ).

A ∈ Rm×n has full column rank, V is symmetric positive definite.

Alternative hypothesis Ha: The corrupted measurements

satisfy the model

y = Ax + C∇+ v, v ∼ N (0, σ2V ),

C ∈ Rm×q is known, [A,C] has full column rank, and ∇ is an

unknown vector.
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Maximum likelihood estimator (MLE)

The density functions of y:

under H0:

p(y|x) = 1

(2π)
m
2 σ|V | 12

exp

[

− 1

2σ2
(y −Ax)TV −1(y −Ax)

]

under Ha:

p(y|x,∇) =
1

(2π)
m
2 σ|V | 12

exp

[

− 1

2σ2
(y−Ax−C∇)TV −1(y−Ax−C∇)

]

The MLE of x under H0:

x0 = argmax
x

p(y|x)

The MLE of {x,∇} under H0:

{xa,∇a} = argmax
x,∇

p(y|x,∇).
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Obviously x0 and {xa,∇a} are respectively the solutions of the

generalized linear least squares (GLLS) problems:

GLLS0 : min(y −Ax)TV −1(y −Ax);

GLLSa : min(y −Ax−C∇)TV −1(y −Ax−C∇).

They are also the best linear unbiased estimators (BLUE).

Define the residuals

r0 ≡ y −Ax0, ra ≡ y −Axa −C∇a.

The generalized likelihood ratio is given by

l(y) ≡ p(y|x0)

p(y|xa,∇a)
= exp

[

− 1

2σ2

(
rT0 V −1r0 − rTaV −1ra

)
]

.

The test statistic is defined by

δTS ≡ −2 log l(y) = σ−2(rT0 V −1r0 − rTaV −1ra)
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Distribution of δTS

δTS ∼ χ2(q, 0), under H0;

δTS ∼ χ2(q, λ), λ = ∇TCTV −1cov{r0}V −1C∇, under Ha.

where cov{r0} = σ2[V −A(ATV −1A)−1AT ].

Statistic testing

When δTS is larger than a given threshold, reject H0 in favor of Ha.

Otherwise accept H0.

The threshold is usually determined by the requirement of a

specific application.
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An Obvious Method to Compute δTS (2)

Let V have the factorization: V = BBT .

Nonsingular B is given or obtained by the Cholesky factorization.

Define ȳ = B−1y, Ā = B−1A, C̄ = B−1C.

Transform problems GLLS0 & GLLSa to the ordinary LS problems:

x0 = argmin(ȳ − Āx)T (ȳ − Āx);

{xa,∇a} = argmin(ȳ − Āx− C̄∇)T (ȳ − Āx− C̄∇)

Compute the QR factn: [Ā, C̄] = [Q
A
,Q

C
,Q3]







R̄A R̄AC

0 R̄C

0 0






.

We can show

δTS = σ−2‖QT
C
ȳ‖22
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Two problems with this method:

• The method is not numerically stable.

When B is ill-conditioned, accuracy may unnecessarily be lost.

• Recall V = BBT . If V is singular, then B−1 does not exist.

So the method will not work.

Note: The original formula δTS = σ−2(rT0 V −1r0− rTaV −1ra)

is not defined.
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A Backward Stable Method for Computing δTS (5)

Idea: Use Paige’s approach (1978) to solving GLLS problems.

Recall v ∼ N (0, σ2V ) and V = BBT . Write

v = Bu, u ∼ N (0, σ2I).

Reformulate the GLLS problems:

GLLS0 : min ‖u‖22, s.t. y = Ax + Bu, under H0

GLLSa : min ‖u‖22, s.t. y = Ax + C∇+ Bu, under Ha

For simplicity, we still assume B is nonsingular.

Let [A,C] and B have the following generalized QR factorization

P T [A,C]=







UA UAC

0 UC

0 0






, P TBQ=







RA RAC RA3

0 RC RC3

0 0 R3






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Solving Problem GLLSa

Transform problem GLLSa:

min ‖u‖22, s.t. y = Ax + C∇+ Bu

⇓

min ‖u‖22, s.t. P Ty
︸ ︷︷ ︸

z

= P TAx + P TC∇+ P TBQ QTu
︸ ︷︷ ︸

w

⇓

min ‖wA‖22 + ‖wC‖22 + ‖w3‖22

s.t.







zA

zC

z3






=







UA

0

0







x +







UAC

UC

0






∇+







RA RAC RA3

0 RC RC3

0 0 R3













wA

wC

w3






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Solving Problem GLLSa, cont.

min ‖wA‖22 + ‖wC‖22 + ‖w3‖22

s.t.







zA

zC

z3






=







UA

0

0







x +







UAC

UC

0






∇+







RA RAC RA3

0 RC RC3

0 0 R3













wA

wC

w3







The optimal soln xa, ∇a, wa ≡ [(wa
A
)T , (wa

C
)T , (wa

3)
T ]T satisfies

wa
A
= 0, wa

C
= 0,







UA UAC RA3

0 UC RC3

0 0 R3













xa

∇a

wa
3






=







zA

zC

z3






.

The GLS residual or the optimal u: ua = Qwa.
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Solving Problem GLLS0

min ‖u‖22, s.t. y = Ax + Bu

⇓
min(‖wA‖22 + ‖wC‖22 + ‖w3‖22),

s.t.







zA

zC

z3






=







UA

0

0







x +







RA RAC RA3

0 RC RC3

0 0 R3













wA

wC

w3







The optimal soln x0, w0 ≡ [(w0
A
)T , (w0

C
)T , (w0

3)
T ]T satisfies

w0
A
= 0,







UA RAC RA3

0 RC RC3

0 0 R3













x0

w0
C

w0
3






=







zA

zC

z3







The GLS residual or the optimal u: u0 = Qw0.
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Computing the Test Statistic δTS

The GLS residual under Ha: ua = Q [(wa
A
)T , (wa

C
)T , (wa

3)
T ]T

wa
A
= 0, wa

C
= 0,







UA UAC RA3

0 UC RC3

0 0 R3













xa

∇a

wa
3






=







zA

zC

z3







The GLS residual under H0: u0 = Q [(w0
A
)T , (w0

C
)T , (w0

3)
T ]T

w0
A
= 0,







UA RAC RA3

0 RC RC3

0 0 R3













x0

w0
C

w0
3






=







zA

zC

z3







Thus we can easily show

δTS = σ−2(‖u0‖22 − ‖ua‖22) = σ−2‖w0
C
‖22
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Remarks

• The test statistic δTS can be computed in parallel with the the

optimal estimates x0 under H0 and xa under Ha.

• Can easily show our method is numerically stable.

• Can find the covariance matrices of x0 and xa.

• Can extend the method to deal with the non-square B case.

• Can easily handle linear equality constraints.
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Summary

• Computing GPS relative position estimates

– Present a recursive LS approach for relative positioning

based on carrier phase and code measurements for L1

carrier signal.

– The algorithm is efficient—makes full use of structure,

& numerically reliable—uses orthogonal transformations.

– The approach allows: satellite rising/setting,

more measurement equations, dynamic equations.

• Computing a test statistic for data quality control

– Present a backward stable method

– Can handle the singular noise covariance matrix

Numerical Linear Algebra Is Important and Useful in GPS !!!
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