Sheaves on adic spaces for *p*-adic group representation theory

Anne-Marie Aubert aubert@dma.ens.fr CNRS/Ecole Normale Superieure, France

Let K^{nr} be the unramified closure of a *p*-adic field with ring of integers \mathfrak{O}^{nr} and residue field \overline{k} , let $G_{K^{nr}}$ be a smooth group K^{nr} -scheme and let \mathfrak{H} be a family of \mathfrak{O}^{nr} -schemes H such that H is a smooth group scheme, the generic fibre H_{η} is isomorphic to $G_{K^{nr}}$ (as group K^{nr} -schemes), the special fibre H_s is a reduced group scheme of finite type over \overline{k} and $H(\mathfrak{O}^{nr})$ is a compact open subgroup in $H_{\eta}(K^{nr}) = G(K^{nr})$. Then each $H \in \mathfrak{H}$ determines a formal \mathfrak{O}^{nr} -scheme \hat{H} and a rational affinoid analytic adic space H^{ad} with reduced special fibre H_s . Using the inclusion j_H of H^{ad} into the adic space $G_{K^{nr}}^{ad}$ associated to $G_{K^{nr}}$ and the morphism of sites $\nu_H: (H^{ad})_{et} \to (H_s)_{et}$, we define a restriction functor Res_{H_s} from the bounded derived category of constructible ℓ -adic sheaves on $G_{K^{nr}}^{ad}$ to the bounded derived category of constructible ℓ -adic sheaves on H_s as $\operatorname{Res}_{H_s} := R\nu_{H!} Rj_H^*$. The restriction functor can be used to defined a notion of \mathfrak{H} -perversity: a sheaf \mathcal{F} on $(G_{K^{nr}}^{ad})_{et}$ will be called \mathfrak{H} -perverse if $\operatorname{Res}_{H_s}\mathcal{F}$ is perverse, for every $H \in \mathfrak{H}$. We will give examples of such situations using the Moy-Prasad filtrations.

Joint work with Clifton Cunningham