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1 Introduction

A well-known problem in the field of chemometrics is to estimate a linear relationship between
two sets of variables. The independent variables X (n× p) can be very numerous (some hundreds,
thousands), while the number of observations is typically very small (some tens). Also the number
of dependent variables Y (n × q) is in general limited to at most five. This problem leads to the
multivariate regression model

Y = α+Xβ + ε

with p > n, intercept term α (n × q), slopes β (p × q) and error term ε (n × q). Because p is
larger than n, the inverse of X ′X does not exist and hence we can not perform a least squares
regression. Therefore Partial Least Squares (PLS) regression (Tenenhaus, 1998) has been developed
to estimate the parameters of this model.

PLS regression mainly consists of two steps. In the first stage a matrix of scores T = [t1, t2, . . . , tk]
is obtained with k the number of components we want to retain in the final regression. The calcu-
lation of these scores th is essentially based on an empirical covariance matrix. In the second stage
the multivariate least squares regression of Y on the scores matrix T is performed.

Since both stages are very sensitive to outliers in the data, we propose a robust PLS algorithm
based on a robust covariance matrix in high dimensions and a robust multivariate regression
method.

2 Partial Least Squares Regression

Two popular algorithms for PLS regression are PLS2 and SIMPLS (de Jong, 1993). The motivation
is to maximize a covariance criterion under certain restrictions. In both algorithms the X and Y
variables are first mean centered. In the first stage of PLS2 the data matrix X is deflated in each
step. This results in scores th, h = 1 . . . , k, that are linear combinations of this deflated matrix
and not of the original mean centered data matrix X. The interpretation of the scores matrix T is
therefore not straightforward.

The SIMPLS algorithm avoids this problem by deflating the sample covariance matrix S0 =
X ′Y in every step of the algorithm. In the first step of this algorithm normalized weights rh and qh
are calculated such that the covariance between the scores th = Xrh and uh = Y qh is maximized
under the condition that t′ltk = 0 for l > k. The solution of this problem is known, i.e. the weights
r1 and q1 are the first left and right eigenvectors from the singular value decomposition (SVD) of
S0. The other weights rh and qh, h = 2, . . . , k, are given by the first pair of singular values from
the SVD of a deflated covariance matrix Sh−1 = P⊥h−1Sh−2 with P⊥h−1 the orthogonal projector on
the space spanned by [X ′t1, . . . , X ′th−1].

Finally, in the second stage, the multivariate least squares regression of Y on T is performed.
This leads to the estimators of the slopes β and the intercept α.
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We introduce a robust version of the SIMPLS algorithm by robustifying the two main stages of
the SIMPLS algorithm. In the first stage we propose to obtain the weights r1 and q1 as the first
pair of singular values of the SVD of a robust covariance matrix. For this we apply the ROBPCA
algorithm (Hubert and Rousseeuw, 2002) to the data (X,Y ). Note that here X and Y are the
original data matrices. This results in a robust covariance matrix Σ̂ and a robust center µ̂:

Σ̂ =
(

Σ̂XX Σ̂XY
Σ̂Y X Σ̂Y Y

)
µ̂ =

(
µ̂X
µ̂Y

)
.

The classical covariance matrix S0 in the SIMPLS algorithm is then replaced by Σ̂XY . The scores
th and uh are now obtained as linear combinations of the robust centered matrices X en Y , namely
th = (X − 1nµ̂′X)rh and uh = (Y − 1nµ̂′Y )qh.

A second robustification involves the multivariate least squares regression in the second stage.
We replace this regression by a robust multivariate regression method based on the MCD estimator
of location and scatter, the so called MCD-regression method (Rousseeuw et al., 2000).

Simulations and examples on real data sets demonstrate the robustness of this algorithm.
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