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Approximate regression models

Experimenter fits a response Y(x) = f (x; 9) by
regression, when in fact

ElY|x] =~ f (x;0).

The points x; at which Y will be observed are
to be chosen with an eye to protection against a
misspecified response function.

Best fitting parameter is

0o = argmin/S{E([Y|X] — f(x:0))2dx

for x € S (“design space”).

Put g(x) = E[Y|x] — f(x;60p); then (additive
errors)

Y(x) = f(x;00) + g(x) +&.



PROBLEM: Choose a design £ (= a measure placing
mass n~ ! at selected points X1, ...,Xn € S) so as to
minimise loss due to:

e random variation; depends only on &

e bias (of Y(x) as estimate of E[Y|x]; depends on

(9,8))

Loss: Integrated MSE of the predictions
A 2
L(9.6) = [[B[{¥0) - B} ax
= /SVAR _Y(x)} dx

+ [ AB[7 (x0) ~ £ (x.00) — o]} ax




e Find {; = argmin L(g, &) after
(i) maximising over g (= E[Y|x] — f(x;0q)); or
(ii) estimating g.

e Sequential strategy may be called for, in either
case

e O can be LSE, or M-estimate (with o2 replaced

by, e.g. o2E [¢?] / (E [¢/])°).



NONLINEAR REGRESSION (with Sanjoy Sinha):

Fit E[Y |x] = f(x;60p) when in fact this is only ap-
proximate, e.g.

0
f (:00) = Ope 1% but E[Y|x] = —2
01+ x
1 2 ; 4 5
Figure 1. E[Y|x] is  Michaelis-Menten
with 8 = (50,.5)T; best-fitting exponen-
tial is f(x;00) with 0y = (44,1.39)T.

(00 = arg min 3 {E([Y[x] - f (x; 0)}? dx.)



9(x;00) = E[Y[x] — f (x;60)

Asymptotic MSE matrix is MSEx(0g) =

My (60) {Qn(60) + b (60)bi(60) } My (o),
where z(x; 0) = 9f(x;0)/00 and where

N
Mp(0) = ;z(xz-:e)zT(xi;e),

N

; z(x;; 0)0?(x;)z! (x;; 0),
N

bn(0) = ;Z(Xi;g)g(xi;9)~

Qn(0)



Loss is IMSE:
L(g,€) = /8 E[{Y/(x)—me)}zl dx
~ tr [MSEn(80) - A(60)] + | g%(x; Bo)dx,

where A(0) = [sz(x;0)z" (x; 0)dx.

Sequential approach. Given {Xi,Y;;}fil:

(i) Compute O and estimates of g(x), o2(x).

(ii)) Using these estimates, estimate Ay i (x) =
increase in L if the next design point is x.

(iii) Choose xp 11 = argmin Ay 1 (x).

Estimate g(x) by smoothing the residuals (cubic spline
in 1-dimensional; generalised additive model for higher
dimensions).

Asymptotic results hold for sequentially chosen design
points - Sinha and Wiens (2002).



CLINICAL TRIALS: Subjects are assigned to one of
p treatment groups. Covariates x are measured and
treatment assignments made, according to a random
mechanism.

Optimal assignment probabilities

Pr (treatment i|x) = p;(x)

are to be determined.

Post treatment response to treatment is

Y =0, + 2" (x)p + gi(x) + 0se
for regressors z(x), error variances o;, response errors
9i(x).



Design & = {pl, ...,pp}.

Let W,,_1xp have rows which are mutually orthogonal
and orthogonal to 1. We estimate a complete set W0
of contrasts of the treatment effects {6;}._;.

Loss is

L (p1, - pp) = lim ‘nMSE (W6)] .

n—aoo

e Heckman (1987) - similar approach; different neigh-
bourhood structure. Under realistic conditions

constant assignment probabilities were found to

be optimal.



It turns out that constant probabilities

pi(x) =7
minimize the COV part of MSE.

Optimal {r;}._; are those which
> (ri/o?)
I1 (7“1/07,2)

subject to {r;}._; being a probability distribution.

minimise :

When p = 2,



Sequential assignments. Adjust the (asymptotically)
variance minimising {r;}._;, while also minimising
variance and bias in finite samples.

Suppose there are L levels of the (grouped) covariates
X(l), ...,X(L). If n assignments have been made, and
the (n + 1) subject arrives with covariates xs, then
assign to treatment k with probability

where:

(i) 74 is the optimal 7, with the o; estimated.

(i) di, measures the reduction in ‘C’OV (Wé)‘ result-
ing from an assignment to treatment k.

(iii) by, isAinverser proportional to the (finite sample)
bias? of 0, resulting from an assignment to treatment
k.



Similar to Atkinson (1982) who takes P (k|xx) o< dj,
(assuming no bias, and that all a,? are equal).

Computation of by requires g1(x), ..., gp(x); an ad hoc
estimate is the adjusted residual

52 1/2
i) = sign (1) (1+ 25 )
n; ]
where n;; = 7 of assignments of x(1) to group i;

€;,; = median of corresponding residuals.



SPATIAL STUDIES

e Observe Y(t) = X(t)+¢e(t) at locationst € 7 C
R,

e X (t) random: X(t) = E[X(t)] + 6(t).
o E[X(t)] = z!(t)0 for regressors z(t)

e VAR [e(t)] = f(t) only approximately known (as-
sumed constant?)

e COV [6(t),6(t")] = g (t,t') only approximately
known (assumed isotropic?)

e Choose n locations from 7 (with N sites) so as to
minimise the MSE of the predictions, maximised
over neighbourhoods of the assumed f, g and re-
gression model.



NEXT:

e Sequential choice of sites?

e Simulated annealing?
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Figure 2: Fitted response is exponential, true re-
sponse is either exponential or Michaelis-Menten;
ng = 10 equally spaced sites chosen initially, with
ro = 3 replicates at each. Then n1{ = 6 additional
sites chosen sequentially, with r;{ = 4 replicates at
each. (a) Average (over 100 sample paths) values of
(N - IMSE)l/2 for sequential (——), uniform (---)
and D-optimal (—-—-—) designs. Variance function is
o2(z) = 1+ .2(x — .5)2. (b) Probability histogram of
all points chosen by the 100 sequential designs; aster-
isks are at the average sites of the D-optimal designs.



0.28
root-mse
0.6 0,7

root-mse
0.5

0.24

0.4

0.20

)

10 20 30 0 10 20 30

Figure 3: Root-mse of estimated treatment effects
versus new subjects; average of 200 simulated runs.
Two treatments, two covariates X7, X>. Het-
eroscedastic errors: 0% =1, a% — 1/4. Dotted line
is Atkinson’s method modified for heteroscedasticity:
P (k|x«) o 7pdy; solid line is the robust method.
Left: g1(x) = go(x) = 0 (fitted model correct).

Right: g; (x) o< (—1)'x120.



Possible sites with optimal choices
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Figure 4: 4 x 4 grid of possible locations; 5 sites cho-
sen to minimise trace of MSE matrix. Fitted model
exact: constant measurement errors, isotropic covari-
ance function exp (—.2 |/t —t'||), regressors z(t) =
(1,21, 82)7.
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Figure 5: Same fitted model, but loss is maximised
over neighbourhoods of the model, then minimised
over choices of locations.



