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Abstract

We consider the linear regression model

yi = β′xi + ui

whith right censoring. Then the observed sample is zi = (y∗i ,xi, δi), 1 ≤ i ≤ n, where

y∗i = min(yi, ci)

and δi = I{yi≤ci}.
M-estimates in the non censoring case are defined by

n∑
i=1

ρ(ri(β)) = EFnβ (ρ(u)) = min!, (1)

where Fnβ is the empirical distribution of

ri(β) = yi − β′xi.

M-estimates also satisfy

n∑
i=1

ψ(ri(β))xi = EHnβ (ψ(u)x) = 0, (2)

where ψ = ρ′ and Hnβ is the empirical distribution of (r1(β), x1), (r2(β),x2), ..., (rn(β),xn).
Let Fβ be the distribution of ri(β). Since the yi are not available, one way to generalize (1)

and (2) is replacing these equations by

n∑
i=1

E(ρ(ri(β)|zi)) =
n∑
i=1

EFβ (ρ(u)|zi)) = min!

and
n∑
i=1

E(ψ(ri(β)i|zi))xi =
n∑
i=1

EFβ (ψ(u)|zi))xi = 0.

Since Fβ is unknown, we can replace this distribution by a nonparametric estimate based on the
censored residuals r∗i (β) = y∗i −β′xi. A natural choice is the Kaplan-Meyer estimate F ∗nβ . However,
r∗i (β) is independent of the corresponding censoring time ci−β′xionly when β = β0. Therefore the
consistency of F ∗n,β to Fβ is only guaranteed under the true value. Then, the estimate defined by

n∑
i=1

EF∗
nβ

(ρ(u)|zi)) = min! (3)
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is not consistent.
On the other hand, the estimate defined by

n∑
i=1

EF∗
nβ

(ψ(u)|zi))xi = 0 (4)

is Fisher consistent. M-estimates defined by (4) were first proposed by Ritov (1990) and further
studied by Li and Ying (1994).

The solution of (4) is well defined only when ψ is non decreasing. However, it is well know
that M-estimates with nondecreasing ψ are only robust against low leverage outliers and high
leverage outliers may have a large influence on these estimates. Therefore, it is desirable to define
M-estimates with a redescending ψ. Unfortunately, for redescending ψ (4) has, in general, several
solutions and not all of them correspond to consistent estimates.

For this reason we must modify (3) to get consistent estimates with high breakdown point.
Define

Cn(β, γ) =
n∑
i=1

EF∗
nβ

(ρ(u− γ′xi)|zi))

and
γn(β) = arg minCn(β, γ).

Observe that since F ∗nβ0
is a consistent estimate of F, the distribution of the error u, we have

that
γn(β0)→ 0.

Then a Fisher consistent estimate of β0 is defined by the equation

γn(β̂) = 0 (5)

The estimate defined by (5) may be considered an extension of the Ritov M-estimates for
bounded ρ functions. Using the same ideas we can also extend other high breakdown point esti-
mates as the least median of squares estimate (Rousseeuw, 1984 ), S-estimates (Rousseeuw and
Yohai, 1984), MM-estimates (Yohai, 1987) and τ -estimates (Yohai and Zamar, 1988) to the case
of censored data.
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