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1 The model and method

The Cox regression model (1972) is a common tool in analysis of survival data. In its basic form
it supposes that the survival time T , given the covariate vector Z, has the conditional distribution
function

F (t|z) = 1 − exp{−
∫ t

0

λo(u) du e(β′z)}

where β ∈ Rk. The hazard rate λo and β are respectively functional and vector parameters.
In medical applications typically we observe a sample (T1 ∧ C1, Z1), ..., (Tn ∧ Cn, Zn) along with
indicators δi of not censoring, where the censoring variable C is independent of T given the covariate
value Z. Cox proposed to estimate β by maximization of the partial likelihood

n∏
i=1

[
exp(β′Zi)∑

T̃j≥T̃i exp(β
′Zi)

]δi
where T̃i is the observed minimum of the survival and censoring times. Breslow’s (1974) estimate
of the baseline cumulative hazard Λ(t) =

∫ t
0
λo(u)du is

Λ̂(t) =
∑
T̃i≤t

δi∑
T̃i≤T̃j e

β̂′Zj

for β̂ the partial likelihood estimator (ple).
The above estimators are asymptotically efficient at the model but they show high instabil-

ity when the dependence structure of the model is even slightly perturbed as shown in Bed-
narski(1989,1993) and in Grzegorek(1993). The objective of the talk is to present a fairly complete
method of robust inference in the Cox model, derived via Fréchet differentiability of weighted
modifications of the Cox and Breslow functionals.

The implicit equation for the modified ple (Bednarski(1993)) in terms of the empirical distri-
bution function Fn based on (T1 ∧ C1, Z1), ..., (Tn ∧ Cn, Zn) has the form∫

A(w, y)

[
y −

∫
A(w, z)zI(a∧t)≥weβ

′zdFn(t, a, z)∫
A(w, z)I(a∧t)≥weβ

′zdFn(t, a, z)

]
Iw≤cdFn(w, c, y) = 0 ,

while the modified Breslow estimator as given by Grzegorek (1993) is

ΛA,t(Fn) =
∫
Iw≤t

A(w, z)Iw≤c∫
A(w, z)Iv∧c≥w)exp(β(Fn)z)dFn(v, c, z)

dFn(w, c, z)

where βA(Fn) is the robust estimator of β based on Fn.

2 Results and examples

It was suggested in Bednarski (1993, 1999) and in Minder and Bednarski (1996) that A functions
based on M − (Texp(βZ)∧M) or even better on M − (Λ(T )exp(βZ)∧M), where M is a properly
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chosen constant, naturally downweight observations for which the dependence structure in the
model is violated. Use of weights for estimation of β which require the cumulated hazard Λ, which
in turn require the true value of β imposes adaptivity problem to be discussed in finer details.

Apart from simulations made to show the sensitivity of estimation of the cumulated hazard via
Breslow’s estimator a number of comparative analysis of real survival data cases will be discussed;
including the Veteran’s Administration lung cancer data, Ovarian cancer data and the Heart trans-
plant data. A specially prepared graphical tool will be used for comparisons of robust and efficient
inferential procedures.
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