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Abstract: Two robust approaches to factor analysis are presented and compared. The first one
uses a robust covariance matrix for estimating the factor loadings and the specific variances. The
second one estimates factor loadings, scores and specific variances directly, using the alternating
regression technique.
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1. The Factor Analysis (FA) Model

Factor analysis (FA) is a standard technique in multivariate analysis which is routinely used
in social and behavioral sciences. The aim of factor analysis is to summarize the correlation
structure of observed variables X1, X2, . . . , Xp. For this purpose one constructs k < p unob-
servable or latent variables f1, . . . , fk, which are called the factors, and which are linked with
the original variables through the equation

Xj = λj1f1 + λj2f2 + . . .+ λjkfk + εj (1)

for each 1 ≤ j ≤ p. The error variables ε1, . . . , εp are supposed to be independent, but they
have specific variances ψ1, . . . , ψp. The coefficients λjl are called factor loadings, and they are
collected into the matrix of loadings Λ.

Using the vector notations X = (X1, . . . , Xp)
>, F = (f1, . . . , fk)

>, and ε = (ε1, . . . , εp)
>,

the usual conditions on factors and error terms can be written as E(F ) = E(ε) = 0, Cov(F ) =
Ik, and Cov(ε) = Ψ, with Ψ a diagonal matrix containing on its diagonal the specific variances.
Furthermore, ε and F are assumed to be independent.

In FA, one needs to estimate the matrix Λ (which is only specified up to an orthogonal
transformation) and Ψ. Classical FA methods are however very vulnerable to the presence of
outliers, hence methods need to be constructed which can resist the effect of outliers.

2. FA using Robust Covariance Matrices

Denote by Σ = Cov(X) the covariance matrix of X. (In case that X1, . . . , Xp are standardized
versions of the originally measured variables, Σ becomes the correlation matrix.) It follows
from (1) that Σ = ΛΛ> + Ψ. In classical FA, the matrix Σ is estimated by the sample
covariance matrix, which is afterwards decomposed to obtain the estimators for Λ and Ψ.
Many methods have been proposed for this decomposition, of which maximum likelihood (ML)
and the principal factor analysis (PFA) method are the most frequently used. It is, however,
well known that outliers can heavily influence the estimation of Σ and hence also the parameter
estimates. Therefore a robust scatter matrix estimator needs to be used.

For this, it is convenient to use the Minimum Covariance Determinant (MCD) estimator
of Rousseeuw (1985). The MCD looks for the subset of h out of all n observations having
the smallest determinant of its covariance matrix (typically, h ≈ 3n/4). The MCD estimator
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is highly robust, has good efficiency properties and is available in several software packages.
Recently, a fast MCD algorithm has been developed (Rousseeuw and Van Driessen, 1999).

Simulations and examples have shown that PFA based on MCD results in a resistant FA-
method, with bounded influence function (Pison et al., 2002). The empirical influence function
can be used as a data-analytic tool.

3. FA using Robust Alternating Regressions

A limitation of the MCD-based approach is that the sample size n needs to be bigger than
the number of variables p. For samples with n ≤ p (which occur quite frequently in practice),
the technique of alternating regressions can be used. For this we consider herefore the sample
version of model (1):

Xij =
k∑
l=1

λjlfil + εij (2)

for i = 1, . . . , n and j = 1, . . . , p. Suppose that preliminary estimates for the factor scores
fil are known, and consider them as constants for a moment. The loadings λjl can now be
estimated by linear regressions of the Xj’s on the factors. Moreover, by applying a robust scale

estimator on the computed residuals, estimates ψ̂j for ψj can easily be obtained. On the other
hand, if we take i fixed in (2) and suppose that the λjl are fixed, a regression of Xij on the
loadings λjl yields updated estimates for the factor scores. Since there is heteroscedasticity,

weights proportional to (ψ̂j)
−1/2 should be included.

Using appropriate starting values for the factor scores, an iterative process (called alter-
nating or criss-cross regressions) can be carried out to estimate the unknown parameters
of the factor model. To make things robust, we propose to use robust regression proce-
dures. Our suggestion is to use a weighted L1-regression estimator since it is fast to com-
pute and very robust (compare Croux et al., 2002). Experiments on real and simulated data
show that this method works well, converges quite fast and is highly robust. A documented
S-plus program computing the robust alternating regression estimator is freely available at
http://www.statistik.tuwien.ac.at/public/filz/ .
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