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1 Introduction

Calibration is a very important statistical method in chemometrics. The measurements typically
consist of spectra of several specimen (the X variables) and the concentration of some of their
constituents (the Y variables). The number of channels or energy intervals in the spectra is usually
very large, whereas the number of observations is often limited to at most 100 and the number of
response variables to at most five.

We are thus faced with a linear model

Yn,q = β0 +Xn,pβp,q + εn,q

with p � n and q � n. Since XtX is singular if p > n, the least squares estimator cannot
be computed at this model. Therefore, biased estimators are frequently used, such as Principal
Component Regression (PCR) and Partial Least Squares Regression (PLS). Both methods first
obtain k � p scores T as linear combinations of the original regressors, and then regress Y on T .

Although PCR and PLS are very popular in chemometrics, they are not resistant to outlying
observations. Here, we propose two robust counterparts.

2 Robust PCR

To robustify PCR, we first need a robust PCA method which has to be applied on the X-variables.
For this, we use the ROBPCA method (Hubert and Rousseeuw, 2002) since it is fast, transparent
and highly robust. Assume that we select k principal components, then the scores matrix Tn,k
contains the projections of the observations on these components.

In the second stage of the algorithm, we apply the MCD-regression method (Rousseeuw et al.,
2000) on the reduced regression model:

Yn,q = α0 + Tn,kαk,q + ε′.

MCD-regression is a multivariate regression method whose breakdown value is as high as the
MCD estimator (Rousseeuw, 1984). The regression coefficients (α̂0, α̂) obtained in this stage are
then backtransformed to the original p-dimensional parameter space, yielding estimates for β0 and
β.

3 Robust PLS

In PLS regression the computation of the scores takes into account the covariance between X and
Y . We propose a robust version of the SIMPLS algorithm (de Jong, 1993). Leaving out the details
of SIMPLS, it starts by computing the sample covariance matrix between X and Y . In our method
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we replace this classical covariance matrix by a robust covariance matrix. It is obtained by applying
ROBPCA on X and Y simultaneously. This yields

Σ̂ =
(

Σ̂XX Σ̂XY
Σ̂Y X Σ̂Y Y

)
from which Σ̂XY can be extracted. In the regression step, we again apply the MCD-regression
method.

4 Selection of number of components

To select the number of components, both in PCR and PLS, we propose to make a plot of the
robust R2

j versus j for j = 1, . . . , kmax:

R2
j = 1− det(Σ̂ε,j)

det(Σ̂Y )

with Σ̂ε,j and Σ̂Y the estimated covariance matrices of the errors and the response variables when
j scores are retained in the model.

We also introduce several two and threedimensional diagnostic plots which are helpful to vi-
sualize and classify the outliers in the data. We show the performance and the robustness of the
algorithms through simulations and applications on real data sets.
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