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Abstract

The logistic regression model is commonly used to describe the effect of
one or several explanatory variables on a binary response variable.
Here we consider an alternative model under which the observed response
is strongly related but not equal to the unobservable true response.
We call this the hidden logistic regression (HLR) model because
the unobservable true responses act as a hidden layer in a neural net.
We propose the maximum estimated likelihood method in this model,
which is robust against separation unlike all existing methods for logistic
regression. We then construct an outlier-robust modification of this
estimator, called the weighted maximum estimated likelihood (WEMEL)
method, which is robust against both problems.

Motivation

The logistic regression model assumes independent Bernoulli distributed
response variables with success probabilities Λ(x′iθ) where
Λ is the logistic distribution function,
xi ∈ IRp are vectors of explanatory variables, 1 ≤ i ≤ n,
and θ ∈ IRp is unknown.
Under these assumptions, the classical maximum likelihood (ML) estimator
has certain asymptotic optimality properties. However, even if the logistic
regression assumptions are satisfied there are data sets for which the ML
estimate does not exist. This occurs for exactly those data sets in which
there is no overlap between successes and failures, cf. Albert and Anderson
(1984) and Santner and Duffy (1986). This identification problem is not
limited to the ML estimator but is shared by all estimators for logistic
regression, such as that of Künsch et al. (1989).
It is possible to measure the amount of overlap.
This can be done by exploiting a connection between the notion of overlap
and the notion of regression depth proposed by Rousseeuw and Hubert (1999),
leading to the algorithm of Christmann and Rousseeuw (2001). A comparison
between this approach and the support vector machine is given in Christmann,
Fischer and Joachims (2002). However, when we know that there is no overlap
we still have to solve the identifiability problem.
Here we will use an alternative model, which is an extension of the
logistic regression model. We assume that due to an additional stochastic
mechanism the true response of a logistic regression model is unobservable,
but that there exists an observable variable which is strongly related to
the true response. E.g., in a medical context there is often no perfect
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laboratory test procedure to detect whether a specific illness is present
or not (i.e., misclassification errors may sometimes occur). In such
situations the true response (whether the disease is present) is not
observable, but the result of the laboratory test is.
It can be argued that the true unobservable response plays the role of a
hidden layer in a stochastic neural network, which is why we call
this the hidden logistic regression model.
In this model we propose the maximum estimated likelihood (MEL)
technique, and show that it is immune to the identification problem
described above. Furthermore, we construct an outlier-robust estimator
in this setting, the WEMEL method. We then study the behavior of the MEL
and WEMEL estimators on real and simulated data.

References

A. Albert, J.A. Anderson (1984).

On the existence of maximum likelihood estimates in logistic regression models.

Biometrika, 71, 1–10.

A. Christmann, P. Fischer, and T. Joachims (2002).

Comparison between the regression depth method and the

support vector machine to approximate the minimum

number of misclassifications.

To appear in: Computational Statistics, 2.

A. Christmann, P.J. Rousseeuw (2001).

Measuring overlap in logistic regression.

Computational Statistics and Data Analysis, 37, 65–75.
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